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Abstract. Recent observation-based studies suggest that the Amazon rainforest has lost substantial resilience
since 1990, indicating that the forest might undergo a critical transition in the near future due to global warming
and deforestation. The idea is to use trends in a lag-1 auto-correlation of leaf density as an early-warning signal
of an imminent critical threshold for rainforest dieback. Here we test whether the observed change in auto-
correlations could arise from internal variability using historical and control simulations of nine sixth-generation
Earth system model ensembles (Phase 6 of the Coupled Model Intercomparison Project, CMIP6). We quantify
trends in the leaf area index auto-correlation from both models and satellite-observed vegetation optical depth
from 1990 to 2017. Four models reproduce the observed trend with at least one historical realization whereby the
observations lie at the upper limit of model variability. Three out of these four models exhibit similar behavior in
control runs, suggesting that historical forcing is not necessary for simulating the observed trends. Furthermore,
we do not observe a critical transition in any future runs under the strongest greenhouse gas emission scenario
(SSP5-8.5) until 2100 in the four models that best reproduce the past observed trends. Hence, the currently
observed trends could be caused simply by internal variability and, unless the data records are extended, have
limited applicability as an early-warning signal. Our results suggest that the current rapid decline in the Amazon
rainforest coverage is not foremost caused by global warming.

1 Introduction

The resilience level of the Amazon rainforest to external
stresses, such as global warming and deforestation, is sub-
ject to ongoing debate (Feldpausch et al., 2016; Boers et al.,
2017; Boulton et al., 2022). Since the 1970s the Amazon
rainforest has lost about 20 % of its coverage (Simmons et al.,
2019), and the net carbon uptake of the formerly persistent
carbon sink has been declining over the last 4 decades due
to intensification of the dry season and elevated deforesta-
tion (Gatti et al., 2021). The rapid development has raised
warnings that the Amazon rainforest is approaching a critical
threshold, beyond which irreversible damage is unavoidable
(Brando et al., 2014; Boers et al., 2017; Boulton et al., 2022;
Parry et al., 2022; Doughty et al., 2023).

Model studies, however, differ widely in their results, and
the inter-model spread of vegetation responses in future pro-
jections remains high with moderate forest resilience this
century but a higher risk of sporadic rainforest loss past 2100
(Huntingford et al., 2013; Boulton et al., 2017; Chai et al.,
2021). Notably, Parry et al. (2022) found localized rainfor-
est dieback using an abrupt-shift-detection algorithm in five
out of seven CMIP6 models they investigated in simulations
wherein CO2 is increased by 1 % yr−1 until it quadrupled af-
ter 140 years. All in all, though, climate models do not pre-
dict an imminent and complete collapse of the Amazon rain-
forest. However, it has been reported that climate models un-
derestimate vegetation-related feedbacks (Richardson et al.,
2013; Green et al., 2017; Forkel et al., 2019).
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Observation-based studies of the recent historical record
convey a more alarming picture. Tao et al. (2022) reported
the capacity of undamaged rainforests to withstand future
droughts to be limited, especially in the Amazon. Analyz-
ing remotely sensed vegetation data, Boulton et al. (2022)
supported this idea and found that more than three-quarters
of the Amazon rainforest has been losing resilience since the
2000s, especially in regions of less rainfall and in proximity
to regions of human activity. They present evidence for an
imminent tipping point of the rainforest in the near future.

Such a tipping point may be initiated by a major tree loss
from fires, deforestation, or climate change (Cox et al., 2008;
Brando et al., 2014). Land cover transitions, such as forest to
crops or forest to pasture, decrease the net surface radiation
and latent heat flux while increasing the sensible heat flux, re-
sulting in warming of the land surface (Silvério et al., 2015).
Reducing the vegetation density by deforestation is associ-
ated with enhanced precipitation run-off and reduced evap-
otranspiration. Hence, both deforestation and forest degra-
dation by droughts weaken the moisture transport by recy-
cling, which is mainly directed westwards over the Amazo-
nian basin along the prevalent wind direction (Salati et al.,
1979). This causes reduced precipitation downwind and de-
graded forest health in a positive feedback loop.

Negative feedbacks and stabilizing effects may also ex-
ist. For instance, vegetation responds positively to increasing
levels of CO2 (Kolby Smith et al., 2016), provided sufficient
water and nutrients are available, something which can be
observed to happen in most parts of the world, including the
Amazon basin (Zhu et al., 2016). Another possible mecha-
nism could be convective clouds that actively shift precipita-
tion from wet to dry regions; the temperature gradient, aris-
ing from evaporative cooling in wet regions while warming
dry regions activates a low-level breeze that transports mois-
ture to the dry areas (Hohenegger and Stevens, 2018). This,
by extension, would be a negative feedback in the Amazon
in that the atmosphere acts to moisten dry regions. Since the
Amazon rainforest has existed for at least thousands (Malhi
et al., 2004) or even millions of years (Maslin et al., 2005),
the rainforest must have been dominated by negative feed-
back in the past.

Tipping points are typically accompanied by a regime shift
from a stable state, where negative feedback mechanisms
dominate, to a marginally stable state with transition to a
net positive feedback parameter. Several statistical metrics,
known as early-warning signals, have been proposed to pre-
dict a regime shift (Scheffer et al., 2009; Lenton et al., 2012).
Most commonly, they quantify the recovery rate of the sys-
tem to small perturbations. The resilience of a system is sub-
sequently defined as the ability to recover from those dis-
turbances. As the stability of the system decreases, it re-
covers slower when stochastically forced. This phenomenon,
known as critical slowing down (CSD), can be detected by
an increase in the lag-1 auto-correlation (AR(1)) of a time
series representing the dynamics of the system. Increasing

AR(1) has been widely used as an early-warning signal for
Earth’s dynamical systems such as the western Greenland Ice
Sheet (Boers and Rypdal, 2021) or the Amazonian rainfor-
est (Boulton et al., 2022). However, the increase in AR(1)
has been shown to occur, likewise, for other physical reasons
(Verbesselt et al., 2016), as well as to not occur prior to criti-
cal transitions; for instance, when the rate of forcing is higher
than the intrinsic response timescale for CSD (Boulton et al.,
2013).

Here, we compare the observational record to nine large
CMIP6 historical model ensembles and control simulations,
quantifying model forest resilience between 1990 and 2014
using the same method as in Boulton et al. (2022). By an-
alyzing large model ensembles, we can test whether inter-
nal variability in auto-correlation could be the source of the
observation-inferred resilience loss.

2 Methods

2.1 Data

We use the Amazon basin as our region of study, taken to
be the domain defined as by RAISG (Amazon Network of
Georeferenced Socio-Environmental Information; accessed
in March 2023). The observational data are provided by
the Vegetation Optical Depth Climate Archive (VODCA)
(Moesinger et al., 2020), which is available in a 0.25°×0.25°
resolution in daily frequency for the period July 1987 to
June 2017. The passive or active satellite observations cap-
ture the attenuation of microwave radiation by vegetation,
which is known as the vegetation optical depth (VOD). The
attenuation depends on various factors like the density, type,
and water content of the vegetation and the wavelength range
of the sensor (Owe et al., 2008). Shorter wavelengths are
more sensitive to the upper-leaf canopy than longer wave-
lengths, since they experience higher attenuation by vegeta-
tion. We chose the lowest-wavelength product available (Ku
band; ∼ 19GHz) for the period January 1990 to Decem-
ber 2017, following the study by Boulton et al. (2022). The
monthly means of the VODCA product are interpolated to
1°× 1° to compare them better to models, although this did
not substantially affect the observed trend (see Fig. A1).

To assess internal variability, CMIP6 model ensembles
with at least seven historical runs available and interactive
leaf area index (LAI) are included in the study (Table 1). The
non-dimensional LAI is defined as the total area of leaves per
unit surface area. Although LAI and VOD are not identical
variables but physically closely related, changes in both vari-
ables are strongly correlated, such that they can be consid-
ered good proxies for forest health and resilience (Moesinger
et al., 2020).

The model LAI output is evaluated in the period Jan-
uary 1990 to December 2014, as the historical experiments
are only available until this point in time. Additionally, we
use Shared Socioeconomic Pathway 5 (SSP5-8.5) and pre-
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Figure 1. Anomaly of the spatially averaged AR(1) series for observations and MPI-ESM1-2-LR piControl (a) and historical (b) ensemble.
The anomaly is computed by subtracting the temporal mean from the time series and is plotted at the end of the 5-year sliding window. The
ensemble member with the largest and smallest τK values are highlighted. The color gradient of all ensemble runs corresponds to increasing
τK.

industrial control simulations of 500 or 1000 years in length
that we cut into windows of 25 years that correspond to the
length of the historical period. In that way, we create a con-
trol ensemble of 20 or 40 members. Control simulations have
the advantage that the internal variability in the model can be
directly assessed since no external forcing is present.

The models’ land surface components (Table 1) simulate
exchanges of energy, water, and carbon between the land
surface and the atmosphere, as well as biogeochemical pro-
cesses like photosynthesis. The LAI is computed dynami-
cally in all models investigated. The ecosystem processes
are mostly run on a daily time step; however, CanESM5 and
IPSL-CM6A run a water and energy budget, as well as photo-
synthesis computations, on a sub-daily scale (in accordance
with the atmospheric component). Only the two MPI-ESM1-
2 models and EC-Earth3-Veg have simulated natural vege-
tation distribution, while all other models investigated pre-
scribe the plant functional type (PFT) fractions e.g., using the
LUH2 v2h data set (Hurtt et al., 2020). However, the num-
ber of implemented PFTs differs widely from 4 (CanESM5)
to 22 (CESM2). The nitrogen cycle is explicitly resolved
in ACCESS-ESM1.5, CESM2, MIROC-ES2L, EC-EARTH-
Veg3, and MPI-ESM1-2, while wildfires that are deliberately
modeled in CESM2 and the MPI-ESM1-2 family occur ran-
domly in EC-EARTH-Veg3 and are not considered in the
other models (references see Table 1). Song et al. (2021)
report a generally good global representation of LAI in the
global climate models (GCMs) in question. In the Amazon,
the multi-year (1982–2014) and yearly average is slightly un-
derestimated by models, just as the inter-annual variability
is also underestimated. Long-term LAI trends are generally
captured but can vary in bias compared to observations in
forested regions.

Last, we determine the land use and land cover change
(LUCC) using the land use harmonization data set LUH2 v2h

and v2f (Hurtt et al., 2020) that is available as annual values
on a 0.25°× 0.25° spatial resolution and utilized to force the
land components of CMIP6 models.

2.2 Resilience indicator AR(1)

The random variability in a signal contains information about
the recovery rate from stochastic perturbations, such that we
can separate trend, seasonality, and residual of the signal us-
ing seasonal trend decomposition (STL) by loess (Cleveland
et al., 1990). Assuming the seasonality is constant in time,
we choose the STL input parameters trend= 19, season= 13,
and period= 12 months, corresponding to choices made in
previous work (Boulton et al., 2022). Nevertheless, slightly
altering the STL parameters has no relevant influence on the
presented results. The residual component of each grid cell
can then be used to quantify the short-term responses of the
forest by calculating the AR(1) on a sliding window of 5
years. We find the AR(1) time series using an ordinary least
squares fitting method for the autoregressive model (Eq. 1),
where εt represents the white noise of the model with zero
mean and constant variance σ 2

ε , Xt is the time series in each
grid point, and ϕ is the autoregressive coefficient, also de-
noted AR(1).

Xt = ϕXt−1+ εt (1)

We then quantify the trend of this AR(1) time series with
Kendall’s rank correlation τK that measures how well two
data vectors agree on their ranks (Kendall, 1938). Choosing
one vector to be time, a Kendall’s τK = 1 indicates a strictly
increasing AR(1) trend, τK =−1 a strictly decreasing, and
τK = 0 no trend. The significance p of this statistic is com-
puted by randomly generating phase surrogates of the time
series’ Fourier transform under constant variance and serial
correlation (Dakos et al., 2008).
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Figure 2. Maps and histograms of the τK values of selected members from the piControl (a, c) and historical (b, d) MPI-ESM1-2-LR
ensemble. The observed τK distribution is plotted in grey for comparison. We selected the ensemble members that have the highest and
lowest τK values of the spatially averaged AR(1) series to present the full range of the model variability.

For comparison between observations and models, we cal-
culate both the τK of the spatially averaged AR(1) series and
for individual grid cells. The spatial distributions of τK are
tested for the similarity in the frequency between the obser-
vations and the model using the non-parametric, two-sample
Kolmogorov–Smirnov test (Berger and Zhou, 2014). Its test
statistic is given by the maximum difference between two
cumulative distribution functions and is computed under the
null hypothesis that both samples are drawn from populations
that have an arbitrary, yet identical, underlying distribution.
The higher the p value of this test, the less likely it is that the
samples are drawn from different underlying distributions.

3 Results

The observational record of the auto-correlation of VOD
from the Amazon basin exhibits variations and trends
(Fig. 1), but it is impossible based solely on a single-data
record to figure out whether such variations are caused by
external forcing or whether it is simply an expression of in-
ternal variability. A commonly used method to detect forced
changes and events in observational records that contain in-
ternal and natural variability is to compare them in various
ways to multiple climate model runs with different codes
and/or starting from different initial conditions (e.g., Hassel-
mann, 1997; Otto, 2023). In particular, it has become com-
mon that global climate models are run multiple times with
the same historical boundary conditions but start from differ-
ent initial conditions in order to explore their internal vari-
ability (Kay et al., 2015; Maher et al., 2021; Table 1). With

such large ensembles it is possible to ask whether the ob-
served trend is within the range of variability exhibited by the
model and by extension, in the present case, whether an in-
creasing trend in auto-correlation constitutes a skillful early-
warning signal.

As an example, we display 30 simulations of the histori-
cal experiment of one CMIP6 model and MPI-ESM1-2-LR,
together with the observations (Fig. 1; right panel). We see
that the observed trend in the spatially averaged AR(1) of
τK= 0.62 is within the range of trends exhibited by the model
ensemble members (−0.76 to 0.72) when calculated over the
same period. Therefore, in terms of this model’s behavior,
the observed trend is within the range of variability. To in-
vestigate whether global warming or land use change is af-
fecting the trends, we can also inspect equally long-duration
chunks from the same model’s pre-industrial control simu-
lation (Fig. 1; left panel). Here we also find trends that en-
capsulate the observed trend (−0.68 to 0.79). Even though
the shorter-term deviations appear slightly muted in this case
compared to the historical ensemble, the overall trend range
in the control and historical experiment does only differ
marginally. Moreover, the largest AR(1) trend of this model
is found among the control runs, suggesting that the forced
response of the Amazon rainforest is not needed to generate
an increase in AR(1) of a similar magnitude to that observed.

The modeled spatial distributions of the trends in AR(1)
further support the idea that the origin is internal variability.
We can inspect maps and frequency distributions from the
two historical ensemble members and the two chunks from
the pre-industrial control in Fig. 2 that exhibited the largest
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Table 1. CMIP6 model ensembles used within this study.

Model Land surface model Plant functional Nominal Number of Reference
type resolution hist. runs

ACCESS-ESM1-5 CABLE2.4 Prescribed 250 km 40 Ziehn et al. (2020)
IPSL-CM6A ORCHIDEE v2 Prescribed 250 km 33 Boucher et al. (2020)
MPI-ESM1-2-LR JSBACH 3.2 Simulated 250 km 30 Mauritsen et al. (2019)
MIROC-ES2L MATSIRO6.0+VISIT-e v1 Prescribed 500 km 30 Hajima et al. (2020)
CanESM5 CLASS3.6-CTEM1.2 Prescribed 500 km 25 Swart et al. (2019)
MPI-ESM1-2-HR JSBACH 3.2 Simulated 100 km 10 Mauritsen et al. (2019)
INM-CM5-0 INM-LND1 Prescribed 100 km 10 Volodin and Gritsun (2018)
CESM2 CLM5 Prescribed 100 km 9 Danabasoglu et al. (2020)
EC-EARTH3-Veg HTESSEL Simulated 100 km 7 Döscher et al. (2022)

Figure 3. Cumulative distribution functions of τK for observations and members of MPI-ESM1-2-LR. The KS statistic is drawn as a black
error bar. Members that are not significantly different from the observational distribution are marked in red. Member 28 shows the best
agreement with KS = 0.08 and p = 0.22.

trends (Fig. 1). All historical ensemble members are shown
in Fig. A2. We see that positive trends can occur in any part of
the Amazon basin and are not preferentially occurring in the
southern parts where most of the land use changes happened
(Fig. A6). There are, however, cases wherein this pattern oc-

curs (e.g., members 4, 13, 15, 26, and 30). Also noteworthy is
that the model does display trend patterns with spatial scales
that are substantially larger than the model resolution such
that the underlying causes must be a simulated feature of the
model, e.g., large-scale weather events.
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Figure 4. Model’s mean τK distributions for piControl and historical runs. The histograms are fitted with a β distribution on the interval
[−1,1]. The observation’s percentile within the respective distribution is denoted by pcml. Historical forcing makes the occurrence of the
observations more likely only in MIROC-ES2L and ACCESS-ESM1-5, while CanESM5 and MPI-ESM1-2 simulate a higher probability in
control runs.

Not all models are equally fit for the purpose of simulat-
ing the Amazon rainforest dynamics in accordance with ob-
servations. To investigate this, we apply the Kolmogorov–
Smirnov (KS) test (Sect. 2.2) on each ensemble member to
test whether it could have been drawn from the same underly-
ing distribution as the observations. The process is illustrated
in Fig. 3. For the MPI-ESM1-2-LR model, the test identifies
two ensemble members (5 and 28) that are statistically indis-
tinguishable from the observed trend distribution. This im-
plies that the observations lie within the range of model vari-
ability but on the edge of what the model is able to reproduce.
We carry out the same procedure for all models and find that
four of the nine models pass the test (Table 2) with CanESM5
(Fig. A3), ACCESS-ESM1-5 (Fig. A4), and MIROC-ES2L
(Fig. A5), showing a closer affinity to observations than the
MPI-ESM1-2-LR model which we have focused on thus far.

A drawback of applying the KS test method here is that
some model ensembles may be too small, and therefore, sim-
ply by chance, none of the ensemble members passes the KS
test, even if the model is capable of producing such a sim-
ulation. Indeed, we see that four of the five models that are
not passing the KS test have 10 or fewer historical ensem-
ble members. For example, MPI-ESM1-2-HR is physically
very similar to MPI-ESM1-2-LR, with the main difference
being applying a higher resolution resulting in fewer simu-

lated members, i.e., 10 instead of 30. Therefore, it is plausi-
ble that this model is also fit for purpose, but it was not run
enough times to demonstrate that. The only exception to this
rule is IPSL-CM6A, which, with 33 ensemble members, is
more unlikely to have a plausible representation of the Ama-
zonian vegetation dynamics.

Inspecting the Amazon mean trend of AR(1) for each of
the ensemble members from the four models that passed the
KS test, we find one model which displays a significant re-
sponse to historical forcing (MIROC-ES2L; Fig. 4). To better
show the shift between the pre-industrial control and histor-
ical simulations, we fit a bounded β distribution to the fre-
quency distribution, and we use the α=0.95 confidence in-
terval to screen for significance. In all four models and for
both simulations, the observed trend is on the edge of what
is possible. In CanESM5, MPI-ESM1-2-LR, and ACCESS-
ESM1-5, there is not a substantial difference between the
forced and unforced simulations, but MIROC-ES2L shows
a marked shift towards higher trends in the Amazon basin
mean AR(1) when the model is exposed to historical bound-
ary conditions.

We finally test the idea that an increasing AR(1) can be
used as an early-warning signal of an eminent abrupt transi-
tion in the Amazon rainforest. This was done by inspecting
the continuation of future projections of the two historical
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Figure 5. Historical and SSP5-8.5 scenario of MPI-ESM1-2-LR LAI and the corresponding spatially averaged AR(1) trend compared to the
observational VOD record. Panel (a) displays the STL trend component of LAI and VOD respectively, and panel (b) shows the AR(1) series
of the STL residual plotted at the end of the 5-year sliding window. Ensemble member 28 is the best-agreeing member with observations in
the historical period, while member 10 has the least agreement. Note that the dual vertical axes used in the upper panel are scaled to have the
same relative range.

Table 2. Observation percentiles pcml in the mean τK model distribution, the fraction of ensemble members Fp>0.05 that scored p > 0.05
in the KS test, and highest KS test p value of each ensemble. The higher the p value, the more likely the member resembles the observations.
pcml represents the fraction of the mean τK values of a model that are higher than the observational mean τK (see Fig. 4). Values are
displayed for all nine historical ensembles and the control ensembles of the four well-agreeing historical ensembles. piControl ensembles are
run under pre-industrial conditions. Ensembles that have good agreement have at least one member that does not significantly differ from the
observations, according to the KS test.

Model Historical piControl

pcml of KS test KS test highest p pcml of KS test KS test highest p
τK Fp>0.05 (member) τK Fp>0.05 (member)

MIROC-ES2L 0.04 6/30 0.97 (13) < 0.01 1/20 0.29 (9)
ACCESS-ESM1-5 0.02 3/40 0.56 (13) 0.01 1/20 0.21 (12)
CanESM5 < 0.01 2/25 0.75 (24) 0.02 4/40 0.84 (20)
MPI-ESM1-2-LR 0.01 2/30 0.22 (28) 0.02 3/40 0.40 (14)

MPI-ESM1-2-HR < 0.01 0/10 < 0.05 (–)
CESM2 < 0.01 0/9 < 0.05 (–)
EC-EARTH3-Veg < 0.01 0/7 < 0.05 (–)
IPSL-CM6A < 0.01 0/33 < 0.05 (–)
INM-CM5-0 < 0.01 0/10 < 0.05 (–)
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runs with largest positive and negative historical trends from
MPI-ESM1-2-LR (Fig. 5). This is Shared Socioeconomic
Pathway 5 with a radiative forcing of about 8.5 W m−2 at
the end of the century (SSP5-8.5). Under this strong forcing
future scenario, the model exhibits a slightly increasing trend
in AR(1), along with a decreasing trend of LAI of on aver-
age −0.05 m2 m−2. Neither of the two extreme runs nor any
other ensemble members exhibit an abrupt decline in LAI. In
fact, we do not observe a regime shift in any of the other four
models that passed the KS test. The linear deterioration of
forest viability can be caused by a variety of factors includ-
ing limited water availability or progressing land use change
(Fig. A7). However, the changes induced by future forcing
do not facilitate the bifurcation-like behavior of the system.

4 Conclusions

In this study, we have tested the idea that trends in the per-
sistence of vegetation density anomalies can be used as an
early-warning signal for the Amazonian rainforest. This is
particularly concerning against the backdrop of a large ob-
served trend since 1991, suggesting that the forest has under-
gone a pronounced loss of resilience (Boulton et al., 2022).
The trend in the anomaly persistence is quantified through
the lag-1-year correlation, AR(1).

To this end, we inspect simulations from nine Earth sys-
tem model ensembles initialized with different initial con-
ditions in 1850, such that variations within each ensemble
are an expression of the internal variability simulated by that
particular model. We find that four of the models have en-
semble members that are statistically indistinguishable from
the observed trend. Of the other models with 10 or fewer
realizations, 4 did not have a matching realization, and 1
model with 33 realizations clearly underperformed. Of the
four well-performing model ensembles, three of them also
showed trends similar to the observations in their unforced
control simulations. These results suggest that the observed
trend could simply be an expression of the internal variabil-
ity and that longer data records would be needed to show that
the opposite is the case.

This result is further corroborated by the spatial distribu-
tion of the increasing trend in AR(1) in the model simula-
tions. Here it is found that ensemble members with substan-
tial positive or negative trends show these in relatively large
regions but not necessarily in those regions with large an-
thropogenic deforestation. This suggests that such anomalies
could be associated with large-scale weather events.

We finally check whether trends in AR(1) can be used as
an early-warning signal by investigating the relationship be-
tween the recent past and the rainforest evolution in future
strong warming scenario projections (SSP5-8.5). However,
there is no such relationship, and furthermore, none of the
future simulations exhibits rapid transitions.

It is worth noting that even if the results presented here
suggest that the Amazon rainforest has not lost its resilience
and is unlikely to undergo bifurcations in the future, it does
not mean the forest is invulnerable to human-caused stresses
from global warming, deforestation, and fires. On the con-
trary, the results presented here suggest that global warm-
ing, as a major historical and future forcing in models, plays
a minor role in the observed rapid decline in rainforest ex-
tent. Mitigation strategies to limit future rainforest loss could
therefore be most effective when focusing on other, human-
induced stress factors.

Appendix A

Figure A1. Kendall’s τK distributions for three different VOD
resolutions (0.25°× 0.25° original VODCA). The means of these
histograms are, respectively, τK,0.25° =0.22, τK,0.5° =0.22, and
τK,1° =0.21. We use the 1°× 1° resolution for our analysis since
it is the closest to the model resolutions.
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Figure A2. Maps of τK of MPI-ESM1-2-LR members, according to Fig. 3. The spatial mean for each run is indicated, and the observational
value is τK =0.21 (resolution 1°× 1°).

Figure A3. Cumulative distribution functions of τK for observations and CanESM5. Significant resemblance (p > 0.05) according to the
KS test is marked in red.
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Figure A4. Cumulative distribution functions of τK for observations and ACCESS-ESM1-5. Significant resemblance (p > 0.05) according
to the KS test is marked in red.

Figure A5. Cumulative distribution functions of τK for observations and MIROC-ES2L. Significant resemblance (p > 0.05) according to
the KS test is marked in red.
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Figure A6. LUCC difference between 2014 and 1990, as prescribed by LUH2 v2h (Hurtt et al., 2020), in CMIP6 models. (a) C3 annual
crops (most small-seeded cereal crops), (b) primary forested land, (c) rangeland, and (d) pasture. Agricultural activity (a, c, d) increased
particularly in the southeastern regions of the Amazon, while primary forested land (b) declined in the same areas.

Figure A7. LUCC difference between 2100 and 2015, as prescribed by LUH2 v2f SSP5 (Hurtt et al., 2020), in CMIP6 models. (a) C3 annual
crops (most small-seeded cereal crops), (b) primary forested land, (c) rangeland, and (d) pasture. Particularly primary forested land reduction
(b) effects increased in parts of the Amazon basin.
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Figure A8. Anomaly of the spatially averaged AR(1) series for observations and the best-agreeing member for each historical ensemble.
The anomaly is computed by subtracting the temporal mean from the time series and is plotted at the end of the 5-year sliding window. The
best-agreeing member is shown in parentheses behind the model (the member number shown here agrees with the realization number of the
CMIP6 variant ID) and chosen according to its trend statistic τK.

Data availability. The data of the CMIP6 models can be down-
loaded from the Earth System Grid Federation (ESGF) portal
of the German Climate Computing Centre (DKRZ) at https:
//esgf-node.llnl.gov/projects/cmip6/ (last access: 15 May 2023,
CMIP6_database, 2021). The observational VOD data are available
at https://doi.org/10.5281/zenodo.2575599 (Moesinger et al., 2019,
last access: 18 March 2023). Land use and land cover data can be
found at https://luh.umd.edu/data.shtml (last access: 21 April 2023,
LUH2_database, 2016). The outlines of the Amazon rainforest
are taken from RAISG https://www.raisg.org/en/maps (last access:
10 March 2023, RAISG_data, 2023).
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