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Abstract. The calibration of Earth system model parameters is subject to data, time, and computational con-
straints. The high dimensionality of this calibration problem, combined with errors arising from model structural
assumptions, makes it impossible to find model versions fully consistent with historical observations. Therefore,
the potential for multiple plausible configurations presenting different trade-offs between skills in various vari-
ables and spatial regions remains usually untested. In this study, we lay out a formalism for making different
assumptions about how ensemble variability in a perturbed physics ensemble relates to model error, proposing
an empirical but practical solution for finding diverse near-optimal solutions. A meta-model is used to predict the
outputs of a climate model reduced through principal component analysis. Then, a subset of input parameter val-
ues yielding results similar to a reference simulation is identified. We argue that the effective degrees of freedom
in the model performance response to parameter input (the “parametric component”) are, in fact, relatively small,
illustrating why manual calibration is often able to find near-optimal solutions. The results explore the potential
for comparably performing parameter configurations that have different trade-offs in model errors. These model
candidates can inform model development and could potentially lead to significantly different future climate

evolution.

1 Introduction

General circulation models (GCMs) and Earth system mod-
els (ESMs) are the primary tools for making projections
about the future state of the climate system. It is an important
goal of climate science to continually improve these models
and to better quantify their uncertainties (Balaji et al., 2022).
Constraints on computational resources limit the ability to
resolve small-scale mechanisms, and sub-grid parameteriza-
tions are used to represent processes such as atmospheric ra-
diation, turbulence, or clouds. These parameterizations are
based on numerous unconstrained parameters that introduce
uncertainty in climate simulations. Therefore, climate mod-
els are subject to a challenging calibration (or “tuning”) prob-
lem. When used as tools for the projection of future climate
trajectories, they cannot be calibrated directly on their per-
formance. Instead, the assessment of performance and skill
arises jointly from the confidence in the understood realism

of physical parameterizations of relevant climatological pro-
cesses, along with the fidelity of the model’s representation
of historical climate change. Practical approaches to model
calibration are subject to data, time, and computational con-
straints.

For the simplest models (zero- or low-dimensional rep-
resentations of the climate system), model simulations are
sufficiently cheap, with sufficiently few degrees of freedom,
so that Bayesian formalism can be fully applied to estimate
model uncertainty (Ricciuto et al., 2008; Meinshausen et al.,
2011; Bodman and Jones, 2016; Nauels et al., 2017; Dorheim
et al., 2020). However, more complex models such as GCMs
present a number of difficulties for objective calibration
which have resulted in a status quo in which manual cali-
bration remains the default approach (Mauritsen et al., 2012;
Hourdin et al., 2017). Such approaches have not yet been op-
erationally replaced by objective calibration approaches but
leave large intractable uncertainties. In particular, the poten-
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tial existence of comparably performing alternative config-
urations with significantly different future climate evolution
(Ho et al., 2012; Hourdin et al., 2023) is rarely considered.
Failing to explore alternative model configurations can re-
sult in model ensembles which may not adequately sample
the projection uncertainty. For example, some of the CMIP6
model projections were “too hot” when compared with other
lines of evidence, and using all of these models without
statistical adjustment (in a simple “model democracy” ap-
proach) could lead to an overestimate of future temperature
change (Hausfather et al., 2022).

Although manual calibration remains by far the most com-
mon practice, objective calibration methods have been devel-
oped and tested in climate models (Price et al., 2006; Nan
et al., 2014; Sellar et al., 2019). Approaches to date with
GCMs have mainly relied on perturbed parameter ensem-
bles (PPEs) of simulations that allow an initial stochastic
sample of the parametric response of the model. The con-
struction of meta-models is then needed to emulate this para-
metric response and enhance the number of samples. The
meta-models can be quadratic (Neelin et al., 2010), logis-
tic regression (Bellprat et al., 2012), Gaussian process em-
ulators (Salter and Williamson, 2016), or neural networks
(Sanderson et al., 2008). Each of these meta-modeling ap-
proaches offers different advantages in terms of accuracy,
flexibility, and speed (Lim and Zhai, 2017) but often requires
prior assumptions on how smooth the parameter response
surface might be and how noisy the samples themselves are.
Such approaches allow for the definition of plausible or “not-
ruled-out-yet” spaces when using a low-dimensional output
space (such as global mean quantities; Bellprat et al., 2012;
Williamson et al., 2015), potentially allowing for additional
ensemble generations which sample in the not-ruled-out-yet
space (Williamson et al., 2015). Emulators can be improved
in promising sub-regions of the parameter space by running a
new PPE in a reduced parameter space to increase the ensem-
ble density (sometimes referred to as an “iterative refocus-
ing” approach; Williamson et al., 2017). However, the choice
of which region to initially focus on depends on advice from
model developers and is itself subject to error in emulation.
Finally, one of the strongest limitations when developing a
GCM automatic tuning approach is the high computational
cost of the PPE. Dunbar et al. (2021) rely on the calibrate—
emulate—sample method to generate probability distributions
of the parameters at a fraction of the computational cost usu-
ally required to obtain them, allowing for climate predictions
with quantified parametric uncertainties.

Climate models produce high-dimensional output across
space, time, and variable dimensions. Performance is often
addressed by integrated output spanning these dimensions
(Gleckler et al., 2008; Sanderson et al., 2017), and so calibra-
tion techniques must be able to represent spatial performance
in order to be useful to development. In a low-dimensional
space defined by global mean quantities, it is possible to
find one model version which is consistent with observations
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(Williamson et al., 2015), but this is not true when consider-
ing the high dimensionality of climate model outputs. When
considering an assessment of model error integrated over a
large number of grid points and variables, structural trade-
offs may arise between model outputs which cannot be si-
multaneously optimized by adjusting model parameters. For
example, McNeall et al. (2016) found that land surface pa-
rameters which were optimal for the simulation of the repre-
sentation of the Amazon rainforest fraction were not optimal
for other regions. In another case, structural errors in an at-
mospheric model were found to increase significantly with
the addition of variables to a spatial metric (Sanderson et al.,
2008). As such, the potential structural error component is
implicitly related to the dimensionality of the space in which
the cost function is constructed. For example, Howland et al.
(2022) demonstrated that the use of seasonally averaged cli-
mate statistics, rather than annually averaged ones, could nar-
row the uncertainty in the climate model predictions.

In order to reduce the complexity of the emulation prob-
lem and to preserve the covariance structure of the model
output, it is common to reduce the dimensionality of the out-
put through principal component analysis (PCA; e.g., Hig-
don et al., 2008; Wilkinson, 2010; Sexton et al., 2012). No-
tably, for some spatial applications, this dimensional reduc-
tion may be insufficient to resolve certain important clima-
tological features such as extreme precipitation frequency
(Jewson, 2020). This PCA representation, however, has some
apparent drawbacks for optimization. An orthogonal space
constructed from the dominant modes of variability in a PPE
may not be able to describe some components of the spa-
tial pattern of the model error (O’Lenic and Livezey, 1988).
Salter et al. (2019) proposed an approach to the global op-
timization of a model with spatially complex output with a
rotation of principal components such that model errors were
describable on a reduced-dimensionality basis set by includ-
ing some aspects of higher-order modes in the rotated, trun-
cated basis set in order to better describe the error patterns of
ensemble members. The method, however, makes some sig-
nificant assumptions about the ability of a statistical model
to predict the parametric response of high-order modes and
does not allow an exploration of structural trade-offs between
different variables, such as those found by McNeall et al.
(2016).

In this study, we argue that considering a sub-set of plau-
sible candidate calibrations sampling the diversity of model
error spatial patterns can help us better understand the model
biases. Such an approach could also help us to better un-
derstand model uncertainty in climate projections, as previ-
ous studies highlighted the possibility that several calibra-
tions of a single climate model present very different future
climates (Peatier et al., 2022; Hourdin et al., 2023). In this
sense, we are not searching for an optimal parameter con-
figuration but rather for model configurations which perform
comparably to a reference model version. We lay out an alter-
native formalism which makes different assumptions about
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how the ensemble variability in a PPE relates to structural
error and how it can thus inform model development. This
formalism allows the empirical decomposition of the model
error into one component, depending on the parameter val-
ues, and a component arising from structural inaccuracies.
The approach, presented in Sect. 2, is used as a practical solu-
tion for finding diverse near-optimal solutions exploring key
model error trade-offs. We start by illustrating the method us-
ing a simplified univariate case focusing on surface tempera-
ture errors (Sect. 3) before applying it to a more generalized
multi-variate tuning case using five climatic fields (Sect. 4).
Finally, we discuss and summarize the main results (Sect. 5).

2 Methods

2.1 Model and perturbed parameter ensemble (PPE)

The model used in this study is ARPEGE-Climate, the at-
mospheric component of the CNRM-CM6 climate model,
referred to as f, the climate model. The reference config-
uration of this model will be referred to as CNRM-CM6-1
and has been tuned by the model developers for the CMIP6
exercise (Roehrig et al., 2020).

A PPE of this model is created, containing 102 AMIP sim-
ulations (Eyring et al., 2016) differing by their parameter val-
ues, representing the period 1979-1981 (3 years) with pre-
specified sea surface temperatures (Peatier et al., 2022). In
total, 30 model parameters (see Appendix Al) are perturbed
with a Latin hypercube sampling (LHS) strategy based on
a space-filling maximin design 6 = (61, ..., 6,), producing
a variety of simulated climate states F = (f(61), ..., f(6,)),
with n =102, and 6; as a vector of 30 parameter values
(Peatier et al., 2022). For the present study, we consider the
annual means averaged over the whole 1979-1981 period as
model outputs. We write the model output f(6;) as a vector
of length [, such that F has dimension / x n, where n is the
number of ensemble members (n = 102), and [ is the number
of grid points (I =32 768).

2.2 EOF analysis

In order to build emulators of a GCM’s spatial climatology,
the general practice is to reduce the dimensionality of the em-
ulated response, and a common strategy is an EOF (empirical
orthogonal function) analysis (Higdon et al., 2008; Wilkin-
son, 2010; Sexton et al., 2012; Salter et al., 2019) which pro-
duces n eigenvectors that can be used as basis vectors. Given
n < [, the reconstruction of F' is exact and reduces the com-
plexity of the emulator required.

Variability in F is explained in descending order of eigen-
vectors, such that a truncation to the first ¢ modes yields a
basis I'; = (y1, ..., ¥4) which produces an approximate re-
construction of the initial data, thus further reducing the scale
of the emulation problem. Truncation length is often chosen
such that a given fraction of ensemble variance (often 90 %—
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95 %) is preserved (Higdon et al., 2008; Chang et al., 2014),
but some authors have argued that higher-order modes may
need to be included to allow the resolution of optimal config-
urations (Salter et al., 2019). We discuss the choices of ¢ in
the first application (Sect. 3).

The EOF basis I is based on the centered ensemble (F —
), with u as the ensemble mean. As a result, each anomaly
(f(6;)— ) is associated with a coefficient c(6;) (or principal
component, PC), such as

c(0:) =Ty T) "' T (f(6) — ). (1)

Given an orthogonal basis, the full spatial field of length
I can be approximately reconstructed as a function of the ¢
coefficients,

f6)—n=Tqc)+ry, 2)

with ¢ as a residual that depends on the choice of g. Con-
sider variable j (for example, the air surface temperature, as
in the first application; Sect. 3.1), such that z; is the observed
field for the variable, and f;(6;) is the model simulated field
for that variable for a given parameter input 6;. As for F,
we can subtract the ensemble mean p from the observation
and project the anomaly of the observation (z; — w) (which
is also the error in the ensemble mean () onto the basis I'y
using Eq. (1):

Zi_,u:rqcz"_rzv (3)

where r; is a residual representing the part of the observation
z; that cannot be projected on the basis I';. This residual
r, will, as for r ¢, depend on the choice of ¢ but will never
(even when g = n) equal zero, as the basis I'; explains the
maximum amount of variability in F but does not guarantee
a full representation of the spatial pattern of the observation
z; (Salter et al., 2019).

2.3 Model error decomposition

The model error pattern of a given parameter sample,
Ej(6;)=1zj— fj(6;), can be expressed in the basis I'; and
becomes the sum of a term that depends on the vector of
the parameter 6; (here called a parametric component) and a
term unsolvable in the basis I'; (here called non-parametric
component):

Ej6;)=Tq4lc; —cO]+ r.—rf . %)
—_— ——
parametric non-parametric

We could consider a skill score defined by the mean square
error (MSE) of the spatial error pattern E ;(6;):

1
ej(6) = 72((15,'(91'))2), ®)

1
= (z(rq [y — c(6:)] + 7, — rf)2) . (6)

Furthermore, because (7, — r r) is orthogonal by construc-
tion to the basis I'y, the interaction terms in Eq. (5) are
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zero. As a result, and using Eq. (4), the integrated model er-
ror e;(6;) becomes a linear sum of a parametric component
p;(6;) and a non-parametric component u ;:

1 1
ej6) = 7 (Tyle: = cO)F) + 1 s —rp) )
= pjO)+u;. ®)

2.4 The discrepancy term

We consider, following Rougier (2007) and Salter et al.
(2019), that an observation z can be represented as a sum of
a simulation using the “best” set of the parameter 6* of the
climate model f and a term (initially unknown) representing
discrepancy 7.

2= f0O0+n )

The discrepancy effectively represents the difference be-
tween the climate model and the measured climate that can-
not be resolved by varying the model parameters (Sexton
et al.,, 2012). Such differences could arise from processes
which are entirely missing from the climate model or from
fundamental deficiencies in the representation of processes
which are included through limited resolution; i.e., the adop-
tion of an erroneous assumption in the parameterization
scheme or parameters not included in the tuning process. The
discrepancy n can be defined as the integrated error associ-
ated with the optimal calibration 6*. Considering a variable
J» the discrepancy term 7; is defined as

1
nj =2 - £, (10)
= e;(0"). (11)

In this case and the following Eq. (4), n; can also be ex-
pressed as a linear sum of a parametric component p;(6*)
and a non-parametric component u jt

1 1
nj =72 (Dyle: = @) + 7 0 =), (12)
=p;j0") +u;. (13)

The irreducible error component of the climate model is
represented by the 7 term, known as the discrepancy. To
make this statement, Sexton et al. (2012) have to assert that
the climate model is informative about the real system, and
the discrepancy term can be seen as a measure of how in-
formative our climate model is about the real world. Sexton
et al. (2012) think of the discrepancy by imagining trying to
predict what the model output would be if all the inadequa-
cies in the climate model were removed. The result would be
uncertain, and so discrepancy is often seen as a distribution,
assumed Gaussian, and described by a mean and variance
(Rougier, 2007; Sexton et al., 2012).

The calibration 6* is usually defined as the best input set-
ting, but it is hard to give an operational definition for an
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imperfect climate model (Rougier, 2007; Salter et al., 2019).
In practice, we can only propose an approximated 6*, and
multiple “best analogues” to this approximation exist (Sex-
ton et al., 2012). In this work, we intend to select m near-
optimal model candidates 61,....6m) approximating 6* and
sampling the discrepancy term distribution n. We discuss the
optimization using a simple emulator design in Sect. 2.5 and
candidate selection in Sect. 2.6.

2.5 Statistical model and optimization

Optimization requires the derivation of a relationship be-
tween the model input parameters 6 and the PC coefficients
c(9). In the following illustration, and as in Peatier et al.
(2022), we consider a multi-linear regression as follows:

cem(0;) = BO; + co, 14

where S is the least squares regression solution derived from
F, and ¢y is the ensemble mean coefficient. The regression
predictions are used in Eq. (7) to predict the model MSE as
a function of input parameters 6;. More details on the choice
and performance of the statistical model can be found in Ap-

pendix C.
In this study, the objective of the optimization is to look for
non-unique solutions (1, ...,6,) whose performances are

lower than or comparable to that of a reference model while
sampling possible trade-offs in the multi-variate spatial er-
ror. This reference model has been validated by the experts
and can serve as a threshold to define whether a model cal-
ibration is near-optimal. The vector of the parameter values
associated with this reference model will be named 6.

We can then consider a 10°-member Latin hypercube sam-
ple of the model parameter space and produce a distribution
of the predicted pem(6;) values. The parametric error asso-
ciated with the reference model, hereafter named p(6p), is
considered a threshold to define the near-optimal candidates.
For a given climatic field j, we consider the subset of m em-
ulated cases where the model error is predicted to be lower
than the reference model error.

Pem.j @) < pj(60) (15)

For operational use, ESM developers generally attempt to
minimize a multi-variate metric (Schmidt et al., 2017; Hour-
din et al., 2017), considering 7 ; different climatic fields. In
this case, all the individual errors ¢;(6;) and p;(6;) need to
be aggregated in a single score. The simplest way to obtain
such multi-variate skill score is to normalize each univariate
parametric error p;(6;) relative to the reference model error,
such as

1 _n ;i Pem, ()

pem,tot(éi )=—2X

. . 16
nj I=t pi6o) (16)

In this case, the condition for the near-optimal sub-set is

Pem.tot(6i) < 1. (17)
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The selection of candidate calibrations is detailed in
Sect. 2.6, and the results for the application to surface tem-
perature are shown in Sect. 3 and for the multi-variate appli-
cation in Sect. 4.

2.6 Selection of diverse candidate calibrations

Given the subsets of plausible model configuration 6, we
aim to identify k£ solutions which explore different trade-
offs. This is obtained through a k-median clustering analysis.
Clustering is a data-mining technique that divides a dataset
into different categories based on the similarity between data.
The k-median analysis is a centroid-based algorithm which
divides the data into k categories in order to maximize the
similarity of data within the same cluster (Hastie et al., 2009;
Pedregosa et al., 2011). Here, the index to measure the simi-
larity between the data is the Euclidean distance.

As a first step, we apply the k-median clustering to the
surface temperature principal components of the plausible
model configuration sub-set étas and the coefficients ctas(é).
The medians of the samples in each cluster are called the
centroids. The centroids are points from the original dataset;
therefore, we know their associated vector of parameters 6
and can use them to sample the sub-set of diverse and plau-
sible configurations. These calibration candidates are tested
in the climate model, and the results are presented in Sect. 3.
In a multi-variate context, the candidates should reflect the
model error diversity among both the different climatic fields
Jj and the different EOF modes of each field. We apply the k-
median clustering analysis to the data coefficients ¢ j(éwt),
normalized by the reference model coefficients ¢ (6p), for n
climatic fields. As for the univariate application, the k cen-
troids will be retained as candidates to represent the diversity
of the error patterns in the plausible subset of configurations.
In Sect. 4, we propose an application considering five cli-
matic variables (n; = 5; Table 1).

The k-median analysis is sensitive to the choice of clus-
ter numbers k, which depends on the dataset being classified.
The inertia can help to estimate how well a dataset was clus-
tered by k medians. It is defined as the sum of the squared
distances between each data point and the centroid within a
same cluster. The elbow method consists of finding the in-
flection point in the k-means performance curve, where the
decrease in inertia begins, to find the good trade-off; a good
model is one with low inertia and a low number of clusters k
(Cui, 2020). Another criterion we can look at is the Dunn in-
dex, i.e., the ratio between the minimal inter-cluster distances
and the maximal intra-cluster distances. A higher Dunn index
represents a higher distance between the centroids (clusters
are far away from each other) and a lower distance between
the data points and the centroid of the same cluster (clus-
ters are compact). For both cases, we tested the sensitivity
of the analysis to the number of clusters. Following the el-
bow method that applied the inertia and the maximization of
Dunn’s index, we have decided to keep k = 12 clusters for
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both applications. More details about the sensitivity of the
analysis to the cluster number and the choice of k are given
in Appendix B.

3 First application: surface temperature error

We consider an example problem where the objective is to
propose diverse candidates minimizing the mean-squared er-
ror in a single climatic field, i.e., the surface air tempera-
ture, when compared with observational estimates. Here we
use the BEST dataset (Rohde and Hausfather, 2020) over the
simulated period (1979-1981). Observations have been in-
terpolated onto the model grid for a better comparison.

In this example, the first key question will be to select the
truncation length of the basis I'y. Salter et al. (2019) define
two main requirements for an optimal basis selection: being
able to represent the observations z; within the chosen basis
(a feature not guaranteed by the EOF analysis of the PPEs)
and being able to retain enough signal in the chosen subspace
to enable accurate emulators to be built for the basis coeffi-
cients. Our objectives here are a bit different, as we want to
conserve our ability to identify the trade-offs made by candi-
dates’ calibrations in the non-parametric components of the
model performance. We argue that the original basis I'; is
representative of the spatial degrees of freedom achievable
through perturbations of the chosen parameters. As such, the
degree to which the observational bias projects onto it is
meaningful and can be used as a tool to identify components
of model error which are orthogonal to parameter response
patterns (and therefore not reducible through parameter tun-
ing).

Furthermore, we want, as in Salter et al. (2019), to be able
to build accurate emulators for the basis coefficients. In this
sense, the basis should not include variability modes poorly
represented by the emulator. Section 3.2 and 3.3 discuss the
choice of ¢, the truncation length.

3.1 Assessing meaningful number of degrees of
freedom

We first consider how modes of intra-ensemble variabil-
ity relate to the representation of the model-integrated
mean square error in surface temperature e,s(6;). Following
Sect. 2.2, by projecting the spatial anomalies of models and
observations onto the basis defined by the truncated EOF set,
the mean-squared error can be partitioned into a parametric
component (the projection pi,5(6;)) and non-parametric com-
ponent (the residual u,). Figure 1 considers examples of the
full model errors associated with the PPE simulations and its
decomposition for different numbers of EOF modes retained,
with ¢ = 102 being the perfect reconstruction of the full error
etas(0;).

While retaining a relatively small number of modes (g =
5), the correlation between the full model error and its para-
metric component is already really strong among the PPE

Earth Syst. Dynam., 15, 987-1014, 2024




992 S. Peatier et al.: Exploration of diverse solutions for the calibration of imperfect climate models
(@) Surface temperature (K) (b) Surface temperature (K)
,[r=0.992
r—0.999 6 o Full error e¢ss(6)) .
Param. error p¢s(6i) (g =5) .
6 Param. error ps(6;) (g =20)
. 5 Param. error p.s(6;) (g =50) f
I Param. error pe.s(6i) (g =102) ‘J
5 g Non-param. error Us (g = 102) ’i
- :’ . Additional non-param. error us for g =50 ,'.
9: < e - Additional non-param. error ue,s for g =20 !
o " . =
Q'JLG 4 ol 1’ - Additional non-param. error uss forqg =5
. P 3 it
e s o3
o « e’ €
= 3 . ."-‘:"’ [
S a0 o 2
- 34 5,
S g
23 / . c
o o 5 EOF modes retained (q =5) -
1 20 EOF modes retained (g = 20) 1
50 EOF modes retained (q = 50)
102 EOF modes retained (g = 102)
0
0

0 1 2 3 4 5 6 7
Parametric component of the error ptas(6;)

40 60 80
PPE members f(6;) - ranked from best to worst

100

Figure 1. Full model error egys and its parametric component pias(6;) for different truncation lengths, namely ¢ = 5 (red dots), ¢ = 20 (blue
dots), g = 50 (pink dots), and g = 102 (orange dots). (a) Correlation between the full error egys and its parametric component pias(6; ) within
the PPEs. (b) Full error partitioning in parametric and non-parametric components in the PPE members f(6;) ranked from lowest to highest

€1ror.

members, with a Pearson correlation coefficient of » = 0.982
(Fig. 1a). This correlation does not improve a lot when con-
sidering higher modes, namely r = 0.998 for g =20, and
r =0.999 for ¢ =50. This implies that only a relatively
small number of modes is required to reproduce the ensemble
variance in ey,s(0;). The variance in the ensemble spatial er-
ror pattern could be described by a small number of degrees
of freedom.

However, even for the perfect reconstruction of the model
error (when g = 102), a non-null, non-parametric component
exists, and its ratio corresponds to 26 % of the full model er-
rors averaged over the PPE members, according to Fig. 1.
This ratio increases when retaining fewer EOF modes, and
a large fraction of the model error pattern is not represented
within the parametric component. For example, for a trun-
cation of g = 5, the non-parametric component of the error
Utas 18 53 % of the total eg5(0;) (on average over the PPEs).
Together, this implies that the variance in the model error
seen in the PPEs can be explained by a small number of
modes, but a significant fraction of this error is not repre-
sented within the parametric component of the error decom-
position.

3.2 Truncation and parametric emulation

In Sect. 3.1, we demonstrated that the majority of the vari-
ance in model MSE can be described as a function of a
small number of spatial modes. In an operational model-
tuning exercise, we want to make sure that we explain most
of the ensemble variance within the truncated EOF basis,
so we decided to use a subjective minimum of 85 % of the
explained variance when deciding on the truncation length.
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Now, how does this relate to parametric dependency? We fol-
low Sect. 2.5 to build a linear emulator relating the model
parameters 6 to the PC coefficients cg(6). Out of a total of
102 simulations, 92 are randomly selected to form the train-
ing set. This training set is used to compute the EOF analysis
and to derive the least square regression coefficients of the
emulator. The out-of-sample emulator performance is then
assessed on the remaining 10 simulations, after projection
onto the EOF basis. This process is repeated 10 times, with
random samples of F used as training sets, to assess the pre-
dictive performance of the regression model (i.e., the cor-
relation between out-of-sample predicted cem, tas(6) and true
Ctas(9)).

Figure 2a shows both in-sample and out-of-sample skill
scores in terms of the mean and standard deviation across
the 10 repetitions. The average of out-of-sample performance
cumulative on modes is also represented by the red curve
(e.g., when g =5, the red curve is the average of the orange
curve over modes 1 to 5). We find that the out-of-sample em-
ulation skill declines rapidly when the number of modes in-
creases. This result challenges the utility of including high-
order modes in the high-order modes in the spatial emula-
tor of the parametric response (as in Salter et al., 2019), in-
dicating that high-order spatial modes may be too noisy to
represent any parametric signal in the ensemble and emu-
lator design considered here. Here we consider an example
of truncation at ¢ = 18 that will be used in the rest of the
study. It corresponds to the point when the average of out-
of-sample performance cumulative on modes reaches the ar-
bitrary threshold of 0.5 and explains 94 % of the ensemble
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variance (respective to our condition of at least 85 % of ex-
plained variance).

Figure 2b shows the ratios between the PPE parametric
(dark blue), non-parametric errors (light blue), and the total
error (green) as a function of the number of EOF modes re-
tained. We see that for an EOF basis retaining one to five
modes, each component represents around 50 % of the total
error on average. For the truncation of ¢ = 18, the paramet-
ric error represents 63 % of the full error on average, and
the non-parametric error represents 37 %. This ratio evolves
slowly when adding higher modes and, for a perfect recon-
struction (g = 102), ’;(g )) =74% and ;g5 =26 %. But we
also note that the large varlablhty in ptaS(G ) across the PPE
(represented by the standard deviation) is constant, irrespec-
tive of the number of EOF modes retained, highlighting the
strong dependency of this error component on the parame-
ter values. On the other hand, the variability in the residual
error y within the PPE decreases when retaining more EOF
modes and is already very small for our truncation example
of ¢ = 18.

In the context of the Global Monsoons Model Inter-
comparison Project (GMMIP; Zhou et al., 2016), an ensem-
ble of 10 atmospheric-only simulations of the CNRM-CM6-
1 was run. In this ensemble, the reference model calibration
was used, the sea surface temperature (SST) was forced with
the same observations as the PPEs, and the members differ
by their initial conditions only. This dataset can be used to
consider the effect of internal variability on the error decom-
position and will be referred to as the GMMIP dataset. The
GMMIP dataset can be projected into the PPE-derived EOF
basis to compute their associated parametric errors (yellow
in Fig. 2b). The variability in the parametric component of
the error across the GMMIP dataset is very small and does
not depend on the truncation length. The fact that, for g = 18
or higher, the variability in u is even smaller than the inter-
nal variability in the parametric component confirms that this
part of the error is not dependent on the parametric values
anymore.

Another point to note from Fig. 2b is that the reference
calibration of the model performs well and shows a near-
minimal value of the parametric error in the ensemble. Fol-
lowing Eq. (14), we use a multi-linear regression that emu-
lates the parametric component of the model error from the
calibration values. This emulator is then used to find an ex-
ample of near-optimal calibration 6 that minimizes the para-
metric component of the error. The optimization is done for
all the different truncation lengths. As shown in Fig. 2a, the
parametric component of the near-optimal calibration is a bit
lower than the parametric error of the reference calibration
when retaining five or more modes and starts evolving par-
allel to the PPE mean when retaining seven or more modes.
The difference between the PPE mean and this example of
optimal calibration becomes constant when ¢ =7 or more,
suggesting that there are no improvements in the optimiza-
tion when adding modes higher than seven.
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These results suggest that the EOF basis I'; truncated at
a relatively small number g = 18 is a good representation of
the parametric component of the model error pattern. There-
fore, the truncation can be used to identify the residual u that
does not depend on the perturbed parametric values. Adding
further modes has limited impact on the representation of the
ensemble variation in the integrated error and does not im-
prove the ability to find near-optimal candidates because of
the poor skill of the higher-mode regression prediction. In the
following, we will only use a truncation at rank ¢ = 18.

3.3 Trade-offs in model candidates

Following the methodology discussed in Sect. 2.6, all emu-
lated members with a parametric error lower than the refer-
ence are selected from a 100000 LHS set of emulations and
considered a sub-set of near-optimal calibrations. From this
sub-set, 12 candidates have been identified in order to max-
imize the diversity of model errors. The calibrated set of 12
parameters was then used in the ARPEGE-Climate model to
produce actual atmospheric simulations. Of the calibrations,
1 leads to a crash in the model, and 11 others produced the
complete atmospheric simulations. The annual mean surface
temperature of these 11 candidates was projected onto the
EOF basis computed from the 102 members of the PPEs to
obtain the principal components. Figure 3 presents the repre-
sentation of the first five EOF modes by the principal compo-
nents of the projected model candidates; the closer the candi-
dates are to the observation in the different modes, the lower
their parametric error.

Figure 3 provides some confidence in both the emulation
skill and the method used for the selection of near-optimal
and diverse candidates. Although some differences exist be-
tween the emulations of the candidates and their actual at-
mospheric simulations, all of them show principal compo-
nents within the near-optimal sub-set of calibrations for the
five first EOF modes, thus respecting the condition for near-
optimal calibration. Moreover, the candidates seem to ex-
plore a range of principal component values as wide as the
near-optimal sub-set of calibrations, meaning that we achieve
the diversity expected in terms of model errors. In the fifth
mode, the projected observations are outside of the emulated
ensemble, illustrating that all ensemble members have a non-
zero error for this mode, highlighting the existence of a struc-
tural bias preventing us from tuning the model to match ob-
servations on this axis.

Figure 3 also illustrates the constraints due to the optimiza-
tion of the principal components on the near-optimal sub-set
of calibrations. Indeed, the principal components associated
with the first EOF mode of the near-optimal sub-set of cali-
brations (in dark gray in Fig. 3) span a very reduced range of
values compared to the full, emulated ensemble. This result
highlights a strong constraint on the first mode of the EOF
that is stronger than on the other modes. In other words, the
candidates must have a representation of the first EOF mode
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Figure 2. Truncation choice based on parametric emulation and error decomposition. (a) The correlation between the emulated and true
principal components (PCs) of the surface temperature EOF for the different modes of variability. The correlation is shown within the
training set (blue curve) and the test set (orange curve). The red curve and red shading show the mean correlation averaged over the modes
cumulatively. The solid green curve represents the percentage of variance explained when retaining up to ¢ modes of the EOF. The dashed
horizontal green line shows a threshold of 85 % of explained variance, and the solid vertical green line is the truncation length needed to
satisfy this threshold. (b) The ratio of the error components compared to the full error eta5(6;) (in green) as a function of the number of modes
of variability retained. The lines are the ensemble means, and the shadings represent the standard deviations. The plot shows the ratios of the
PPE parametric error (dark blue), the PPE non-parametric error (light blue), the reference calibration parametric error peas(6g) (dotted red
curve), and the GMMIP parametric error (orange). An example of truncation at ¢ = 18 is represented in both plots by the vertical black line.

close to the projected observations in order to achieve a para-
metric error below the reference. This is an expected result,
as we know that the first mode explains most of the PPE vari-
ance and that the amount of variance explained by each mode
individually decreases in higher modes.

Finally, Fig. 3 illustrates that it is impossible for the model
candidates to perform equally well on all modes and fit obser-
vations perfectly. Trade-offs exist — even in this space where
the variability is driven by the calibration.

Candidate 5, for example, represents modes 1 and 3 very
well, with the values of the principal components almost
equal to those obtained by projecting the observation on the
EOF basis, but is further from the observations in modes 2,
4, and 5. In the same way, candidate 10 performs well for
modes 1, 2, and 5 (being the candidate closest to the obser-
vation in mode 5, with the observation being outside of the
emulated ensemble) but not for modes 3 and 4. Candidate 3
is the best candidate as it is close to the observations for all
modes (1 to 4).

All of the 11 candidates have comparable values of their
integrated temperature errors (and all are lower than the ref-
erence values p(6y) and e(6p)), and Fig. 3 is a good represen-
tation of the trade-offs they have to make in order to mini-
mize this metric. This is a good illustration of the main issue
of model tuning; the existence of structural error, which is
illustrated here by mode 5, makes a perfect fitting to the ob-
servation impossible, and candidates are making trade-offs
to achieve the metric minimization. This is well known when
considering a classic model-tuning approach in which mul-
tiple climatic variables are considered, and the near-optimal
calibrations are better at representing certain fields at the ex-
pense of others in order to minimize a multi-variate metric.
Figure 3 illustrates the problem at the scale of a single field
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(surface temperature, in this case), highlighting the existence
of trade-offs within the near-optimal representation of this
field; the temperature will be equally well represented in all
the candidates when considering an integrated score (like an
MSE), but their spatial error patterns will differ.

3.4 Examples of temperature discrepancy term
decomposition

Considering, as described in Sect. 2.4, that the error associ-
ated with a near-optimal model is an approximation of the
discrepancy term magnitude, the candidates selected here il-
lustrate that near-optimal solutions can be obtained with a di-
versity of spatial trade-offs that can be made for a minimiza-
tion problem, even for a single variable output. Moreover,
the discrepancy terms can be decomposed in parametric and
non-parametric components, as seen in Sect. 2.4. Given the
results of Sect. 3.3, there is a good practical case for choos-
ing a low-dimensional basis for calibration — with evidence
that it is sufficient to describe the majority of the ensemble
error variability and that higher modes are not predictable
from parameters. The truncation chosen here is ¢ = 18, and
Fig. 4 presents the decomposition of the near-optimal candi-
dates errors based on this EOF basis I'y—1s.

For practical reasons, only 4 of the 11 candidates are pre-
sented in Fig. 4; the rest of the candidates can be seen in Ap-
pendix D (Fig. D1). All of the candidates show full tempera-
ture MSEs e(él-) between 1.62 and 1.99 K, which is below the
MSE of the reference of ¢(6p) = 2.01 K. Candidate 7 is the
least good, with e(67) = 1.99 K and p(67) = 0.98 K, and can-
didate 3 is the best-performing model, with e(é3) =1.62K
and p(63) = 0.62 K. The quality of the statistical emulations
of the parametric component varies, depending on the can-
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Figure 3. Correlation between the different standardized PC (obtained from the 102-member PPE EOF) for the 100 000 emulated simulations
(light gray), the near-optimal emulated members (dark grey; parametric error lower than the reference CNRM-CM6-1 in dark grey), the 11
emulated candidates (colored dots), and the 11 actual CNRM-CM simulations (colored disks). The reference simulation (star) and the

observation (cross) are also shown.

didate, and the biases over Antarctica are poorly captured
by the emulations. We note that the emulation of candidate
3 shows a rather different parametric error than the actual
pattern, with an opposite sign of the biases over Antarctica,
Australia, India, and Argentina, as well as a strong underes-
timate of the positive bias over central Africa. For candidate
10, the statistical emulation of the parametric error’s spatial
pattern is really close to the truth. We discuss the uneven per-
formance of the statistical predictions in Appendix C and ar-
gue that the emulator skill is mostly limited by the size of the
training set.

As stated before, near-optimal candidate errors are our
best estimate of the discrepancy term diversity. The full er-
rors shown in Fig. 4 display features common to the four
candidates and the reference, namely negative biases over
the mountain regions (Himalaya, Andes, and North Ameri-
can mountains) and a positive bias over central Africa. How-
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ever, the magnitude and position of these biases vary from
one model to another, with a particularly strong negative bias
over North America in candidate 1 and a strong positive bias
over central Africa in candidate 3, for example. This diver-
sity is highlighted when looking at the parametric compo-
nents of the candidate errors, showing a variety of error signs
and patterns over the poles (especially Antarctica), the south
of Europe, India, North Africa, and Canada.

The non-parametric components of the errors are smaller
and qualitatively similar among the candidates, confirming
that they are not strongly controlled by the parameter val-
ues. In other words (as expected by the method), the first few
modes of the EOF analysis are enough to represent the di-
versity of the model error spatial trade-offs among a sub-set
of near-optimal candidates. Moreover, the method allows us
to visualize and compare these trade-offs through the spatial
representation of the parametric component (Fig. 4).

Earth Syst. Dynam., 15, 987-1014, 2024
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Figure 4. Differences between the simulations of temperature and the observations in BEST (Rohde and Hausfather, 2020) for the four
model candidates and the reference. Shown is the decomposition of model errors into parametric and non-parametric components, using the
methodology described in Sect. 2, with an EOF basis truncated after mode 18. The left column shows the full differences between simulations
and observations, the second column shows the parametric component of this difference, the third column presents the emulation by the linear
regression of this parametric component, and the last column is the non-parametric component estimated as the difference between the full

error and its parametric component.

4 Second application: multi-variate error

4.1 Variables, EOF analysis, and truncations

The univariate analysis conducted in Sect. 3 illustrates quali-
tatively the potential for trade-offs and multiple near-optimal
solutions of the climate model optimization problem. In this
section, we considered a single univariate metric, allowing us
to select 12 near-optimal candidates maximizing the diversity
of spatial error patterns and trade-offs among the different
EOF modes.

Earth Syst. Dynam., 15, 987-1014, 2024

In an operational GCM-tuning application, the metric con-
sidered must encompass multiple climate fields, and the op-
timization results in trade-offs between different univariate
metrics, with near-optimal models better representing some
fields at the expense of others. The general solution to the
model calibration for operational use requires the considera-
tion of a wide range of climatological fields spanning model
components, including mean state climatologies, assessment
of climate variability, and historical climate change. This is
inherently more qualitative — requiring subjective decisions
on variable choices and weighting, which are beyond the
scope of this study. However, we can consider an illustration
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Table 1. Table of observable variables used in this study, plus citations for the data products used. Note that TOA stands for top of atmosphere.

Observable variables  Symbol  Units Data product reference Years

Surface temperature  tas K Rohde and Hausfather (2020) 1979-1981
Precipitation pr mmd~!  Huffman et al. (2009) 1979-1981
Sea level pressure psl Pa Saha et al. (2010) 1979-1981
SW flux, TOA Sw Wm~2  Loeb et al. (2018) 2000-2002
LW flux, TOA LW Wm~2  Loeb et al. (2018) 2000-2002

of a multi-variate application, based on five climatic fields:
the surface temperature (tas), the precipitation (pr), the short-
wave (SW) and longwave fluxes (LW) at the top of the atmo-
sphere, and the surface pressure (psl). The model errors will
be defined as the MSE between the model simulations and
the observational dataset lists in Table 1. As for the univari-
ate application, EOF analysis of the PPE variance is com-
puted for the annual means of the different climatic fields,
and the EOF truncation choices depends on the parametric
emulation skill and the error decomposition.

Figure 5 presents the performances of multi-linear regres-
sions in the prediction of the principal components for the
five fields, and we note a strong decrease in the out-of-sample
prediction skills as we move toward higher EOF modes for
all climatic fields. Based on this result, it is clear that, as for
the univariate application, the optimization should only re-
tain the first few modes. The truncation lengths should be
different from one climatic field to another as the linear re-
gressions perform the best for the SW fluxes but have a rather
poor out-of-sample skill in terms of sea level pressure, for
example. Examples of EOF truncations are given in Fig. 5,
based on an arbitrary threshold of 0.5 for the averaged corre-
lation coefficient of predicted and true out-of-sample princi-
pal components. We also ensured that the truncated basis ex-
plained at least 85 % of the ensemble variance. These exam-
ples suggest that it is possible to retain up to 28 EOF modes
for the top-of-atmosphere (TOA) SW flux univariate metric,
whereas no mode higher than 8 should be considered for the
sea level pressure in order to keep satisfying statistical pre-
dictions. Moreover, some variables require more EOF modes
than others in order to explain most of the ensemble variance.
For precipitation, we need to keep 18 EOF modes in order
to explain 85 % of variance, whereas for sea level pressure,
the first 8 EOF modes explain 92 % of the variance. How-
ever, for every climatic field considered, the variance in the
model errors within the PPE is already very-well represented
by the first five EOF modes, as suggested by the correlations
between reconstructed and full errors (Fig. 6). Considering
these truncation lengths, the PPE mean parametric compo-
nent represents 80 % of the full PPE mean error for the TOA
SW fluxes but only 66 % for the sea level pressure.

The error reconstructions presented in Fig. 6 are the
sums of the parametric components of the errors p;(6;) and
the PPE mean non-parametric components # j mean. As €x-
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pected, the PPE mean non-parametric components decrease
as higher EOF modes are retained for the reconstruction but
are never equal to zero (even for a full reconstruction of
g = 102). This is due to the fact that observations can never
be fully captured by their projections into the model EOF ba-
sis (Fig. 6). As presented before, the parametric component
p(6;) can be emulated with multi-linear regressions, and the
PPE mean non-parametric component u j mean Can be used
as an approximation to reconstruct the full error e (6;). This
method succeeds in producing high correlations between the
reconstructions and the actual full model errors among the
PPE, with an offset due to the non-parametric component
variability across the PPE, which decreases when retaining
more EOF modes. Even though higher EOF modes are not
well predicted by the emulators (Fig. 5), they also explain
small fractions of the model error variances. As a result, the
performances of the emulators when predicting model errors
are much more sensitive to the climatic field considered than
to the number of EOF modes retained.

On the other hand, the reference calibration CNRM-CM6-
1 remains one of the best models of the PPE for most of
the climatic fields and can be considered near-optimal in the
ensemble. Therefore, its model bias can be seen as a rep-
resentative of the CNRM-CM discrepancy term. Indeed, the
reference CNRM-CMB6-1 is the best model for surface pres-
sure and one of the best for precipitation and TOA fluxes,
but several PPE members outperform it for surface tempera-
ture. This is a simple illustration of a complex tuning prob-
lem and based on the results we obtained in the univariate ap-
plication. It seems likely that comparably performing param-
eter configurations potentially exist for a multi-variate tuning
problem, making different model trade-offs among both cli-
matic fields and EOF modes representative of univariate er-
rors (Fig. 3). In the next section, we will attempt to identify
some of them in order to illustrate the different choices that
could be made when tuning a climate model.

4.2 Candidate selection in a multi-variate context

The results in terms of integrated multi-variate skill scores
ewt(0;) are presented in Fig. 7. Among the 12 selected can-
didates, 2 lead to an incomplete simulation and will not be
presented here. None of the 10 remaining candidates (light
blue dots) shows a multi-variate skill score lower than the
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Figure 5. Truncation choice based on parametric emulation and error decomposition for five climatic fields: surface temperature, precipi-
tation, TOA SW fluxes, TOA LW fluxes, and surface pressure. The same legend is used as in Fig. 2, and the observations used are listed in

Table 1.

CNRM-CM6-1 reference model (dashed orange line). How-
ever, all of them have a lower error than the PPE mean (red
disk) and three of them are in the low tail of the PPE dis-
tribution (below the dashed red line). Moreover, most of the
CMIP6 models have undergone a tuning process and are con-
sidered to represent the control climate satisfactorily. We can

Earth Syst. Dynam., 15, 987-1014, 2024

therefore use the CMIP6 ensemble as an indicator of the tol-
erance that can be given to this multi-variate error. Here we
considered the outputs of 40 CMIP6 models that have been
interpolated onto the CNRM-CM grid before computing the
error. It appears that 9 CNRM-CM candidates selected here
have a lower error than the mean of the 40 CMIP6 mod-
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Figure 6. Correlations between full errors (coordinate) and EOF-based reconstructions of these errors (abscissa), using different truncation
examples, when retaining 5 (left column), 10 (center column), and 102 EOF modes (right column). Results are presented for the CNRM
PPE (black dots) and for statistical predictions of the PPE using linear regressions trained on 80 % of the data (green dots) and tested on the
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pj(9;) and the PPE mean non-parametric component u j mean (blue line). The variability in u ; among the PPE is represented by the standard
deviation o and the range +10 (light blue shading).

els (green disk). These nine CNRM-CM candidates are part
of the interval of plus or minus 1 standard deviation of the
CMIP6 error centered around the error in the CNRM-CM6-
1 reference model (orange area), indicating that they can be
considered “as good as” the CNRM-CM6-1 reference model

https://doi.org/10.
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given the tolerance considered here. The 10th candidate is
above this interval but is still very close to the CMIP6 ensem-
ble mean and better performing than several CMIP6 models.

Figure 7 is also presenting the multi-variate error among
the 10 simulations from the GMMIP dataset. The 10 per-
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Figure 7. Multi-variate error ey for the CMIP6 models, the
CNRM-CM PPE members, the selection of 10 CNRM-CM can-
didates and the GMMIP dataset. Each small dot corresponds to a
model, the bigger dots correspond to the ensemble means, and the
dashes are the standard deviations. The dashed orange line at 1.0
represents the CNRM-CM6-1 reference model error. The orange
area indicates the interval of plus or minus 1 standard deviation
of the CMIP6 errors centered around the CNRM-CM6-1 reference
model error.

turbed parameter candidates are much more diverse in terms
of integrated model error that the 10 perturbed initial condi-
tions members. When considering a multi-variate score, it is
clear that the effect of internal variability is very small com-
pared to the effect of varying the model parameters.

4.3 Diversity of error patterns among candidates

As described in Fig. 7, the 10 CNRM-CM candidates present
a satisfactory multi-variate error compared to the CMIP6
ensemble, with 9 of them performing comparably to the
CNRM-CM6-1 reference model, while showing a significant
diversity compared to the CNRM-CM GMMIP ensemble.
We are now interested to see how this diversity translates
in terms of the spatial patterns of the univariate errors and
trade-offs among the variables.

Here again, for practical reasons, a sub-set of four candi-
dates is presented in Fig. 8, and the rest of the candidates
can be seen in Appendix E. Within the four candidates pre-
sented in Fig. 8, we have selected the best-performing model
(candidate 5) and the worst-performing model (candidate 1).
All the candidates have features common to the CNRM ref-
erence model (Roehrig et al., 2020), namely an overestimate
of the tropical precipitation and large SW fluxes biases over
the mid-latitude eastern border of the Atlantic and Pacific
oceans. However, they all have a better representation of
surface temperature than the reference model. None of the
candidates shows a better representation of precipitation, sea
level pressure, or LW outgoing fluxes than the reference, and
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candidates 1, 2, 5, and 9 provide a better representation of
the SW outgoing fluxes.

Moreover, some differences exist between the spatial pat-
terns of the candidate errors. Candidate 10 is the model con-
figuration with the lowest MSE of precipitation (epr(élo) =
2.18 mmd!; still higher than the reference) but is also show-
ing important tropical biases in the radiative fluxes (positive
in SW and negative in LW) in the same regions where the
model overestimates the tropical precipitation, suggesting a
biased representation of tropical clouds. Candidate 5, on the
other hand, has a better representation of the radiative fluxes
in these regions, with a better representation of SW fluxes
than the reference and the best representation of LW among
the candidates, suggesting a better representation of tropical
clouds. However, candidate 5 is presenting the same biases in
precipitation as candidate 10 but with an even higher MSE.

Candidate 1 in the worst-performing model of the whole
selection, with a total MSE of etot(él) = 1.56. This is mostly
due to important biases in precipitation, sea level pressure,
and LW flux representations. Candidate 1 presents strong
positive tropical biases in LW fluxes over the northern part
of South America, central Africa, and Indonesia. These ar-
eas corresponds to dry biases in the map of precipitation.
Over the tropical oceans, it is one of the candidates that is
not showing the negative LW and positive SW tropical bi-
ases; other examples can be found in candidates 3, 8, and
9 (Fig. E1). These candidates all have positive LW biases
over the tropical continents and fewer biases over the tropi-
cal oceans. Interestingly, this is one of the candidates with the
best representation of SW fluxes with candidate 9 (Fig. E1),
which has a lower MSE. The SW flux biases over the mid-
latitude eastern border of the Atlantic and Pacific oceans
seem to be reduced in these two candidates compared to the
other models and the reference.

Candidate 5 is the best-performing candidate in terms of
multi-variate score and shows errors lower than the CNRM
reference model for surface temperature and SW fluxes
(Fig. 8). Candidate 5 shows a LW error map similar to can-
didates 6 and 10 but with a reduction in the bias amplitudes.
We can assume that the model is better representing tropical
clouds, but this does not translate to the best representation
of tropical precipitation within the selection.

4.4 Examples of discrepancy term decomposition

Following the method described in Sect. 2.4, the full error
patterns presented in Fig. 8 can be decomposed into a para-
metric components (Fig. 9) and non-parametric components
(Fig. 10). The EOF truncation lengths used for this decom-
position are based on the examples given in Fig. 5, with 18
modes for tas and pr, 8 modes for psl, 28 for SW, and 22 for
Lw.

As expected, the candidates’ parametric component error
patterns resemble the full error patterns — with as much diver-
sity in between the candidates (Fig. 9). The non-parametric
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Figure 8. Differences between the simulations and the observations (Table 1) for the four model candidates and the five variables considered
(surface temperature, precipitation, sea level pressure, short- and longwaves, and top-of-atmosphere fluxes). Each column represents a model
candidate, and each row corresponds to a variable. The green dots highlight the cases for which the RMSE is lower than the CNRM reference

model.

components, on the other hand, are more patchy, are smaller
in terms of amplitude, and are common to all the candidates
(Fig. 10). This validates the method; we were able to select
a set of candidates with diverse error patterns and to isolate
the error component that is unaffected by parameter variation
from the component that varies during model tuning.

A notable feature of these candidate error decompositions
is the SW error patterns. The non-parametric component of
the SW error appears very patchy but contains a small part
of the negative biases over the oceanic mid-latitude eastern
border that we described in the full error patterns that are
directly at the continental border (Fig. 10). The main part
of these biases is presented in the parametric component of
the error (Fig. 9). This result suggests that such biases could
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be enhanced or reduced by varying the model parameters,
but part of them is non-parametric and directly linked to the
physics of the model.

In conclusion, when considering error patterns and multi-
variate illustrations, the effective degrees of freedom in the
model performance optimization might be smaller than ex-
pected. Our method allowed for an empirical exploration of
the key trade-offs that could be made during the tuning, pro-
viding interesting information about model non-parametric
biases and examples of alternative model configurations.

Earth Syst. Dynam., 15, 987-1014, 2024
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Figure 9. Parametric component of the differences between the simulations and the observations (Table 1) for the four model candidates
and the five variables considered. Each column represents a model candidate, and each row corresponds to a variable. The decomposition of
model errors in parametric and non-parametric components is based on the methodology described in Sect. 2.4, with the EOF bases truncated
following the examples given in Fig. 5: 18 modes for tas and pr, 8 modes for psl, 28 modes for SW, and 22 modes for LW.

5 Conclusions

This study presented a new framework, based on a PPE of
a CMIP6 general circulation model, allowing for the em-
pirical selection of diverse near-optimal candidate calibra-
tions. Using the best input assumption (Rougier, 2007), we
assume that these candidates sample the distribution of at-
mospheric model discrepancy term. These discrepancy term
can be decomposed into parametric and non-parametric com-
ponents using a PPE-derived EOF basis. The candidates are
selected from a PPE of the CNRM-CM atmospheric model.
The optimization is based on multi-linear predictions of the
parametric components of the model errors from a 100000
LHS of the perturbed parameters. The candidates are con-

Earth Syst. Dynam., 15, 987-1014, 2024

sidered near-optimal when their emulated parametric com-
ponents are lower than the reference parametric component
and are selected to exhibit pattern errors as diverse as possi-
ble within this near-optimal sub-space using a k-median clus-
tering algorithm. As such, the sub-set of candidates offers a
diversity of model errors that sample the CNRM-CM model
discrepancy term distribution while exploring different trade-
offs.

The decomposition of the discrepancy terms depends on
the truncation choice; the non-parametric component in-
creases when retaining more EOF modes, which comes at
the expense of the parametric component. However, we ar-
gue that there are no particular benefits from retaining high-
order EOF modes for two reasons. First, the performance of
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Figure 10. Non-parametric component of the differences between the simulations and the observations (Table 1) for the four model candi-
dates and the five variables considered. These components are the differences between Figs. 8 and 9.

the predictions quickly decreases for the high-ranking EOF
modes, which suggests that these modes are not very pre-
dictable from the parameter values. Then, there is the fact
that the first few modes are sufficient to reconstruct the PPE
variance of the model errors for the five climatic fields con-
sidered here and that high modes explain a very small frac-
tion of the PPE variance. Therefore, retaining more EOF
modes will increase the part of the model error represented
by the EOF basis, which is called the parametric component,
but will not improve the optimization.

In the first step, the method was validated for surface
temperature error, revealing a diversity of trade-offs among
different EOF modes when considering diverse but near-
optimal candidates. These trade-offs indicate the presence of
a parametric component in the discrepancy terms, which no
candidates could eliminate completely. The non-parametric
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component, on the other hand, is independent of parameter
choice and very similar from one candidate to another. These
model candidate errors are considered to represent empirical
examples of the model discrepancy term for temperature and
can offer insights for model developers. In the second step,
the framework was applied in a multi-variate context. Trade-
offs were observed in error patterns across climatic fields,
with different candidates excelling in various aspects. All of
the candidates were selected with an emulated parametric er-
ror lower than the reference but showed, in practice, higher
parametric errors. This result can be attributed to the limita-
tions of the emulators. However, as discussed in Appendix C,
our capacity to train emulators is fundamentally limited by
the sample size available, which is rather small in this study
(102 simulations). The use of a non-linear emulator, such as
a Gaussian process, often used in automatic tuning applica-
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tions (Williamson et al., 2013; Hourdin et al., 2023), could
help improve predictions, provided we can increase the size
of the PPE. In summary, nine candidates achieved integrated
multi-variate scores within CMIP6 ensemble standards, but
none of them performed better than the reference model.

We have demonstrated that this approach is practically
useful for the following different reasons:

1. The effective degrees of freedom in the model perfor-
mance’s response to parameter input are in fact rela-
tively small, allowing a convenient exploration of key
trade-offs.

2. Higher modes of variability should not be included be-
cause they cannot be reliably emulated, and they do not
contribute significantly to the component of model error
controlled by model parameters.

3. As such, the reference model version shows that the
lowest integrated performance metric and historical
common practices for parameter tuning could be more
robust than often assumed.

4. However, there remains the potential for comparably
performing parameter configurations by making differ-
ent model trade-offs.

Though we do not attempt it here, the discrepancy estimate
could be used in parallel with a history-matching approach,
such as Salter et al. (2019), or a Bayesian calibration (Annan
et al., 2005) to yield a formal probabilistic result. Enhancing
the PPE size would allow for better statistical predictions,
maybe through the use of Gaussian processes as statistical
models. We could also consider seasonal metrics instead of
the annual average, as suggested in Howland et al. (2022).
Another important caveat of this study is that we did not con-
sider the observational uncertainty. Indeed, additional analy-
ses suggest that our results are sensitive to the observational
dataset used. Therefore, defining a formal way to include the
observational uncertainty in our method for candidate selec-
tion would be a valuable improvement of the method. Finally,
performing sensitivity analysis could help us better under-
stand the effect of each parameter on the biases we observed,
potentially leading to a selection of a meaningful sub-set of
parameters for a new wave of simulation in an iterative pro-
cess.
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In summary, we argue that the model discrepancy term can
be represented as a sum of two parts — a component which
is insensitive to model parameter changes and a component
which represents parameter trade-offs, which manifest as an
inability to simultaneously reduce different components of
the model bias (e.g., in joint optimization of different regions
or fields). We further argue that a parameter calibration done
by hand could be more tractable than often assumed, and the
reference versions may often be the best model configuration
achievable in terms of integrated multi-variate metrics. This
is a feature we see evidenced here by the high performance
of the reference simulation (but also reported in similar past
PPE efforts) (Sanderson et al., 2008; Li et al., 2019). Finally,
we demonstrate a practical method for utilizing these con-
cepts for the identification of a set of comparably perform-
ing candidate models that can inform developers about the
diversity of possible trade-offs. The selection of diverse can-
didates can help better understand the limits of model tuning
to reduce model error, identify non-parametric biases that are
not visible when looking at the full model error, and help
choose the model configuration best suited to the research
interest. Moreover, the diversity of model errors can reflect
a diversity of future climate responses (Peatier et al., 2022;
Hourdin et al., 2023), and selecting diverse candidates will
help the quantification of uncertainty in climate change im-
pact studies.
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Appendix A: Perturbed parameter
Table A1. Description of the 30 perturbed parameters.
Name Minimum  Maximum Reference  Description Units
AKN 0.06 0.28 0.126  Strength of the turbulent mixing -
ALPHAT 0.5 3.0 1.13  Strength of the turbulent mixing for temperature (Prandtl number) -
ALD 0.5 3.0 1.18  Strength of the turbulent kinetic energy dissipation -
ALMAVE 0 30 10  Lower bound of the mixing length m
AGREF -0.5 —0.01 —0.36  Parameter in the boundary-layer-top entrainment parameterization ~ —
AGRE1 0 10 5.5 Parameter in the boundary-layer-top entrainment parameterization = —
AGRE2 0 10 0  Parameter in the boundary-layer-top entrainment parameterization ~ —
RAUTEFR 0.5x 1073 1x1072 1x 1073 Inverse timescale for liquid autoconversion 51
RQLCR 0.5x107* 1x1073 2% 107%  Critical liquid water content for liquid autoconversion kg kg_1
RAUTEFS 0.5x 1073 1x1072 5.2x 1073 Inverse timescale for ice autoconversion 51
RQICRMIN 0.1x1075  0.1x1077 0.1 x 107%  Critical ice content for ice autoconversion at low negative tempera- kg kg_1
tures
RQICRMAX 0.05x 1074 1x107% 0.21x10~* Critical ice content for ice autoconversion at high negative temper- kg kg_1
atures
TFVL 0.001 0.2 0.02  Falling speed of cloud water droplets ms~!
TFVI 0.001 0.2 0.04  Falling speed of cloud ice crystals ms~!
TFVR 0.1 6.0 3.0  Falling speed of rain ms~!
TFVS 0.1 6.0 0.6  Falling speed of snow ms™!
RKDN 3% 1073 7x1073 5% 1075  Minimum drag for the convective updraft vertical velocity Pa~!
RKDX 8x 107 6x107% 1x10~% Maximum drag for the convective updraft vertical velocity pa~!
TENTR 2% 1070 1x107 4% 107  Minimum turbulent entrainment in the convective updraft Pa~!
TENTRX 3% 1077 1x1074 6x 10~>  Maximum turbulent entrainment in the convective updraft pa—!
VVN —1 -5 —2  Critical convective updraft vertical velocity for maximum entrain- Pa s1
ment and drag
VVX -25 -50 —35  Critical convective updraft vertical velocity for minimum entrain- Pa s—1
ment and drag
ALFX 0.01 0.1 0.04 Maximum convective updraft area fraction -
FNEBC 0 20 10 Parameter for computing the convective cloud fraction -
RLWINHF_ICE 0.5 1.0 0.9 Ice cloud heterogeneity coefficient in the longwave spectrum -
RLWINHF_LIQ 0.5 1.0 0.9  Liquid cloud heterogeneity coefficient in the longwave spectrum -
RSWINHF_ICE 0.5 1.0 0.71  Ice cloud heterogeneity coefficient in the shortwave spectrum -
RSWINHF_LIQ 0.5 1.0 0.71  Liquid cloud heterogeneity coefficient in the shortwave spectrum -
RELFCAPE 0.2 10.0 2.0 Parameter used in the convection scheme convective available po- —

tential energy closure
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Appendix B: Clustering analysis and sensitivity to
the number of clusters

For both applications, the k-median analysis is repeated 10
times for different values of k, and the average of inertia and
Dunn indexes is presented in Fig. B1. The inertia sensitivity
test suggests that we could chose a value of k between 10
and 20 to be in the elbow of the curve for both applications.
Then, even though it is less obvious for the multi-variate ap-
plication, the results suggest that we should not take a value
of k that is too high, as the Dunn index tends to decrease.
Based on these two criteria, we have decides to keep 12 clus-
ters for the analysis, i.e., k = 12.
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Figure B1. Sensitivity test of the clustering analyses for the univariate (first row) and multi-variate (second row) applications. The inertia
criteria (a, b) and the Dunn indexes (b, d) are shown, depending on the number of clusters (x axes). The shaded green areas present the
acceptable number of clusters, following the elbow method applied to the inertia. The dashed green line shows the number of clusters

retained for our analyses, i.e., k = 12 in both applications.
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Appendix C: Evaluation of the statistical predictions

The emulators used in this study are multi-linear regressions
(MLRs) taking the model parameters as input and predicting
the principal components (PCs) used to reconstruct the 3D
variables and the parametric model errors when comparing
with observations. The ensemble size of the PPE is very lim-
ited (102 simulations), and our capacity to train emulators is
fundamentally limited by the sample size available. However,
in 10 random selections of out-of-sample test sets, we obtain
an average correlation of 0.7 between the predictions and the
true values of total error (Fig. Clc), with a RMSE between
predictions and true values representing 8 % of the total para-
metric error (Fig. C1f), which is sufficient to validate the use
of this model for our study.

Statistical model : RF

10

Statistical model : Lasso

1007

However, results suggest that there is room for improve-
ment, especially in the prediction of the LW errors, and that
another model could improve the predictions, as is the case
with the random forest model. The error bars associated with
the prediction of the total error suggest that the MLR perfor-
mance is sensitive to the test set selected and that the model
will perform unevenly across the parameter space. Thanks to
variable selection and regularization, the lasso model seems
a bit less sensitive to the test set selection for the prediction
of total error, but the prediction of LW error is still a limita-
tion. It seems that using a non-linear emulator could improve
certain aspects of the predictions, though enhancing the size
of the ensemble would be a necessary prerequisite to try to
improve our statistical predictions.

Statistical model : MLR
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emulated and true error p(6))
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Figure C1. Correlations and RMSE (in %; compared to the true values) between emulated and true parametric components of the errors
within a test set representing 10 % of the dataset. The evaluation is repeated 10 times with random sampling of training and test sets, and
the mean and standard deviation among these 10 evaluations are represented by the bars and the dashed lines, respectively. Performances are
shown for (a, d) a random forest, (b, e) a lasso regression, and (c, f) the multi-linear regression used in this analysis. The EOF truncation
lengths used to compute the parametric error are presented in Figs. 2 and 5.
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Appendix D: First application: additional candidates

Full error Parametric error Emulations Non—param. error
E(8) Pg=18(61) Py=18(8) U = E(8;) — Py=15(81)

Candidate 2 - Full error Candidate 2 - Parametric error Emulated candidate 2 - Parametric error Candidate 2 - Non-garnmetric error
e(@z)—166K<e(90) 2.01 K = 0. =1. p(92)=0.72K<p(80)=105K =1.01K
= Z g 2 4
2
R
-2
-4
Candidate 4 - Full error Candidate 4 - Parametric error Emulated candidate 4 - Parametric error Candidate 4 - Non-garnmetric error
e(B.)—173K<e(90) 2.01K p(6s) = 0.72 K < p(6g) = 1.05K P(6s) = 0.55K < p(6g) = 1.05K u=101K
= ST o - 4
2
o2
-2
-4
Candidate 6 - Full error Candldate 6- Parametrlc error Emulated candidate 6 - Parametric error Candidate 6 - Ngn—gammetric error
e(65) = 1.85K < e(so) 2.01K K < p(8o) = 1.05 K p(6c) = 0.57 K < p(6o) = 105K 101K
3 - = 4
2
°g
-2
-4
Candidate 5 - Full error Candidate 5 - Parametric error Emulated candidate 5 - Parumetnc error Candidate 5 - Non-garametric error
e(65) = 1.95 K < e(6o) = 2.01 K p(Bs) = 095K<p(e,,) 1.05K (e)_oasK<p(90) 1. =0.97K
z S “ . 4
2
02
-2
-4
Candidate 8 - Full error Candidate 8 - Parametric error Emulated candidate 8 - Parametric error Candidate 8 - Non-garametric error
E(Ba) = 1 81 K < e(ﬂo) 2.01K p(Bs) = 0.85 K < p(6o) = 1.05 K p(6s) = 0.89 K < p(6p) = 1.05 K u=0.96K
; =L 4
2
0g
-2
-4
Candidate 9 - Full error Candidate 9 - Paramstric:error. Emulated candidate 9 - Parametric error
o(0s) = 194 K < e(8) = 2.01 K p(Gs)i=0.95 B = p(Go) =100 K p(8a) = 0.88 K < p(8o) = 1.05 K
3 z 4
2
og
-2
-4
Candidate 11 - Full error Candidate 11 - Parametric error Emulated candidate 11 - Parametric error
e(611) = 1.86 K < e(6o) = 2.01 K P(Bn) 0.82 K < p(6o) = 1.05 K P(611) = 0.93 K < p(6p) = 1.05 K
= — 5 ~ - 4
2
og
-2
-4

Figure D1. Decomposition of surface temperature error in the first sub-set of candidates. Same as Fig. 4 for additional candidates.
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Figure E1. Full model errors in the second sub-set of candidates. Same as Fig. 8 for additional candidates.
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