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Abstract. Our study utilizes a global reanalysis of near-surface daily air temperature data spanning the years
from 1949 to 2019 to construct climate networks. By employing community detection for each year, we reveal
the evolving community structure of the climate network within the context of global warming. Our findings
indicate significant changes in measures such as network modularity and the number of communities over the
past 30 years. Notably, the community structure of the climate network has undergone a discernible transition
since the early 1980s. We attribute this transition to the substantial increase in isolated nodes since the 1980s,
primarily concentrated in equatorial ocean regions. Additionally, we demonstrate that nodes experiencing ampli-
fied isolation tend to diminish connectivity with other nodes globally, particularly those within the same oceanic
basin, while showing a significant strengthening of connections with the Eurasian and North African continents.
We deduce that the mechanism driving amplified isolation in the climate network may be comprehended through
the weakening of tropical circulations, such as the Hadley cell and Walker circulation, in response to increasing
greenhouse gases.

1 Introduction

Since the 20th century, with the continuous increase in green-
house gas emissions, the global climate system has been un-
dergoing warming (IPCC, 2023; Christopher et al., 2012;
Hallegatte et al., 2011; Hunt and Watkiss, 2011). Global
warming has led to a significant increase in various extreme
weather events, such as extreme heat waves, cold spells,
heavy precipitation, droughts, and severe hurricanes. (Doney
et al., 2009; Mondal and Mishra, 2021; Konapala et al., 2020;
Mukherjee and Mishra, 2020). In addition, it has a serious
impact on global air quality, food production, energy con-
sumption, transportation, water resources, economies, and
ecosystems. (Thomas et al., 2004; Salehyan and Hendrix,
2014; Nordhaus, 2017; Burke et al., 2015). Global warm-
ing has triggered significant transformations in atmospheric
circulation and ocean circulation patterns, impacting the dy-

namics of the Earth’s climate system (Shepherd, 2014; Vec-
chi and Soden, 2007). The rise in global temperatures is a
key driver of alterations in atmospheric circulation patterns,
especially in the tropical belt, influencing phenomena like
the Hadley cell, Walker circulation, and Madden–Julian os-
cillation (Lu et al., 2007; Tokinaga et al., 2012; Hu et al.,
2021; Chang et al., 2015). The expansion of the tropics and
changes in the distribution of sea surface temperatures have
contributed to shifts in the intensity and frequency of tropi-
cal cyclones and the behavior of the El Niño–Southern Os-
cillation (ENSO) (Emanuel, 2005; Kossin et al., 2020; Cai
et al., 2021). These modifications in tropical circulations
have widespread implications for precipitation patterns, ex-
treme weather events, and regional climate variability. Ad-
ditionally, the Atlantic Meridional Overturning Circulation
(AMOC) may undergo a transition, with its potential collapse
having severe impacts on the climate in the North Atlantic
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and regions of Europe (Rahmstorf et al., 2015; Boers, 2021).
Previous studies have argued that the global climate experi-
enced a shift in the 1970s (Graham, 1994; Tsonis et al., 2007;
Swanson and Tsonis, 2009). Understanding these systematic
changes is imperative for predicting future climate scenarios
(e.g., those concerning precipitation, temperature, and wind)
and formulating effective adaptation and mitigation strate-
gies.

Faced with these systematic climatic changes, the adoption
of complex network analysis has become increasingly essen-
tial in the realm of climate science. The climate system is
intricately complex and marked by multivariable and multi-
scale nonlinear dynamics. Unveiling the internal structure of
the climate system necessitates the application of sound re-
search methods. Complex network analysis emerges as a po-
tent tool for investigating the nonlinear dynamics and struc-
tural characteristics of complex systems (Newman, 2018;
Zou et al., 2019). Over the past several years, complex net-
work methodologies have gained widespread application in
the realm of climate science. In the climate network, nodes
represent geographical locations where time series data for
temperature (or other climate variables) are accessible. Links
are established through bivariate similarity measures, such as
correlation, mutual information, or event synchronization be-
tween these time series (Tsonis and Roebber, 2004; Donges
et al., 2009; Quiroga et al., 2002). Climate network tech-
niques have proven effective in enhancing our understanding
of various climate and weather phenomena, including ENSO,
teleconnection patterns of weather, and atmospheric pollu-
tion (Tsonis and Swanson, 2008; Yamasaki et al., 2008; Fan
et al., 2017; Kittel et al., 2021; Zhou et al., 2015; Boers et
al., 2019; Di Capua et al., 2020; Zhang et al., 2019). No-
tably, complex network analysis has unveiled the weakening
of tropical circulation in response to global warming (Geng
et al., 2021; Fan et al., 2018). Furthermore, these techniques
have demonstrated their utility in forecasting climate events
(Boers et al., 2014; Ludescher et al., 2014, 2021; Meng et al.,
2018).

Complex systems naturally partition into multiple mod-
ules or communities, which is a significant feature of com-
plex networks (Palla et al., 2005). In the context of climate
networks, each community serves as a representation of a
climate subsystem, shedding light on the interrelationships
between different components (Tsonis et al., 2011). Com-
munity detection algorithms, rooted in modularity maximiza-
tion (Newman, 2006; Cherifi et al., 2019), have been pivotal
in unveiling structures within climate networks. These algo-
rithms have successfully identified community structures in
diverse contexts, including rainfall networks (Agarwal et al.,
2018), interaction networks of sea surface temperature obser-
vations (Tantet and Dijkstra, 2014), global climate responses
to ENSO phases (Kittel et al., 2021), and the quantification
of climate indices. Yet, scant attention has been given to
the impact of global warming on the community structure
of climate networks, particularly those of small sizes. This

research endeavors to employ network analysis and commu-
nity detection to investigate how global warming is reshaping
the structure of the global temperature network. The ultimate
goal is to deepen our understanding of climate change and
inform strategies for addressing its impacts.

Therefore, based on the near-surface temperature structure
of the climate network, this paper examines the impact of
global warming on the climate network. Employing the Lou-
vain community detection algorithm, it analyzes the evolu-
tion of network topology and reveals the underlying factors
driving changes in the network structure. The main structure
of this paper is as follows. Sections 2 and 3 introduce the data
and methods, Sect. 4 shows the results of the evolution of cli-
mate network topology, and Sect. 5 summarizes the results.

2 Data

This study utilizes daily air temperature reanalysis data from
the National Centers for Environmental Prediction (NCEP)
and the National Center for Atmospheric Research (NCAR)
at a resolution of 2.5°×2.5°, spanning near-surface (sig995)
temperatures from 1949 to 2019 (Kalnay et al., 1996). The
dataset comprises 10 512 grid points globally. We select 726
nodes to construct the network and maintain the spatial den-
sity homogeneity within the climate network nodes in the
sphere, as suggested in previous studies (Zhou et al., 2015;
Guez et al., 2014). These nodes are strategically spaced to en-
sure uniform coverage of the Earth in Euclidean space, as de-
picted in Fig. S1a in the Supplement. The nodes are equally
distributed, each approximately 850 km apart from its neigh-
boring node, as illustrated in Fig. S1b.

3 Methods

3.1 Constructing the climate network

Climate networks are constructed based on near-surface air
temperature data for each year from 1949 to 2019, resulting
in a total of 71 established climate networks. The time series
of a node (denoted as i) undergoes deseasonalization by sub-
tracting the average seasonal cycle and dividing the result by
the standard deviation of the cycle, resulting in a tempera-
ture anomaly (denoted as T yi (t), where y is the index of the
year) (Fan et al., 2018). To obtain the link strength between
each pair of nodes, i and j , we then calculate the time-lagged
cross-correlation function (Fan et al., 2021), expressed as

C
y
i,j (−τ )=

〈T
y
i (t)T yj (t − τ )〉− 〈T yi (t)〉〈T yj (t − τ )〉√

〈(T yi (t)−〈T yi (t)〉)2〉·√
〈(T yj (t − τ )−〈T yj (t − τ )〉)2〉

, (1)
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Figure 1. Temporal evolution of (a) network modularity, (b) the number of communities, and (c) the number of isolated nodes from 1949
to 2019; the average level is indicated by the dashed green line, and the dashed red line represents the transition around 1982. Scatterplot
illustrating (d) network modularity and (e) the number of communities versus the number of isolated nodes during the period 1949–2019.
(f) Normalized frequencies of community size for the periods 1949–1981 and 1982–2019 (normalized by the total number of communities
for each period), where the first bar represents the normalized frequency of the community with a node.

Figure 2. Occurrence probability maps of isolated nodes for (a) 1949–1981 and (b) 1982–2019.
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C
y
i,j (τ )=

〈T
y
i (t − τ )T yj (τ )〉− 〈T yi (t − τ )〉〈T yj (t)〉√
〈(T yi (t − τ )−〈T yi (t − τ )〉)2〉·√
〈(T yj (t)−〈T yj (t)〉)2〉

, (2)

where 〈〉 denotes the mean value, based on which 〈f (a)〉 =
1

365
∑365
t=1f (t − a) ; t represents time; and τ ∈ [0,200] d de-

notes the time lag.
Therefore, the link strength between each pair of nodes in

the network is denoted as follows:

W
y
i,j =

max
(
C
y
i,j (τ )

)
−mean

(
C
y
i,j (τ )

)
SD

(
C
y
i,j (τ )

) . (3)

In this context, “max”, “mean”, and “SD” denote the max-
imum value, mean, and standard deviation of the cross-
correlation over all time lags from −200 to 200 d between
nodes i and j . Strong autocorrelation can inflate the sig-
nificance of cross-correlation. In contrast, the link strength,
W
y
i,j , is more effective in mitigating the effects of autocorre-

lation, offering a more reasonable reflection of the relation-
ship between two nodes (Guez et al., 2014). This approach
has proven valuable in predicting climate phenomena (Lude-
scher et al., 2021). To select meaningful links from the net-
work and eliminate false associations, a threshold of θ = 3.5,
corresponding to a p value of 0.03 (Paluš and Novotná, 2011)
and signifying that 97 % of the values in the shuffled data fall
below this threshold (Fig. S2), is applied to obtain the adja-
cency matrix A (when W y

i,j ≥ θ , the element Aij = 1; other-
wise, the element Aij = 0).

3.2 Community detection

Subsequently, the obtained sequence of climate networks un-
derwent community detection using the Louvain community
detection algorithm. The key steps of this method involve
traversing each node in the network and attempting to relo-
cate it to a neighboring node in a different community to opti-
mize the modularityQ. If moving a node to another commu-
nity increases modularity, the move is executed; otherwise,
it remains unchanged. In other words, the process assesses
whether the increment in modularity 1Q resulting from the
move is positive, and this procedure is repeated until no fur-
ther node movements are possible. The formula for calculat-
ing modularity is expressed as follows (Blondel et al., 2008):

Q=
1

2m

∑
i,j

[
Aij −

kikj

2m

]
δ(ci ,cj ), (4)

where ki =
∑
jAij and kj =

∑
iAij (i 6= j ) – these represent

the number of links connected to the vertices (nodes) i and
j . Moreover, ci represents the community to which node
i belongs, δ(µv) = 1 if µ= v (otherwise δ(µv) = 0), and
m= 1

2
∑
ijAij . Modularity has become a metric for assessing

the quality of community divisions, with high modularity in-
dicating strong internal connections within a community and
weaker connections with other communities.

4 Results

In order to investigate the evolution of the network’s topol-
ogy in the context of global warming, we construct a net-
work for each year from 1949 to 2019 and apply community
detection to the network. In Fig. 1a, we show that network
modularity for the earlier years (1949–1981) is largely be-
low the average level, while in the more recent years (1982–
2019), network modularity remains consistently above the
average level. There is a significant transition in modular-
ity around 1982. Figure S3 illustrates the modularity values
obtained by four distinct algorithms, as outlined in Kittel et
al. (2021). The results highlight the robustness of the modu-
larity transition around 1982 across different algorithms. No-
tably, the Louvain algorithm produces the highest modular-
ity values, indicating its superior effectiveness in identifying
community structures. Both the number of communities and
modularity exhibit similar evolutionary patterns, as shown in
Fig. 1b. Although the trend in the change in the number of
communities is not as pronounced as the trend in network
modularity, it is still evident that the number of communities
was mostly below the average level in the first 33 years, while
in the latter 38 years, most community numbers are above the
average level (as shown in Fig. 1b). Figure 1c also shows the
escalating count of isolated nodes since 1982. An isolated
node is identified using a Louvain algorithm with a commu-
nity size of 1, equivalent to a degree of zero (ki = 0). The ob-
served systematic change in community structure since the
early 1980s may be linked to the reported climate shift, as
indicated in previous studies (Graham, 1994; Tsonis et al.,
2007; Swanson and Tsonis, 2009), in which both reanaly-
sis data and climate simulations are used. The substantial in-
crease in greenhouse gas emissions has contributed to a shift
in the mean climate state since the 1980s in the tropical belt
(Cai et al., 2021). This shift is further evident in the altered
properties of El Niño since the early 1980s (Gan et al., 2023).

Since 1982, the number of communities has been on the
rise. This trend appears to be closely linked to the increas-
ing count of isolated nodes. We observe the relationship be-
tween modularity and the number of isolated nodes and find
a strong positive correlation, with a correlation coefficient of
0.674 (as shown in Fig. 1d). This strong correlation with net-
work modularity indicates that the trend in the number of iso-
lated nodes is consistent with changes in the network’s topo-
logical structure. Furthermore, looking at Fig. 1e, we observe
that the correlation between the number of isolated nodes and
the number of communities reaches 0.929. This strong cor-
relation with the number of communities suggests that the
overall increase in the number of communities is driven by
the increase in isolated nodes. To further strengthen the ver-
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Figure 3. Probability maps of the Indian Ocean node and other global nodes belonging to the same community illustrating (a) the period
1949–1981, the period (b) 1982–2019, and (c) the difference in probability between 1982–2019 and 1949–1981. The green cross symbol
represents the selected Indian Ocean node.

ification of whether the changes in the number of commu-
nities and network modularity since 1982 are related to the
number of isolated nodes, we examine the normalized fre-
quency of community sizes for the periods 1949–1981 and
1982–2019 (as shown in Fig. 1f). There are two peaks for
the isolated node and the community with a size of around
60 for both 1949–1981 and 1982–2019. From 1949–1981,
the proportion of isolated nodes in the overall community
was not prominent. However, from 1982–2019, the propor-
tion of isolated nodes dramatically increased and became the
largest component in the community distribution. Therefore,
the transition in modularity and the number of communities
since 1982 can be attributed to the substantial increase in the
number of isolated nodes.

Next, we will further study the relationship between
changes in climate network structure and isolated nodes. The
occurrence probability maps of isolated nodes for 1949–1981
and 1982–2019 are shown in Fig. 2. From 1949 to 1981, a
few isolated nodes are distributed in the equatorial east Pa-
cific and equatorial Atlantic oceans, with a low occurrence
probability. However, from 1982 to 2019, the isolated nodes
with higher occurrence probabilities appear almost every-
where in the equatorial regions, leading to an increase in
the total number of communities. The occurrence probabil-
ity of isolated nodes in the last 38 years is higher than the
first 33 years and also covers a larger area than in the first

33 years. Thus, isolated nodes in the equatorial region have
been systematically increasing since the early 1980s, result-
ing in changes to the climate network structure. To estab-
lish robustness, we conduct the analysis using different com-
munity detection algorithms, a maximum time lag of 365 d,
shuffled nodes, and a 6-month shift for the time window. The
obtained results are consistent, as illustrated in Figs. S3–S12.

To gain a deeper understanding and verify how the iso-
lation in climate networks is amplified in the equatorial re-
gions, we select three nodes with the highest frequency of
isolation in three regions – the Indian Ocean, the Pacific
Ocean, and the Atlantic Ocean. We study the relationships
between the three nodes and other nodes across the climate
network structure. Specifically, we calculate the probability
of the selected node and each of the other 725 nodes belong-
ing to the same community for the time periods 1949–1981
and 1982–2019 and compute the difference between the two
time periods. This probability can reflect which important re-
gion responds to the amplified isolation of the selected node.

In Fig. 3a, for 1949–1981, the selected Indian Ocean node
exhibits high probability along with surrounding nodes be-
longing to the same community. However, for the 1982–
2019 period in Fig. 3b, this probability is weakened, partic-
ularly with regard to the oceanic regions. The difference in
probability between 1982–2019 and 1949–1981 is shown in
Fig. 3c. Blue (red) points in Fig. 3c represent the decreased
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Figure 4. Probability maps of the eastern Pacific Ocean node and other global nodes belonging to the same community illustrating (a) the
period 1949–1981, (b) the period 1982–2019, and (c) the difference in probability between 1982–2019 and 1949–1981. The green cross
symbol represents the selected eastern Pacific Ocean node.

Figure 5. Probability maps of the Atlantic Ocean node and other global nodes belonging to the same community illustrating (a) the period
1949–1981, (b) the period 1982–2019, and (c) the difference in the probability between 1982–2019 and 1949–1981. The green cross symbol
represents the selected Atlantic Ocean node.
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(increased) probability over time. In general, most areas
show decreased probability. However, some areas (i.e., the
Eurasian and North African continents) show an increased
probability of connecting to the selected Indian Ocean node.

Since the 1980s, the probabilities of the nodes in the
Pacific and the equatorial Pacific region belonging to the
same community are noticeably diminished (as shown in
Fig. 4). Examining the probability map of the selected At-
lantic Ocean node and other global nodes belonging to the
same community (Fig. 5), a similar behavior is observed.
The selected three high-frequency isolated nodes are sur-
rounded by relatively strong-connectivity regions during the
first 33 years. However, these regions experience varying de-
grees of weakening in connectivity during the subsequent
38 years. It is worth noting that since the 1980s, the connec-
tivity of high-frequency isolated nodes in the Indian Ocean,
Atlantic Ocean, and Pacific Ocean with global oceanic re-
gions has been diminishing, especially with regard to the
strength of their connections with their respective oceanic
regions, which has been significantly decreasing. However,
the association with the Eurasian and North African conti-
nents is strengthening. Previous studies have suggested trop-
ical circulations, such as the Hadley cell and Walker circu-
lation, are weakening in response to increasing greenhouse
gases (Lu et al., 2007; Tokinaga et al., 2012; Cai et al., 2021).
This weakening may contribute to the amplified isolation of
nodes in tropical oceans. Additionally, the weakened tropi-
cal circulation could potentially trigger extreme climate phe-
nomena, such as the intensification of El Niño, with more
pronounced teleconnection impacts on distant regions (Fan
et al., 2017; Hu et al., 2021). This could, in turn, strengthen
the linkage between equatorial regions and continents in cli-
mate networks.

5 Conclusions

In this investigation, we constructed a climate network us-
ing near-surface air temperature data spanning the years from
1949 to 2019. Our aim was to examine the evolution of cli-
mate network topology within the context of global warming.
To explore how global warming affects the structure of the
global climate network, we applied the Louvain community
detection algorithm.

Notably, we observed that network modularity between
1949 and 1981 remained below the overall average, whereas
between 1982 and 2019, it exceeded the overall average.
Concurrently, the trend in the number of communities from
1949 to 2019 followed a similar pattern to that of modularity.
Furthermore, the correlation coefficient between modularity
and the number of isolated nodes was found to be 0.674, and
the correlation between the number of isolated nodes and
the number of communities reached 0.929 – both of these
demonstrated statistical significance. Furthermore, we noted
a substantial increase in the number of isolated nodes since

1982. Hence, the shift in modularity and the number of com-
munities since 1982 is significantly associated with the no-
table surge in the number of isolated nodes. This systematic
shift in community structure since the early 1980s could be
related to the climate shift and the change in mean state as-
sociated with the altered properties of El Niño since the early
1980s (Graham, 1994; Tsonis et al., 2007; Swanson and Tso-
nis, 2009; Cai et al., 2021; Gan et al., 2023).

Between 1949 and 1981, isolated nodes were sporadic,
dispersed, and mainly concentrated in the equatorial Pacific
and equatorial Atlantic regions. However, from 1982 to 2019,
isolated nodes were pervasive across the entire equatorial
oceanic region. We further examined the relationship be-
tween the temperature network structure and isolated nodes
in the context of global warming. By selecting key nodes
with the highest frequency of isolation in the equatorial Pa-
cific, equatorial Atlantic, and equatorial Indian Ocean re-
gions, we investigated their likelihood of belonging to the
same community as other nodes for the periods 1949–1981
and 1982–2019. Our findings suggested that the connectiv-
ity of highly isolated nodes along the Equator is decreas-
ing, which is potentially associated with the weakening of
tropical circulations, such as the Hadley cell and Walker cir-
culation, in response to increasing greenhouse gases. This
is particularly notable with regard to their associations with
neighboring regions within the same oceanic basin. Simulta-
neously, their connections with certain continents have sig-
nificantly strengthened.
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