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Abstract. Global cropland expansion has been recognized as a key driver of food security. However, cropland-
expansion-induced alterations in biophysical properties of the Earth’s surface and greenhouse gas emissions may
potentially impact the Earth’s climate system. These changes could, in turn, affect cropland productivity and the
potential distribution of croplands, although the underlying mechanisms remain relatively underexplored. In this
study, a global climate model was employed to quantify the impact of global cropland expansion on cropping
potential utilizing observed and derived cropland expansion data. Our findings reveal that since 10 000 BCE, a
28 % increase in cropland expansion has led to a 1.2 % enhancement in global cropping potential owing to more
favorable precipitation and temperature conditions. This suggests that global cropland expansion yields dual
benefits to crop production. However, in regions with low growth rates of cropping potential, cropland expansion
proves to be an inefficient method for augmenting the yield of local crop potential. As croplands continue to
expand worldwide, the capacity to support populations in different regions is altered, thereby reducing cropping
potential inequality among nations.
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1 Introduction

Land use change is the fundamental result of human activi-
ties that disturb the Earth’s surface, and it plays a crucial role
in global change (Rockström et al., 2009; Foley et al., 2005;
Sasmito et al., 2019). This change in land use is closely con-
nected to climate change, ecological environmental change,
the sustainable utilization of natural resources, and human
health (Kates et al., 2001; Wall et al., 2015; Hasan et al.,
2020). The growth of population and economic development
has generated an increasing demand for land commodities,
which accelerates a continuous expansion of global agricul-
tural land through activities such as deforestation, reclama-
tion of grasslands, and the conversion of cropland from lakes
(Zabel et al., 2019; Foley et al., 2005). At present, approxi-
mately 40 % of the Earth’s ice-free land surface is used for
agricultural activities, totaling over 1500 million hectares
(Mha) of cropland (Ramankutty et al., 2008; Ritchie and
Roser, 2013; Potapov et al., 2022; Yu et al., 2013). Moreover,
the expansion of cropland is projected to continue under all
scenarios (Hurtt et al., 2020; Liu et al., 2017), emphasizing
the importance of such expansion in ensuring food security
and agricultural production in response to rapid population
growth (Levers et al., 2016; Delzeit et al., 2017).

While existing research primarily focuses on the effects of
cropland expansion on soil degradation, climate change, and
biodiversity loss (Ortiz-Bobea et al., 2021; Searchinger et al.,
2015), limited knowledge exists regarding the repercussions
of this expansion on the croplands themselves. Previous stud-
ies examining the impacts of historical cropland expansion
have often been complicated by land use changes unrelated to
agricultural expansion and contraction (Lawrence and Chase,
2007; Sterling et al., 2013). Several studies have analyzed the
effects of land cover changes on climate change. For exam-
ple, Lawrence et al. (2007) used MODIS data to further our
understanding of land cover changes and found that changes
in soil cover led to local warming and drought near the
ground (Lawrence and Chase, 2007). Yan et al. (2017) stud-
ied climate change caused by land cover from 1 to 2000 CE
using an Earth system model and found that an increase in
cropland and a decrease in forests corresponded to a down-
ward trend in the global average annual temperature. Con-
versely, Sampaio et al. (2007) discovered that large-scale de-
forestation, resulting from rangeland and soybean expansion
in the Amazon, significantly alters regional climate, lead-
ing to warming and dryness after deforestation. Additionally,
Arora and Montenegro (2011), using climate models com-
bined with the carbon cycle, found that if all or half of the
world’s agricultural land were allowed to revert to forest,
temperatures would be 0.45 °C and 0.25 °C lower by 2100
compared to scenarios in which no reversion occurs. How-
ever, these studies generally consider changes in all land
types, and, thus, the specific influence of cropland expansion
on climate change remains under-quantified.

Furthermore, cropland expansion often involves the en-
croachment of agricultural activities on other land types, such
as deforested areas and grasslands (Liu et al., 2018; Ba-
har et al., 2020). However, due to the ongoing depletion of
natural resources, sustainable intensification of cropland has
emerged as a means of feeding a growing population while
ensuring both human and environmental well-being (Cole
et al., 2018; Godfray et al., 2010). This approach involves
practices such as multiple cropping, fertilization, irrigation,
and agricultural mechanization, all aimed at enhancing agri-
cultural productivity within existing cropland (Mauser et al.,
2015). These sustainable approaches are expected to play a
substantial role in increasing future food production as more
effective strategies (Wu et al., 2014; Folberth et al., 2020).

The dynamic changes in cropland, including its status and
cropping potential, have significant impacts on global cli-
mate change, terrestrial ecosystems, biogeochemical cycle
processes, and global land–ocean interactions (Bennett et al.,
2001; Defries et al., 2004; Zhao et al., 2019; Steinfeld et
al., 2006). Research on the potential of cropland is there-
fore of great importance in understanding and responding to
changes in regional and global ecological environments (Hu
et al., 2020). It can help fully explore the potential of crop-
land based on its existing extent, provide better guidance for
land use planning, facilitate adjustments in agricultural struc-
ture, and coordinate grain trade (Parodi et al., 2018; Mehrabi
et al., 2018). Moreover, changes in the spatial distribution
of cropland can affect global climate change through atmo-
spheric circulation, which, in turn, further affects cropland
itself (Bonan et al., 1992; Brovkin et al., 2004; Iizumi and
Ramankutty, 2015; Yang et al., 2015). Quantifying and un-
derstanding the impact of global cropland dynamics on the
climate production potential of cropland can assist decision-
makers in considering the sustainability of actions within
evolving cropland landscapes (Fischer et al., 2005; J. Wang
et al., 2018). This, in turn, can contribute to sustainable crop-
land development, serve the goals of sustainable agricultural
development and food security, and contribute to the achieve-
ment of the United Nations Sustainable Development Goals
(SDGs; UN, 2018).

In this study, we utilized an Earth system model to assess
the influence of cropland-expansion-induced climate change
on global cropping potential. Our model simulation incorpo-
rated observed and derived data on cropland expansion and
contraction from 10 000 BCE to 2015, while keeping other
land categories unaffected by these changes. Through Earth
system model experiments, we examined the resulting tem-
perature and precipitation conditions to assess the impact of
global cropland expansion on total cropping potential using
a cropping potential model. Subsequently, we analyzed re-
gional changes in cropping potential and formulated specific
policy recommendations for different geographical regions.
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2 Methods

2.1 Cropland expansion datasets from HYDE

The History Database of the Global Environment (HYDE
version 3.2) datasets are used to extract the cropland ex-
pansion distribution from 10 000 BCE to 2015 (Klein Gold-
ewijk et al., 2017). For further use in our research, multi-
ple land types in HYDE datasets are divided into six gen-
eral types (i.e., bare land, cropland, grassland, ice/snow, ur-
ban area, and woodland) according to a general classifica-
tion system of Finer Resolution Observation and Monitor-
ing of Global Land Cover (FROM-GLC) based on Gong et
al. (2013) and Liu et al. (2018; see Table S2 in the Supple-
ment). Considering the HYDE datasets have no clear-cut dis-
tinctions between seminatural and treeless lands, wild lands,
remote and treeless lands, and barren lands, a global poten-
tial vegetation dataset (PV) is introduced to discriminate the
10 000 BCE land cover. All the cropland expansion datasets
for 10 000 BCE, 1850, 1990, and 2015 are shown in Fig. S1
in the Supplement, representing the land cover distribution
derived from HYDE and PV. To ensure that only cropland ex-
pansion is retained in this research, we only keep areas with
land cover changes in cropland, and other areas of variation
are set the same as the base year of 2015 (see the example in
Fig. S2). Then, to fit the resolution of the following climate
model at ∼ 2°, we aggregated the original 1 km resolution
into 2°× 2° grid cells and calculated the area proportions of
every land cover change type in each 2° grid cell (see the
example in Fig. S3).

2.2 Global climate model

The global climate model (GCM) used in this study is the Na-
tional Center for Atmospheric Research (NCAR) Commu-
nity Earth System Model version 1.2.1 (CESM1.2.1), includ-
ing atmosphere, land, ocean, and sea ice component models.
The most relevant components for this study are the atmo-
sphere and land components represented by the Community
Atmosphere Model version 5.3 (CAM5.3) and the Commu-
nity Land Model version 4 (CLM4), respectively. The relia-
bility of the CESM has been confirmed in numerous previ-
ous studies, making it suitable for applications such as cli-
mate change simulation and climate model analysis (Hurrell
et al., 2013; Kay et al., 2015). CAM5.3 uses a finite-volume
dynamical core and a suite of parameterization schemes for
representing various atmospheric physical and chemical pro-
cesses (Neale et al., 2010). In the CLM4, including multi-
ple land surface processes (Oleson et al., 2010), spatial land
surface heterogeneity is represented as fractional coverages
of multiple land types coexisting in each grid cell. The four
cropland expansion datasets (10 000 BCE, 1850, 1990, and
2015) derived from HYDE are further handled to follow the
land cover classification of the CLM4. Each cropland ex-
pansion dataset includes six types of land cover. The wood-

land land type could be further disaggregated into forest and
shrubland according to the mean annual proportion of the Eu-
ropean Space Agency Climate Change Initiative Land Cover
(ESA CCI-LC) dataset (Defourny et al., 2017, 2009). The
fractional coverage of bare land, cropland, ice/snow, and ur-
ban coverage types can be directly applied to the model. At
the same time, those of the other land cover types need to be
divided into corresponding subtypes in the CLM4 according
to their relative ratios (Liu et al., 2021; Figs. S4–S7).

2.3 Experimental design

This study focuses on the climatic effects of the external
forcing of cropland expansion. Therefore, four simulation
groups are conducted: crop10000BCE, crop1850, crop1990,
and crop2015, which are driven by different land surface data
of 10 000 BCE, 1850, 1990, and 2015, respectively. These
simulation experiments, only differing in cropland cover,
were run in the Atmospheric Model Intercomparison Project
(AMIP) type using fully prognostic atmosphere and land
models with prescribed, seasonally varying present-day cli-
matological (1981–2001 mean) sea surface temperatures and
sea ice concentrations (Hurrell et al., 2013). Other external
forcings, such as solar radiation, anthropogenic aerosol emis-
sions, and greenhouse gas concentrations, were also fixed
in the present-day climatological conditions (Eyring et al.,
2016). This is because, taking into account the nonlinear re-
sponses of climate to external forcings (Rohrschneider et al.,
2019), employing various external forcing levels would in-
evitably perturb the signal of the external forcing of cropland
expansion. Each simulation group has 10 simulations, differ-
ing in their initial conditions by adding a random round-off
level (order of 10−14 K) error to the initial air temperature
fields, and these simulations are run for 15 years at a hori-
zontal resolution of ∼ 2°. The first 10 years are regarded as
spin-up, and the last 5 years of daily output are used for fur-
ther analysis.

2.4 Diagnosis of surface air temperature and
precipitation changes

Surface air temperature changes induced by cropland expan-
sion are diagnosed by the thermodynamic energy equation
in the pressure coordinate (Chemke et al., 2016; Lee et al.,
2011), which is given by Eq. (1):

δT ≈ γ−1
(
−δ(V h · ∇hT )+ δ

(
Spω

)
+ δQs+ δQld

+δFsh+ δQq
)
, (1)

where δ denotes the differences between simulation experi-
ments (here crop2015 minus crop10000BCE, crop1850, and
crop1990) and the overbar denotes the mean time. T is the
surface air temperature, and the right-hand side of the equa-
tion shows respective contributions to its changes. The first
term is the horizontal temperature advection, in which Vh is
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horizontal wind. The second term is adiabatic warming/cool-
ing, where Sp is the atmosphere stability parameter and ω is
the vertical velocity in the pressure coordinate. The remain-
ing four terms represent the shortwave radiative heating rate,
surface downward longwave flux, surface sensible heat flux,
and latent heat release plus vertical diffusion. The units of
the six terms on the right-hand side are unified to W m−2

by multiplying the specific heat capacity of air and the air
mass per unit area near the surface (Chemke et al., 2016).
The influence of surface sensible and latent heat fluxes on air
temperature changes encompasses the impacts of numerous
biophysical factors, including surface albedo, surface emis-
sivity, aerodynamic resistance, and surface resistance (Lee et
al., 2011; Chen et al., 2020). This is because these biophys-
ical factors directly affect surface temperature, thereby in-
directly influencing near-surface air temperature through the
near-surface turbulence of sensible and latent heat (Zeng et
al., 2017; Li et al., 2020).

Precipitation changes induced by cropland expansion are
examined by the atmospheric moisture budget equation
(Y. Wang et al., 2018), which is given by Eq. (2):

δP ≈ δ(−W∇ ·V )+ δ(−V · ∇W )+ δE, (2)

where P denotes precipitation, W is the column-integrated
precipitable water, V represents the total horizontal moisture
transport normalized by theW , andE is the evaporation. Pre-
cipitation changes can be disentangled from moisture conver-
gence, moisture advection, and evaporation on the right-hand
side.

2.5 Bias correction of model simulations

We use the widely applied “delta method” for climate
model bias correction (Diffenbaugh and Burke, 2019),
in which model-simulated changes are applied to obser-
vations. AgERA5 (Agrometeorological ECMWF Reanaly-
sis v5, Agrometeorological European Centre for Medium-
Range Weather Forecasts Reanalysis v5) is used for correc-
tions of surface air temperature and precipitation from the
simulations. This dataset provides daily surface meteorolog-
ical data from 1979 to the present as input for agriculture
and agroecological studies. The averaged values from 2010
to 2019 of AgERA5 replace the simulation results of the
crop2015 simulation. Those of the other three experiments
are calculated as the AgERA5 added by their respective dif-
ferences from the crop2015. Moreover, we verified the cor-
rectness of the corrected temperature and precipitation by an-
alyzing spatial distributions and the PDF (probability density
function) (Figs. S8–S11). The results show that the CESM
can capture the spatial distributions and PDFs of temperature
and precipitation in ERA5 well.

2.6 Climate cropping potential intensity model

Climate cropping potential denotes the utmost capacity for
multi-cropping, which is achievable after thorough climate
resource assessment. The climatological precipitation and
temperature affect the climate cropping potential and set the
upper limit. Based on this restriction, the Global Agroeco-
logical Zones (GAEZ) model is introduced here to assess the
multiple cropping potential through matching both growth
moisture and temperature requirements of individual suitable
crops with the time available for crop growth (Fischer et al.,
2021). Delineation of multiple cropping zones is solely based
on agroclimatic attributes calculated during the GAEZ analy-
sis. On the supply side, we introduced precipitation as a water
indicator as Wu et al. (2018) used and the following climatic
characteristics for each pixel at a global scale:

a. annual average temperature

b. total annual precipitation

c. TSt=0 accumulated temperature on days when mean
daily temperature ≥ 0°

d. TSt=10 accumulated temperature on days when mean
daily temperature ≥ 10°

e. LGPt=5 number of days with mean daily temperatures
above 5°

f. LGPt=10 number of days with mean daily temperatures
above 10°.

Tables S4 and S5 summarize the delineation criteria for crop-
ping potential zones in the tropics and the subtropics/temper-
ate zones, combining the GAEZ model and precipitation.

2.7 Cropland pressure index

To quantify cropland pressure driven by cropland expansion
in different regions (Calvin et al., 2017) of Table S1, an in-
dex is introduced here. The current cropland potential area
for each region is aggregated spatially based on HYDE 2015
cropland area weighted by the cropping potential. The crop-
land pressure index is calculated by dividing the total popu-
lation by cropland potential area over the regions. The cur-
rent population is estimated based on populations from 2015
(Worldpop2015, Lloyd et al., 2019), the same year as HYDE
2015. The global gap of cropland pressure index is based on
the top 10 and bottom 10 regions, which is approximately the
interquartile range.

3 Results

3.1 Changes in croplands and associated climates

As shown in the History Database of the Global Environ-
ment (HYDE version 3.2) datasets for cropland distribution

Earth Syst. Dynam., 15, 817–828, 2024 https://doi.org/10.5194/esd-15-817-2024



X. Liu et al.: Global cropland expansion enhances cropping potential 821

Figure 1. Global distribution and fractional changes in cropland. (a) Cropland distribution in 2015. (b–d) Fractional changes in cropland
relative to 2015 for 10 000 BCE (b), 1850 (c), and 1990 (d).

(Foley et al., 2005; Klein Goldewijk et al., 2017), the global
mean cropland proportion increased from 0 % in 10 000 BCE
to 28.5 % in 2015 (Fig. 1a). The historical development pro-
cess (Fig. S12) reveals that prior to 10 000 BCE, there was
no cropland, and the vegetation coverage was entirely natu-
ral. Subsequently, croplands gradually expanded until 1850
when rapid growth ensued. By 1990, cropland expansion
reached a plateau, with negligible growth observed by 2015.
Consequently, we selected key time points (10 000 BCE,
1850, 1990, and 2015) to represent the historical evolution
of croplands. Global cropland expansion from 10 000 BCE
to 2015 predominantly occurred in eastern America, Europe,
central Africa, India, and China (Fig. 1b), with notable reduc-
tions in forests followed by declines in grasslands and shrub-
lands (Fig. S13). From 1850 to 2015, croplands in America,
Europe, Africa, and Asia continued to increase despite the
encroachment of forests, grasslands, and shrublands. The rate
of cropland expansion slowed due to the utilization of easily
convertible land for crops and increased the yield per unit
area resulting from industrial fertilization, ultimately lead-
ing to decreases in some areas (Fig. S14). Between 1990 and
2015, cropland coverage declined in America, Europe, and
China, attributable to expansions in forests, grasslands, and
urban areas. However, significant cropland expansions per-
sisted in the Amazon and Africa (Fig. S15).

With observed land cover in 2015 and cropland-induced
changes for 10 000 BCE, 1850, and 1990 (Figs. 1 and S12–
S15), we performed four sets of experiments using the
National Center for Atmospheric Research (NCAR) Com-

munity Earth System Model version 1.2.1 (CESM1.2.1)
to obtain climates associated with the cropland states for
10 000 BCE, 1850, 1990, and 2015 (see Methods). The sig-
nificant cropland expansion from 10 000 BCE to 2015 led
to notable changes in surface air temperature and precipi-
tation (Fig. 2a and b). The pronounced warming observed
over northern Eurasia primarily resulted from warm air
temperature advection due to modified atmospheric circu-
lation and increased downwelling longwave radiation. The
warming further leads to increased atmospheric heat stor-
age and enhanced water vapor due to the greater atmo-
spheric water-vapor-holding capacity. Therefore, the long-
wave downwelling flux is increased, contributing to the
warming. The warming tendency in the low-latitude tropics
is mainly associated with the warming effect of the reduced
surface evaporation due to cropland expansion. The cooling
tendency in the subtropics is dominated by the cool advection
and decreased downwelling longwave radiation. The cool-
ing effect over eastern North America can be ascribed to re-
duced surface sensible heat and decreased downwelling long-
wave radiation. The reduced sensible heat fluxes over eastern
North America and Europe are due to the smaller surface
roughness of cropland compared with the forest, enhanc-
ing aerodynamic resistance to sensible heat diffusion from
the land surface to the atmosphere. Enhanced precipitation
over Europe mainly arose from increased moisture advec-
tion, while diminished precipitation over India was linked
to reduced moisture convergence and evaporation. The de-
creased precipitation over India further leads to increased
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Figure 2. Temperature and precipitation changes from 10 000 BCE to 2015 due to cropland change. (a) Annual mean temperature. (b) Annual
mean precipitation. (c) TSt=0. (d) TSt=10. (e) LGPt=5. (f) LGPt=10. Inset box charts show the global mean value for each variable relative
to 2015 for 10 000 BCE, 1850, and 1990. The solid black dots indicate the pixels passing a two-sample t test (95 % confidence level).

concentration of absorptive aerosols, such as black carbon
and dust, and it contributes to the warming there (Fig. S16d).

In addition to the annual surface air temperature and pre-
cipitation changes from 10 000 BCE to 2015 (Fig. 2a and b),
the temperature-derived variables also used for the climate
cropping potential intensity model (see Methods) are shown
in Fig. 2c–f. The annual average temperature in high latitudes
of North America, Eurasia, India, South America, central
Africa, and South Africa is on the rise. At the same time, a
significant cooling trend is shown in central and eastern Asia,
the Middle East, North Africa, and most of the United States,
resulting from the combined effects of reduced sensible heat
fluxes, decreased longwave downwelling fluxes, and cool
advection. TSt=0 (accumulated temperature on days when
mean daily temperature ≥ 0°), TSt=10 (accumulated temper-
ature on days when mean daily temperature ≥ 10°), LGPt=5
(number of days with mean daily temperatures above 5°),
and LGPt=10 (number of days with mean daily temperatures

above 10°) resemble the annual average temperature, except
for LGP in the tropical zones. Similar changes for tempera-
ture and precipitation from 1850 to 2015 and 1990 to 2015
were also found (Figs. S18 and S19).

3.2 Increased cropping potential

To explain the effects of cropland expansion on cropping po-
tential, we use the improved Global Agroecological Zones
(GAEZ) model to calculate the cropping potential using bias-
corrected hydrothermal conditions from simulations (see
Methods). Our findings reveal that global expansion from
10 000 BCE to the present augments the total climate crop-
ping potential, with a cumulative value of 0.006 across the
entire period (Fig. 3a). Additionally, over the time from
10 000 BCE to 2015, the average increase in cropping poten-
tial was 0.0004 per 1 % expansion of cropland, 0.0024 per
1 % expansion from 1850 to 2015, and 0.0268 per 1 % ex-
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Figure 3. Cropping potential changes and causes from 10 000 BCE to 2015. (a) Cropping potential distribution changes superposed by the
cropland expansion fraction (contours). Inset box charts show the global mean cropping potential distribution changes (%) relative to 2015
for 10 000 BCE, 1850, and 1990. The inset bar chart represents the cropping potential from 10 000 BCE to 2015, and the line denotes the
global mean cropland fraction. The solid black dots indicate the pixels passing a two-sample t test (95 % confidence level). (b, c) Global
distributions of causes for increasing (b) and decreasing (c) cropping potential from 10 000 BCE to 2015. Increased cropping potential caused
by precipitation is shown in blue, LGPt=5 or LGPt=10 in pink, and TSt=0 or TSt=10 in yellow. Combinations of the two factors are shown
in purple (precipitation and LGPt=5 or LGPt=10; both factors promote the cropping potential growth), orange (LGPt=5 or LGPt=10 and
TSt=0 or TSt=10), and green (precipitation and TSt=0 or TSt=10). Grey indicates the increase for all the three factors: precipitation, LGPt=5
or LGPt=10, and TSt=0 or TSt=10.
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Figure 4. Cropping potential inequality at regional scale from 10 000 BCE to 2015. The background color represents the cropping potential
value in 2015, with the transparency indicating the cropland fraction in this region: the darker the color, the larger the fraction of cropland.
The grey circle shows the cropping potential growth rate (×10000) from 10 000 BCE to 2015, and the ∗ in red means the region passed the
significance test of 90 %. The red bar and the area chart display the crop pressure index in 2015 and the top 10 and bottom 10 regions from
10 000 BCE to 2015. In the inner plot, the x axis represents the top 10 countries of the “rich” (green line) cropland pressure index and the
bottom 10 countries of the “poor” (blue line) cropland pressure index. The number in the blue area displays the cropland pressure index gap
between rich and poor regions.

pansion of cropland during 1990–2015, mirroring the slowed
cropland expansion rate. A 1.2 % enhancement in global
cropping potential was observed within the timeframe of
10 000 BCE to 2015 (see inset bar chart in Fig. 3a). That is,
with the development of history, the rate of cropland expan-
sion has slowed down, but the rate of increase in cropping
potential caused by cropland expansion has increased signif-
icantly.

Consequently, the cropping potential attributable to the
percentage of cropland expansion rises considerably. In gen-
eral, cropland expansion contributes to an enhanced cropping
potential, yielding a twofold increase in crop potential. This
outcome signifies an elevated upper limit for planting and in-
creased efficacy of irrigation for fertilization through strate-
gic cropland expansion. Hence, regulated cropland expan-
sion could prove advantageous for croplands by amplifying
cropping potential.

From a spatial perspective, there are both upward and
downward trends for cropping potential from 10 000 BCE to
2015 (Fig. 3a). Cropland expansion leads to different crop-
ping potential changes among separate areas. There is a ten-
dency to decrease the cropping potential in several major
agricultural areas, particularly in Asia (central Asia, India,
and China) and the northeastern United States, which be-
long to the temperate and subtropical east coast. The de-
cline for central Asia and India is mainly from all the climate
variables, and for China it is mainly from the precipitation
and TS-related variables. In contrast, the temperature-related
variables occupy the dominant position for the northeast-

ern United States (Fig. 3c). While in Europe, South Amer-
ica, and South Africa, which belong to the tropical zones or
close to the west coast zones, all agricultural areas are im-
proving their cropping potential caused by the increase in
temperature-related variables and precipitation in some cases
(Fig. 3b). For areas that are not currently covered by cropland
(out of the contour), e.g. the Middle East and north Aus-
tralia, cropland has not expanded. Their cropping potential
has declined due to the decrease in temperature and precipita-
tion affected by cropland expansion in other areas. However,
in northern Eurasia, the overall cropping potential for crop-
land, due to climate change caused by cropland expansion, is
getting better, which demonstrates more favorable climatic
conditions for crop growing as a result of cropland expan-
sion elsewhere. Similar changes for temperature and precip-
itation from 1850 to 2015 and 1990 to 2015 were observed
(Figs. S20 and S21).

3.3 Reduced cropping potential inequality

For further analysis of cropping potential inequality across
the globe, an index called the cropland pressure index is in-
troduced here. The cropland pressure index presents the pres-
sure for cropping potential capacity (based on the cropland
distribution) to carry the current population in each region
(see Methods). The pressure for several leading agricultural
powers is small, such as China, Russia, the United States,
and India (Fig. 4). Even West Africa shows minimal pres-
sure because of considerable cropping potential. At the same
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time, other regions are under great cropland pressure due to
their high-density population on little cropland in places such
as Japan or their inability to do anything about the potential
of future cropland, such as the Middle East. The area chart
from 10 000 BCE to 2015 is included here to quantify the
inequality between regions (Fig. 4), indicating the cropland
pressure index gap among the interquartile range (reduced by
≈ 20). Luckily, the cropland pressure index gap between rich
and poor regions has narrowed, and inter-regional trade, such
as the global trade in agricultural products, also narrows the
gap.

From a historical development perspective, as the growth
rate from 10 000 BCE to 2015 in Fig. 4 shows, the big-
ger and whiter the circle is, the faster the cropping poten-
tial growth rate, which means a huge potential for further
cropland expansion. The figure shows that it nearly follows
the trend of decreasing cropping potential growth from high
latitudes to low latitudes (Chen, 2018; IPCC, 2014; Zhang
and Ma, 2019). The region with the fastest growth potential
is northern Europe (European Free in Table S1). The min-
imum potential growth rate is in Southeast Asia, indicating
the higher latitudes have greater potential for improving hy-
drothermal conditions. The cropping potential growth rate in
Africa, eastern Asia, and some Latin American countries is
relatively rapid worldwide, with China, Japan, and Argentina
passing the significance test, revealing the huge cropping po-
tential of cropland expansion for these regions in the future.
As for those regions with lower growth rates, the cropland
expansion might be a low-efficiency way to increase the crop
potential yield.

4 Conclusions

In conclusion, the study indicates that, spanning from
10 000 BCE to 2015, significant expansion of cropland has
led to notable changes in near-surface temperature and pre-
cipitation patterns. Notably, average annual temperatures in
high latitudes across regions like North America, northern
Eurasia, India, South America, and central and southern
Africa have been on the rise. Conversely, central and east-
ern Asia, the Middle East, northern Africa, and much of
the United States have experienced a distinct cooling trend.
Moreover, total annual precipitation has notably decreased in
subtropical regions such as southern China, Thailand, India,
the Middle East, and northern Africa, while tropical regions
such East Africa, central Africa, and Southeast Asia have
predominantly seen precipitation increases. These varied cli-
mate shifts have resulted in disparities in cropping potential
across different regions.

Several major agricultural zones, notably in central Asia,
India, China, and northeastern United States, have observed
a decline in cropping potential. However, agricultural regions
such as Europe, South America, and South Africa, where
cropland is expanding, have witnessed an increase in crop-

ping potential. Additionally, the growth rate of cropping po-
tential generally follows a pattern of diminishing rates from
high latitudes to low latitudes, indicating a greater cropping
potential for improving hydrothermal conditions in higher
latitudes. In regions with low potential growth rates of crop-
land, expanding cropland has minimal impact on enhancing
local potential production.

When assessing current cropland pressure based on crop-
ping potential, several major agricultural countries face min-
imal pressure, while other regions struggle with significant
pressure due to population density on limited cropland or
challenges in accessing cropping potential. Nevertheless, a
positive observation is that the global disparity in cropland
pressure has decreased, reflecting a reduction in inequality in
cropping potential among regions. Overall, cropland expan-
sion has led to an increase in cropping potential, highlighting
the dual benefits of global cropland expansion for total crop
production.

However, it is worth noting that all information presented
is based on climate cropping potential, and experiments are
conducted using only one climate model, which may be in-
sufficient. Specific circumstances must also be determined
based on factors such as soil conditions and altitude when im-
plemented on the ground. Additionally, significant changes
in cropping potential are globally observed only in promi-
nent climate change regions. This study reveals the overall
trend conclusion from a global perspective, and the accurate
benefits brought by cropland expansion need to be analyzed
based on specific regional conditions.
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