
Earth Syst. Dynam., 16, 1029–1051, 2025
https://doi.org/10.5194/esd-16-1029-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Concurrent modes of climate variability linked to
spatially compounding wind and precipitation extremes

in the Northern Hemisphere

Bastien François1,�, Khalil Teber2,�, Lou Brett3, Richard Leeding4, Luis Gimeno-Sotelo5,6,7,
Daniela I. V. Domeisen8,9, Laura Suarez-Gutierrez9,10, and Emanuele Bevacqua11

1Royal Netherlands Meteorological Institute (KNMI), Research and Development Weather and Climate
(RDWK), De Bilt, the Netherlands

2Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, 04103, Germany
3Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK

4Department of Earth Sciences, Uppsala University, Uppsala, Sweden
5Departamento de Estatística e Investigação Operacional, Faculdade de Ciências,

Universidade de Lisboa, Lisbon, Portugal
6CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon,

Portugal
7Centro de Investigación Mariña, Environmental Physics Laboratory, Universidade de Vigo, Ourense, Spain

8Faculty of Geosciences and Environment, Université de Lausanne, Lausanne, Switzerland
9Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

10Institut Pierre-Simon Laplace, CNRS, Paris, 75252, France
11Department of Compound Environmental Risks, Helmholtz Centre for Environmental Research – UFZ,

Leipzig, Germany
�These authors contributed equally to this work.

Correspondence: Bastien François (bastien.francois@knmi.nl) and Emanuele Bevacqua
(emanuele.bevacqua@ufz.de)

Received: 5 July 2024 – Discussion started: 26 July 2024
Revised: 3 February 2025 – Accepted: 11 April 2025 – Published: 15 July 2025

Abstract. Compound wind and precipitation (CWP) extremes often cause severe impacts on human society
and ecosystems, such as damage to crops and infrastructure. Spatially compounding events with multiple re-
gions affected by CWP extremes in the same winter can impact the global economy and reinsurance indus-
try; however, our understanding of these events is limited. While climate variability modes such as El Niño
Southern Oscillation (ENSO) can influence the frequency of precipitation and wind extremes, their individual
and combined effects on spatial co-occurrences of CWP extremes across the Northern Hemisphere have not
been systematically examined. Here, by combining reanalysis data and climate model simulations, we inves-
tigate how two oceanic and two atmospheric variability modes – ENSO, the Atlantic Multidecadal Variability
(AMV), the North Atlantic Oscillation (NAO), and the Pacific North American (PNA) – amplify the winter-
time (December–February) frequency of daily CWP extremes and associated spatial co-occurrences across the
Northern Hemisphere. We find many hotspot regions where concurrent variability mode anomalies significantly
amplify wintertime CWP extreme event frequencies compared to single variability modes. By examining the
relationships between frequencies of wintertime CWP extremes across regions, we identify dependencies en-
abling extreme spatially compounding events, that is winters with many regions experiencing CWP extremes.
While ENSO is the most influential variability mode for such extreme spatially compounding events, the occur-
rence of these events increases further when multiple modes of variability are in anomalous phases. In particular,
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combinations of modes increase both the number of regions and the population exposed to daily CWP extremes
in the same winter. For example, combined ENSO- and NAO+ nearly doubles the number of affected regions
compared to neutral conditions on average. Our analysis highlights the importance of considering the interplay
between variability modes to improve risk management and adapt to the impacts of spatially compounding CWP
extremes.

1 Introduction

Weather and climate extremes pose severe risks to hu-
man health, infrastructure, natural resources, and ecosystem
health (IPCC, 2021). Compound weather and climate events,
defined as the combination of multiple drivers and/or haz-
ards that contribute to societal or environmental risk, often
cause more severe impacts than the respective single haz-
ards (Zscheischler et al., 2018). The Intergovernmental Panel
on Climate Change (IPCC) Special Report on Managing the
Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation (SREX) highlighted the importance of
studying compound events to improve modeling and risk es-
timation of weather impacts (IPCC, 2012). Without consid-
ering compound extreme weather events, damages from ex-
treme weather events may be either under- or over-estimated
(e.g., van den Hurk et al., 2023; Hillier et al., 2020). A highly
studied example of an impactful compound event is hot–dry
conditions (e.g., Bevacqua et al., 2022), which are enhanced
by land-atmosphere feedback (e.g., Zscheischler and Senevi-
ratne, 2017; Rasmijn et al., 2018; Ridder et al., 2022). An-
other example is compound wind and precipitation (CWP)
extremes that can cause more damage than high winds or
precipitation in isolation (e.g., Li et al., 2024). For example,
the combination of high winds and rainwater can result in
severe damage due to the inflow of water through joints or
cracks in building structures (e.g., Blocken and Carmeliet,
2004; Mirrahimi et al., 2015; Martius et al., 2016; Jeong et
al., 2020). Furthermore, CWP extremes can lead to a range
of other exacerbated impacts, such as increased soil erosion
(e.g., Foulds and Warburton, 2007), agricultural and forestry
losses (e.g., Van Stan et al., 2011; Ridder et al., 2022), and
damage to energy infrastructure and buildings (e.g., Mir-
rahimi et al., 2015; Jeong et al., 2020). They can also result
in economic impacts through insurance and disaster recovery
(e.g., van den Hurk et al., 2023; Ciullo et al., 2023) and hu-
man fatalities (e.g., Pilorz et al., 2023). Going forward, these
CWP extremes are likely to change in frequency and/or in-
tensity due to human-induced climate change (IPCC, 2021).

Alongside co-occurring extremes in the same location,
which correspond to multivariate events (Zscheischler et
al., 2020), another type of compound event involves the si-
multaneous occurrence of extremes across multiple regions
or locations, referred to as spatially compounding extremes
(Zscheischler et al., 2020). Spatially compounding events are
gaining prominence due to the potential to cause widespread

impacts on the global food system, disaster management
resources, and (re)insurance industries by simultaneously
affecting large populations and assets (e.g., Singh et al.,
2021; Ciullo et al., 2023; Gampe et al., 2024; Bevacqua et
al., 2024). For example, widespread spatially compounding
flooding throughout nine European countries in June 2013
placed high pressures on trans-national risk reduction and
risk transfer mechanisms and generated EUR 12 billion in
losses (Jongman et al., 2014). In cases where simultaneous
extreme hazards across multiple regions occur worldwide,
global catastrophe risk pooling could help with reducing
the severity of economic shocks (Ciullo et al., 2023). While
the characteristics of spatially compounding events such as
droughts (e.g., Kim et al., 2019; Singh et al., 2021) or floods
(e.g., Jongman et al., 2014) have already been studied, our
understanding of spatially compounding CWP extremes and
their drivers is limited.

To advance our understanding of CWP extremes and their
drivers, this study focuses on the Northern Hemisphere due
to the high population density and the severe impacts of CWP
extremes in this part of the world (e.g., Liberato, 2014; Wahl
et al., 2015; Raveh-Rubin and Wernli, 2015). Such com-
pound extremes are most frequent in coastal regions of the
Pacific and Atlantic oceans (e.g., Maraun, 2016) and tend
to be more frequent and intense in the winter season (e.g.,
Greeves et al., 2007; Hansen et al., 2019). Consequently, this
study focuses on seasonal frequency of daily CWP extremes
during December–February. While multiple drivers can lead
to CWP extremes, their influence varies across different ge-
ographical regions (e.g., Dowdy and Catto, 2017; Zscheis-
chler and Lehner, 2021; Li et al., 2022; Manning et al., 2024).
Typical drivers of CWP extremes include atmospheric rivers
(e.g., Ralph et al., 2006; Waliser and Guan, 2017) and low-
pressure systems (e.g., Rappaport, 2000; Seneviratne et al.,
2012; Wahl et al., 2015), including tropical cyclones (e.g.,
Cerveny and Newman, 2000; Zhang et al., 2021), extratrop-
ical cyclones (e.g., Raible, 2007; Owen et al., 2021), and
fronts (e.g., Raveh-Rubin and Catto, 2019). Accordingly, re-
gions prone to cyclones are particularly exposed to CWP ex-
tremes (e.g., Martius et al., 2016; Messmer and Simmonds,
2021; Owen et al., 2021). As an example of the potential
costs, the extratropical cyclones Anatol, Lothar, and Martin
that hit Europe in December 1999 caused damages totaling
USD 13.5 billion (adjusted to the value in 2012) and over 150
fatalities (Roberts et al., 2014).
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At the global scale, such drivers are modulated by modes
of atmospheric and oceanic variability, which represent vari-
ations in atmospheric patterns due to internal climate vari-
ability. For example, the North Atlantic Oscillation (NAO)
and Pacific North American (PNA) are the leading modes of
variability affecting wintertime weather in Europe (e.g., Hur-
rell, 1995) and North America (e.g., Wallace and Gutzler,
1981). During extreme phases of the PNA and NAO, the in-
tensity and location of storms and moisture transport deviate
from mean conditions over the Pacific-North American re-
gion (e.g., Wallace and Gutzler, 1981; Xie et al., 2020) and
the Euro-Atlantic region (e.g., Hurrell et al., 2003; Lodise
et al., 2022), respectively. While positive NAO phases inten-
sify westerly winds and shift the North Atlantic storm track
toward the northeast, leading to increased storm frequency
and intensity over Northern Europe, negative NAO phases
weaken the westerlies and amplify storm activity in the
Mediterranean region (e.g., Hurrell and Deser, 2010; Priest-
ley et al., 2023). Oceanic modes of variability such as the El
Niño Southern Oscillation (ENSO) and the Atlantic Multi-
decadal Variability (AMV) can further modulate atmospheric
modes of variability and CWP extremes. For example, ENSO
can influence both the PNA and NAO (e.g., Müller and
Roeckner, 2006; Jiménez-Esteve and Domeisen, 2019, 2020)
as well as weather systems in many regions worldwide (e.g.,
van Oldenborgh et al., 2005; Zhao, 2015; Domeisen et al.,
2019). The AMV, an alternation of warm and cold sea surface
temperatures in the North Atlantic on decadal timescales, has
been shown to influence weather in both North America and
Europe (e.g., Knight et al., 2006), as well as the long-term
variability of the NAO (e.g., Davini et al., 2015). There are
complex teleconnections linking the ENSO, NAO, PNA and
AMV modes and their influence on weather patterns across
the Northern Hemisphere (e.g., Müller and Roeckner, 2006;
Toniazzo and Scaife, 2006; Pinto et al., 2009; Davini et al.,
2015; Trascasa-Castro et al., 2021; Hu et al., 2023; King et
al., 2023; O’Reilly et al., 2024). Some of the modes are spe-
cific phenomena that are internally driven, such as ENSO,
while others are a representation of the dominant weather and
climate variability in a particular region, such as the NAO or
the PNA.

Understanding the drivers of CWP extremes is crucial for
optimizing resource distribution during response efforts, yet
research in this area remains limited. Several studies have
explored the influence of single or combined mode of vari-
ability anomalies on precipitation and wind extremes in iso-
lation, both at regional (e.g., Elsner et al., 2001; Abeysirigu-
nawardena et al., 2009; Kossin et al., 2010; Grimm, 2011)
and global scales (e.g., Khouakhi et al., 2016; Gao et al.,
2022; Liu et al., 2024). Regarding CWP extremes, some
studies have explored the influence of individual variability
modes at the regional scale only (e.g., Hillier et al., 2020;
Bloomfield et al., 2024), thus not allowing the assessment
of the relation between concurrent climate variability modes
and spatial co-occurrences of CWP extremes across several

regions. In this study, we use reanalyses data and large en-
semble climate model simulations from the CESM General
Circulation Model (Kay et al., 2015) to investigate the ef-
fects of ENSO, NAO, PNA, and AMV modes of variabil-
ity, and their combinations, on the increase in the frequency
of December–January–February daily CWP extremes across
the Northern Hemisphere. We consider these four modes of
variability due to their already-known influence on storm ac-
tivity and moisture transport in the Northern Hemisphere.
As ENSO operates primarily on seasonal timescales (e.g.,
Schmidt et al., 2001; Camberlin et al., 2001), seasonal mean
indices are considered. Specifically, we (1) analyze how
different modes of variability increase wintertime regional
frequencies (i.e., seasonal counts) of daily CWP extremes
across individual regions of the Northern Hemisphere. We
then investigate spatially compounding events with many
regions under high CWP extreme frequencies in the same
winter by examining the effect of (2) dependencies between
CWP extremes across different regions and (3) combina-
tions of modes of variability on such spatially compounding
events. Finally, we (4) inspect the atmospheric circulation
anomalies associated with these compound events. To the
best of the authors’ knowledge, the present study is the first
to investigate CWP extremes and associated spatially com-
pounding events across the Northern Hemisphere as medi-
ated by multiple large-scale modes of variability. We address
this research gap by using large ensemble climate model sim-
ulations to provide a robust model-based analysis of the ef-
fects of rare concurrent variability mode anomalies on low
probability daily CWP extremes (e.g., van der Wiel et al.,
2019; Singh et al., 2021; Raymond et al., 2022; Bevacqua et
al., 2023; Qian et al., 2023; Wang et al., 2023).

The study is structured as follows: Section 2 describes the
data used as well as the methodology to analyze the effects of
variability modes on CWP extremes and spatially compound-
ing events. Results are provided in Sect. 3. Conclusions, dis-
cussions, and perspectives for future research are presented
in Sect. 4.

2 Data and methods

We examine the influence of four variability modes on CWP
extremes across 25 selected regions in the Northern Hemi-
sphere defined in the SREX (Iturbide et al., 2020, see Fig. 1).
We chose these regions as they are standard reference in
IPCC reports as they encompass areas with relatively homo-
geneous climatic characteristics (Iturbide et al., 2020). While
using these regions does not enable an explicit analysis of de-
pendencies between local-scale CWP extremes and modes of
variability, it allows for complementing IPCC assessments.

2.1 Model and reanalysis data

We employ model simulations from the coupled Commu-
nity Earth System Model (CESM; spatial resolution of 1.25°
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Figure 1. Presentation of the regions under study which consist of the SREX regions (Iturbide et al., 2020) adopted by the Intergovernmental
Panel on Climate Change (IPCC) in the Northern Hemisphere. The bottom part shows short and full names of the regions. Regions are
clustered in macroareas (see legend). To balance the number of regions between continents, we partitioned the Asian continent into two
macroareas (North Asia and Central-South Asia) and included the Arabic Peninsula (ARP) region in the Africa macroarea.

by 1.25°), which provides 40 ensemble members (Kay et
al., 2015). These ensemble members are derived from the
CESM model under the same model physics and external
forcings, with each of the members starting in 1920 and ini-
tialized from slightly different initial states, leading to dif-
ferent evolutions from internal climate variability (Maher et
al., 2021). Considering multiple members provides a large
sample size that allows for assessing the effect of internal
climate variability and infrequent combinations of modes of
variability on rare compound events (e.g., Bevacqua et al.,
2023; Singh et al., 2021). Daily total precipitation and daily
mean of wind speed are extracted for the historical period
(1950–2005). Simulated data are then extended until 2019
using the emission scenario associated with a radiative forc-
ing of +8.5 Wm−2 (RCP 8.5 scenario), resulting in a total of
70×40= 2800 years of data. We chose daily averages rather
than maxima for wind due to data availability for the CESM
simulations.

To evaluate the CESM model, we employed ERA5 re-
analysis data (Hersbach et al., 2020) (spatial resolution of
0.25°) for the period 1959–2019, from which we also ex-
tracted daily means of wind speed and daily total precipita-
tion for consistency.

Seasonal indices for the two oceanic (ENSO and AMV)
and two atmospheric (NAO and PNA) variability modes for
both CESM and ERA5 data were calculated from monthly
data using the National Center for Atmospheric Research
(NCAR) data package Climate Variability Diagnostics Pack-
age (CVDP, Phillips et al., 2014). The seasonal indices for
the NAO, PNA and AMV were calculated as the mean of
the monthly values for December, January and February. For
these indices, December was taken from the year n−1, while
January and February were taken from year n, and the re-
sulting seasonal index is assigned to year n. For ENSO we
proceeded similarly, but used November–January averages to
account for lagged effects (e.g., Kawamura et al., 2004; Li et
al., 2011; Hong Lee et al., 2023). For each mode, we defined
their positive and negative phases when the index was above
or below its mean by 1 standard deviation, respectively, oth-
erwise the phase was considered neutral.

2.2 Methods

2.2.1 CWP extremes

Many techniques have been utilized to characterize CWP ex-
tremes, with the selection of a specific method being guided
by the research question. For example, the correlation be-
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tween wind and precipitation has been quantified at daily to
seasonal timescales (e.g., Matthews et al., 2014; Luca et al.,
2017; Hillier et al., 2020; Bloomfield et al., 2023). Logis-
tic regression models have been applied to quantify the like-
lihood of a precipitation extreme occurring given the pres-
ence of a wind extreme (e.g., Martius et al., 2016). Alter-
native approaches include examining tail dependence (e.g.,
Vignotto et al., 2021) and employing impact-focused met-
rics (e.g., Hillier et al., 2015, 2020; Bevacqua et al., 2021a).
The most straightforward approaches include counting ex-
treme wind and precipitation co-occurrences above a given
percentile (e.g., Martius et al., 2016; Bevacqua et al., 2021a)
or using extremal dependency measures estimating the prob-
ability of one variable being extreme given that the other one
is extreme (e.g., Coles et al., 1999; Hillier et al., 2015; Owen
et al., 2021).

Here, to investigate winter season (December–February)
CWP extremes at the grid cell level, we derived seasonal
counts of daily CWP extremes which were defined as
wind and precipitation values simultaneously exceeding high
thresholds. This results in one count per season per grid
cell, which allows for investigating the effect of seasonally-
averaged climate variability modes on the counts. We use the
98th percentile of wind and precipitation over the 1950–2019
period as thresholds for the main analysis based on data from
the CESM model. Percentile-based thresholds are frequently
used to investigate climate extremes (e.g., Zhang et al., 2011;
Martius et al., 2016). Following Klawa and Ulbrich (2003)
and Martius et al. (2016), we chose the 98th percentile, which
is a compromise to capture the most extreme events in the
CESM simulations while ensuring a sufficiently large sam-
ple size for robust statistical analysis. For model evaluation,
which involves both the CESM model and ERA5 reanalyses
(Figs. S1–S5 in the Supplement), we use the 95th percentiles
over the 1959–2019 period – such a lower threshold allows
us to present a more robust evaluation. The reason for this is
that, given the ERA5’s limited period, extremes in the reanal-
ysis data set are more scarce and associated statistics for very
extreme events are largely affected by sampling uncertainty
(Bevacqua et al., 2021b). Selecting a slightly lower threshold
allows us to reduce this sampling uncertainty and thus im-
prove confidence in assessing the model’s ability to simulate
extremes (e.g., Bevacqua et al., 2021b; Kelder et al., 2022;
Fischer et al., 2023).

2.2.2 Regional and spatially compounding effects of
combined variability modes

To investigate the effect of variability modes on wintertime
CWP extremes, we use three different metrics. The first met-
ric allows for assessing the effect of modes in individual re-
gions:

– Metric 1. Regionally averaged counts of CWP extremes.
Wintertime CWP counts are averaged by region over

landmasses, weighted by the cosine of latitude to pre-
vent overrepresentation of grid cells closer to the poles.
This count-based metric allows us to assess the effects
of variability modes on individual regions separately.

As Metric 1 is derived for each region individually, the in-
fluence of variability modes on the high regional frequencies
of CWP extremes across multiple regions in the same winter
(i.e., spatially compounding events) cannot be deduced di-
rectly. For example, based on Metric 1, we find that the vari-
ability mode phase ENSO+ modulates regionally averaged
CWP extreme frequencies for North America and Central
Asia. However, a possibility could be that half of the win-
ter seasons with ENSO+ leads to increased CWP extremes
for North America only, while the other half affects Central
Asia, thus not simultaneously. Examining the dependencies
between counts of CWP extremes in different regions can
provide preliminary information on spatially compounding
events (e.g., Bevacqua et al., 2021b) because regions con-
nected by positive dependencies tend to experience CWP ex-
tremes at the same time. Thus, as a first step for investigat-
ing spatially compounding events, we analyze dependencies
in Metric 1 computed for different regions, so as to provide
preliminary information on groups of regions that may be af-
fected by CWP extremes during the same winters.

Then, to examine spatially compounding events, we use
two additional metrics. We employ these metrics to inves-
tigate the effects of variability modes on regional high fre-
quencies of CWP extremes across multiple regions in the
same winter (Metric 2) and on the total population of the
Northern Hemisphere exposed to CWP extremes in the same
winter (Metric 3).

– Metric 2. Total number of affected regions during the
same winter. For a given winter, a region is considered
as affected by CWP extremes when the regionally aver-
aged count of CWP extremes (Metric 1) is above its 80th
percentile derived from the distribution of the 1950–
2019 period. Then, similar to Singh et al. (2021), the to-
tal number of affected regions during the same winter is
counted. Although choosing a higher percentile (> 80th
percentile) would enable us to focus on cases where re-
gions are more severely affected, it would considerably
limit the number of regions reported as affected and,
consequently, the statistical robustness of our results.

– Metric 3. Total population exposure. To assess the ef-
fects of variability modes on the population of the
Northern Hemisphere exposed to CWP extremes dur-
ing the same winter, we calculated for each winter the
weighted averages of CWP extremes, wCWP (hereafter
referred to as “population-weighted CWP extremes”),
using CWP extremes and population counts at the grid
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cell level as follows:

wCWP=
∑Ngrid
i=1 NCWPi ×Popi∑Ngrid

i=1 Popi
,

where NCWPi and Popi are the seasonal counts of CWP
events and the population count at grid cell i, respec-
tively, andNgrid is the total number of grid cells over the
Northern Hemisphere. Population weighting is utilized
here as a surrogate for the assets at risk that could expe-
rience damages due to CWP extremes (e.g., Bloomfield
et al., 2023). For this purpose, global population counts
for the year 2020 from the Gridded Population of the
World (GPW) product have been used (CIESIN, 2016).

In addition to enabling quantifying the number of affected
regions depending on variability modes, Metric 2 is also used
in Fig. 5b to assess the effect of the dependencies between re-
gions on spatially compounding events. This analysis is per-
formed by comparing the number of affected regions (i.e.,
Metric 2) from the original dataset with the number obtained
after breaking the dependencies via randomly shuffling re-
gional CWP extreme counts using bootstrap in all regions in
time (Bevacqua et al., 2021a).

2.2.3 Identifying relevant effects of single and combined
variability modes for the regional and spatial
metrics

We quantify the effect of a positive (or negative) phase of a
single variability mode of interest on wintertime CWP ex-
tremes based on the ratio between (i) CWP metrics under the
positive (or negative) phase of the mode of interest, while ad-
ditionally conditioning the other modes in a neutral state, and
(ii) CWP metrics under all variability modes in the neutral
phase. Hereafter, we referred to this effect as a direct effect.
Following Singh et al. (2021), additionally conditioning all
other modes in the neutral phase in (i) serves for better iso-
lating the causal effects of the individual variability mode
of interest. Specifically, the additional conditioning takes
into account confounding effects arising from the considered
modes, although some confounding effects may remain. In
particular, modes in neutral states still vary within the range
of neutral conditions and we do not control for them. In ad-
dition, further effects may arise from variability modes not
considered in this study. Similarly to the analysis of single
variability modes, we quantify combined effects, that is the
effect of concurrent variability modes in non-neutral phases
based on the ratio between (i) CWP metrics under the con-
current modes of interest while conditioning all other modes
to neutral conditions and (ii) CWP metrics under all variabil-
ity modes in neutral phase. In terms of notation, we refer to
concurrent climate variability modes by specifying (positive
or negative) phases of NAO, PNA, ENSO, and AMV (in this
order), with unspecified modes being in neutral states.

Although the main part of our study is based on the anal-
ysis of the metrics defined in Sect. 2.2.2, we provide an
overview of the direct (combined) effects of modes on CWP
extreme frequencies at the grid cell level in Fig. 2 (Fig. 7).
Results for the effects of variability modes on regionally av-
eraged metric (Metric 1) and spatial metrics (Metrics 2 and 3)
ratios are presented in Figs. 3, 4, and 6. For both regional and
spatially compounding cases, we focus on the modes of vari-
ability influences leading to an enhancement in the means of
the different metrics compared to neutral conditions (here-
after referred to as positive effects) – we focus on the in-
crease, rather than the decrease, as this is of relevance for
potential impact to society. This study does not investigate
the influence of variability modes on the decrease of the met-
rics. When results for the different metrics are presented with
box plots (Figs. 3, 5, and 6), the interquartile range and mean
of the distribution are displayed.

Given the focus on four variability modes, each with three
possible phases, there are 81 possible phase combinations,
motivating the need for a synthesis of their effects. When pre-
senting the results in Sect. 3, we focus our analysis on indi-
vidual and concurrent variability modes having a significant
and positive effect on the different metrics using permutation
tests (see Sect. 2.2.4 for more details on calculating the sig-
nificance). To support the interpretation of the effects of con-
current variability modes on CWP metrics, in Figs. 3 and 6
we also show the effects of all univariate variability modes
that contribute to the concurrent modes with significant ef-
fects regardless of whether they exert a significant effect in
isolation compared to neutral conditions or not. Furthermore,
to ensure robustness in the results, we disregard concurrent
variability modes that occur very rarely by only consider-
ing concurrent variability modes with an empirical return pe-
riod, defined as the inverse of their relative frequency, greater
than 280 years (i.e., occurring for more than 10 years in our
2800 years dataset). It should be noted here that the em-
pirical return periods for concurrent modes provided in this
study are conditional as they are calculated by conditioning
all other modes to neutral conditions. Therefore, such con-
ditional return periods, despite providing an indication of
the rarity of concurrent modes, should not be considered as
absolute return periods as, by construction, they are larger
than the unconditional return periods obtained without con-
ditioning the other modes in neutral conditions. To provide
an overview of the synthesis of the variability modes, effects
of all possible concurrent modes are displayed for regionally
averaged metric in Figs. S8–S14 in the Supplement (for a se-
lection of regions for the sake of brevity) and spatial metrics
are provided in Fig. S15 of the Supplement.

Finally, to provide insights into possible amplified effects
of concurrent variability modes (Singh et al., 2021) relative
to the effects of the modes that contribute to such combina-
tion, we identify combinations for which the average metric
is higher than that of the underlying mode sub-combinations
(note that no test here is performed, so this should be inter-
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Figure 2. Direct effect of variability modes on wintertime compound wind and precipitation (CWP) extremes. Ratio of the average winter-
time (December–February) CWP extreme frequencies for the (a) positive and (b) negative phases of NAO (while other variability modes
are in their neutral phases) compared to neutral conditions (all variability modes being in their neutral phases) based on the CESM model.
Corresponding maps are also displayed for (c, d) PNA, (e, f) ENSO, and (g, h) AMV. Numbers in the headers indicate the conditional empir-
ical return period T (in years) for positive and negative phases of the variability modes (while other modes are in their neutral phases). The
empirical return period for neutral conditions (i.e., when all modes are in their neutral phases) is T = 3 years. Stippling indicates significant
differences of mean frequency relative to neutral conditions at the 10 % significance level using permutation tests (two-sided) with Bonfer-
roni correction. The framed regions in blue are those where the direct effects of variability modes significantly increase regionally averaged
CWP extreme frequencies compared with neutral conditions (following the methodology defined in Sect. 2.2.3, and reflecting information in
Fig. 3).

preted carefully, see explanations in Sect. 2.2.4). For exam-
ple, the concurrent modes NAO-PNA+ENSO+ are deemed
to possibly have an amplified effect relative to the under-
lying mode sub-combinations if the average metric under
NAO-PNA+ENSO+ is higher than the underlying mode sub-
combinations, which are NAO-, PNA+ and ENSO+ taken
in isolation, as well as the bivariate mode sub-combinations
NAO-PNA+, NAO-ENSO+ and PNA+ENSO+. The identi-
fied combinations with amplified effects are highlighted in
Figs. 3, 4, 6, and 7 via dark blue box plots and boxes.

2.2.4 Permutation test procedure to assess significance
in effects of combined variability modes

As already mentioned in Sect. 2.2.3, the statistical signifi-
cance of the effects of individual and concurrent variability
modes on CWP metrics compared to neutral conditions was
assessed using permutation tests (e.g., Bradley, 1968; Good,
2013; DelSole et al., 2017; Singh et al., 2021). Specifically,
for a given CWP metric, we test whether the ratio of the av-
erage of the metric associated with a given set of phases of
interest (e.g., NAO+ENSO-, set as the numerator) to the av-
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Figure 3. Influence of concurrent variability modes on regional compound wind and precipitation (CWP) extremes. Ratio of the regionally
averaged wintertime CWP extreme frequencies for the relevant individual and concurrent variability modes (following the methodology
defined in Sect. 2.2.3) with respect to average frequency for neutral conditions based on the CESM model (orange dots represent associated
values of the ratio derived from ERA5, when available, with each dot representing one winter season). Results are displayed for (a) Europe
and Africa, (b) North America and Central America, and (c) Northern Asia and Central-South Asia. The conditional empirical return periods
(in years; see Methods) for individual and concurrent variability modes are indicated on the top. Gray arrows indicate significant differences
in the mean frequency relative to neutral conditions (at the 10 % significance level, with Bonferroni correction). Green boxes indicate
distributions for neutral conditions (all variability modes being in their neutral phases) and green horizontal lines indicate ratios equal to one.
Blue boxes indicate mode combinations with amplified effects (that is, higher means of regionally averaged CWP extreme frequencies than
their underlying mode sub-combinations (methods Sect. 2.2.3)). We remove concurrent variability modes that occur in less than 10 winters
and regions without significant effects arrows (EEU, WCE, GIC, CAR, and SCA).
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Figure 4. Effects of variability modes on wintertime compound wind and precipitation (CWP) extremes in SREX regions. For different
regions (see labels on the left side of the matrix), the ratio of the regionally averaged CWP extreme frequencies for individual and concurrent
variability modes (see labels on the bottom side of the matrix) with respect to the average frequency under neutral phases of all modes
(Metric 1, see Methods), based on the CESM model. Note that positive effects of concurrent variability modes (ratio above 1) tend to be
stronger than negative effects (ratio below 1). The individual and concurrent variability modes with significant effects (at the 10 % level
with Bonferroni correction) relative to neutral conditions are indicated with an asterisk. Blue cell borders indicate combinations with higher
means of regionally averaged CWP extreme frequencies than their underlying mode sub-combinations (methods in Sect. 2.2.3). To ensure
robustness, we do not display concurrent variability modes that occur in less than 10 winters. Based on the displayed information, the numbers
on the top and right margins indicate the total count of regions and mode combinations with significant effects of modes, respectively.

erage of the metric under neutral conditions (set a denomi-
nator) is larger than one at significance level α = 0.10 based
on one-sided tests. Compared to a lower significance level,
our chosen level allows the detection of significant effects
of modes of variability while reducing false negatives in the
context of small sample sizes. To test the hypothesis that the
average of the metric under individual and concurrent vari-
ability modes is higher than under neutral conditions, we
compared the ratio obtained from the original samples with
a confidence interval of the ratio obtained from data without
an effect of the modes on the CWP metric. Specifically, the
latter was obtained via randomly permuting without replace-
ment the samples for both numerator and denominator and
re-estimate the ratio from the resampled data. By repeating
this procedure, we can then define a confidence interval for
the ratio and a critical region for test rejection. If the original
ratio is higher than the (1−α)×100th percentile, the average
of the metric associated with the set of phases of interest is
considered to be significantly higher than that of the neutral
conditions. As several tests are carried out for the different
concurrent modes, a Bonferroni correction (e.g., Bonferroni,
1936; Sedgwick, 2014) is applied to control the overall prob-
ability of Type I (or false positive) errors. Please note that,

while identifying concurrent variability modes with signifi-
cantly amplified effects relative to the effects of the modes
that contribute to such combination is relevant, it has not
been done in this study as no statistically consistent proce-
dure including Bonferroni correction has been found for such
a statistical problem. For example, to identify the concurrent
modes NAO+ENSO+AMV+ as having a significantly ampli-
fied effect on the metrics, six permutation tests comparing the
effects of NAO+ENSO+AMV+ against those of its six sub-
combinations must all reject the equality of effects. Design-
ing such a statistical test procedure while controlling the false
discovery rate goes beyond the scope of the present study and
is therefore not included in the analysis. In addition, in Figs. 2
and 7 only, we assess whether averages of the CWP extreme
frequencies at the grid cell level associated with a given set
of phases are significantly different compared to neutral con-
ditions (i.e., not necessarily larger). For these tests performed
at the grid cell level, we use two-sided permutation tests. In
this case, the critical region for rejection is defined using the
(α2 )× 100th and (1− α

2 )× 100th percentiles.
Regarding the number of samples m for permutation tests,

several trials showed that choosing m= 100000 allows us
to obtain robust results for the three different metrics. Thus,
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Figure 5. Dependencies between regional wintertime compound wind and precipitation (CWP) extremes. (a) Matrix of Spearman corre-
lations for regionally averaged wintertime (December–February) CWP extreme frequencies between regions based on the CESM model.
Stippling indicates significant correlations (correlation values that are outside the 90 % centered confidence interval). A contour is added for
regions in the same macroarea. The boxplot shows summaries of the distribution of the correlations shown in the matrix (interquartile range,
median and outliers); the gray background shows the confidence interval for no correlation (bootstrap-based 90 % range). (b) Histograms of
the number of regions with a high frequency of CWP extremes during the same winter based on the CESM model (orange histogram) and
when assuming independence between regional wintertime CWP extreme frequencies (gray histogram; obtained via shuffling the data 1000
times via bootstrap). Vertical lines show the 50 year return levels under dependence and independence. Bootstrap-based confidence intervals
for each bin and 50 year return level at 10 % significance level are also shown. (c) Boxplots of the number of affected regions given different
numbers of variability modes in anomalous phases. The conditional empirical return periods (in years; see Methods) for the different number
of variability modes in anomalous phases are indicated on the right. Mean of the ratios under a different number of modes in anomalous
phases that are not significantly different (α = 0.10, one-sided permutation test) are indicated with the same letters (Jiang et al., 2024). The
average number of regions affected under neutral conditions is indicated by a vertical line.
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Figure 6. Influence of variability modes on spatially compounding wind and precipitation (CWP) extremes. (a) Distributions of the number
of regions (left y axis) experiencing a high frequency of CWP extremes during the same winter (December–February) for different individual
and concurrent variability modes (x axis) based on the CESM model. The right y axis shows the ratio of the metric to its average under
neutral phases of all modes. The combinations presented are selected according to the methodology defined in Sect. 2.2.3. Gray arrows
indicate significant differences in the mean with respect to neutral conditions at the 10 % significance level using one-sided permutation tests
and Bonferroni correction. Green boxes indicate distributions for neutral conditions (all variability modes being in their neutral phases). Blue
boxes indicate combinations exhibiting higher means than their underlying mode sub-combinations (methods Sect. 2.2.3). (b) The same as
panel (a), but for the population-weighted CWP extremes over the Northern Hemisphere. Symbols + and − above the x axis in panels (a)
and (b) highlight combinations having a significant effect for a metric containing ENSO+ and ENSO-, respectively.

the analysis of the three metrics was carried out using m=
100000. However, when applied to the grid cell level for
Figs. 2 and 7, results from permutation tests proved less sen-
sitive to the choice of the number of sample, and m was cho-
sen to be equal to 100.

3 Results

Before investigating the effect of individual variability
modes and concurrent modes on CWP extremes and asso-

ciated spatially compounding events in CESM simulations
for the 1950–2019 period, we carried out a model evaluation
with respect to ERA5 over the 1959–2019 period. Such a
model evaluation is mainly performed for the effects of indi-
vidual variability modes, as a robust assessment of the effects
of concurrent variability modes requires a large sample size
(Singh et al., 2021). For the same reason, the effects of indi-
vidual variability modes in ERA5 are evaluated without con-
straining the other modes to be in the neutral phase (which
thus differs from the direct effects of variability modes de-
fined in Sect. 2.2.3).
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Figure 7. Compound wind and precipitation (CWP) extremes for concurrent anomalies in variability modes and associated sea level pressure
anomalies. (a) Ratio of the average wintertime (December–February) CWP frequencies for the concurrent variability mode NAO-ENSO+
(while other variability modes are in their neutral phases) compared to winter with all variability modes in neutral phases based on the CESM
model. (b) Mean sea level pressure anomalies for NAO-ENSO+ (while other variability modes are in their neutral phases) compared to
neutral conditions (all variability modes being in their neutral phases) based on the CESM model. Corresponding maps are also displayed
for (c, d) PNA+ENSO+, (e, f) ENSO+AMV-, (g, h) PNA-ENSO-, (i, j) ENSO-AMV+, (k, l) NAO+ENSO-AMV+, and (m, n) NAO-
PNA+ENSO+. Numbers in the headers indicate the conditional empirical return period T (in years; see Methods) for the different concurrent
variability modes stated in the title of the panels, whereas the return period for neutral conditions (all modes are in their neutral phases) is
T = 3 years. Stippling indicates significant differences in mean frequency relative to neutral conditions at the 10 % significance level using
permutation tests (two-sided) with Bonferroni correction. The framed regions are those where concurrent variability modes significantly
increase regionally averaged CWP extreme frequencies compared with neutral conditions; by reflecting information in Fig. 3, the dark
framing indicates an amplified effect with respect to underlying mode sub-combinations (methods in Sect. 2.2.3).
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Results for model evaluation are displayed in Figs. S1–S5.
Although the simulated CWP absolute frequencies exhibit
some biases with respect to ERA5 over the Northern Hemi-
sphere (Fig. S1), CESM provides an adequate representation
of the anomalies in CWP frequencies induced by individual
variability modes relative to neutral conditions (Figs. S2–
S5). We conclude from this model evaluation that CESM is
suitable for further investigating the CWP extremes and their
relationships with variability modes. In the following, we as-
sess the effect of modes of variability and their combinations
on CWP extremes via the CESM model based on the 98th
percentiles and also provide a one-to-one comparison with
ERA5 based on the same percentiles.

3.1 Direct effects of variability modes on regional CWP
extremes

Examining the direct effects of variability modes on CWP
extremes in CESM simulations (Fig. 2) shows that differ-
ent phases of NAO, PNA, and ENSO significantly modu-
late CWP extreme frequencies over multiple regions of the
Northern Hemisphere. Within Europe, NAO+ and NAO- sig-
nificantly increase CWP extremes in Northern Europe (NEU)
and the Mediterranean region (MED), respectively (Fig. 2a
and b). NAO+ also significantly influences CWP extremes
in the Russian-Arctic (RAR) and Western Siberia (WSB).
The low pressure associated with storms under NAO+ is ac-
curately represented in CESM simulations (Fig. S6a in the
Supplement), with negative pressure anomalies partially or
fully covering the regions experiencing a significant increase
in CWP extremes. An exception to such CWP enhancement
associated with low pressure is found for Northeastern North
America (NEN) during NAO-, where high sea level pressure
(SLP) anomalies of ∼+3 hPa are associated with increased
CWP extremes. While no regions experience increased CWP
extremes under PNA+ (Fig. 2c), PNA- significantly increases
CWP extremes compared with neutral conditions in Eastern
Siberia (ESB) and Russian Far East (RFE) within North Asia
(Fig. 2d) and in Northeastern North America (NEN), North-
western North America (NWN), and Western North America
(WNA) in the North America macroarea.

Among the oceanic modes of variability ENSO and AMV,
the former has the most relevant and widespread effects.
ENSO+ (Fig. 2e) increases CWP extremes across three re-
gions of Africa: Arabian Peninsula (ARP), Sahara (SAH),
and Western Africa (WAF). For ENSO- (Fig. 2f), CWP ex-
tremes are significantly increased for two regions within
Central-South Asia: South Asia (SAS) and East Asia (EAS).
For the AMV, we find no significant regional effects of
AMV+ or AMV- conditions (Fig. 2g and h), in line with weak
sea level pressure anomalies associated with AMV phases,
ranging from ∼−1.5 to ∼+1.5 hPa (Fig. S6g and h).

3.2 Effects of concurrent anomalies in variability modes
on regional CWP extremes

Model simulations (CESM) show that not only individual
variability modes can have effects on regional wintertime fre-
quencies of CWP extremes, but also combinations of modes
(Fig. 3; Fig. S7 in the Supplement shows the same but
for absolute frequencies). Figure 4 provides a summary of
these effects, including the count of modes combinations
that enhance CWP extremes compared to neutral conditions
for each region. For example, Northern Europe (NEU) ex-
hibits the highest count of mode combinations that signifi-
cantly enhance CWP extreme frequencies compared to neu-
tral conditions, with 11 mode combinations that all involve
NAO+. The presence of a given mode phase or combination
of mode phases that has an effect on CWP extremes in mul-
tiple regions suggests the potential for spatially compound-
ing events, which will be examined in Sect. 3.3. In the fol-
lowing, we focus on describing the effects of a selection of
mode combinations and regions in Figs. 3–5. To maintain
clarity and conciseness, we do not discuss all regions and
mode combinations in the text, and readers can explore spe-
cific regional effects directly in the figures.

For the Mediterranean region (MED) in Europe (Fig. 3a),
five concurrent variability modes containing NAO- have sig-
nificant positive effects with respect to neutral conditions.
Among these five concurrent variability modes, three com-
binations of modes have an amplified effect relative to the
underlying mode sub-combinations (blue boxes). For exam-
ple, in the MED region, CWP extremes are on average ∼ 1.5
times more likely under the concurrent mode NAO-ENSO+
than under neutral conditions, while being ∼ 1.1 and ∼ 1.2
times more likely than under NAO- and ENSO+ in isolation,
respectively. Note that the conditional empirical return pe-
riod of NAO-ENSO+ (i.e., conditioning all other modes to
neutral conditions) is 65 years, while it is equal to 20 and
30 years for NAO- and ENSO+, respectively, which means
that the concurrent mode NAO-ENSO+ (with other modes
being in neutral conditions) is ∼ 3 and ∼ 2 times less likely
to occur in any given year than NAO- or ENSO+ in isolation
(with other modes being in neutral conditions).

Concurrent modes can also amplify CWP extreme fre-
quencies in other regions. For example, in the Arabian Penin-
sula (ARP) within Africa, CWP extremes are on average ∼
3.5 times more likely than neutral conditions under ENSO+.
However, when ENSO+ combines with NAO-PNA+, CWP
extremes are on average ∼ 4 times more likely, while both
individual modes (NAO- and PNA+) do not have a signifi-
cant effect on the mean frequency of CWP extreme frequen-
cies relative to neutral conditions. Interestingly, the combi-
nation of NAO-ENSO+ has an amplified effect relative to
the underlying mode sub-combinations in all three African
regions, increasing approximately the likelihood of CWP ex-
tremes frequencies by a factor of ∼ 4, 1.5, and 2 relative to

https://doi.org/10.5194/esd-16-1029-2025 Earth Syst. Dynam., 16, 1029–1051, 2025



1042 B. François et al.: Modes of climate variability linked to spatially compounding events

neutral conditions in the Arabian Peninsula (ARP), Sahara
(SAH), and Western Africa (WAF), respectively.

The Central North America (CNA) region illustrates how
the effects of individual modes can combine to significantly
increase CWP extreme frequencies in a given winter relative
to neutral conditions, even if individual modes do not ex-
ert significant effects in isolation. For example, despite the
fact that both PNA+ and ENSO+ in isolation do not signifi-
cantly increase CWP extremes (indicated by no gray arrows
in Fig. 3b), combined PNA+ENSO+ increases significantly
the likelihood of CWP extremes by a factor of ∼ 1.5 com-
pared to neutral conditions (indicated by the gray arrow and
blue box). Furthermore, within North America, the region
with the most combinations of modes that present amplified
effects on CWP extreme frequencies is East North America
(ENA), with six separate combinations (see blue boxes). Of
these combinations, ENSO is always in the positive phase,
indicating its potentially large effect on CWP extremes.

In North Asia, concurrent variability modes increase CWP
extreme frequencies by ∼ 1.5 to ∼ 2 times relative to neu-
tral conditions depending on the combination. In particular,
PNA-ENSO- increases CWP extreme frequencies by ∼ 1.5
times in three of North Asia’s four regions (Eastern Siberia
ESB, Russian-Arctic RAR, and Russian Far East RFE).

Within Central South Asia, the Tibetan Plateau (TIB) ex-
emplifies again how individual modes without significant ef-
fects on CWP extremes (here, AMV- and ENSO+) can com-
bine to significantly increase the likelihood of CWP extremes
during winters. Across the five regions of Central South Asia,
all concurrent modes that, on average, led to more CWP ex-
tremes than their underlying mode sub-combinations (blue
boxes) include the variability mode ENSO. Of these concur-
rent modes, ENSO is always in the positive phase within the
inland regions (ECA, TIB, and WCA) while being in the neg-
ative phase in the coastal regions (EAS and SAS).

Regarding the comparison of CESM results with those
of ERA5, the range of CESM ratios of regionally averaged
CWP extreme frequencies with respect to neutral conditions
generally covers the values for ERA5 for the different con-
current modes when available (Fig. 3).

Results from Fig. 3 and the summary in Fig. 4 cannot be
used to conclude whether the effects of concurrent variability
modes lead to spatially compounding CWP extremes, that is,
to high wintertime frequencies of CWP extreme across mul-
tiple regions during the same winter. These figures illustrate
the effect of individual and concurrent variability modes on
regionally averaged CWP extreme frequencies, which are de-
rived for each region separately. Nevertheless, the number of
regions where each mode combination has significant effects
in Fig. 4 (see numbers on the top of the matrix) suggests that
some mode combinations may potentially lead to spatially
compounding CWP extremes. For example, NAO-ENSO+
significantly enhances regional CWP extreme frequencies in
eight regions, which means that if these regional effects of
NAO-ENSO+ can manifest in the same winter, NAO-ENSO+

would lead to spatially compounding CWP extremes. In the
next section, we assess whether individual and concurrent
variability modes can lead to concurrent CWP extremes dur-
ing the same winters across regions.

3.3 Effects of concurrent variability modes on spatially
compounding CWP extremes

As the first step in the investigation of spatially compounding
events, we examine dependencies between counts of CWP
extremes in different regions which provides preliminary in-
formation on groups of regions that may be affected by CWP
extremes during the same winters. Figure 5a shows Spear-
man correlations of regionally averaged CWP extreme fre-
quencies (Metric 1) between all pairs of regions. Regions
that are geographically close tend to be positively correlated
(see correlation values in contoured black boxes) which is
in line with spatial autocorrelation. However, some regions
that are from different macroareas and therefore more dis-
tant can also be correlated, e.g., Central-South Asian regions
with African regions or North American regions with North
Asian regions. This highlights the potential for underlying ef-
fects of modes of variability that can connect distant regions.
Notably, Fig. 5a highlights that most of the pair correlations
between CWP extreme counts in different regions are posi-
tive.

In line with such dominant positive correlations (Fig. 5a),
we find that dependencies among regions overall enhance
the potential for spatially compounding events. Specifically,
the distribution of the number of regions affected during the
same winters (Metric 2) is different from that obtained by as-
suming independence between regions (Fig. 5b), with depen-
dencies elongating both tails of the distribution. For spatially
compounding extremes on the right tail of the distribution,
this implies a higher 50 year return level for the number of re-
gions affected by high CWP counts in the same winter com-
pared to independence, that is 11 instead of 9 affected regions
(see vertical lines). Consistent with findings in Bevacqua et
al. (2021a), this dependency-driven shift is not observed for
the mean of the distribution (not shown).

The increased count of regions under CWP extremes due
to the dependencies among regions can be linked to modes
of variability. That is, the high number of regions simulta-
neously affected by CWP extremes, which is possible due to
the dependencies among regional CWP extremes, would also
not be possible without the effects of concurrent variability
modes (Fig. 5c). In particular, when all variability modes
are neutral, on average around four regions are affected si-
multaneously by high regionally averaged CWP extremes.
Generally, as the number of variability modes in anomalous
conditions increases, the likelihood of multiple regions si-
multaneously experiencing extreme conditions also increases
(Fig. 5c; see letters indicating significant differences among
distributions, with the exception of the distributions related
to three and four modes). Notably, this effect is even more
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marked when focusing on winter seasons with an extreme
number of regions affected (right whiskers of the boxplots).
Overall, these results indicate that concurrent anomalies in
variability modes are key for spatially compounding events.

Given the dependencies among regions and that com-
binations of variability modes are essential for spatially
compounding CWP extremes, we move to identify which
are the relevant mode combinations that enhance the num-
ber of regions affected by CWP extremes (Metric 2) and
population exposed to CWP extremes (Metric 3). We find
that 13 individual and concurrent variability modes signif-
icantly increase the number of affected regions compared
to neutral conditions (Fig. 6a). Three bivariate combinations
have a significant effect on the total number of affected re-
gions and an amplified effect relative to their underlying
mode sub-combinations (see blue boxes for ENSO+AMV-
, PNA+ENSO+, and NAO-ENSO+). NAO-ENSO+ nearly
doubles the number of regions simultaneously exposed to
CWP extremes on average relative to neutral conditions.

In terms of population exposed to CWP extremes,
four combinations (ENSO-AMV+, NAO-PNA+ENSO+,
NAO+ENSO-AMV+, and PNA-ENSO-) are identified as
having a significant effect compared to neutral conditions
(Fig. 6b). Among these four combinations, only one (NAO-
PNA+ENSO+) has already been identified as having a sig-
nificant effect on the number of affected regions in Fig. 6a. It
highlights that the heterogeneous distribution of population
density across regions needs to be considered to assess the
societal vulnerability to CWP extremes. In particular, vari-
ability modes in isolation do not lead to significant effects
on the population exposure compared to neutral conditions
(Fig. 6b), indicating the importance of considering combina-
tions of modes to distill the effects of modes of variability on
the population affected. Notably, while ENSO+ dominates
the influence of modes of variability on the number of af-
fected regions (see “+” sign in Fig. 6a), ENSO- dominates
for the population affected (see “−” sign in Fig. 6b).

3.4 Physical mechanisms underlying spatially
compounding CWP extremes

We now move to inspect the physical mechanisms leading
to spatial co-occurrences of CWP extremes by analyzing
SLP anomalies for concurrent variability modes with sig-
nificant effects on spatially compounding events (Fig. 7).
Here, negative SLP anomalies during winter are generally
considered indicative of storminess, a key driver of CWP
extremes. In the analysis, we restrict to the seven com-
binations having an amplified effect relative to their un-
derlying mode sub-combinations on Metric 2 and Met-
ric 3 (i.e. combinations with blue boxes in Fig. 6): namely,
NAO-ENSO+, PNA+ENSO+, and ENSO+AMV- for af-
fected regions (Fig. 6a) and PNA-ENSO-, ENSO-AMV+,
NAO+ENSO-AMV+, and NAO-PNA+ENSO+ for exposed
population (Fig. 6b). These combinations have a reasonably

low conditional return period (≤ 82 years; see Methods), thus
are not very unlikely events in the model simulations.

The largest positive effects on the number of affected re-
gions (Fig. 6a) occurs under concurrent ENSO+ (El Niño
phase) and NAO-, that is NAO-ENSO+ (Fig. 7a and b).
Under such a combination of modes of variability NAO-
ENSO+, negative SLP anomalies patterns intensify and ex-
pand over the North Atlantic Ocean compared to those for
modes NAO- and ENSO+ in isolation (Fig. S6b and e), in
line with the enhancement of CWP extremes over many re-
gions of North America, North Central America, Europe and
Africa.

Although the combination of modes PNA+ENSO+ has
smaller significant positive effects on the number of affected
regions than that of NAO-ENSO+ (Fig. 6a), PNA+ENSO+
may be more frequent than NAO-ENSO+ (given their
lower conditional return period; see Methods). Such a
PNA+ENSO+ combination (Fig. 7c and d) intensifies the
negative SLP anomalies patterns on both sides of North
America with respect to PNA+ and ENSO+ modes in isola-
tion (Fig. S6c and e). This is consistent with the amplification
of CWP extreme frequencies for regions within North Amer-
ica, Central America, and Africa. In contrast, when ENSO+
combines with AMV- (ENSO+AMV-; Fig. 7e and f), neg-
ative SLP anomalies patterns are quite similar to those of
ENSO+ in isolation (Fig. S6e); this suggests that AMV- has
a limited amplifying effect on CWP extremes, in line with
Fig. 6a.

Under the resulting combination PNA-ENSO- (Fig. 7g
and h) – which shows the largest positive effects on the
population exposure (Fig. 6b) – negative SLP anomalies
are stronger than under PNA- and ENSO- in isolation over
the North Asian region (Fig. S6d and f). These intensified
low-pressure conditions associated with storminess increase
CWP extreme frequencies over a number of densely popu-
lated regions in North Asia and East Asia. PNA-ENSO- ex-
emplifies how combined variability modes can lead to spa-
tially compounding events by adding up the effects of indi-
vidual modes in isolation. Specifically, under PNA-ENSO-
the population exposed to extreme CWP extremes under
PNA- and ENSO- in isolation partially adds up, resulting
in spatially compounding events with a large population af-
fected by CWP extremes.

Although the effects of combined variability modes
ENSO-AMV+ (Fig. 7i and j) are rather limited, when com-
bined with NAO+ (NAO+ENSO-AMV+; Fig. 7k and l) nega-
tive SLP anomalies are intensified over high latitudes, mainly
due to NAO+ influence (Fig. S6a) and over South Asia, due
to ENSO- (Fig. S6f). These intensified low-pressure systems
lead to an amplification of CWP extremes in Northern Eu-
rope and South Asia. It is interesting to note that these two
regions are not the same as those affected by ENSO-AMV+
(Fig. 7i and j), suggesting a strong influence of the NAO on
regions impacted by CWP extremes.
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Similar to what is observed for NAO-ENSO+, NAO-
PNA+ENSO+ features a negative SLP anomaly extending
across the Southern North Atlantic (Fig. 7n). However, for
some regions, the addition of PNA+ to NAO-ENSO+ tends to
weaken the effects of concurrent variability modes on CWP
extremes, as some regions exhibit, on average, fewer regional
CWP extremes than those obtained under NAO-ENSO+ (see
blue boxes in Fig. 7n and m).

4 Discussion

Several results regarding the direct effects of variability
modes on CWP extremes in CESM simulations (Sect. 3.1)
align with well-established findings in the literature, thereby
validating the robustness of CESM modeling. Table S1 in the
Supplement provides a concise summary of the agreement
between CESM simulations and existing literature. Among
these results are the influence of the NAO+ regime favoring
CWP extremes in Northern Europe due to stronger than av-
erage westerly winds (e.g., Hurrell and Deser, 2010), or the
influence of PNA- favoring blocking in the Pacific (e.g., Li
et al., 2017), increasing storm frequency in the Northern Pa-
cific. However, several results lack direct support from ex-
isting literature. While they may represent novel findings,
they should be interpreted cautiously, considering the biases
of CESM simulations relative to ERA5. Notably, the direct
effect of ENSO+ on CWP extreme frequencies in CESM
simulations exhibits some inconsistencies when compared to
ERA5 over Northern Africa (Fig. S3). Better understanding
and confirming the influence of climate modes on arid re-
gions (e.g., Northern Africa), where CWP events may be less
intense than in other areas, can support adaptation and mit-
igation policies. While CWP extremes can serve as an im-
portant source of freshwater (e.g., Berdugo et al., 2020), they
also present a significant flood risk (e.g., Yin et al., 2023).

We analyzed event counts aggregated over winter and at
the scale of predefined SREX regions, given that high counts
of compound extremes at these scales are expected to have
negative effects on society. While the 98th percentile has
been used in this study to focus on extremes and is relatively
well-established in the literature (e.g., Klawa and Ulbrich,
2003; Martius et al., 2016), other higher thresholds could
have been chosen to consider more intense extreme events
(e.g., Liu et al., 2013; Schär et al., 2016; Camuffo et al.,
2020). Figures S16–S19 in the Supplement show results from
a sensitivity analysis on the influence of variability modes on
regional CWP extremes (Metric 1) and spatially compound-
ing events (Metrics 2 and 3) with the 99th and 99.5th per-
centiles used as thresholds. Although there are some varia-
tions in the results compared to those for the 98th percentile,
the main conclusions drawn across the different thresholds
are broadly consistent for all Metrics. The magnitude of the
effects of the combinations are generally consistent across
thresholds, and the combinations detected at higher thresh-

olds are generally included among those identified at lower
thresholds (Figs. S16–S19). Slight differences may be due
to larger sampling uncertainty for higher thresholds limiting
the ability to detect significant effects for higher thresholds
rather than different physical mechanisms involved for dif-
ferent thresholds. While the sensitivity analyses broadly in-
dicate the robustness of most of our findings, possible rele-
vant differences across thresholds highlight the importance
of identifying impact-relevant thresholds, though this task is
challenging (e.g., Williams, 1978; Bloomfield et al., 2023).
In addition, the selected SREX regions may not reflect the
natural spatial patterns of variation of CWP extremes as they
potentially occur at a more localized scale or may span across
multiple regions.

We also note that variability modes such as AMV or ENSO
can have lagged effects on regional climate extremes (e.g.,
Ruiz-Barradas et al., 2000; Wang, 2019; Xing et al., 2022),
an aspect that has been partially taken into account in this
study for ENSO. Furthermore, additional variability modes
than those considered here (e.g., the Indian Ocean Dipole
(IOD), Chongyin and Mingquan, 2001; Qiu et al., 2014; Kur-
niadi et al., 2021) may be related to CWP frequencies in
some regions, especially in the regions where the different
combinations of the variability modes (NAO, ENSO, PNA,
and AMV) had no significant effects (in Fig. 3). In addition,
the IOD is known to co-vary with some of the modes ex-
amined here, e.g. with ENSO and the AMV (e.g., Ashok et
al., 2003; Stuecker et al., 2017; Xue et al., 2022). Overall,
although our aggregation in time and space may not be op-
timal for providing a fine-grained analysis of CWP events
and additional modes may be relevant in some regions, this
study provides a first comprehensive assessment of the in-
teractions between multiple climate variability modes and
the frequency of wintertime CWP extremes and associated
spatially compounding events across regions of the North-
ern Hemisphere. In particular, analyzing spatially compound
events highlights the potential influence of variability modes
that can link distant regions. These long-range relationships
modulated by mode combinations can be explored in more
detail, for example, with tailored experiments such as nudged
atmospheric simulations.

We mainly focused on the increase in the frequency of
CWP extremes, however we note that increases in inten-
sity at the same frequency, as well as low frequencies of
CWP extremes may also be relevant information for the in-
surance industry (e.g., Ciullo et al., 2023). Studying the in-
fluence of variability modes on the intensity of the drivers
(here, wind and precipitation) could further support mitiga-
tion and adaptation strategies (e.g., Whan and Zwiers, 2017;
Li et al., 2022). Quantifying these effects on wind and pre-
cipitation in isolation would allow for a decomposition of
the effects of concurrent variability modes, giving an even
more complete picture of the processes involved (e.g., Man-
ning et al., 2018; Brunner et al., 2021; Calafat et al., 2022).
In addition, regarding spatial metrics, considering other rel-
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evant measures that combine return period information with
the exposed population would allow for focusing on concur-
rent variability modes that regularly expose the population to
CWP extremes.

With the methodology used here, it is not possible to thor-
oughly examine the causality behind the dependence be-
tween different variability modes and between the modes and
CWP extremes. It is however clear that there exist impor-
tant interactions and causal links between oceanic and atmo-
spheric variability modes at different time scales, e.g., be-
tween ENSO and the NAO (e.g., Kirov and Georgieva, 2002;
Deser et al., 2017; Yeh et al., 2018), between the AMV and
the NAO (e.g., Hurrell and Deser, 2010; Fang et al., 2018),
and between ENSO and the PNA (Renwick and Wallace,
1996). Therefore, these modes are dependent on each other,
a relevant piece of information to take into account when
investigating the causal effects of climate variability modes
on characteristics of spatially compounding events. Applying
statistical methods such as regression techniques (e.g., Pearl,
2013; Kretschmer et al., 2021) or more advanced approaches
such as causal networks (e.g., Nowack et al., 2020) may
help to shed light on the complete causal pathway leading
to spatially compounding events and better control potential
confounding effects. We also note that dependencies among
modes influence the return periods of concurrent modes (that
is, certain signs of modes will co-occur with others more fre-
quently than others, such as e.g. ENSO+NAO-), with an ef-
fect on their associated CWP extreme frequencies. In line
with heterogeneous dependencies among different modes,
we estimated a wide range of return periods for the differ-
ent mode combinations (Fig. 3).

A natural continuation of this work is the application
of the methodology developed in this study to investigate
(1) the influence of climate modes on CWP extremes in the
Southern Hemisphere, (2) summertime CWP extremes, and
(3) changes in CWP extremes over time, as well as their spa-
tial relationships and dependencies with climate variability
modes under climate change (Bevacqua et al., 2023).

5 Conclusions

In this study, we present the first comprehensive assessment
of the relation between individual and concurrent climate
variability modes and the frequency of wintertime CWP ex-
tremes and associated spatially compounding events across
regions of the Northern Hemisphere using CESM simula-
tions. We show that simulated concurrent modes are associ-
ated with an amplification of CWP extreme frequencies in
many individual regions compared to variability modes in
isolation. We have identified groups of regions with posi-
tive spatial correlations between regional wintertime CWP
extremes. These correlations enable extreme spatially com-
pounding events with many regions experiencing CWP ex-
tremes during the same winter. We found that such extreme

spatially compounding events, which also include a large
fraction of the population of the Northern Hemisphere un-
der CWP extremes in the same winter, are possible due to
the combinations of multiple variability modes in anomalous
phases and their influence on the atmospheric circulation. For
example, the combination of ENSO- and NAO+ nearly dou-
ble the number of affected regions compared to neutral con-
ditions on average. Among the modes, ENSO is found to be
the most influential variability responsible for spatially com-
pounding extreme events, which aligns with its known ef-
fects on weather and climate extremes worldwide (Goddard
and Gershunov, 2020). The high return periods associated
with some of the concurrent modes that lead to extreme spa-
tially compounding events make it potentially difficult to fac-
tor these findings into long-term planning, e.g., infrastructure
development or (re)insurance modeling. However, by iden-
tifying the drivers of the most extreme events, the findings
raise awareness on the potential for extreme compounding
events under certain mode combinations, which could be fac-
tored into weekly, sub-seasonal (White et al., 2022), seasonal
(Lenssen et al., 2020), and longer forecasts to better antic-
ipate mitigation action and climate services (Osman et al.,
2023).

By using two different metrics to characterize spatially
compounding events, we highlight that the effects of concur-
rent variability modes can differ from one spatial metric to
another. While combinations with ENSO+ lead to the largest
number of affected regions, when weighted by population ex-
posure, combinations with ENSO- lead to higher effects on
population. Our analysis thus stresses the importance of con-
sidering not only the interplay between variability modes but
also a careful choice of metrics, which should be tailored to
the ultimate impacts of interest, so as to assess the relevant
characteristics of spatially compounding events and improve
their risk management and mitigation.
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Repository https://doi.org/10.5065/h7c7-f961 (Phillips et al.,
2020).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/esd-16-1029-2025-supplement.

Author contributions. EB designed the initial plan of the study
with DIVD. EB, LSG, and DIVD supervised the project. EB, LSG,
BF, and KT designed the experiments and the statistical analyses

https://doi.org/10.5194/esd-16-1029-2025 Earth Syst. Dynam., 16, 1029–1051, 2025

https://doi.org/10.24381/cds.adbb2d47
https://rda.ucar.edu/datasets/d651014/
https://doi.org/10.5065/h7c7-f961
https://doi.org/10.5194/esd-16-1029-2025-supplement


1046 B. François et al.: Modes of climate variability linked to spatially compounding events

with inputs from all co-authors. EB, KT, and LSG provided the code
for data pre-processing. BF and KT made all computations and fig-
ures. BF, LB, RL, KT, and LGS made the analyses and interpreta-
tions with inputs, corrections and additional writing contributions
from EB, LSG, and DIVD. BF wrote the first draft of the article
with inputs from all co-authors.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special issue
“Methodological innovations for the analysis and management of
compound risk and multi-risk, including climate-related and geo-
physical hazards (NHESS/ESD/ESSD/GC/HESS inter-journal SI)”.
It is not associated with a conference.

Acknowledgements. Emanuele Bevacqua received funding
from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) via the Emmy Noether Programme
(grant ID 524780515). Laura Suarez-Gutierrez received funding
from the European Union’s Horizon Europe Framework Pro-
gramme under the Marie Skłodowska-Curie grant agreement
no. 101064940. The work by Luis Gimeno-Sotelo is partially
financed by national funds through FCT – Fundação para a
Ciência e a Tecnologia under the project UIDB/00006/2020
(DOI: https://doi.org/10.54499/UIDB/00006/2020) and project
UID/00006/2025. This project has received funding from the
European Union’s Horizon 2020 research and innovation program
under grant agreement no. 101003469. This work emerged from
the Training School on Dynamical Modeling of Compound
Events organized by the European COST Action DAMOCLES
(CA17109). This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement no.
847456 and no. 101003469 (XAIDA)). Support from the Swiss
National Science Foundation through project PP00P2_198896 to
Daniela I. V. Domeisen is gratefully acknowledged. We thank
the NCAR’s Climate Analysis Section for producing and making
available the Climate Variability Diagnostics Package and the
CESM simulations.

Financial support. This research has been supported by the
Deutsche Forschungsgemeinschaft (grant no. 524780515), the
HORIZON EUROPE Marie Skłodowska-Curie Actions (grant
no. 101064940), and Horizon 2020 (grant nos. 101003469 and
847456).

The article processing charges for this open-access publica-
tion were covered by the Helmholtz Centre for Environmental
Research – UFZ.

Review statement. This paper was edited by Anais Couasnon
and reviewed by four anonymous referees.

References

Abeysirigunawardena, D. S., Gilleland, E., Bronaugh, D.,
and Wong, P.: Extreme wind regime responses to cli-
mate variability and change in the inner south coast
of British Columbia, Canada, Atmos. Ocean, 47, 41–62,
https://doi.org/10.3137/AO1003.2009, 2009.

Ashok, K., Guan, Z., and Yamagata, T.: A Look at the Relationship
between the ENSO and the Indian Ocean Dipole, J. Meteorol.
Soc. Jpn. Ser. II, 81, 41–56, https://doi.org/10.2151/jmsj.81.41,
2003.

Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-
Clemente, R., Zhao, Y., Gaitán, J. J., Gross, N., Saiz, H., Maire,
V., Lehmann, A., Rillig, M. C., Solé, R. V., and Maestre, F.
T.: Global ecosystem thresholds driven by aridity, Science, 367,
787–790, 2020.

Bevacqua, E., De Michele, C., Manning, C., Couasnon, A.,
Ribeiro, A. F. S., Ramos, A. M., Vignotto, E., Bastos,
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