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Abstract. Mathematical models that couple human behavior to environmental processes can offer valuable
insights into how human behavior affects various types of ecological, climate, and epidemiological systems. This
review focuses on human drivers of tipping events in coupled human–environment systems where changes to the
human system can abruptly lead to desirable or undesirable new human–environment states. We use snowball
sampling from relevant search terms to review the modeling of social processes – such as social norms and rates
of social change – that are shown to drive tipping events, finding that many affect the coupled system depending
on the system type and initial conditions. For example, tipping points can manifest very differently in human
extraction versus human emission systems. Some potential interventions, such as reducing costs associated with
sustainable behavior, have intuitive results. However, their beneficial outcomes via less obvious tipping events
are highlighted. Of the models reviewed, we found that greater structural complexity can be associated with
increased potential for tipping events. We review generic and state-of-the-art techniques in early warning signals
of tipping events and identify significant opportunities to utilize digital social data to look for such signals. We
conclude with an outline of challenges and promising future directions specific to furthering our understanding
and informing policy that promotes sustainability within coupled human–environment systems.

Non-technical summary. Mathematical models that include interactions between humans and the environment
can provide valuable information to further our understanding of tipping points. Many social processes such
as social norms and rates of social change can affect these tipping points in ways that are often specific to the
system being modeled. Higher complexity of social structure can increase the likelihood of these transitions. We
discuss how data are used to predict tipping events across many coupled systems.

1 Introduction to tipping points in coupled
human–environment systems models

Humans are facing environmental catastrophes of their own
making, like climate change and biodiversity declines, at lo-
cal and global scales, and yet avoiding these catastrophes still
poses complex challenges for sustainable behavior and pol-
icy interventions (Steffen et al., 2017). Traditionally, math-
ematical models of environmental systems have represented
human impacts through fixed, static parameters or functions
independent of the environment’s current state (Binford et
al., 1987; Bosch, 1971; Chaudhuri, 1986; Getz, 1980), and

these models can be useful to inform optimal levels of sus-
tainable extraction for short timescales. However, for longer
timescales, where human dynamics can evolve, it may be
necessary to include human behavior endemically in the
modeling framework to allow human–environment feedback
to occur (Bauch et al., 2016; Innes et al., 2013; Lade et al.,
2013; Schlüter et al., 2012). Coupled human–environment
system (CHES) models combine environmental (e.g., eco-
logical, epidemiological, and climate) models with human
behavior and population dynamics (Bury et al., 2019; Car-
penter et al., 2009; Farahbakhsh et al., 2022; Innes et al.,
2013; Lade et al., 2013; Phillips et al., 2020; Sethi and So-
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manathan, 1996). For example, in Innes et al. (2013), the
amount of forest cover influences the proportion of the pop-
ulation that conserves forest ecosystems. The influence of
each subsystem on the other often occurs as two-way (pos-
itive and/or negative) feedback loops. In a positive (self-
reinforcing) feedback loop, variable A causes an increase in
variable B, which then causes an increase in A. In a neg-
ative feedback loop, A causes an increase (decrease) in B,
which causes a decrease (increase) in A. The inclusion of
these feedbacks leads to increased diversity in the qualita-
tive behavior of the system, such as whether the long-term
dynamics converge to a sustainable or depleted environmen-
tal state or cycle over time. Negative feedback promotes a
return to equilibrium (Fig. 2a) and can increase the system’s
capacity to respond to disturbances and adapt in ways that al-
low the system to maintain the function of social and ecosys-
tem services, which is sometimes referred to as “resilience”
(Folke, 2006).

Human–environment negative feedback loops via pro-
cesses such as public concern pressuring governments to in-
troduce environmental legislation can be powerful and there
are many historical examples of it occurring (Dunlap, 2014;
Grier, 1982; Mather and Fairbairn, 2000; Stadelmann-Steffen
et al., 2021). Forest cover in Switzerland doubled, following
an all-time low in the first half of the 19th century. This was
brought about by public concern responding to food short-
ages and floods, which triggered local regulation, the for-
mation of the Swiss Forestry Society, and the first federal
forestry law enacted in 1876 (Mather and Fairbairn, 2000).
Similarly, the bald eagle population in North America re-
covered significantly after the banning of DDT by the EPA
in 1972. This was instigated by public outcry following the
publication of Rachel Carson’s Silent Spring in 1962, which
linked DDT in the environment to low reproduction of birds
and their declining population (Dunlap, 2014; Grier, 1982).
In both cases, the gradual recovery of the population was
not brought about simply by governmental legislation. There
were strong movements in the public and scientific spheres,
directly responding to perceived environmental risk, which
pressured governing bodies to enact immediate reform (Dun-
lap, 2014; Grier, 1982; Mather and Fairbairn, 2000). We in-
terpret these two examples as negative feedback loops in
a coupled human–environment system because a decline in
forest and eagle abundance stimulated a response by hu-
mans which led to the recovery of the environmental system
(Fig. 2a). These negative feedback loops are pervasive in the
CHES models that we examine here.

The historical examples above describe negative feed-
backs promoting a return to a single environmentally ben-
eficial equilibrium; however, in many cases, this does not
happen and the system can persist in a depleted state. For
example, the desertification of regions once rich in vege-
tation could become a positive feedback loop maintaining
the new desert state (Hopcroft and Valdes, 2021; Pausata et
al., 2020). When systems can persist in qualitatively differ-

ent states (also referred to as “regimes”), we say that they
exhibit alternative stable states (May, 1977; Lenton et al.,
2008; Henderson et al., 2016). In mathematical models, al-
ternative stable states are self-reinforcing for a range of pa-
rameters; for example, low harvest rates can promote a state
of high biomass and high harvest rates can promote a state
of low biomass in many extractive CHES (Farahbakhsh et
al., 2021; Henderson et al., 2016; Richter and Dakos, 2015;
Richter et al., 2013; Schlüter et al., 2016). Tipping points
refer to critical points on this boundary between two alter-
native stable states. Near this boundary, small perturbations
can be amplified through nonlinear self-reinforcing positive
feedback loops. This leads to a qualitatively different sys-
tem state and characteristic behavior, known as a “regime
shift”, in a relatively short amount of time. Tipping events
describe the crossing of a tipping point and can be used inter-
changeably with regime shifts. When the system has entered
a new regime, there are often positive or negative feedback
loops that make it difficult to reverse this change. This self-
perpetuating nature of some initial change through nonlinear
feedbacks leading to qualitative and often long-term system
change is a universal characteristic of many commonly stud-
ied tipping events. In many cases, a return to the system’s
previous state can be more difficult than anticipated, requir-
ing additional effort rather than merely a return to parameters
before the tipping point, a phenomenon known as hysteresis,
which can make mitigation and adaptation efforts challeng-
ing. Systems near a tipping point can exhibit (often abrupt)
regime shifts through gradual changes or noise in forcing
parameters, which is a main focus of much of the bifurca-
tion theory literature (Fig. 1a, Box 1.1) (Crawford, 1991).
The scope of models presented in this review will not in-
clude other types of tipping events such as those caused by
a short sharp shock (s-tipping, or shock-tipping, where the
system does not have to exist near this point for a regime
shift to occur) (Fig. 1b) (Boettiger and Batt, 2020; Halekotte
and Feudel, 2020) or “rate-induced tipping”, which is a dis-
tinct phenomenon induced by the rate of change of parame-
ters (Ashwin et al., 2012).

Bifurcation theory has been applied to study tipping points
in a vast number of environmental models (May and Oster,
1976; Brovkin et al., 1998; Ghil and Tavantzis, 1983; Wol-
lkind et al., 1988); however, more recently, researchers have
identified abrupt shifts in environmental systems for which
bifurcation theory has yet to be explicitly applied (Dakos et
al., 2019; Lenton, 2020, 2013). For example, during the mid-
Holocene, the Sahara was much more humid than at present,
showing evidence of shrub and savannah biomes as well as
the expansion of lakes, an alternative stable state to what we
know as its current desert state. It is hypothesized that around
5000 years ago, the gradual weakening of the North African
monsoon led to an abrupt decrease in vegetative cover due
to positive feedback between reduced surface albedo and
precipitation, bringing the Sahara into a stable desert state
(Hopcroft and Valdes, 2021; Pausata et al., 2020). In more
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Figure 1. Two types of tipping events: bifurcation-induced tip-
ping (a), where the drivers are gradual changes to system parame-
ters leading to a tipping event, and shock-induced tipping (b), where
a perturbation to the system causes it to enter an alternative stable
state through the crossing of a tipping point. Many social tipping
points are crossed by a combination of both types of tipping events.
The blue circle represents the current state of the system.

dominantly human systems, many pivotal revolutions can
also be framed as tipping events where gradual changes are
reinforced by positive feedback loops, leading to a new polit-
ical or technological stable state (Lenton et al., 2022). Social
tipping also occurs in financial systems such as in the 2008
financial crisis. Here, the bankruptcy of Lehman Brothers led
to a rise in public panic around the stability of markets, caus-
ing banks to increase their liquidity, amplifying the crisis in
other economic sectors and leading to a global recession (Van
Nes et al., 2016). These are just two of many examples illus-
trating how important tipping events are as a phenomenon in
both human and environmental systems, and coupling these
systems using mathematical models could lead to further in-
sights.

Since the beginning of the Anthropocene and with our
growing awareness of human impacts on the environment,
tipping events are increasingly being conceptualized within
the context of coupled human–environment systems (Bauch
et al., 2016; Henderson et al., 2016; Lenton et al., 2022;
Milkoreit et al., 2018). Tipping events can lead to highly
beneficial or catastrophic outcomes for humans, especially
when an environmental change occurs in the presence of so-
cial hysteresis. An example of detrimental tipping is in the
forests of Kumaun and Garhwal in northern India, where,
prior to British colonization, wood harvest was sustainably
regulated through social norms and strict rules enforced by
local village councils. When the British colonial govern-
ment imposed its own rules on the use of forests, these so-

cial norms broke down. Eventually, protests led to British
lumber restrictions being removed, but the system subse-
quently experienced rapid deforestation rather than a re-
turn to its previous levels under local management. Here,
the social system crossed a tipping point between a self-
organized common property regime to one of open access
devoid of self-regulating sanctions (Somanathan, 1991). This
system has been modeled using a dynamical systems ap-
proach that allows for a quantitative understanding of the
human drivers leading to these tipping events (Sethi and So-
manathan, 1996). In contrast to this example, tipping events
can also result in environmental change that is beneficial to
humans and the environment. The rapid response of the inter-
national community to the hole in the ozone layer has been
interpreted by some as an example of a CHES undergoing
tipping events caused by self-perpetuating change through
political, technological, and behavioral forces (Stadelmann-
Steffen et al., 2021). In the 1970s, scientists demonstrated the
detrimental effects of CFCs on the ozone layer, which could
be viewed as the initial driver of the following social–climate
tipping events. This led to public concern, prompting several
countries to ban the use of CFCs in aerosols. Through the
enactment of national policies, public awareness increased,
leading to more public pressure for national and international
policy change, an example of a positive feedback loop. In
parallel, these national bans on CFCs, especially in the US,
led to the development of CFC alternatives, which prompted
industries that could develop them to lobby for international
policy. Increased public awareness also led to widespread
shifts in social norms stigmatizing and boycotting the con-
sumption of CFCs, which further pressured industry to offer
alternatives, another positive feedback loop. The interaction
of multiple tipping events at different scales led to the cross-
ing of a global tipping point through the international ban-
ning of CFCs, bringing an alternative stable state of very low
CFC emissions globally (Andersen et al., 2013; Cook, 1990;
Epstein et al., 2014; Haas, 1992; Stadelmann-Steffen et al.,
2021).

Tipping events associated with social processes as de-
scribed in the preceding paragraph can be conceptual-
ized through positive feedback loops that capture a self-
reinforcing process. In the case of social norms, this self-
reinforcing process may correspond to peer pressure or con-
formism that reinforces the dominant opinion or belief. De-
pending on whether pro- or anti-mitigation opinions are
currently dominant, this could lead to hysteresis (Fig. 2b).
The negative feedback loop that might normally regulate
the CHES to exist in a state of intermediate environmental
health and public support for sustainability (Fig. 2a) could
be overpowered by the positive feedback of social norms,
leading the population to a state where sustainability (or anti-
sustainability) is strongly entrenched. If the conditions gov-
erning social learning or social norms move beyond a tipping
point, the population may flip between these two norms, or
alternatively it may move into a regime where social norms
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Box 1. Highlights of key findings from the synthesis of CHES models in this review. “The straw that broke the camel’s back” illustrating
bifurcation-induced tipping events. (1a) In human extraction systems (2b), increasing the speed of social change or the coupling strength
leads to detrimental tipping events (i.e., ecological collapse), whereas in human emission systems (2c) the effects of increasing the speed
of social change or the coupling strength are model-specific, higher connections in a social network leading to a positive tipping event; the
graph represents the proportion of mitigators in time (3d) with time series data from Twitter showing an abrupt transition characteristic of a
tipping event at the dotted red line (4e) from Bollen et al. (2021).

are instead dominated by the negative feedback loop, caus-
ing the population to exist in an interior state of partial sus-
tainability. As such, negative feedback and positive feedback
may be characteristic of any CHES and should be systemati-
cally studied.

This review aims to deepen our understanding of human
drivers of tipping events in CHES models by exploring three
crucial topics: the feedback loops and interactions between
the human and environmental systems, the structural charac-
teristics of the human system that influence tipping events,
and the identification of early warning signals within hu-
man systems. By “human drivers”, we refer to the changes
in social parameters that elicit these nonlinear tipping re-
sponses in either the environment, human system, or both.
However, we also discuss aspects of social structure that
may be conducive to tipping events. As most of the models
reviewed are informed by dynamical systems and bifurca-
tion theory, we primarily focus on systems that exist near
tipping points and cross them through gradual changes in
these drivers. In the following sections we review CHES
model literature found using Google Scholar with the fol-
lowing keywords: “human environment system” OR “socio-
ecological system” OR “social ecological system” OR “hu-
man ecological system” OR “human natural system” com-
bined with “tipping” OR “regime shift” OR “bifurcation”.
These results were filtered manually to include only dynam-
ical models that showed clear tipping behavior. Additional

literature was found through a snowball approach using ref-
erences from the sources found in this search as well as pa-
pers referencing these sources (Wohlin, 2014). The findings
in this review highlight commonalities between the CHES
models surveyed; however, some trends may be a result of
both the dynamical models chosen and the relatively low di-
versity and volume of these models. The body of this review
is split into two parts; the first part synthesizes results from
CHES models, organized into processes and structures that
drive tipping behavior, and the second part introduces early
warning signals describing how they can be used to predict
tipping events.

2 Processes and structures in human systems that
cause tipping events in CHES models

In this section, we look at how social processes and struc-
tures cause tipping events. In order to have a better under-
standing of how these human drivers affect tipping, it is im-
portant to understand the basics of modeling human systems.
Within CHES models, various factors, such as economic in-
centives, environmental considerations, and social pressures,
determine how individuals make decisions and interact with
the environment. In most of the current modeling literature,
individuals can choose between two behaviors (also referred
to as opinions or strategies): one that is environmentally sus-
tainable (also referred to as mitigation or cooperation) and
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Figure 2. Negative feedback between the human and environmental
subsystems supports convergence to the same equilibrium regard-
less of initial conditions (a). With strong majority-enforcing social
norms, encouraging either mitigative or harmful behavior adds a
positive feedback loop which makes the coupled system highly de-
pendent on initial conditions (b). The top row shows the negative
feedback loop between emissions and the proportion of mitigators,
where (b) also includes the positive feedback of majority-enforcing
social norms. In the middle row, equilibrium curves are plotted as a
function of the maximum emissions of non-mitigators. Solid black
lines represent stable equilibria, and the dotted red line represents
unstable equilibria. The green and purple curves in the bottom row
are the trajectories for initial mitigation support and emission value
given by the stars of the corresponding color in the upper row.

another that is detrimental to the environment (also referred
to as non-mitigation or defection). The perceived advantage
of mitigation or non-mitigation relative to the current state
of the human and environmental system can be quantified
through a “utility function”. Common factors in the utility
function are the rate of social learning, which determines the
speed of human behavior change relative to environmental
processes; social norms, which encourage the status quo or
mitigation proportional to its frequency; cost of mitigation,
which measures the economic cost of being a mitigator rela-
tive to a non-mitigator; and rarity-motivated valuation, which
incentivizes mitigation as the environment approaches col-
lapse (Bauch et al., 2016; Farahbakhsh et al., 2022; Tavoni et
al., 2012). In most models that use social learning, individu-
als sample others in the population at a fixed rate and adopt
a different behavior if the other behavior has a higher utility,

with probability proportional to the difference in utility (Hof-
bauer and Sigmund, 1998; Schuster and Sigmund, 1983).
This can also be formulated in a stochastic setting, where
the probability of adopting a neighbor’s behavior is a func-
tion of the difference in utility between behaviors (Schlag,
1998). Most of the models reviewed in this paper use social
learning to represent human behavioral dynamics. There are
also CHES models that do not include social learning such as
Motesharrei et al. (2014) and Dockstader et al. (2019) where
the human population is influenced by its current size and
the state of the environment; however, these are outside the
scope of this paper.

Many human behaviors, such as resource extraction and
pollution, have direct detrimental impacts on the environ-
ment; however, the severity of these impacts is often hard
to predict. In many CHES models, small changes in parame-
ters governing human behavior and social processes can lead
to the abrupt collapse of sustainable states through tipping
events that can cascade between the human and environmen-
tal systems (Bauch et al., 2016; Lade et al., 2013; Richter and
Dakos, 2015; Weitz et al., 2016). Additionally, structural el-
ements of the human system (i.e., an individual’s degree of
choice, population diversity), as well as how the social sys-
tem is organized (i.e., through social networks), can affect
tipping. These heterogeneous model elements are often only
accessible in agent-based models, where humans are repre-
sented as individual agents that follow a set of rules. CHES
models do not always exhibit tipping points under realistic
settings for the human system (Bury et al., 2019; Menard et
al., 2021); however, in this review, we focus on models with
tipping points.

2.1 Coupling strength

Coupling strength (how strongly the subsystems are cou-
pled) can have a significant effect on the occurrence of tip-
ping events in both systems, and the nature of these transi-
tions often depends on whether systems are human extraction
or human emission (Box 1.2). In human extraction systems
(Box 1.2b), humans extract from an environmental resource
such as in forest and fishery models. Stronger coupling in hu-
man extraction models often leads to negative environmen-
tal outcomes. A common social parameter representing the
coupling strength in these systems is the extraction effort of
humans, which when increased past a tipping point, leads
to abrupt environmental collapse (Farahbakhsh et al., 2021;
Richter and Dakos, 2015; Richter et al., 2013; Schlüter et
al., 2016). For human emission systems (Box 1.2c), where
human activity increases levels of harmful outputs, such as
pollution and climate models, coupling strength is instead
represented by pollution rates. The influence of this coupling
is less intuitive in human emission systems; for example, in
lake eutrophication models as the pollution of mitigators is
decreased, pollution levels also decrease until a threshold is
reached, heralding a detrimental tipping event where mitiga-
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tion collapses and pollution then reaches a high level (Iwasa
et al., 2010, 2007). This occurs because when the lake water
is not very polluted, there is less incentive to be a mitigator
and high-polluting behavior becomes a new norm. It is im-
portant to note that these models do not account for individ-
uals valuing the environment in a healthy state, for example
through the centering of ecosystem services, and the above
example may be an artifact of this assumption. There is a
need to shift both our relationship to the environment and the
assumptions in our models so that inherent value in environ-
mental systems is central in any decision-making, even when
the environment is far from collapse. This fundamental valu-
ing of the environment is present in many traditional indige-
nous belief systems, where relationships to the local natural
environment are incorporated and prioritized in all aspects
of life (Appiah-Opoku, 2007; Bavikatte and Bennett, 2015;
Beckford et al., 2010; McMillan and Prosper, 2016).

2.2 Rarity-motivated valuation

Rarity-motivated valuation represents the extent to which hu-
mans increase their mitigative behavior in response to the en-
vironmental variable (e.g., forest cover, endangered species
population size) nearing a depleted state. In CHES models,
this sensitivity of human response to the abundance of the
natural resource or population is represented by a “sensitiv-
ity” parameter and there are often two critical thresholds in
the sensitivity parameter that lead to tipping. Increasing the
sensitivity parameter beyond the lower threshold induces a
tipping event from a depleted to sustainable environmental
equilibrium (Ali et al., 2015; Barlow et al., 2014; Bauch et
al., 2016; Drechsler and Surun, 2018; Henderson et al., 2016;
Lin and Weitz, 2019; Sun and Hilker, 2020; Thampi et al.,
2018; Weitz et al., 2016). The second threshold exists at high
values of the sensitivity parameter, which may be counterin-
tuitive, as one might expect high sensitivity to resource de-
pletion to lead to more sustainable outcomes. In this case, the
sustainable equilibrium is destabilized by overshoot dynam-
ics or a state of chaos in both the human and environmental
systems. These dynamics are caused by the human system
being too sensitive to changes in the environment, leading to
extreme oscillations in both human behavior and the envi-
ronment, which increases the likelihood of collapse in miti-
gation and the state of the environment (Bauch et al., 2016;
Henderson et al., 2016).

Rarity-motivated valuation can also be represented by a
threshold in the state of the environment, below which hu-
mans shift towards sustainable behavior. In a common-pool
resource model, lowering this threshold led to a series of
tipping events that surprisingly resulted in a higher biomass
equilibrium, although the trajectory to this state comes close
to environmental collapse. This is in contrast to a high thresh-
old, which leads to lower final biomass; however, the tra-
jectory remains much farther from a depleted environmen-
tal state (Mathias et al., 2020). Similarly to high coupling

in pollution models, one should be very careful not to in-
terpret these results as stating that “too much conservation is
detrimental to the environment”. They rest on model assump-
tions of a reactionary conservation paradigm, where there is
less value in conserving when the environment is in a healthy
state.

2.3 Social norms

Introducing social norms can lead to alternative stable states
and thus tipping events (Fig. 2b), although the system dy-
namics are highly dependent on both the type of social norms
and initial conditions. Social norms are informal rules emerg-
ing through social interaction that promote and discourage
certain behaviors, especially around how humans relate to
one another and the environment (Chung and Rimal, 2016).
In models of small groups such as a community of fishers,
they are often (rightly) assumed to support mitigative behav-
ior by punishing those who violate norms by over-harvesting
(Ostrom, 2000). However, at larger population scales, social
norms can support either pro- or anti-mitigation behavior on
account of factors such as the politicization of actions relat-
ing to environmental, climate, and public health crises (Stoll-
Kleemann et al., 2001; Van Boven et al., 2018; Latkin et al.,
2022). Unlike a fisher in a small community, for instance, a
climate denier may not acknowledge themselves as a “defec-
tor” who is harming a public good but rather view the climate
activist as “defecting” against a free society. Thereby, social
norms have the ability to encourage behavior that is harm-
ful to both human and environmental well-being over larger
spatial and temporal scales (Bury et al., 2019; Latkin et al.,
2022; Menard et al., 2021; Stoll-Kleemann et al., 2001; Van
Boven et al., 2018).

Social norms can be represented as majority-enforcing,
incentivizing the behavior of the majority, or mitigation-
enforcing, such as sanctions, which only incentivize miti-
gation, relative to the proportion of mitigators in the cur-
rent state of the system. In CHES models, increasing the
strength of majority-enforcing norms leads to an increased
number of regimes as well as bistable (two stable states)
regimes (Fig. 2b) made up of a single dominant behavior,
which is highly dependent on the initial proportion of behav-
iors in a population (Ali et al., 2015; Barlow et al., 2014;
Bauch et al., 2016; Bury et al., 2019; Phillips et al., 2020;
Sigdel et al., 2017; Thampi et al., 2018). This occurs be-
cause these norms are indifferent to the type of behavior
they enforce (i.e., sustainable vs. harmful actions), and they
act as a double-edged sword that reinforces the status quo
through a positive feedback loop, where the dominant be-
havior becomes more prevalent (Fig. 2b). On the other hand,
increasing mitigation-enforcing social norms lead to a tran-
sition of the environmental system into a sustainable equilib-
rium (Chen and Szolnoki, 2018; Iwasa et al., 2010; Lafuite
et al., 2017; Moore et al., 2022; Schlüter et al., 2016; Tavoni
et al., 2012), sometimes through an intermediate regime of
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oscillatory dynamics (Iwasa et al., 2007). In a lake pollu-
tion model, along with decreasing the likelihood of environ-
mental collapse, this increase in mitigation-enforcing social
norms also led to the appearance of alternate stable states
(Sun and Hilker, 2020). These findings show that stronger
social norms lead to a greater number of tipping points; how-
ever, the trajectories brought about by these tipping points
are highly dependent on the type of social norms (mitigation-
or majority-enforcing) as well as the current dominant social
behavior.

2.4 Cost of mitigation

Reducing the cost of mitigation often leads to beneficial tip-
ping events; however, these tipping events can depend on the
rate of social change as well as social norms. Although it
is intuitive that reducing costs or increasing economic in-
centives associated with mitigative action will have benefi-
cial impacts on the environment, CHES models also show
that this beneficial change can occur through tipping events
(Bauch et al., 2016; Drechsler and Surun, 2018; Milne et
al., 2021; Moore et al., 2022; Sigdel et al., 2017; Thampi et
al., 2018). In coupled social–epidemiological models, where
the environmental state is the proportion of infected indi-
viduals, mitigation cost is represented through the economic
cost or perceived risk of vaccination. Decreasing this cost
leads to beneficial tipping events from a state with low pro-
vaccine opinion and vaccine coverage to high pro-vaccine
opinion and vaccine coverage (Phillips et al., 2020). Con-
versely, increasing this cost leads to a state of high infec-
tion and low vaccination. This detrimental tipping event oc-
curs in the human system at lower levels of vaccination
cost when majority-enforcing social norms are low, leading
to widespread anti-vaccine opinion before the infection be-
comes endemic again (Phillips and Bauch, 2021). Decreas-
ing profits of individuals engaging in non-mitigative behav-
ior can also lead to an abrupt shift to a state of pure mitigators
(Shao et al., 2019; Wiedermann et al., 2015); however, this
transition can be dependent on a low rate of social change
(Wiedermann et al., 2015). Other models demonstrate tip-
ping in the other direction where increasing non-mitigators’
payoff brings about a regime shift to pure non-mitigation and
environmental collapse (Richter et al., 2013; Tavoni et al.,
2012). Similarly, a common-pool resource model that uses
machine learning in a continuous strategy space shows tip-
ping to a depleted resource regime when the costs associated
with harvesting are too low (Osten et al., 2017). An analog to
mitigation cost is taxation rates, a resource which users pay
towards public infrastructure, mediating resource extraction.
In a model where individuals can choose to work outside of
the system, pushing taxation rates to high or low levels tips a
sustainable regime where institutions are at full or partial ca-
pacity to a collapse of institutions (Muneepeerakul and An-
deries, 2020). In another model, only individuals with high
extractive effort are subject to taxation, and increasing this

taxation rate brings about a beneficial tipping event to a sus-
tainable regime. However, the size of this sustainable region
in the parameter space is smaller, with multiple governance
nodes evolving through social learning compared to a single
taxing entity (Geier et al., 2019). Whatever way the cost of
mitigation is respresented, increasing the relative economic
incentive of mitigation behavior has the potential to bring
about beneficial tipping to a sustainable regime.

2.5 Rates of social change and time horizons

Human and environmental changes often occur on different
timescales and their relative rates of change play a major
role in the long-term dynamics of the coupled system and
whether or not tipping events will occur. Increasing the rate
of social change (in most cases, social learning) leads to col-
lapse in human extraction models due to overshoot dynam-
ics, whereas, in human emission models, the impacts of the
rate of social change are more model-specific. In both types
of models, increasing the time horizon in decision-making
is beneficial. In many CHES models, these rates of change
can be controlled by the rate of social learning, which deter-
mines how frequently individuals interact and consequently
the pace of behavioral change within a population. Changes
in the speed of the human system can have very different
outcomes depending on the nature of human–environment
coupling (Box 1.2). In human extraction models, increasing
the speed of the human system relative to the environment
often destabilizes sustainable equilibria, leading to oscilla-
tions in both systems and, in many cases, the abrupt collapse
of the environmental system. These overshoot dynamics oc-
cur as humans change their behavior too quickly to allow the
environment to stabilize. On the other hand, decreasing the
relative speed of human dynamics usually brings about ben-
eficial tipping events, leading to a state of high forest cover
(Figueiredo and Pereira, 2011) and supporting mitigators for
a generalized resource (Hauert et al., 2019; Shao et al., 2019).
These beneficial effects have also been observed in adaptive
network models where individuals imitate their neighbors de-
pending on the profitability of their strategies. In these mod-
els, the reduced speed of social change leads to beneficial
outcomes as the resource is allowed more time to stabilize
as decisions regarding extractive levels occur (Barfuss et al.,
2017; Geier et al., 2019; Wiedermann et al., 2015). Other
relative rates of change can also significantly influence the
existence of a sustainable regime. For example, in an agri-
cultural land use model, increasing the speed of agricultural
expansion and intensification relative to human population
growth leads to the collapse of both the natural land cover
and human population (Bengochea Paz et al., 2022).

In human emission models, increasing the speed of social
interaction is more model-specific. In some cases, such as
forest pest and climate systems, increasing the speed of the
human system leads to better mitigation of environmental
harms in the short term. However, long-term sustainability
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often requires additional social interventions such as reduc-
ing mitigation costs and increasing levels of environmental
concern (Ali et al., 2015; Barlow et al., 2014; Bury et al.,
2019). In lake pollution models, higher relative speeds of so-
cial dynamics can destabilize low-pollution equilibria, lead-
ing to oscillations and eventually a polluted state with no mit-
igation (Iwasa et al., 2010, 2007; Sun and Hilker, 2020). This
is a similar phenomenon to the overshoot dynamics that oc-
cur when the human system is extremely reactive to the envi-
ronment discussed in the case of rarity-motivated valuation;
however, these outcomes are highly dependent on other so-
cial parameters. In a related model, with no social hystere-
sis, represented by mitigation-enforcing social norms, and
strong environmental hysteresis, represented by a high phos-
phorus turnover rate, fast social dynamics could stabilize os-
cillations, leading to a low-pollution equilibrium (Suzuki and
Iwasa, 2009). The emergence of oscillations under low rates
of social learning, which was not observed in similar models,
is likely due to the environmental system being in a bistable
state under strong hysteresis such that even slow changes in
the human system could tip the lake system to an alternative
stable state.

When looking at relative rates of change in human and en-
vironmental systems, it is clear that the pace of the human
system can be more readily influenced by interventions. This
suggests an urgent need to further study the relationship be-
tween social and ecological timescales across a wide range
of coupled systems to aid in sustainable policymaking deci-
sions (Barfuss et al., 2017). Additionally, in many models,
the length of time horizons that humans take into account
when deciding how they interact with the environment has a
significant beneficial effect on conserving natural states and
mitigating harmful action (Barfuss et al., 2020; Bury et al.,
2019; Henderson et al., 2016; Lindkvist et al., 2017; Müller
et al., 2021; Satake et al., 2007). A high degree of foresight in
decision-making is a fundamental basis for many indigenous
belief systems across the world. One manner in which this
shows up is in land stewardship where care for the environ-
ment is prioritized as a means to ensure the health of many
generations in the future (Appiah-Opoku, 2007; Beckford et
al., 2010; Ratima et al., 2019).

2.6 Social traits

The inclusion and distribution of traits within agents can play
a large role in determining the occurrence and types of tip-
ping events within the coupled system, where increasing the
modeled heterogeneity in social traits can lead to more tip-
ping and also promote sustainable outcomes (Box 1.3). The
majority of models discussed in the previous section only al-
low humans to choose between two strategies: mitigation and
non-mitigation. The inclusion of additional strategies, deter-
mining how individuals interact with the environment and
each other, can alter the potential for tipping points. For ex-
ample, a common-pool resource model included a third strat-

egy of conditional mitigation (Richter and Grasman, 2013).
Under this additional strategy, agents act as mitigators un-
til the number of non-mitigators reaches a certain threshold,
where they then shift their behavior to non-mitigation. The
addition of this third strategy alters tipping dynamics in op-
posite ways, depending on the value of maximum harvest-
ing efforts. When efforts are high, the system is less prone
to tipping; however, when they are low, tipping events are
more likely to occur. This third strategy also affects tip-
ping events by masking internal social dynamics, leading to
more abrupt transitions, even when the system appears to be
stable. This occurs when mitigators gradually change their
strategy to conditional mitigators, which can go unnoticed
as their interaction with the environmental system does not
change. However, when non-mitigation reaches high enough
levels, there is a cascade of conditional mitigators choosing
non-mitigation in an example of herd behavior, which puts
abrupt harvesting pressure on the resource. Another three-
strategy model, where agents are partitioned by resource ex-
traction rates, contrasts dynamics with and without the trait
of environmental concern (Mathias et al., 2020). In the ab-
sence of this trait, the human system either tips to a state
of high-extraction or low-extraction behavior, triggering ei-
ther a detrimental or beneficial environmental tipping event,
respectively. Including environmental concern leads to an in-
creased number of cascading tipping events between human
and environmental systems. In a coupled agricultural model,
where human traits include management strategies that re-
spond to socioeconomic and climate conditions, decreasing
the diversity of these traits among agents in the system tran-
sitions the system from a sustainable state with high food
production, landscape aesthetics, and habitat protection to a
state with low habitat protection (Grêt-Regamey et al., 2019).
As there are relatively few models that explicitly compare the
complexity of social traits and their effect on tipping points,
it is difficult to say with certainty whether higher complexity
will increase the likelihood of tipping events in all CHESs
and whether this is due to a higher dimensionality of the sys-
tem. However, the commonalities between models showing
the effects of social trait complexity are worth highlighting
and will be put to the test with future CHES models and em-
pirical work.

2.7 Social networks

In many agent-based CHES models, individuals are struc-
tured on a social network, where they interact with others
with whom they share a link. These models demonstrate how
a higher number of connections in social networks increases
the potential for tipping events, often through the emergence
and growth of bistable regimes (Holstein et al., 2021; Sug-
iarto et al., 2015, 2017a) (Box 1.3). Additionally, the dis-
tributions of these connections play an important role. For
example, in networks with the same average number of con-
nections, higher heterogeneity of connections among nodes
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leads to tipping events occurring earlier under certain social
(Ising model) dynamics (Reisinger et al., 2022). The distri-
bution of resources in human–environment networks also af-
fects the potential for abrupt environmental collapse. This
often occurs in CHES network models where both human
and environmental dynamics occur on a multi-layer network,
representing partitioned or private resources. Resource het-
erogeneity can be controlled through the distribution of car-
rying capacities or the amount of resource flow between
nodes in the network, where higher flows lead to homoge-
neous resource distributions. In both cases, increasing this
heterogeneity can tip the system to a state of low extrac-
tion and high sustainability. In one model, heterogeneity in
carrying capacities increases the likelihood of sustainable
harvesters extracting from a resource with a large capacity,
which they can maintain at high levels (in contrast to non-
sustainable harvesters who extract at a higher rate), even-
tually convincing neighboring nodes to imitate their strat-
egy (Barfuss et al., 2017). In another model, heterogeneity
through lower resource flows also leads to high-extraction
nodes over-exploiting their resource and losing profits in the
long run, de-incentivizing neighbors to imitate their behav-
ior. Interestingly, optimal resource flow, which minimizes the
likelihood of resource collapse, is found to be close to the tip-
ping point of resource flow, above which the coupled system
collapses. As optimal resource flow decreases the likelihood
of collapse by supplementing resources harvested at high lev-
els, this gives an advantage to high resource extraction. In-
creasing past optimal levels leads to similar resource levels
among high- and low-extraction nodes, resulting in higher
profits from high-extraction nodes, incentivizing the entire
human system to eventually choose the high-extraction strat-
egy (Holstein et al., 2021).

Heterogeneity of human interaction can be quantified
through homophily, the extent to which alike individuals in-
teract. Homophily can play a large role in the occurrence and
behavior of tipping events in CHES models occurring on so-
cial networks, often having a detrimental effect on the envi-
ronmental system. In a common-pool resource model with
two distinct communities, increasing segregation by lower-
ing the probability that agents in separate communities will
have a link softens the abruptness of a single detrimental
tipping event compared to when the communities are well-
mixed. This is due to the occurrence of multiple intermediate
tipping events within each segregated community; however,
higher segregation adds more hysteresis to the system, in-
creasing the difficulty of reversing this transition and return-
ing to a sustainable state (Sugiarto et al., 2017b). In a public
goods game modeling climate change mitigation, where hu-
mans are partitioned into rich and poor agents, a transition
to group achievement of mitigation goals occurs at a lower
perceived risk when there is no homophily and agents are in-
fluenced by others from both economic classes equally (Vas-
concelos et al., 2014). Another human–climate model that
included wealth inequality displayed an abrupt transition to

Figure 3. Mean proportion of nodes that are mitigators for an adap-
tive network CHES model. φ is the rewiring probability and T is the
time between social interactions. φC1 is the lower threshold and φC2
is the upper threshold, above which a fragmentation regime occurs.
From Wiedermann et al. (2015).

lower peak temperature anomalies when homophily between
economic classes approached zero (Menard et al., 2021).

Social networks are rarely static and their ability to evolve
over time is represented in adaptive network models where
agents can break existing social links and create new ones, a
process called “rewiring”. Often this rewiring is homophilic,
meaning that agents are more likely to create a new social
connection with others who share a similar behavior. Com-
mon adaptive network CHES models have nodes represent-
ing renewable resource stocks with an associated extraction
level which can adopt a high extraction or low extraction
level through imitating neighbors. These models show that
the level of homophilic rewiring can trigger regime shifts
at both low and high levels, where intermediate ranges cor-
respond to a sustainable equilibrium. As agents can either
choose to rewire or imitate their neighbor, a low level of
rewiring corresponds to a high speed of social interaction,
which as discussed in Sect. 2.5 can lead to detrimental tip-
ping events. On the other hand, although high rewiring leads
to slower social learning, it also brings about a fragmen-
tation regime where social dynamics are dominated by ho-
mophily and the network fragments into components based
on strategy type, which makes widespread mitigation infea-
sible (Barfuss et al., 2017; Geier et al., 2019; Wiedermann
et al., 2015) (Fig. 3). CHES models with social networks are
still relatively new and lack diversity in how they are for-
mulated. For example, regarding the tipping points related to
rewiring social links, the lower threshold may be caused by
increased social learning since in all models agents can either
rewire or imitate, but not both. There is still much to learn
through isolating the effect of rewiring as well as exploring a
wide array of different model formulations of CHES on so-
cial networks.
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3 Identifying early warning signals of tipping events
in CHES

Although dynamical models can offer qualitative insight into
potential trajectories of CHES resulting from specific inter-
ventions, it is more difficult to use them to generate precise
and reliable predictions. Given the potential for severe en-
vironmental tipping events in the coming decades, it is ex-
tremely useful to be able to predict these abrupt shifts without
complete mechanistic knowledge of the system. The ability
to predict tipping events with limited data can allow poli-
cymakers to have more time to prepare for future disasters,
and given enough warning and political will, an opportu-
nity to avoid them or mitigate their severity. Rapidly grow-
ing research in early warning signals (EWSs) offers tools to
monitor empirical time series data and warn of future tip-
ping events that are likely to occur (Bury et al., 2021; Dakos
et al., 2012, 2015, 2008; Kéfi et al., 2014; Lapeyrolerie and
Boettiger, 2021). Although much of the work has been con-
ducted on synthetic data, there are many studies that suc-
cessfully predict historical tipping events in both empirical
human and environmental time series data such as the 1987
Black Monday financial crash (Diks et al., 2019) as well as
abrupt temperature shifts from paleoclimate datasets (Dakos
et al., 2008).

3.1 Recent advances for detecting early warning signals

Much research has been done in the past few decades to
develop tools for EWSs using both empirical and synthetic
time series data (Bury et al., 2021; Dakos et al., 2012, 2015,
2008; Kéfi et al., 2014; Lapeyrolerie and Boettiger, 2021).
Originally motivated by critical slowing down in bifurcation
theory, where systems approaching a tipping point show a
slower recovery to equilibrium under perturbations, generic
EWSs measure trends in this “slowing down” (Scheffer et
al., 2009). The most commonly used methods compute the
lag-1 autocorrelation and variance of the residuals from de-
trended time series data. Other widely used methods involve
metrics such as skewness, measuring the asymmetry of fluc-
tuations over time, and kurtosis, representing the likelihood
of extreme values in the time series data. A phenomenon
known as flickering occurs when there is sufficient noise to
rapidly force the system between alternate stable states. In
these cases, an increase in skewness and kurtosis is observed
(Dakos et al., 2012). As lag-1 autocorrelation does not ac-
count for correlation beyond a single time step, power spec-
trum analysis has been used to look at changes in complete
spectral properties, finding that higher variations at low fre-
quencies commonly occur before a tipping point (Dakos et
al., 2012; Scheffer et al., 2009). In spatial systems, many
EWSs are similar to those used in well-mixed systems, while
also accounting for spatial variability. For example, Moran’s
I is a spatial analog of lag-1 autocorrelation, which measures

the correlation between neighboring nodes in a network (Kéfi
et al., 2014).

Numerous spatial ecological systems exhibit patterns of
patchiness preceding a tipping point. For example, in dry-
lands, spotted vegetation patterns are hypothesized to be an
EWS for the system approaching desertification (Kéfi et al.,
2014). Coupled human–epidemiological models also show
that spatial properties in the distribution of opinions on a so-
cial network offer potential EWSs for the onset of disease
outbreaks. Approaching this regime shift, the number of anti-
vaccine clusters increases, and very close to the tipping point,
these communities coalesce into larger groups (Jentsch et al.,
2018; Phillips et al., 2020). These clusters are quantified us-
ing a number of metrics, such as an increase in modularity as
well as the mean number, size, and maximum size of commu-
nities and pro-vaccine echo chambers (Phillips and Bauch,
2021). This is also in agreement with previous work done
in percolation theory showing that phase transitions follow a
breakup of connected components on the network (Newman,
2010).

One downside to the generic metrics discussed above is
that they have the potential to fail in the presence of large
amounts of noise where transitions can occur far from their
analytically derived tipping point. A technique called dy-
namical network markers increases the dimensionality of the
time series by transforming it from state variables to prob-
ability distributions of the mean and variance over a given
window of time. This reduces the magnitude of noise in each
dimension, and in approaching a tipping point, one dominant
group of variables will show a drastic increase in variance
and correlation between other variables within that group. At
the same time, the correlation between one variable in this
dominant group and others outside the group will decrease.
This technique has shown success with empirical data, such
as predicting tipping events in time series data for a eutrophic
lake as well as the bankruptcy of Lehman Brothers (Liu et al.,
2015), and flu outbreaks (Chen et al., 2019). Dynamical net-
work markers have also been used on spatial systems such
as those occurring on social networks through the use of hi-
erarchical network representations. Here, networks are trans-
formed into binary trees where leaves are the nodes from the
original network and branches group nodes together at multi-
ple resolutions. Through this hierarchical model, dynamical
network markers use these multi-scale communities as the
groups of variables that are analyzed (Li et al., 2023). This
spatial technique offers a novel method for predicting tipping
events for CHES using human data occurring on complex so-
cial networks.

A very recent addition to the EWS toolkit uses concepts
from statistical physics such as average flux, entropy pro-
duction, generalized free energy, and time irreversibility to
predict tipping events in a shallow lake model much earlier
than generic methods such as autocorrelation and variance,
showing promise for use in real-time monitoring (Xu et al.,
2023). Additionally, the field of machine learning has mo-
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tivated data-driven approaches to EWSs which do not ex-
plicitly make use of any statistical metrics in the time series
data. Instead, deep learning algorithms are trained on large
synthetic datasets using models that have and have not ap-
proached tipping points. In the majority of cases, these al-
gorithms have performed significantly better at predicting
tipping events than generic EWS indicators when tested on
empirical datasets that exhibit abrupt transitions (Bury et al.,
2021; Deb et al., 2022) (Fig. 4). Deep learning algorithms
are also able to distinguish between different types of bifur-
cations as they are being approached, which can offer vital
information regarding the potential for catastrophic collapse
in CHES.

3.2 Social data for early warning signals

In CHES models, the strength of EWSs from environmen-
tal data has been shown to be muted compared to EWSs
from environmental systems not coupled to a human system
(Bauch et al., 2016) or the same system with weak coupling
between the human and environmental subsystems (Richter
and Dakos, 2015). This is likely due to the effects of hu-
man behavior acting to mitigate variability in the environ-
mental system; for example, rarity-motivated valuation cre-
ates a negative feedback loop where incentives to mitigate
increase as the environment becomes further depleted, serv-
ing as a mechanism to avoid collapse. The muting of EWSs
provides a unique challenge for monitoring tipping events
in CHES using environmental data, especially as they oc-
cur more frequently in these coupled systems as discussed
in Sect. 2. There are a small number of studies that have
directly compared the strength and efficacy of EWSs be-
tween various state or auxiliary variables in CHES models.
In these studies, generic EWSs from data in the human sys-
tem were shown to be the only reliable indicators of the cou-
pled system approaching a tipping point. Examples of human
data used include the fraction of conservationists in a for-
est cover model (Bauch et al., 2016), average profits by re-
source harvesters, and catch per unit effort common-pool re-
source models (Lade et al., 2013; Richter and Dakos, 2015).
In agreement with generic methods, a state-of-the-art ma-
chine learning algorithm for EWSs showed higher success in
detecting tipping events generated from a coupled epidemio-
logical model using pro-vaccine opinion in the human system
compared to total infections in the epidemiological system
(Bury et al., 2021). It is possible that the state variable most
sensitive to the forcing parameter may exhibit the strongest
EWS, as seen in experimental work on tipping points in a
lake food web. In this system, data from the species that
had a direct trophic linkage to a driver of the tipping event
(predators added to the food web) exhibited EWSs earlier
than those that were farther removed from the driver (Car-
penter et al., 2014). If this is the case, human drivers of tip-
ping points would most directly affect the human system, and
EWSs should still be stronger using social data.

The improved reliability of EWSs from social data demon-
strated through CHES models shows significant promise for
monitoring resilience in CHES through the analysis of so-
cioeconomic data (Box 1.4). This confers a practical advan-
tage as socioeconomic data availability is growing faster than
ecological data (and perhaps even environmental data despite
the growth of publicly available satellite data) on account of
the era of digital social data (Ghermandi and Sinclair, 2019;
Hicks et al., 2016; Lopez et al., 2019; Salathé et al., 2012).
Some examples of this are monitoring profits tied to resource
extraction as well as using sentiment analysis on social media
data, such as the number of tweets in a given area raising con-
cern over the health of a coupled environmental system. Fur-
thermore, citizen science not only generates environmental
data but also provides social metadata through the participa-
tion of users who monitor specific areas. Leveraging existing
platforms like CitSci.org, we can use these data to estimate
trends in conservationist frequency over time (Wang et al.,
2015). This approach allows for the implementation of real-
time monitoring of environmental systems using data that are
currently being generated, reducing the need for extensive
knowledge or complex mechanistic models of the system.
With the potential social data offers for use with EWSs, it
is important to note that much of the traditional social data,
often collected through national or regional surveys, do not
provide fine-grained spatial or temporal resolution. On the
other hand, novel methods that use social media data can
solve the resolution issue but may not accurately represent
the population it is being used to model (Hargittai, 2020).
These challenges may be addressed through a compound ap-
proach that uses hybrid time series generated from multi-
ple types and sources of social data (Rosales Sánchez et al.,
2017).

4 Conclusion and future directions

4.1 Summary of main points

From a wide range of examined theoretical models, we are
able to gain insight into human drivers that lead to tipping
events in CHES systems. Many social interventions, such as
reducing mitigation costs and extractive effort or increasing
the time horizon in decision-making, lead to beneficial tip-
ping events, regardless of the system modeled. The beneficial
effect of these interventions is intuitive; however, nonlinear
responses manifested as tipping events may not be as evi-
dent. Mitigation costs can be reduced through subsidies for
land preservation and green technology, as well as extraction
effort through limits on land development and the expansion
of protected natural areas (i.e., the Haudenosaunee-led pro-
tection of the Haldimand Tract) (Forester, 2021), and by in-
creasing time horizons by passing long-term legislation that
centers on the well-being of human and environmental sys-
tems such as the Green New Deal (Galvin and Healy, 2020).
These policy interventions become more difficult to imple-
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Figure 4. Generic EWSs (d–f and g–i) as well as deep learning EWSs (j–l) for time series generated by two ecological models exhibiting
different types of bifurcations (a–c): fold (a, d, g, j), Hopf (b, e, h, k), and transcritical (c, f, i, l). As well as being more reliable, deep
learning EWSs can also distinguish between the type of bifurcation being approached. In (j–l), the DL algorithm gives probabilities for the
occurrence of fold (purple), Hopf (orange), or transcritical (blue) bifurcations. Image taken from Bury et al. (2021).

ment at large scales, and models that are tailored to global
coordination problems can give us insight into how institu-
tions can work together to rapidly mitigate looming threats,
such as the current climate crises we are facing (Karatayev et
al., 2021).

Other human behaviors and social processes are much
more nuanced and system-specific in how they affect tipping
events. For example, models show that rarity-motivated val-
uation can act to detrimentally tip the environmental system
into a depleted state when it crosses both a lower and (coun-
terintuitively) an upper threshold value. This was illustrated
most clearly in the example of forest cover in the paper by
Bauch et al. (2016). Social norms, especially when majority-
enforcing, increase the likelihood of tipping events through
the emergence of bistable regimes that are made up of both
sustainable and unsustainable environmental equilibria. The
extent of coupling between the human and environmental
system as well as the speed of social change relative to en-
vironmental change can have different effects depending on
whether the model is human extraction or human emission.
Interventions related to human valuation and social norms
are much more difficult to implement as they require a deeper

mechanistic understanding of how to influence social dynam-
ics and may also have ethical considerations.

The models we reviewed also show that greater structural
complexity via the number and diversity of human traits as
well as the number of social connections can increase the po-
tential for tipping events and mask social dynamics, making
these transitions much harder to predict. The modeling liter-
ature has only explored a small sliver of the space of possible
choices regarding assumed social structures and the types of
environmental models coupled to them. For example, the vast
majority of models only allow for a binary choice in human
behavior and adaptive social networks have only recently
been incorporated, with limited mechanisms of rewiring and
types of coupled environmental systems. Consequently, we
still have much to learn on how shifting underlying social
structures acts as a driver of tipping events. This is especially
true in human emission models, which are important to im-
proving our understanding of how our social structures affect
pressing global issues such as pollution and climate change.
Even if we include more diverse and realistic social struc-
tures and processes, CHESs are composed of many nonlin-
ear feedbacks and contain high levels of uncertainty, and the
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reality is that we may not be able to have a complete mech-
anistic representation through models. EWSs from empirical
data show great potential in predicting tipping events without
requiring a full understanding of the system being monitored.
There have been many advances in using state-of-the-art ma-
chine learning algorithms to provide accurate EWSs from 1-
D time series (Bury et al., 2021; Deb et al., 2022), and very
recent work is now developing similar techniques to predict
tipping events from spatial data (Dylewsky et al., 2022). As
synthetic data from models have shown the value of EWSs
from social data, it is likely that applying these techniques
to diverse and hybrid empirical social datasets can vastly im-
prove our ability to predict tipping events caused by human
drivers in the future.

4.2 Future work in CHES modeling

There are many social phenomena that are not commonly
included in CHES models yet may be important in further-
ing our understanding of tipping events within these sys-
tems. We know that inequality in human systems plays a
large role in individuals’ risk perception and ability to engage
in pro-environmental behavior (Gibson-Wood and Wake-
field, 2013; Pearson et al., 2017; Quimby and Angelique,
2011; Rajapaksa et al., 2018), and we have mentioned two
CHES models that incorporate wealth inequality in a human–
climate system (Menard et al., 2021; Vasconcelos et al.,
2014). However, more studies explicitly investigating the
role of inequality could offer some valuable insight into in-
terventions that can be more effective in benefiting both the
environment and the most vulnerable in human systems. This
could be complemented by incorporating social biases where
perceptions of risk are linked to an individual’s socioeco-
nomic status, and detrimental environmental outcomes are
experienced disproportionally by vulnerable communities as
is commonly observed globally (Banzhaf et al., 2019; Boyce,
2007). Future models could allow for alternatives to the com-
mon modeling assumption where individuals act in their own
self-interest, for example by incorporating other-regarding
preferences into utility functions so that individuals value
their neighbors’ well-being along with their own (Dimick et
al., 2018). These models could also look at grassroots redis-
tribution of wealth, allowing us to explore the effects of al-
ternative social value systems on the environment (Tilman et
al., 2018).

Stochasticity (noise), especially regarding drivers of tip-
ping events, can significantly affect system dynamics includ-
ing when tipping events occur. Although many CHES mod-
els are deterministic, recent work has shown that increasing
noise can lead to earlier tipping (Willcock et al., 2023) or, in
other cases, increase the duration of time the environmental
system can persist before becoming extinct (Jnawali et al.,
2022). These contradictory results warrant further work in
understanding how different types of noise and their magni-
tude within drivers of tipping events affect the resilience of

these systems. With stochasticity comes uncertainty, and in
real-world systems, it is impossible to know with precision
the extent of social change required to bring about a bene-
ficial or avoid a detrimental tipping event. This uncertainty
around our knowledge of system thresholds adds an addi-
tional challenge in both agreeing upon and following through
with policy that promotes sustainable futures while taking
into account potential tipping events. Experimental games
have shown that high threshold uncertainty can promote the
collapse of a shared resource, often through an increase in
free-riding behavior (Barrett and Dannenberg, 2014, 2012).
On the other hand, field experiments in fishing communities
have shown that high uncertainty can promote cooperation
and sustainable resource use (Finkbeiner et al., 2018; Rocha
et al., 2020). Theoretical models show that increased uncer-
tainty can lead to increased mitigative behavior if the shared
resource is highly valued; however, for low-valued resources,
increased uncertainty can deter mitigation, putting the per-
sistence of the shared resource at risk (Jager et al., 2000;
McBride, 2006). Uncertainty around thresholds is unavoid-
able, further motivating the need to offer additional incen-
tives for mitigative action on institutional scales rather than
solely the threat of environmental collapse. In systems where
uncertainty can promote mitigative action, increased commu-
nication and awareness campaigns around this threshold un-
certainty could be useful to incorporate into policy.

This review has focused primarily on the effects of single
drivers; however, research on multiple co-occurring human
drivers of tipping events, while more analytically challeng-
ing, could offer a holistic understanding of how these drivers
interact. A recent study has shown that multiple drivers can
reduce the time until tipping or lead to a tipping event that
would not occur with a single driver (Willcock et al., 2023),
and there is already a large body of empirical work exploring
the diversity of these drivers which can be used to inform fu-
ture CHES models (Jaureguiberry et al., 2022; Maciejewski
et al., 2019; Corvalán et al., 2005). Finally, as the majority of
the studies in modeling tipping events have focused on slow
gradual changes in the driver, fast changes require further
research as they can exhibit very different tipping behavior
(Ashwin et al., 2012). CHES models ubiquitously exemplify
the phenomenon of tipping points, which often occur through
drivers in the human system. Although these models offer
valuable insight in understanding key feedbacks and qualita-
tive behavior, their predictive power is limited. Additionally,
as many model findings can depend on the type of system
modeled as well as assumptions in the model formulation,
translating this work into policy remains a significant chal-
lenge. However, further work in both diversifying model sys-
tems and assumptions paired with research in universal real-
time indicators of EWSs shows considerable promise in both
improving our understanding and predicting human drivers
of tipping events in the environment.
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Appendix A

Authors Year Title System of study

Sethi and Somanathan 1996 The evolution of social norms in common property resource use Common-pool resource
Satake et al. 2007 Coupled ecological–social dynamics in a forested landscape:

Spatial interactions and information flow
Land use

Iwasa et al. 2007 Nonlinear behavior of the socioeconomic dynamics for lake eu-
trophication control

Lake eutrophication

Suzuki and Iwasa 2009 The coupled dynamics of human socioeconomic choice and lake
water system: the interaction of two sources of nonlinearity

Lake eutrophication

Iwasa et al. 2010 Paradox of nutrient removal in coupled socioeconomic and eco-
logical dynamics for lake water pollution

Lake eutrophication

Figueiredo and Pereira 2011 Regime shifts in a social–ecological model of farmland abandon-
ment

Land use

Tavoni et al. 2012 The survival of the conformist: Social pressure and renewable
resource management

Common-pool resource

Lade et al. 2013 Regime shifts in a social–ecological system Common-pool resource
Iwasa and Lee 2013 Graduated punishment is efficient in resource management if

people are heterogeneous
Fishery

Richter et al. 2013 Contagious cooperation, temptation, and ecosystem collapse Common-pool resource
Richter and Grasman 2013 The transmission of sustainable harvesting norms when agents

are conditionally cooperative
Common-pool resource

Barlow et al. 2014 Modeling interactions between forest pest invasions and human
decisions regarding firewood transport restrictions

Pest

Vasconcelos et al. 2014 Climate policies under wealth inequality Climate
Ali et al. 2015 Coupled human–environment dynamics of forest pest spread and

control in a multipatch, stochastic setting
Pest

Sugiarto et al. 2015 Social–ecological regime shifts in the setting of complex social
interactions

Common-pool resource

Wiedermann et al. 2015 Macroscopic description of complex adaptive networks coevolv-
ing with dynamic node states

Private resource

Richter and Dakos 2015 Profit fluctuations signal eroding resilience of natural resources Common-pool resource
Schlüter et al. 2016 Robustness of norm-driven cooperation in the commons Common-pool resource
Weitz et al. 2016 An oscillating tragedy of the commons in replicator dynamics

with game–environment feedback
Common-pool resource

Bauch et al. 2016 Early warning signals of regime shifts in coupled human–
environment systems

Forest

Henderson et al. 2016 Alternative stable states and the sustainability of forests, grass-
lands, and agriculture

Land use

Sugiarto et al. 2017 Social cooperation and disharmony in communities mediated
through common-pool resource exploitation

Common-pool resource

Barfuss et al. 2017 Sustainable use of renewable resources in a stylized social–
ecological network model under heterogeneous resource distri-
bution

Private resource

Lafuite et al. 2017 Delayed behavioral shifts undermine the sustainability of social–
ecological systems

Land use

Lindkvist et al. 2017 Strategies for sustainable management of renewable resources
during environmental change

Common-pool resource

Osten et al. 2017 Sustainability is possible despite greed – Exploring the nexus be-
tween profitability and sustainability in common-pool resource
systems

Common-pool resource

Sigdel et al. 2017 Competition between injunctive social norms and conservation
priorities gives rise to complex dynamics in a model of forest
growth and opinion dynamics

Forest

Sugiarto et al. 2017 Emergence of cooperation in a coupled social–ecological system
through a direct or an indirect social control mechanism

Common-pool resource
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Authors Year Title System of study

Thampi et al. 2018 Social–ecological dynamics of Caribbean coral reef ecosystems
and conservation opinion propagation

Coral reef

Chen and Szolnoki 2018 Punishment and inspection for governing the commons in a
feedback-evolving game

Common-pool resource

Drechsler and Surun 2018 Land use and species tipping points in a coupled ecological–
economic model

Land use

Geier et al. 2019 The physics of governance networks: critical transitions in conta-
gion dynamics on multi-layer adaptive networks with application
to the sustainable use of renewable resources

Private resource

Hauert et al. 2019 Asymmetric evolutionary games with environmental feedback Common-pool resource
Lin and Weitz 2019 Spatial interactions and oscillatory tragedies of the commons Common-pool resource
Sigdel et al. 2019 Convergence of social–ecological dynamics in disparate ecologi-

cal systems under strong coupling to human social systems
Common-pool resource

Bury et al. 2019 Charting pathways to climate change mitigation in a coupled
social–climate model

Climate

Shao et al. 2019 Evolutionary dynamics of group cooperation with asymmetrical
environmental feedback

Common-pool resource

Barfuss et al. 2020 Caring for the future can turn tragedy into comedy for long-term
collective action under risk of collapse

Common-pool resource

Tilman et al. 2020 Evolutionary games with environmental feedbacks Common-pool resource
Muneepeerakul and Anderies 2020 The emergence and resilience of self-organized governance in

coupled infrastructure systems
Water use

Sun and Hilker 2020 Analyzing the mutual feedbacks between lake pollution and hu-
man behavior in a mathematical social–ecological model

Lake eutrophication

Mathias et al. 2020 Exploring nonlinear transition pathways in social–ecological sys-
tems

Common-pool resource

Phillips et al. 2020 Spatial early warning signals of social and epidemiological tip-
ping points in a coupled behavior–disease network

Epidemic

Menard et al. 2021 When conflicts get heated, so does the planet: coupled social–
climate dynamics under inequality

Climate

Phillips and Bauch 2021 Network structural metrics as early warning signals of
widespread vaccine refusal in social–epidemiological networks

Epidemic

Holstein et al. 2021 Optimization of coupling and global collapse in diffusively cou-
pled social–ecological resource exploitation networks

Private resource

Farahbakhsh et al. 2021 Best response dynamics improve sustainability and equity out-
comes in common-pool resources problems, compared to imita-
tion dynamics

Common-pool resource

Yan et al. 2021 Cooperator driven oscillation in a time-delayed feedback-
evolving game

Common-pool resource

Müller et al. 2021 Anticipation-induced social tipping: can the environment be sta-
bilized by social dynamics?

Climate

Milne et al. 2021 Local overfishing patterns have regional effects on health of
coral, and economic transitions can promote its recovery

Coral reef

Moore et al. 2022 Determinants of emissions pathways in the coupled climate–
social system

Climate

Bengochea Paz et al. 2022 Habitat percolation transition undermines sustainability in
social–ecological agricultural systems

Land use
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