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Abstract. Decadal predictions can skilfully forecast upper-ocean temperatures in many regions worldwide. The
North Atlantic, in particular, shows high predictive skill for the ocean heat content (OHC). This multi-model
study analyses eight CMIP6 climate models with comparable decadal prediction (Decadal Climate Prediction
Project, DCPP) and historical (HIST) ensembles to document differences in North Atlantic (NA) upper-OHC
skill and investigates the underlying causes. The decadal predictions consistently identify two main regions
with high predictive capacity and added value of initialization: the Labrador Sea (LS) and the eastern North
Atlantic. A region east of the Grand Banks (EGB) is also found to exhibit negative skill scores, with its extent
and location varying widely across models, possibly due in part to observational uncertainties affecting both
forecast verification and local initialization.

Special attention is given to the Labrador Sea and its surroundings, a region characterized by high inter-model
spread in OHC prediction skill in both DCPP and HIST experiments. These differences hinder the identification
of the relative contributions of external forcings and internal variability to local OHC predictability. To address
this, we explore the relationship between the local OHC skill in the HIST ensemble and various mean-state
properties in the Labrador Sea, revealing a strong link between the skill in those experiments and both the mean
local surface fluxes and density stratification.

Benchmarking these mean-state properties against observations and reanalyses suggests that the multi-model
mean likely offers the most realistic estimate of the forced signal, accounting for approximately 16 % of the total
OHC variance in the Labrador Sea. These findings underscore the critical role of stratification and atmospheric
forcing biases in shaping predictive skill and highlight the potential of multi-model ensembles to advance our
understanding of decadal predictability.

1 Introduction

The global oceans have absorbed approximately 93% of the
excess energy in the climate system over the recent decades
(e.g. IPCC, 2021, and citations therein). This energy accu-
mulation is commonly quantified by the ocean heat content
(OHC), a vertically integrated variable that captures changes
in heat storage within the ocean. Among the regions with sig-
nificant warming, the North Atlantic (NA) ocean stands out
for its pronounced increase in OHC within the upper 2000 m

since the 1960s (e.g. Levitus et al., 2000, 2012; Palmer et al.,
2007; Durack et al., 2018; Zanna et al., 2019; Johnson and
Lyman, 2020). While the slow nature of past OHC changes
provides a high degree of predictability, considerable uncer-
tainty remains across observational products regarding their
geographical distribution (e.g. Häkkinen et al., 2015; Palmer
et al., 2017), which can limit their local predictive skill. This
study aims to improve our understanding of the factors con-
trolling OHC predictability in the NA.
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The warming trends that the upper layers of the NA Ocean
have experienced over the last 70 years can largely explained
be by changes in anthropogenic forcings (e.g. Gleckler et al.,
2012; Bilbao et al., 2019). However, the distribution of OHC
trends is not geographically uniform, and some regions have
exhibited considerable multidecadal variability (e.g. Carmo-
Costa et al., 2021). While most of the NA Ocean has warmed,
the centre of the subpolar North Atlantic (SPNA) has been
subject to a long-term cooling trend (e.g. Johnson and Ly-
man, 2020) typically referred to as the NA warming hole
(Drijfhout et al., 2012; Rahmstorf et al., 2015; Keil et al.,
2020). This phenomenon has been primarily characterized
using sea surface temperature (SST) observations. The main
mechanism proposed to explain the cooling involves a reduc-
tion in northward heat advection, in turn responding to either
a shift in the North Atlantic gyre circulation (Piecuch et al.,
2017) or a weakening of the Atlantic Meridional Overturn-
ing Circulation (AMOC) (Drijfhout et al., 2012; Rahmstorf
et al., 2015; Robson et al., 2016; Keil et al., 2020), with sev-
eral studies suggesting that it emerged in response to the in-
creasing greenhouse gas concentrations (Caesar et al., 2021),
although other studies suggest that it can be explained by
internal ocean variability (Bonnet et al., 2021b; Latif et al.,
2022). It is also unlikely that the recent AMOC weakening
has been caused by Greenland ice sheet melting (Devilliers
et al., 2021).

Internal variability in the North Atlantic region at inter-
annual to decadal timescales could also explain some of the
regional changes in the OHC. The North Atlantic Oscillation
(NAO) is an important driver of AMOC variability through
its influence on Labrador Sea (LS) deep-water formation.
Positive NAO phases enhance winter surface cooling and
can thus help overcome the local vertical density stratifica-
tion, promoting the occurrence of deep-ocean mixing events.
In addition, interannual NAO variations are also known to
force local OHC anomalies across the North Atlantic sub-
polar gyre mediated via changes in the surface buoyancy
fluxes and wind stress (Oldenburg et al., 2021). An illus-
trative example was the record-breaking cold anomaly that
the central SPNA experienced in spring 2015 (commonly re-
ferred to as the Cold Blob; Yeager et al., 2016; Josey et al.,
2018), emerging in response to exceptionally rare (both in
terms of magnitude and persistence) positive NAO condi-
tions (Yeager, 2020; Maroon et al., 2021), which enhanced
local heat loss. This extremely cold central SPNA state has
been linked to the occurrence of a major heatwave in cen-
tral Europe in the summer of 2015 (Mecking et al., 2019).
Likewise, the broader North Atlantic region exhibits signifi-
cant multidecadal variability, which is particularly prominent
in sea surface temperatures, but also affects the OHC (Moat
et al., 2024). These variations have been linked to numer-
ous climate impacts, including the intensity and frequency
of Atlantic hurricane activity and Sahel rainfall (Balaguru
et al., 2018; Buckley and Marshall, 2016; Zhang and Del-
worth, 2006), and to hydroclimate and temperature condi-

tions in North America and Europe (Enfield et al., 2001; Sut-
ton and Hodson, 2005; Kwon et al., 2020; Josey et al., 2018).

Understanding the causes of the regional OHC changes in
the North Atlantic, by disentangling the contributions from
internal and externally forced variability and the underlying
uncertainties, is therefore crucial for better anticipating how
the climate will evolve in the coming years. There are two
major types of simulations within the Climate Model Inter-
comparison Project phase 6 (CMIP6; Eyring et al., 2016) ini-
tiative that can be jointly used to understand the contributions
of external forcings and internal variability processes to the
recent climate evolution and to understand the sources of pre-
dictability of the North Atlantic’s ocean–atmosphere system
(Meehl et al., 2014): historical simulations and decadal pre-
dictions. Historical experiments are transient simulations that
typically branch off from a preindustrial control run and are
driven by time-evolving radiative forcings representative of
the observed historical evolution of greenhouse gas concen-
trations, volcanic and anthropogenic aerosols, and solar vari-
ability. By design, they are used to investigate how the Earth
system has responded to recent changes in external forcings
and to evaluate the models’ mean-state performance against
observations (Eyring et al., 2016). To robustly extract the ex-
ternally forced response, large ensembles of historical simu-
lations are often employed, as they sample a wide range of
internal variability states whose climate effects largely cancel
out in the ensemble mean (Milinski et al., 2020). Decadal cli-
mate predictions performed under the Decadal Climate Pre-
diction Project (DCPP; Boer et al., 2016) also use the same
historical forcings but are additionally initialized by assim-
ilating observations to align the model’s internal state with
that of the real world. This initialization step is crucial for
tapping, in theory, into the predictability arising from inter-
nal variability sources. The standard approach to assess pre-
dictive skill involves performing ensembles of 10-year-long
retrospective predictions, initialized annually from 1960 to
the present, in order to evaluate whether the predicted trajec-
tories align with the observed ones at different forecast lead
times.

Previous studies have shown that decadal prediction sys-
tems can skilfully predict the NA Ocean’s variability for both
SST and OHC (e.g. Keenlyside et al., 2008; Pohlmann et al.,
2009; Robson et al., 2012; Mignot et al., 2016; Kröger et al.,
2018; Borchert et al., 2018; Robson et al., 2018; Yeager
et al., 2018; Bilbao et al., 2021; Volpi et al., 2021; Carmo-
Costa et al., 2021; Polkova et al., 2023), along with other re-
lated variables such as the NAO (Athanasiadis et al., 2020;
Smith et al., 2020) or the Atlantic Multidecadal Variabil-
ity (AMV) (Doblas-Reyes et al., 2013; Volpi et al., 2017;
Borchert et al., 2018; Delgado-Torres et al., 2022), and that
initialization has a positive impact on the predictive skill.
However, there are both qualitative and quantitative differ-
ences across decadal prediction systems when it comes to
predictability time range, areas with significant predictive ca-
pacity, and magnitude of the associated skill. Several multi-
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model studies have shown how different model biases in
the Labrador Sea, from near-surface densities (Menary and
Hermanson, 2018), upper-ocean mean stratification (Ortega
et al., 2021; Kim et al., 2023a), or local co-variability be-
tween temperature and salinity (Menary et al., 2015), can de-
grade important aspects of the North Atlantic decadal vari-
ability, including its predictability. Furthermore, model drifts
and initial shocks have been shown to impact the quality
of decadal climate predictions (Kröger et al., 2018; Polkova
et al., 2019; Bilbao et al., 2021), although it remains un-
clear whether anomaly initialization methods, specifically
designed to minimize such drifts, provide real predictive ad-
vantages over traditional full-field initialization approaches
(Smith et al., 2013; Hazeleger et al., 2013; Volpi et al., 2017;
Kröger et al., 2018; Polkova et al., 2023). Understanding the
differences in skill across models, particularly the factors that
control and enhance the regional predictability, is essential to
informing and improving the next generation of decadal pre-
diction systems.

The concrete goal of this study is to assess the predic-
tive skill of the upper 700 m OHC in the North Atlantic
using decadal prediction systems and historical simulations
from CMIP6, also exploring the processes and methodolog-
ical factors behind the inter-model differences. In particular,
we investigate the relative role of external forcings in the pre-
dictive skill and how it varies regionally. We also examine
whether some skill limitations or improvements can be asso-
ciated with specific methodological choices, such as the ini-
tialization strategy and model resolution considered. A spe-
cial focus is placed on the Labrador Sea OHC, where mod-
els show important differences in predictive skill, to evaluate
the impact of several local drivers and preconditioners on the
skill. This paper is organized as follows: Section 2 describes
the observational products, models, and simulations used; the
criteria for the final ensemble selection; and some data pro-
cessing considerations. Sect. 3.1, 3.2, 3.3, and 3.4 present the
results in four separate scientific blocks: (i) a multi-model
evaluation of the upper-OHC skill in the NA Ocean to as-
sess the consistency of the results across models and iden-
tify outlier behaviours and regions of interest; (ii) a deeper
investigation of the role of external forcings and long-term
trends in the upper-OHC skill in the Labrador Sea (identified
in i as a region of interest for its large inter-model differ-
ences); (iii) an inter-model comparison of key Labrador Sea
mean-state model properties that could potentially condition
the local OHC variability and skill; and (iv) an analysis of
how those model properties affect the inferred predictive role
of external forcings on Labrador Sea OHC variability, intro-
ducing some observational references to constrain the inter-
model uncertainty. The final section summarizes the main re-
sults and discusses them in light of previous studies.

2 Data and methods

This analysis considers both historical (named HIST here-
after) and DCPP component A (Boer et al., 2016) retrospec-
tive decadal prediction ensembles of the CMIP6 initiative to
explore the effects of external forcings and internally gen-
erated variability on the observed OHC variability and the
ability of current climate models to predict it. We will focus
on the OHC in the upper 700 m (referred to as OHC700 here-
after) and the main preconditioners and large-scale drivers of
its regional variability and predictability, paying special in-
terest to the major inter-model differences.

2.1 Climate model selection

The model selection was based on three criteria: (1) both
the HIST and DCPP experiments were available via the
Earth System Grid Federation (ESGF) portal for each model;
(2) both the HIST and DCPP experiments were driven with
the CMIP6 external forcings to ensure complete consistency
in the forced signals; and (3), in both sets of experiments, the
relevant output variables for our analyses, such as 3D salin-
ity (so in CMIP convention), 3D potential ocean temperature
(thetao), 2D sea level pressure (psl), downward surface heat
fluxes (hfds), and sea ice concentration (siconc), were avail-
able at monthly frequency for the period 1960–2014 (which
is their overlap period). Also, except for two justified excep-
tions (details below), models with fewer than 10 ensemble
members for HIST and/or DCPP were excluded. A total of 8
AOGCMs were retained based on the selection criteria. For
models that provided more than 10 ensemble members, in ei-
ther the HIST or DCPP experiments, only 10 members were
retained to maximize the consistency across models. By de-
fault, we took members r1–10, except for EC-Earth3 histor-
ical simulations, for which we used 10 members performed
at the BSC (i.e. r2, r7, r12, r17–22, r24). This ensemble size
is the minimum that is recommended for the DCPP-A proto-
col in (Boer et al., 2016) and is the most common ensemble
size across the models considered. Both HadGEM3-GC31-
MM and MPI-ESM1-2-HR contributed with fewer than 10
ensemble members (4 HIST members and 5 DCPP members,
respectively), but, since both have comparatively higher hori-
zontal resolution (0.25° and 0.4°, respectively), they were in-
cluded to assess if there is any added value, either in process
representation or predictive skill, when horizontal resolution
is increased. More details on the models considered in this
analysis and their characteristics can be seen in Table 1.

2.2 Verification datasets

We used the EN4 version 2.2 ocean temperature and salin-
ity objective analysis dataset based on optimal interpolation
(Good et al., 2013) to evaluate the predicted OHC700 and
the ocean stratification. Three ocean reanalyses (ECDA3.1
(Chang et al., 2013), ORAS4 (Balmaseda et al., 2013),
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ORAS5 (Zuo et al., 2019)), the same used in Carmo-Costa
et al. (2021), were additionally considered and compared
with EN4 to identify the regions with high and low OHC700
observational uncertainty (Fig. A1).

To understand the processes driving local OHC700 skill,
we analysed additional variables, such as sea level pres-
sure, surface heat fluxes, and sea ice concentration. To de-
termine how realistically the systems simulate these vari-
ables, we compared them with other observationally based
datasets. For the atmospheric variables, we used the global
atmospheric reanalysis ERA5 (Hersbach et al., 2020), as it
provides a complete and physically coherent description of
recent atmospheric variability that is constrained by observa-
tions. These include monthly sea level pressure fields (nec-
essary to compute the NAO) and net surface heat fluxes (de-
rived from thermal radiation, surface solar radiation, surface
sensible heat flux, and surface latent heat flux). Finally, to
evaluate the sea ice concentration, we used the monthly fields
of HadISST.2.2.0.0 (Titchner and Rayner, 2014), hereinafter
simply HadISST.

2.3 Data pre-processing

Data from both models and verification products were re-
gridded to a common regular 1° × 1° resolution grid. All
model outputs were regridded using the Earth System Model
Evaluation Tool (ESMValTool; Righi et al., 2020) versions
2.4.0 to 2.7.0, which was particularly useful for its abil-
ity to process all models, experiments, start dates, and vari-
ables in a consistent way. For other pre-processing tasks
that were less computationally intensive, such as the calcu-
lation of yearly averages or the regridding of the ERA5 ref-
erence data, the Climate Data Operators tool version 1.9.10
(https://mpimet.mpg.de/cdo, last access: 9 July 2025) was
preferred. Additionally, we used ESMValTool to compute
the OHC700 and potential density anomaly (σ ; computed
for the reference level of 1000 m). The post-processed out-
puts were then analysed with the s2dverification/s2dv pack-
age (Manubens et al., 2018; Guemas et al., 2019) for R soft-
ware and Python scripts that were developed purposely for
this research. Both the NAO and the linear regression analy-
sis were also computed with s2dverification/s2dv.

2.4 Forecast verification

To evaluate the forecast quality of the models, we used the
anomaly correlation coefficient (ACC). The statistical sig-
nificance of ACC differences was assessed following the
methodology proposed by Siegert et al. (2017), a statistical
test developed for cases where competing forecasting sys-
tems are strongly correlated with one another.

An important aspect to consider when comparing predic-
tive skill between a DCPP experiment and its HIST counter-
part is the selection of a common period for forecast evalua-
tion, to ensure that differences in skill only arise from the ef-

fect of initialization (as prediction skill can be sensitive to the
evaluation period). Our evaluation period is fixed and starts in
1970 – the first year for which the DCPP ensemble provides
predictions for the full forecast range (1st to 10th year) – and
finishes in 2014, which is the last year covered by the HIST
ensemble. Linear trends in our analysis were also computed
for this same period.

Not all models in this analysis were initialized in the
same month. One model was initialized on 1 October (Nor-
CPM1), several were initialized on 1 November (CMCC-
CM2-SR5, EC-Earth3, HadGEM3-GC31-MM, MPI-ESM1-
2-HR, and MRI-ESM2-0), and the others were initialized on
1 January (CanESM5 and IPSL-CM6A-LR). Therefore, for
practical reasons, in all models, we computed all forecast
years (FY1–10) from January through December, discard-
ing the first months from those models initialized in October
and November. Additionally, we computed the boreal win-
ter mean (defined from December to February, referred to as
DJF hereafter), which is important for some of the processes
and drivers investigated (such as the NAO). The forecast win-
ters were numbered according to their January and February
forecast years, which means that, for example, DJF2 refers
to the winter that includes the December month of FY1 but
months January and February of FY2. We discarded DJF1
from all analyses, since some systems do not fully predict
the first winter (as it requires December of FY0).

3 Results

3.1 Multi-model OHC700 skill assessment

We firstly evaluate the ACC for OHC700 in all the prediction
systems for three different forecast times (years 2, 5, and 10)
and in all the historical ensembles. Overall, all decadal pre-
diction systems show positive correlations for most of the NA
at all the different forecast ranges (Fig. 1, columns 1–3), with
higher correlations typically taking place in the Labrador Sea
and along the eastern flank of the basin and negative correla-
tions developing in a region located east of the Grand Banks
(EGB; approx. 40–55° N and 40–25° W, with small regional
differences across models). We note that, over the EGB re-
gion, the ocean reanalyses and EN4 show the highest dis-
crepancies in terms of OHC variability (Fig. A1); therefore
the associated skill scores are expected to be more uncertain
and should be interpreted with caution. We also note that no
systematic overall improvement at any forecast time is ob-
served for systems based on full-field initialization compared
to those using anomaly initialization, and vice versa (first 4
rows vs. last 4 rows in Fig. 1). The ACC patterns for HIST
are generally close to those in the predictions, although with
a tendency for more widespread negative correlations and
lower positive correlation values than in the predictions. The
largest added value of initialization, as indicated by the ACC
differences between the DCPP and HIST ensembles, is found
predominantly in the subpolar gyre region (Fig. A2). Resid-
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ual correlations, introduced by (Smith et al., 2019), help to
more clearly identify regions where initialization is benefi-
cial for prediction. These correlations (Fig. A3) reveal an-
other area with a strong added value of initialization in the
eastern North Atlantic. However, this result should be in-
terpreted with caution, as residual correlations assume that
models accurately represent the forced signals in observa-
tions – an assumption that may not hold in regions where the
HIST ensemble exhibits high inter-model differences.

We now turn our attention to some specific cases of distinct
individual model behaviour in Fig. 1. While, in most models,
ACC values tend to be highest in FY2 and usually decrease as
the FY progresses, as expected due to the effect of initializa-
tion, this is not the case for IPSL-CM6A-LR and CanESM5.
In both models, ACC is higher in FY5 and even FY10 than
in FY2 over the Labrador Sea (LS) and the EGB region. The
comparatively lower skill in FY2 than in subsequent forecast
years for IPSL-CM6A-LR and CanESM5 might be caused by
a strong initialization adjustment, as their historical ensem-
bles show comparatively higher ACC values than the DCPP
at FY2. Another system showing a rapid loss of skill in the
LS and EGB regions is NorCPM1, where negative correla-
tions emerge by FY5 and FY10. In this case, it might re-
flect a deficiency in the representation of the forced signals,
which could be related to a reported problem in the transient
land-use specification in North America, with downstream
impacts in the subpolar North Atlantic area (Bethke et al.,
2021; Passos et al., 2023). Its HIST ensemble has a large area
of negative skill values over the LS and its surroundings. In-
terestingly, in this same region, NorCPM1 predictions show
the highest levels of skill at FY2, which suggests that ini-
tialization can temporarily correct the errors in the land-use
forcing.

Figure 2 describes the inter-model differences in ACC
shown in Fig. 1, as diagnosed by the standard deviation of
the ACC values across models. The HIST experiments have
higher ACC spread than the DCPP experiments over most
of the NA at all forecast years. The largest standard devia-
tion values (and thereby inter-model differences) are found
for HIST along the eastern North Atlantic (up to 0.6) and
in the LS (up to 0.4). In the DCPP experiments, the inter-
model spread tends to change with forecast year, without
much spatial consistency in terms of the regions with the
largest standard deviations. The LS (red rectangle in Fig. 2;
45–65° N and 60–30° W.) emerges as a region in which inter-
model differences in skill are prominent at all forecast times.
We note that the selected box extends into the Irminger Sea,
which also shows important inter-model spread. We also note
that this is a characteristic region of deep vertical mixing,
with common precursors and drivers whose representation
may vary across models, and could explain the inter-model
spread. Hence, in the rest of the study, we will focus on this
region to understand its inter-model differences in OHC skill.

3.2 Role of forcings and long-term trends in Labrador
Sea OHC skill

To better understand the differences in skill, the predicted
and observed evolutions of LS OHC700 anomalies are shown
in Fig. 3. At FY2 and FY5, all systems but CanESM5 pre-
dict the observed evolution reasonably well, characterized by
a very weak cooling trend until the mid-90s, after which a
warming trend starts to unfold. CanESM5’s long-term trend
is characterized by a cooling, completely failing to represent
the warming after the 90s. This could be related to the use
of ORAS5 for initialization (Sospedra-Alfonso et al., 2021),
which has been reported to have non-stationary trends in
the region (Tietsche et al., 2020). At longer forecast times
(FY10), all models except CanESM5 and NorCPM1 simu-
late a long-term warming trend of similar amplitude to the
observed one, although none of the models capture the rela-
tive cooling well between 1990–1995.

Interestingly, in the HIST ensemble, only two models,
IPSL-CM6A-LR and CanESM5, simulate a clear warming
trend consistent with the observed one. The other models
show a rather flat evolution, and NorCMP1 shows a cooling
trend. We also note that none of the HIST ensembles simulate
the cooling until the mid-90s or the subsequent rapid warm-
ing partly captured by the DCPP experiments, supporting a
key role of initialization in the decadal variability around the
trend.

Figure 4 shows that the relationship between the OHC700
trends (as derived for the period 1970–2014; see Sect. 2.4)
and the OHC700 skill in the LS is largely linear across mod-
els. In other words, models with stronger OHC700 trends in
the LS tend to have higher OHC700 skill in this region, which
is particularly evident in the HIST ensemble and in the first
forecast years of the DCPP ensemble, although with some
notable differences. While, for HIST, all the models show a
wide range in the magnitudes of the simulated trends, in the
first forecast years of the DCPP ensemble, all models pre-
dict similar trends to the observed one, except for CanESM5,
which has previously been mentioned as an outlier. This clear
correction of the predicted trend via initialization can imply
that (1) the observed LS trend is only driven by internal vari-
ability processes or that (2) external forcings contribute to
the trend but require realistic background climate conditions
– achieved through initialization – to represent it accurately.
Interestingly, predicting the trend well does not always lead
to high levels of OHC700 skill, as noted for IPSL-CM6A-LR
at FY2 in Fig. 4.

To further investigate the impact of the long-term trends
on the OHC700 skill in the LS, Fig. 5 portrays the ACC val-
ues as a function of FY when both DCPP and the observed
data are linearly detrended (dashed blue line) and compares
them with the skill for the original time series (solid blue
line). In all models, except for CanESM5, the forecast skill
systematically decreases when the trend is removed, even
though the drop in skill is not always significant with re-
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Figure 1. ACC maps for the OHC700 in the DCPP (forecast years 2, 5, and 10; columns 1–3, respectively) and HIST ensembles (column
4). Stippling indicates cells with correlation values statistically significant at the 95 % confidence level. All ACC values are evaluated against
EN4 for the period 1970–2014. Each row shows the results for a different model.
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Figure 2. Standard deviation across models of the ACC values for OHC700 in DCPP (forecast years 2, 5, and 10; columns 1–3, respectively)
and HIST ensembles (column 4). The red box encloses the Labrador Sea region, chosen to compute all area-weighted averages mentioned
hereinafter, with boundary coordinates 45–65° N and 60–30° W.

spect to the un-detrended ACC values (red crosses in Fig. 5).
This confirms that an important part of the skill comes from
the representation of the trend. Figure 5 also shows the fore-
cast skill of the HIST ensemble, which, compared with the
DCPP skill, can inform us about the predictive role of the
forcings. The results are largely model-dependent. In some
systems, HIST and DCPP have similar ACC values that
are only significantly different in the first FYs, which sug-
gests a predominantly forced origin of the skill. Other mod-
els, like MRI-ESM2-0, HadGEM3-GC31-MM, and CMCC-
CM2-SR5, show high and significant ACC values for DCPP,
while, for HIST, the ACC values are indistinguishable from
zero. The interpretation of these latter systems is more com-
plex, as the high predictive value of initialization could im-
ply that internal variability is the dominant factor leading
to the OHC700 skill, but it is also possible that the corre-
sponding HIST ensembles simulate an unrealistic, externally
forced variability that is largely corrected via initialization. It
is also possible that external forcings exert only a prominent
role in OHC predictability for some specific areas within the
wide Labrador Sea box considered. Indeed, all models but
NorCPM1 show positive skill for their historical ensemble
in the westernmost part of the region and poorer skill on its
easternmost side (Fig. 1).

Figure 5 thus illustrates how the large uncertainties in the
representation of the forced signals, together with the ini-
tialization shocks in some of the systems (CanESM5, EC-
Earth3, IPSL-CM6A-LR), prevent us from learning about the
true origin of the LS OHC700 predictability. The underly-
ing problem is that we do not know how much of the ob-
served variability is actually driven by the forcings. In the
next two sections (3.3 and 3.4), we will explore (i) how dif-
ferent precursors and drivers of LS decadal variability are
represented across models and experiments to ultimately in-
vestigate (ii) whether they can explain some of the inter-
model differences in the forced LS OHC700 predictive skill.

3.3 Evaluation of main preconditioners and drivers of LS
OHC700 variability across models

In this section, we explore the underlying differences across
models of two important factors controlling Labrador Sea

Figure 3. Time series of the spatially averaged OHC700 anomalies
in the Labrador Sea region (red box in Fig. 2), for the DCPP (fore-
cast years 2, 5, and 10) and HIST ensembles. The corresponding
time series for EN4 observations is added as a dashed line.

temperature variability: (1) LS stratification and (2) surface
atmospheric forcing. The former is a preconditioning factor
for the occurrence of deep convection in the region, whereas
the latter is a direct driver of convection and OHC variability
via its influence on local air–sea heat fluxes. We note, how-
ever, that these factors can also interact with each other. For
instance, in strongly stratified models where deep convection
is suppressed, atmospheric forcing may instead lead to sea
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Figure 4. Scatter plot of the relationship between the skill of OHC in the Labrador Sea region (red box in Fig. 2) and the local OHC700 trend
in both the DCPP (forecast years 2,5, and 10; columns 1–3, respectively) and HIST ensembles (column 4), all based on yearly averages. All
trends were computed for the period of interest, 1970–2014 (see Sect. 2.4 for more information). Stars represent non-significant correlation
values at the 95 % confidence level. Empty symbols represent non-significant trend values at the 95 % confidence level. The dashed black
horizontal line represents the trends for EN4 observations.

Figure 5. ACC of the spatially averaged OHC700 in the Labrador Sea (red box in Fig. 2) as a function of FY. Skill values are shown for the
DCPP (blue lines) and HIST (grey lines) ensembles and are evaluated against EN4. In DCPP, skill is also computed after detrending both
the forecast anomalies and the EN4 anomalies (detrended DCPP; dashed blue lines). Cyan dots indicate ACC values that are significantly
different from zero at the 95 % confidence level. Red crosses indicate that the HIST or the detrended DCPP ACC values are significantly
different from the DCPP values. We note that ACC values are constant for HIST at all forecast years, since the evaluation period is fixed for
their computation.

ice formation. In the following, we will evaluate how mod-
els simulate these important processes and whether they are
improved via initialization.

3.3.1 The preconditioning role of density stratification

It is well known that the LS is an important region where
oceanic processes, such as deep-ocean convection, can drive
large-scale ocean temperature changes (Robson et al., 2016;

Ortega et al., 2021). It is, however, less clear if these pro-
cesses influence the local OHC skill or if OHC persistence
is the dominant factor (Buckley et al., 2019). Some predic-
tion systems, like the one based on EC-Earth3, show high
OHC predictive skill in the NA even after LS convection col-
lapses due to initialization effects (Bilbao et al., 2021), which
suggests that other processes besides the local deep mixing
might also be relevant.
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Figure 6. Top: mean-state climatology of the spatially averaged LS
potential density anomaly in DJF (referred to 1000 m; sigma1) as a
function of depth. The observational reference EN4 is included as
a dashed black line. From left to right, it shows the results for the
DCPP (in forecast winters DJF2, DJF5, and DJF10) and HIST (in
DJF) ensembles over the period 1970–2014. Bottom: the same as
in the top row but for the standard deviation in time of the spatially
averaged LS potential density anomaly.

In the LS, deep convection takes place in winter
(Yashayaev and Loder, 2016), when the local cooling exerted
by the atmosphere can be strong enough to overcome the lo-
cal density stratification, which acts as a preconditioner. Im-
portant model biases in density stratification can therefore
potentially mitigate and even suppress deep-ocean convec-
tion and in this way limit the forecast skill, especially in
anomaly initialized systems in which potential model biases
are not corrected during initialization.

Figure 6 shows the climatological wintertime (DJF) po-
tential density profiles for the LS area in DCPP and HIST.
The HIST panel, which describes the intrinsic mean–model
biases, shows that IPSL-CM6A-LR, EC-Earth3, and espe-
cially CanESM5 have overly stratified LS densities, as com-
pared to EN4, while NorCPM1 stands out as a model with
virtually no LS density stratification. These are two oppo-
site problems that interestingly seem to arise from biases in
the salinity profile (bottom panel of Fig. A4). When look-
ing into the DCPP experiments, NorCPM1 still shows the

overly weak LS stratification. In contrast, full-field initializa-
tion seems to efficiently correct the strong stratification prob-
lems, especially in CanESM5, although in EC-Earth3 strati-
fication is degraded in DJF10 compared to HIST, likely due
to the initialization shock reported in Bilbao et al. (2021).

We now revisit the potential density profiles but focusing
on how differently the models represent the temporal varia-
tions at different levels, as these can reveal other important
model biases affecting the vertical mixing. NorCPM1 and
IPSL-CM6A-LR portray the largest differences with respect
to EN4 for both DCPP and HIST (bottom panel of Fig. 6),
particularly near the surface, where the variance is higher
due to the exchanges with the atmosphere. NorCPM1 shows
substantially weaker variability at the surface, while IPSL-
CM6A-LR shows the largest variability. This might derive
from their radically different mean winter stratification (top
panel of Fig. 6). In NorCPM1, the very weak stratification
ensures a rather sustained mixing, which damps the year-
to-year variability. In contrast, in IPSL-CM6A-LR, stratifi-
cation is relatively strong, favouring a mixing that is much
too intermittent. There is no clear benefit from initialization
in the variability profiles for most models. In fact, initializ-
ing the models seems to worsen the density variability for
CanESM5 in DJF2-DJF5, which can again be linked to the
non-stationarity errors inherited from ORAS5.

Next, we will explore whether the differences in stratifica-
tion can condition the local forcing from the atmosphere.

3.3.2 The North Atlantic Oscillation as a key driver of LS
variability

Many studies have highlighted the key driving role of the
NAO on the interannual variability in LS temperature, salin-
ity, and convection (e.g. Eden and Jung, 2001; Guemas and
Salas, 2008; Ortega et al., 2012; Yashayaev and Loder, 2016)
and, through it, on the AMOC; however, to our knowledge,
no study to date has explored whether and how structural
model differences in the representation of the NAO affect the
local air–sea heat exchanges.

Figures 7 and 8 show the NAO pattern (defined as the first
EOF of sea level pressure in DJF) for the HIST and DCPP
experiments, respectively. As expected, the low-pressure sys-
tem (also known as the Icelandic Low, IL) tends to be centred
around Iceland, and the high-pressure system (also called the
Azores High, AH) is centred between Azores and the western
border of the Iberian Peninsula. There are some notable dif-
ferences across models and experiments. In the HIST exper-
iments (Fig. 7), both the AH and IL show substantial varia-
tions in their location across models and also across members
(indicated by the crosses). Overall, the AH tends to be more
located near the Azores archipelago, although some individ-
ual model members, including all NorCPM1 ones, develop
their maxima near the Iberian Peninsula.

Important differences across models are also found in
terms of the IL location for both types of experiments.
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Figure 7. Spatial patterns of the NAO (as described by the first EOF of DJF sea level pressure) in the different HIST ensembles. The EOF is
computed with all individual model members concatenated in time. Each cross represents the positive and negative centres of action (defined
at the place where the NAO pattern attains its maximum and minimum sea level pressure anomalies) when the EOF is computed individually
for each member, thus indicating the intra-model spread.

Figure 8. Same as in Fig. 7 but for DCPP experiments. In this case, the colour shading represents the NAO pattern at DJF2, and the circles
(in increasing size) represent the centres of action of the ensemble mean for DJF2, 4, 6, 8, and 10, thus illustrating any potential shifts with
forecast time.

CanESM5 (more obvious in HIST), CMCC-CM2-SR5, and
NorCPM1 tend to have the IL located further to the east
(i.e. over the Norwegian Sea and Scandinavia), much like the
NAO structure of ERA5 for the study period of 1970–2014
(Fig. A6). The other models have their centres of action over
Iceland and Greenland, which is more in line with the tradi-
tional NAO definition (Hurrell, 1995).

There seems to be an overall agreement between the NAO
patterns in the HIST and DCPP ensembles (Fig. 8). In the
DCPP experiments, the centres of action of the ensemble
mean remain largely unchanged with forecast time (indi-
cated by the circles of increasing size). This suggests that
full-field initialization, despite improving the representation
of the SST patterns driving the NAO (e.g. Gastineau and
Frankignoul, 2015), does not correct the position of its sim-
ulated centres of action, which are located too far to the east
in models like CMCC-CM2-SR5 and CanESM5.

The relative position between the AH and IL centres of
action can critically condition how the NAO affects the sur-
face winds, whose speed is proportional to the local gradi-
ent in sea level pressure. This can be crucial in the Labrador
Sea, where the surface winds promote deep-ocean convec-
tion by cooling the surface. Models such as NorCPM1 and
CMCC-CM2-SR5, in which both centres of action are placed
far from the Labrador Sea, shifting the maximum sea level
pressure towards the east, might therefore induce a weaker
local forcing. We now investigate whether this is the case
by computing the linear regression of the NAO index with
the surface heat fluxes (Fig. 9), as represented by the CMIP6
variable hfds. In the HIST experiments (rightmost column),
all models show that the NAO exerts a strong cooling in the
Labrador and Irminger seas, except in CanESM5, where both
regions are unrealistically covered by sea ice (Fig. A7). In-
terestingly, the HIST panel additionally suggests that having
the IL centre displaced to the east, like for NorCPM1 and
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Figure 9. Regression maps of the NAO index onto net surface heat fluxes (hfds) for the DCPP (in forecast winters DJF2, DJF5, and DJF10;
columns 1–3, respectively) and HIST ensembles (in DJF; column 4). Negative (positive) values represent upward (downward) heat fluxes (in
W m−2). The contour lines represent the corresponding NAO pattern. The red box in the upper-right plot depicts the LS region used in the
analyses.

CMCC-CM2-SR5, does not necessarily lead to a lack of sur-
face forcing in the LS. This result suggests that other factors
influencing the local heat loss are at play.

For the DCPP ensemble, the regression maps (Fig. 9) show
a clear beneficial effect of initialization in the representation
of the NAO’s surface forcing, especially over the LS. In that

region, all models show a more consistent picture at DJF2
and a better agreement with the equivalent regressions in
ERA5 (Fig. A6), suggesting that having more realistic con-
ditions in stratification, sea ice, or both does help to improve
the NAO’s influence on the local OHC (e.g. via improved
vertical mixing), even in cases where its centres of action
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are displaced compared to ERA5 (e.g. CMCC-CM2-SR5).
As the forecast time progresses, differences start to emerge,
particularly in the systems that are full-field-initialized (e.g.
CanESM5, EC-Earth3, CMCC-CM2-SR5) following the de-
velopment of the intrinsic model biases. Indeed, full-field
initialization not only helps to simulate a more realistic
forcing of the NAO, but it also critically improves the cli-
matological surface heat fluxes in winter (Fig. A5 com-
pared to Fig. A6), mean-state improvements that are very
clear in the LS in DJF2 for CanESM5, CMCC-CM2-SR5,
and EC-Earth3. These improvements are less noticeable for
HadGEM3-GC31-MM, which is also full-field-initialized,
because this model had a more realistic background mean-
state density stratification, as evidenced in Fig. 6 for its HIST
run. Figure A5 also distinguishes NorCPM1 as a model with
overly large climatological heat losses into the atmosphere in
both the LS and EGB as compared to the other models and
ERA5.

To help identify the specific regions where the NAO in-
troduces larger differences across models in terms of local
surface heat fluxes, Fig. 10 (top row) shows the standard de-
viation in model space for the regression coefficients shown
in Fig. 9. It clearly illustrates that the major differences oc-
cur over the LS, especially on its western side, thus support-
ing that the representation of the NAO and its forcing may
contribute to the differences in OHC700 skill across models
(Fig. 2). This is true for both sets of experiments, although
the area of high standard deviation values is larger in HIST.
The differences across models are reduced with initialization
and become more prominent in the LS as forecast time pro-
gresses, and by DJF10 they remain geographically more con-
fined than for the HIST experiment.

Because winter heat fluxes are not exclusively linked to the
NAO, the differences across models in terms of climatologi-
cal winter surface heat fluxes alone are plotted in the middle
row of Fig. 10. Strong multi-model differences are also evi-
dent, with much higher standard deviation values. These are
not only limited to the LS, which clearly stands out as the
region with the highest inter-model spread, but are also quite
large over the EGB region.

Considering that sea ice can act as a barrier that shields the
ocean from the atmospheric influence, and in this way con-
dition the climatological heat fluxes, the inter-model spread
of the winter sea ice concentration (when it reaches its max-
imum extent) is also presented in the bottom row of Fig. 10.
While in HIST and DJF10 there is a large spread in LS
climatological sea ice, which can mostly be associated to
CanESM5 and EC-Earth3 (Fig. A7), in the forecast winters
DJF2 and DJF5, the differences are confined to a narrow
band at the westernmost side of the LS. This is also where
the surface heat flux regressions onto the NAO and the clima-
tological surface heat fluxes showed the largest inter-model
spread. Therefore, it would seem that all three model proper-
ties are intricately related in that region.

3.4 Understanding uncertainties in the externally forced
LS OHC700 variability and predictability

An accurate characterization of the externally forced com-
ponent of North Atlantic OHC variability is fundamental to
understanding decadal predictability and evaluating model
performance, as it is possible that some models show higher
predictive skill for the wrong reasons. This last section seeks
to narrow down the large uncertainties identified in the LS
OHC700 externally forced signal, which is unknown for the
real world, as observations include both internal and forced
variability. We can, however, contrast the HIST simulations
against observationally based climatological values for the
previously analysed key physical properties (i.e. stratifica-
tion, NAO regression, surface heat fluxes, and sea ice concen-
tration), as these are largely determined by the background
forcing conditions. To this end, a set of scatter plots was as-
sembled in Fig. 11.

We find a strong linear relationship between the forced
OHC700 skill and the stratification index, with stronger strat-
ification linked to higher skill. This result is robust for dif-
ferent definitions of the stratification index considered (not
shown). A possible interpretation of this linear relationship
is that stronger mean stratification limits the occurrence of
deep convection events, especially those triggered by inter-
nal climate variability processes (which in HIST runs can-
not be in phase with the observations), allowing better cap-
ture of the long-term trends. This would be consistent with
the fact that ACC values for Labrador OHC700 are shown
in Fig. 4 to be strongly related with its associated long-term
trends. However, it is important to note that the models with
the largest forced OHC700 skill also largely overestimate the
local stratification when compared to an observational refer-
ence, which raises questions about their realism.

The relationship between the OHC700 skill and the clima-
tological winter surface heat fluxes (hfds) in the LS (Fig. 11c)
is also highly linear. In this case, however, both variables ex-
hibit an inverse relationship: models like NorCPM1 or MRI-
ESM2-0 that have stronger climatological surface heat fluxes
in the LS (i.e. that lose more heat to the atmosphere) tend to
have lower ACC values for OHC700, and vice versa. One po-
tential explanation for this relationship is that, with stronger
heat fluxes, the local stratification can be overcome more eas-
ily, which therefore allows a higher presence of spurious un-
forced signals that degrade the agreement with the observa-
tions (i.e. lower the ACC value). Interestingly, even though
higher ACC values are linked to weaker surface heat forc-
ings, the observed ERA5 climatologies suggest that the mod-
els with the highest forced skill are not particularly realistic.
It should be noted, however, that ERA5 does not include all
of the air–sea ice fluxes that are included in the HIST fluxes
and might be important at the western side of the Labrador
Sea.

For the two other preconditioners identified in Sect. 3.3.2
(i.e. the local NAO surface forcing and the climatological
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Figure 10. Top: inter-model spread for the regression coefficients in Fig. 9, as defined by the standard deviation across models. Middle:
the same as above but for the climatological net surface heat fluxes in DJF. Bottom: the same as above but for the climatological sea ice
concentration in DJF. The black box in the rightmost column depicts the LS region used in the analyses.

sea ice conditions), we do not find a clear linear relation-
ship with the forced OHC700 LS skill. Despite this, CanESM
(the model with the highest ACC values) is identified in both
cases as a clear outlier when compared with observation-
based references.

All the above results thus suggest that high ACC values
in some of the historical ensembles are not necessarily in-
dicative of good model performance. The underlying issue is
that the true split between the forced and the internally gen-
erated variability in the real world is unknown, which hin-
ders the identification of the models that simulate the forced
signal better. Interestingly, the observation-based references
included in the scatter plots are generally close to the multi-
model mean value, supporting its standard use to derive our
best estimate of the real forced signal. This multi-model
mean has a forced OHC700 skill in the LS of ∼0.4, which
would imply a significant but not dominant contribution of
the external forcings to Labrador Sea OHC700 variability (as
it would explain around 16 % of the total variance).

4 Conclusions and discussion

In this study, the predictive skill of the North Atlantic upper-
ocean heat content has been explored in a multi-model con-
text, using CMIP6 ensembles of historical and decadal cli-
mate prediction experiments from eight different models. By

analysing both ensembles of experiments, it has been possi-
ble to investigate how and to what extent the external forcings
contribute to the regional predictability of the OHC, also as-
sessing the benefits of initialization. The bulk of the analysis
has been delimited to the Labrador Sea region, where impor-
tant skill differences across models were found. To further
understand these inter-model differences, we have explored
whether they can be linked to the capability of the under-
lying models to represent key ocean–atmosphere processes
and properties that are tightly connected to the local OHC700
variability, such as the preconditioning role of density strati-
fication and the NAO influence on the surface heat fluxes.

The main findings of the paper are summarized as follows:

– Initialized decadal predictions largely agree on the re-
gions with high predictive capacity for the OHC, which
mostly concentrate on the Labrador Sea region and
the eastern flank of the North Atlantic. All of them
also show a region with negative skill located east of
the Grand Banks, albeit with important differences re-
garding the exact location and extension of the nega-
tive ACC values, which largely vary across the models
and experiment types. It remains unclear how much of
this low skill is attributable to the large local observa-
tional uncertainties, which affect both the verification
datasets and the quality of the initial conditions, as these
latter are derived from assimilated observations. From
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Figure 11. (a) Scatter plot of the relationship between the ACC
skill in the Labrador Sea OHC700 and the climatological value of
the index of the Labrador Sea density stratification in the HIST en-
sembles. The stratification index is computed as the density differ-
ence between 1000 m and the surface. The 1000 m level was chosen
based on the visual inspection of the vertical profiles (Fig. 6) as a
characteristic level of the mean properties of the ocean subsurface.
Larger values of the index correspond to models where the LS is
more stratified. Panel (b) is the same as panel (a) but between the
ACC skill in the Labrador Sea OHC700 and the regressed values
of the NAO index onto the Labrador Sea net surface heat fluxes in
DJF. Panel (c) is the same as panel (a) but between the ACC skill
in the Labrador Sea OHC700 and the climatological Labrador Sea
net surface heat fluxes in DJF. Panel (d) is the same as panel (a)
but between the ACC skill in the Labrador Sea OHC700 and cli-
matological DJF sea ice concentrations in the Labrador Sea. In all
panels, stars represent non-significant correlation values at the 95 %
confidence level. The dashed black horizontal line represents the re-
spective reference dataset: (a) EN4, (b, c) ERA5, and (d) HadISST.
The linear relationship between the different pairs of metrics is mea-
sured with correlation values in the model space, shown for each
plot in the lower-right corners, with asterisks indicating if the cor-
relation coefficient is significant at the 95 % confidence level.

these three regions, the largest inter-model differences
in terms of predictive spread occur in the Labrador Sea,
where some models experience initial shocks, as identi-
fied by Polkova et al. (2023), degrading the skill some
years after initialization.

– In the Labrador Sea region, no clear picture emerges
from the multi-model ensemble of how much predictive
capacity for the OHC arises from external forcings, as
large inter-model differences in ACC are found for the
OHC of the HIST experiments. The added predictive
value of initialization, determined as the difference in
skill between DCPP and HIST ensembles, is also highly
variable across models. This model dependence of the

results highlights the importance of using multi-model
approaches, as analyses focused on individual models,
such as the one in Carmo-Costa et al. (2021), can poten-
tially lead to misleading generalizations.

– In the HIST experiments, we have identified a strong
linear relationship between the skill for Labrador Sea
OHC and the local density stratification, along with
a strong inverse linear relationship between the same
skill and the climatological local surface heat fluxes.
Since both stronger stratification and weaker surface
heat fluxes suppress vertical mixing, we interpret that
models with higher OHC skill are those where deep
mixing occurs only sporadically, thereby reducing the
influence of spurious signals from internal variability,
which tend to lower correlation values. Interestingly,
Hegerl et al. (2021) previously established a connection
between density stratification in the North Atlantic sub-
polar gyre and local prediction skill for SST in mod-
els, showing that a more realistic stratification enhances
skill levels. However, it is challenging to directly com-
pare their findings with ours, as their analysis focused
on a broader region, initialized predictions, and assessed
absolute stratification errors without considering their
directionality.

– The HIST experiments with higher ACC for the
Labrador Sea OHC also have larger biases in the mean-
state stratification and heat fluxes, bringing their real-
ism into question. The multi-model mean of the HIST
experiments compares particularly well with observa-
tions and is likely to provide a more realistic estimate
of the predictability attributable to the forcings, which,
according to the multi-model mean, would account for
∼16 % of the total OHC variance in the Labrador Sea.
We note that this number is roughly consistent with the
percentage of Atlantic Multidecadal Variability (AMV)
accounted for by external forcings from 1870 to 2012 in
the analysis of Qin et al. (2020), which is derived from
observations. Even if both quantities, the Labrador Sea
OHC and the AMV, represent different domains and are
derived from different variables, they are linked phys-
ically, as Labrador Sea OHC is strongly linked to lo-
cal deep mixing, which is an important driver of the
AMOC, and, through it, the AMV (Knight et al., 2005).

– Our multi-model DCPP ensemble includes 4 systems
using anomaly initialization and 4 systems using full-
field initialization, which has allowed us to assess their
relative merits. We have found that, overall, full-field
initialization helps improve the representation of the
selected key mean model features in the first forecast
years, including the background stratification and the
surface forcing from the NAO, but it does not nec-
essarily lead to systematic improvements in Labrador
Sea OHC skill, as already found in previous studies for
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the North Atlantic (Hazeleger et al., 2013; Volpi et al.,
2017). No systematic benefit of anomaly initialization
has been identified either, although, for the case of Nor-
CPM1, we have found significant OHC skill along the
full forecast for the westernmost side of the Labrador
Sea, despite an overly weak mean stratification and
some reported local errors in the forced signals.

– Regarding the impact of enhanced resolution, neither
of the two systems with eddy-permitting ocean compo-
nents (HadGEM3-GC31-MM and MPI-ESM1-2-HR)
show superior performance in terms of upper-OHC skill
in the Labrador Sea compared to the other coarser-
resolution models, with CMCC-CM2-SR5, EC-Earth3,
and MRI-ESM2-0 showing very similar skill values at
all FYs. This means that no particular benefit is ob-
tained from the larger computing costs incurred by these
higher resolutions, at least not for the subpolar lati-
tudes in these DCPP experiments. It is possible, how-
ever, that the benefits of the higher resolution have been
partly masked by the reduced ensemble sizes available
for those models, as it has been previously shown that a
larger ensemble size has a positive impact on the North
Atlantic skill (Delgado-Torres et al., 2022; Athanasiadis
et al., 2020). It is also possible that achieving signifi-
cant skill improvements requires higher resolutions than
those considered in this study. In fact, the first decadal
predictions using an eddy-resolving ocean model, per-
formed with CESM1.3 (Yeager et al., 2023; Kim et al.,
2023b), demonstrated notable and widespread skill im-
provements compared to their low-resolution counter-
parts, although no real improvements were found in the
North Atlantic, likely due to local issues in the initial
conditions.

This study has linked the differences in upper-OHC skill
to different mean-state biases across models, providing in-
sights in relevant aspects of model fidelity that can be con-
sidered to guide the development phase of future climate pre-
diction systems. A deeper fundamental understanding of the
key sources of OHC predictive skill could be achieved by
performing more holistic approaches, including heat budget
analyses and the investigation of advective processes (simi-
lar to the propagation mechanisms described in Ortega et al.,
2015, and Langehaug et al., 2022), which are beyond the
scope of this study. Novel approaches are also needed to
cleanly disentangle the relative contributions from external
forcings and internal variability to the predictive skill, as the
added predictive value of initialization can arise from inter-
nal processes and from a better representation of the forced
response.
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Appendix A

Figure A1. Correlation maps between the OHC700 in EN4 and the OHC700 in ECDA, ORAS4, ORAS5, and the multi-reanalyses ensemble
mean, computed over the period 1970–2014.
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Figure A2. The same as in Fig. 1 but for the difference in ACC values between the DCPP and HIST ensembles.
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Figure A3. The same as in Fig. 1 but for the residual correlations in each DCPP ensemble.
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Figure A4. As in Fig. 6 but for the climatological vertical profiles of potential temperature (top) and salinity (bottom).
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Figure A5. Climatological DJF net surface heat fluxes for the DCPP (in forecast winters DJF2, DJF5, and DJF10; columns 1–3, respectively)
and HIST ensembles (in DJF; column 4). Negative (positive) values represent upward (downward) heat fluxes (in W m−2). The contour lines
represent the associated standard deviation in time for the period 1970–2014. The red box in the upper-right plot depicts the LS region used
in the analyses.
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Figure A6. (a) Spatial pattern of the NAO in the ERA5 reanalysis, computed as in Fig. 7. (b) Regression map of the NAO index onto the
DJF net surface heat fluxes in the ERA5 reanalysis. (c) Climatological DJF net surface fluxes in the ERA5 reanalyses.

Figure A7. Sea ice concentration (siconc) maps for the initialized predictions for the forecast winters DJF2, DJF5, and DJF10 (columns 1–3,
respectively) and for DJF in the HIST ensemble (column 4).
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