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Abstract. For investigating, assessing, and anticipating climate change, tens of global climate models (GCMs)
have been designed, each modelling the Earth system slightly differently. To extract a robust signal from the
diverse simulations and outputs, models are typically gathered into multi-model ensembles (MMEs). Those are
then summarized in various ways, including (possibly weighted) multi-model means, medians, or quantiles.
In this work, we introduce a new probability aggregation method termed “alpha pooling” which builds an ag-
gregated cumulative distribution function (CDF) designed to be closer to a reference CDF over the calibration
(historical) period. The aggregated CDFs can then be used to perform bias adjustment of the raw climate simu-
lations, hence performing a “multi-model bias correction”. In practice, each CDF is first transformed according
to a non-linear transformation that depends on a parameter «. Then, a weight is assigned to each transformed
CDF. This weight is an increasing function of the CDF closeness to the reference transformed CDF. Key to the
o pooling is a parameter « that describes the type of transformation and hence the type of aggregation, gen-
eralizing both linear and log-linear pooling methods. We first establish that o pooling is a proper aggregation
method by verifying some optimal properties. Then, focusing on climate model simulations of temperature and
precipitation over western Europe, several experiments are run in order to assess the performance of « pooling
against methods currently available, including multi-model means and weighted variants. A reanalysis-based
evaluation as well as a perfect model experiment and a sensitivity analysis to the set of climate models are run.
Our findings demonstrate the superiority of the proposed pooling method, indicating that & pooling presents a
potent way to combine GCM CDFs. The results of this study also show that our unique concept of CDF pooling
strategy for multi-model bias correction is a credible alternative to usual GCM-by-GCM bias correction methods
by allowing handling and considering several climate models at once.

1 Introduction

Over the past century, the Earth’s climate has been undergo-
ing significant warming, with the rate of this change acceler-
ating notably in the past 6 decades (IPCC, 2023; Wuebbles
et al., 2017). Such warming is believed to be a catalyst not
only for extreme events, but also for an alteration in societal
and economic systems (Stott, 2016; Wuebbles et al., 2017).

In this context, global climate models (GCMs) are seen as
critical tools to simulate the future of our climate under dif-
ferent emissions scenarios and provide the scientific commu-
nity and policy makers with essential climate information to
guide adaptation to upcoming climatic changes (e.g. Arias et
al., 2021; Eyring et al., 2016; IPCC, 2014).
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In recent years, tens of GCMs have been designed, mod-
elling the physical processes in the atmosphere, ocean,
cryosphere, and land surface of the planet Earth differently,
often by incorporating varied or uniquely modelled param-
eters (Eyring et al., 2016). However, the complexity of the
processes represented means that these models are inevitably
imperfect. They contain biases, meaning that, even over the
historical period, they can fail to reproduce some statistics
of the observed climate (e.g. Francois et al., 2020). To alle-
viate such errors, two distinct types of post-processing are
typically applied to the models: bias correction and model
combination. Bias correction methods aim at applying statis-
tical corrections to climate model outputs, which can be as
simple as a delta change (Xu, 1999) or a “simple scaling”
of variance (e.g. Eden et al., 2012; Schmidli et al., 2006)
or as advanced as multivariate methods adjusting dependen-
cies (e.g. Francois et al., 2020) such as based on multivariate
rank resampling (Vrac, 2018; Vrac and Thao, 2020) or ma-
chine learning techniques (e.g. Francois et al., 2021). Model
combination aims to extract a robust signal from the diversity
of existing GCM outputs. Models are typically gathered into
multi-model ensembles (MMEs), which are synthesized into
multi-model means (MMM s). This approach is grounded in
the belief that members of the MMEs are “truth-centred”.
In other words, the various models act as independent sam-
ples from a distribution that gravitates around the truth, and
as the ensemble expands, the MMM is expected to approach
the truth (Ribes et al., 2017; Fragoso et al., 2018). The chal-
lenge of combining models lies not only in their inherent
differences but also in the construction of the MME itself.
While equal weighting of models is a common practice (e.g.
Weigel et al., 2010), it does not account for possible redun-
dancy of information between models. Indeed, climate mod-
els often share foundational assumptions, parameterizations,
and codes, making their outputs redundant (Abramowitz et
al., 2019; Knutti et al., 2017; Rougier et al., 2013). As a re-
sult, consensus among models does not necessarily result in
reliable simulations. Advanced methods, such as Bayesian
model averaging (Bhat et al., 2011; Kleiber et al., 2011; OI-
son et al., 2016) or weighted ensemble averaging (Strobach
and Bel, 2020; Wanders and Wood, 2016), have been de-
veloped to refine model weights. However, Bukovsky et al.
(2019) found that the weighting approach does not substan-
tially change the multi-model mean (i.e. MMM) results.

Furthermore, the usual model combination approach is to
apply a global weighting of the models, which can dilute
the accuracy of regional predictions. For instance, a model
that accurately represents European temperatures might be
deemed subpar overall, thus not contributing significantly to
the European temperature projection in the ensemble. This
could result in a global weighting approach that inaccurately
represents this region. To address this, some studies have
adopted a regional focus, selecting an optimal set of mod-
els for specific regions (Ahmed et al., 2019; Brunner et al.,
2020; Dembélé et al., 2020; Sanderson et al., 2017). Yet, such
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strategies are still suboptimal since they are only valid for a
given study area, often of rectangular shape, and thus specific
to the use case they have been developed for. Moreover, by
construction, traditional model averaging techniques tend to
homogenize the spatial patterns that are present in individ-
ual models, even though these patterns often stem from gen-
uine physical processes. Approaches that consider per-grid-
point model combinations have shown promise in enhanc-
ing performances in weather forecasting (Thorarinsdottir and
Gneiting, 2010; Kleiber et al., 2011). Geostatistical meth-
ods, in particular, offer tools to characterize spatial struc-
tures and dependencies, providing a more nuanced approach
to ensemble predictions (Gneiting and Katzfuss, 2014; Sain
and Cressie, 2007). Recently, Thao et al. (2022) introduced a
method that uses a graph cut technique stemming from com-
puter vision (Kwatra et al., 2003) to combine climate models’
outputs on a grid point basis. This approach aims to minimize
biases and maintain local spatial dependencies, producing a
cohesive “patchwork” of the most accurate models while pre-
serving spatial consistency. However, one limit of the graph
cut approach is that it only selects one single optimal model
per grid point, whereas locally weighted averages of models
might enable more subtle combinations that capitalize on the
strengths of the ensemble of GCMs.

In addition, one limitation of all aforementioned model
combination approaches is that they are all based on combin-
ing scalar quantities such as the decadal mean temperature
produced by an ensemble of models. However, climate mod-
els’ outputs are much richer than averages. They typically
produce hourly or daily climate variables, from which entire
probability distributions can be derived. It therefore makes
intuitive sense to combine distributions to obtain an aggre-
gated distribution that can borrow the most relevant aspects
of all members of the MME. In statistics, the combination
of distributions, or probability aggregation, has been stud-
ied for applications in decision science and information fu-
sion. Comprehensive overviews of the different ways of ag-
gregating probabilities and the hypotheses underlying each
of them are provided in Allard et al. (2012) and Koliander et
al. (2022), notably based on the foundational works of Bord-
ley (1982).

In this study, we introduce an innovative probability aggre-
gation method termed « pooling, which we apply to combine
climate projections coming from several GCMs. It builds an
aggregated cumulative distribution function (CDF) designed
to be as close as possible to a reference CDF. During a
calibration phase, an optimization procedure determines the
parameters characterizing the transformation from a set of
CDFs each representing a model to a reference CDF. This
transformation includes weights that increase with the close-
ness to the reference CDF and a parameter o« that charac-
terizes how the transformation takes place. The optimization
results in weights that are lower for models that are simi-
lar, i.e. that are redundant with each other. In that sense, o
pooling combines models while addressing information re-
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dundancy. In addition, as « pooling provides an aggregated
CDF close to a reference one, corresponding time series can
be obtained, for example via quantile—quantile-based tech-
niques (e.g. Déqué, 2007; Gudmundsson et al., 2012) or its
variants (e.g. Vrac et al., 2012; Cannon et al., 2015), hence
providing bias-corrected values of the combined model simu-
lations. Therefore, o pooling not only combines model CDFs
but also corrects biases between the CDF of each model and
the reference CDF. So, we bring together, in an original way,
“bias correction” and “model combination”, which are usu-
ally seen as different categories of methods employed by sep-
arate scientific communities. We stress that our proposed o-
pooling method hinges on a unique concept that allows the
simultaneous bias correction of multiple climate model sim-
ulations. This is accomplished through the innovative com-
bination of model CDFs, which stands as an original concept
in its own right.

Our application of the a-pooling method focuses on the
simultaneous combination and bias correction (BC) of cli-
mate models over western Europe. Here, each member of
the MME is perceived as an individual expert, whose cumu-
lative distribution function (CDF) is used in the combina-
tion. We compare o pooling with other model combination
and bias correction techniques, including multi-model mean
(MMM), linear pooling, log-linear pooling, and CDF trans-
form (CDF-transform, Vrac et al., 2012). Our analysis spans
both short-term and extended projections of temperatures (7)
and precipitation (PR), encompassed in three distinct experi-
ments. In the first experiment, ERAS serves as the reference,
enabling performance evaluation against observational refer-
ences. Subsequently, a perfect model experiment (PME) is
employed, wherein each model is iteratively used as the ref-
erence. This PME approach offers insights into the stability
of the alpha-pooling projections compared to other BC tech-
niques, extending to the end of the century. A third experi-
ment investigates the sensitivity of the aggregated CDFs to
the choice of a specific subset of models to combine.

This paper is structured as follows. Section 2 describes the
climate simulations and the reference used in this work. Af-
ter some reminders on linear pooling and log-linear pooling,
Sect. 3 presents the new o pooling. Section 4 describes the
experiments carried out in this work and Sect. 5 describes the
results obtained. In Sect. 6, we provide some conclusions and
perspectives. Two appendices provide an approximate and
faster alternative to the «-pooling method as well as optimal
properties.

2 Climate simulations and reference

The reference data used in this study are daily temperature
(hereafter T) and precipitation (PR) time series extracted
from the ERAS daily reanalysis (Hersbach et al., 2020) over
the 1981-2020 period at a 0.25° horizontal spatial resolution.
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The western Europe domain, defined as [10°W,30°E] x
[30°N, 70°N], is considered.

The same variables (T and PR) are also extracted for the
period 1981-2100 from 12 global climate models (GCMs)
contributing to the sixth exercise of the Coupled Model In-
tercomparison Project (CMIP6, Eyring et al., 2016). This se-
lection was dictated by the availability of 7" and PR fields at a
daily timescale at the time of analysis: we have only selected
models whose data were fully available for the whole period
of 1981-2100. The list of GCMs used is provided in Table 1.

To ease the handling of the different simulated and refer-
ence datasets, all temperature and precipitation fields have
been regridded to a common spatial resolution of 1° x
1°. Moreover, for the sake of simplicity, in the follow-
ing, we only consider winter defined as December—January—
February (DJF) and summer data (June—July—August, JJA)
separately to investigate and test our «-pooling approach.
Then, for each grid point and each dataset, the univariate
CDFs of temperature and precipitation are calculated. Here,
empirical distributions are employed (i.e. step functions via
the “ecdf” R function) in order not to fix the distribution
family and thus let the data “speak for themselves”. Other
parametric or nonparametric CDF modelling methods can be
used if needed and appropriate.

3 Combining models via the CDF-pooling approach

The CDF of a random variable X is the function F : R —
[0, 1] defined as the probability that X is less than or equal to
x, i.e. F(x) = P(X < x). Combining CDFs thus essentially
amounts to combining, or aggregating, probabilities for all
values x in a way that makes the aggregated function a CDF,
i.e. a non-decreasing function with lim,_, _ o F(x) =0 and
limy 0o F(x)=1.

Allard et al. (2012) offer a review of probability aggrega-
tion methods in geoscience, with application in spatial statis-
tics. Aggregation or pooling methods can be characterized
according to their mathematical properties. Let us denote
P1,--., PN as the probabilities to be pooled together and pg
as the resulting pooled probability. A pooling method verify-
ing pg =p when p; =p foralli =1,..., N is said to pre-
serve unanimity. Furthermore, let us suppose that we are in
the following case: at least one index i exists such that p; =0
(pi =1)with0 < p; < 1 for j #i. A pooling method which
returns pg =0 (pg = 1) in this case is said to enforce a
certainty effect, a property also called the 0/1 forcing prop-
erty. Notice that for a pooling method verifying this property,
deadlock situations are possible when p; =0 and p; =1 for
J#IL

In the following, we will consider that there are N CDFs
Fi(x), with i =1, ..., N. Pooling methods must be applied
simultaneously to all probabilities P(X <x)= F(x) and
P(X > x) = 1—F(x). The aggregated (or pooled) CDF must
verify all properties of a proper CDF recalled above.

Earth Syst. Dynam., 15, 735-762, 2024
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Table 1. List of CMIP6 simulations used in this study, along with their run, approximate horizontal atmospheric resolution, and references.

s

The models preceded by a

are the five models used in the ERAS experiment (Sects. 4.1 and 5.1) and the perfect model experiment

(Sects. 4.2 and 5.2). All 12 models are used in the sensitivity experiment (Sects. 4.3 and 5.3). See text for details.

Simulation name Run Atmospheric resolution  Data reference
*CNRM-CM6-1-HR  rlilplf2 ~100km  Voldoire (2019)
*GFDL-CM4 rlilplfl ~100km Held et al. (2019)
*IPSL-CM6A-LR rl4ilplfl ~250km  Boucher et al. (2018)
*MRI-ESM2-0 rlilplfl ~100km Yukimoto et al. (2019)
*UKESM1-0-LL rlilplf2 ~250km Tang et al. (2019)
BCC-CSM2-MR rlilplfl ~100km Wuetal. (2018)
CanESMS5 rl10ilplfl ~500km  Swart et al. (2019)
INM-CM4-8 rlilplfl ~100km  Volodin et al. (2019)
INM-CMS5-0 rlilplfl ~100km Volodin et al. (2019)
MIROC6 rlilplfl ~250km  Shiogama et al. (2019)
CESM2 rlilplfl ~100km Danabasoglu et al. (2020)
CESM2-WACCM rlilplfl ~100km Danabasoglu et al. (2020)

3.1 Pre-processing: standardizing data

CDFs from climate model simulations can be very different
from each other and from ERAS CDFs. It is thus necessary
to perform a preliminary standardization (i.e. basic adjust-
ment) before pooling them. Note that the same operation is
performed in many IPCC figures IPCC WGI, 2021) when
working on anomalies (instead of raw simulated or reference
data). This allows easier comparison (and combination) of
the different datasets. In the present study, temperature and
precipitation are standardized differently. For temperature,
the simulated data are rescaled such that the mean and stan-
dard deviation correspond to those of the reference data:

T — mmod

Trescaled = X Oref + Myef, (1)

Omod

where mmoq and opmeq are the mean and standard deviation
of the model data to rescale, and mef and oyer are those from
ERAS. For precipitation, the data are rescaled to get the 90 %
quantile similar to that of the reference precipitation:

PRiescaled = PR X Q90;¢¢/Q90 04, @)

where Q90,.¢ and Q90,,,q are respectively the 90 % quan-
tiles from ERAS and the model data to rescale. This choice
of 90 % is a trade-off that enables having a robust quantile
estimation and also a sufficient spread in the range of precip-
itation values (Vrac et al., 2016).

In the rest of this paper, all tested pooling methods are then
applied to standardized data. As a preliminary step to our
new «-pooling approach, we first briefly present the linear
pooling and log-linear pooling with their main properties.

Earth Syst. Dynam., 15, 735-762, 2024

3.2 Linear pooling

The linear pooling, whose resulting pooled CDF is denoted
as F1, is simply a weighted average of all CDFs:

N
FL(x)= Zw,ﬂ(x), Vx € R. (3)
i=1

Fy, is a proper CDF if and only if all w; values are non-
negative and Z,N= (w; = 1. Note that with linear pooling, the
probabilities are weighted for a given value x, which is quite
different than averaging the quantiles for a given probabil-
ity, as done in a usual weighted MMM (e.g. Markiewicz et
al., 2020). Indeed, in our linear pooling (Eq. 3), the weighted
average is performed on the CDFs (i.e. probabilities F;(x))
and not on quantiles (values) of the variable. While there is
not an inherent problem with linear pooling, like any linear
approach, the method may lack flexibility and thus fail to
capture the necessary non-linearity required to adjust to the
data and their CDF. That is why non-linear methods (e.g. log-
linear pooling) have been developed.

3.3 Log-linear pooling

The log-linear pooled CDF, denoted as Fr, is found by con-
sidering that its logarithm is, up to a normalizing factor, a
weighted average of the logarithm of the CDFs. Applying
this to F(x) and 1 — F(x) simultaneously, one gets

N
InFip(x)=K + Zw,- In F;(x) and
i=1

N
In(l = FLo(x) = K + ) wiln(1 — Fi(x)),
i=1

where wi,...,wy is a set of N non-negative weights and
K is the normalizing factor. After some algebra, one finally
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obtains
[T, Fi(x)™
TV Fiowi + T, (1 = Fi(x)wi

which is a proper CDF for all non-negative weights w;.
The condition § = ZlN= (w; =1 entails unanimity. In sim-
ulations, Allard et al. (2012) showed that log-linear pool-
ing of probabilities consistently leads to the best validation
scores among all other tested pooling methods. However,
log-linear pooling verifies the 0/1 forcing property. This is
not necessarily a desirable property since Fip belongs to
the interval (0, 1) only for the restricted set of values x such
that 0 < F;j(x) < 1foralli =1,..., N. Moreover, Fip is un-
defined as soon as a pair i, j exists with i # j such that
Fi(x)=0and F;j(x)=1.

Fio(x) = Vx eR, (4)

3.4 a Pooling

In order to mitigate the problems faced with the log-linear
pooling and the lack of flexibility of the linear pooling, we
propose « pooling. Its theoretical expression is presented
here. How the parameters are estimated from the models
and the reference is shown in the next section. Our approach
builds on the A, T transformation proposed in Clarotto et
al. (2022), which uses the less stringent power transforma-
tion instead of the log transformation used in the log-linear
pooling approach. We first recall briefly that a D-part com-
position is a vector (v1,...,vp)" of D non-negative values
such that Z,Dz 1Vi =k, where « is an arbitrary positive con-
stant which can be set equal to 1 without loss of generality. In
all generality, A7 transforms a composition with D parts
(constrained to belong to the simplex of dimension D — 1)
to a vector with D — 1 unconstrained and well-defined co-
ordinates, even when some parts are equal to 0 (Clarotto et
al., 2022). For all x € R, the vector F(x) = (F(x), 1 — F(x))’
can be seen as a two-part composition. In this case, the Ay-IT
transformation of F(x) results in a scalar:

2(x) = Agar(F(x)) = HaF(x)7, &)

where H is the (1, 2) Helmert matrix (ﬁ, —ﬁ) and where
F(x)% is the vector (F(x)¥, (1 — F(x))*)" with o > 0. The
a pooling postulates a linear aggregation of the scores z;(x)
with

6(x) = Zf\/:lwizi(x)

2
= %Zf_lwf (F0) = (1= F)°),

where, as above, wi,...,wy is a set of N non-negative
weights summing to 1, i.e. with vazlw,- = 1. The a-pooling
aggregated CDF Fg is thus the CDF such that zg(x) =
*/TE(FG(x)"‘ —(1—Fg(x))¥). Hence, for each x, Fg(x) solves

Fo(x)* — (1 = Fe(x))* = azg(x)

=30 wi( R = (1= F)?).

(6

(N
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Let us define the function
Gy =o' [y —U—-y1]. (8)

with 0 <y < 1. G(y) is an increasing one-to-one function
on [0, 1], with G(0)= —a~!, G(1/2) =0 and G(1) = a1
One thus gets Fg(x) = G (z6(x)), where G~! is the in-
verse function of G, which exists and is unique. There is un-
fortunately no general closed-form solution to Eq. (7) for all
values of «, but the aggregated probability can be found as

F(x) =G (z(x) = argyre%nl](G(y) —z6(x))? €))

using numerical optimization. It is straightforward to check
that when o = 1, the solution to Eq. (7) is the linear pooling.
Likewise, using limy—, o F; (x)* = 1+« In F;(x), it is easy to
check that the o pooling tends to the log-linear pooling as
a — 0. We can show the following.

Proposition 1. The function Fg(x) defined in Egs. (7)
and (9) is a proper CDF.

Proof. The derivative of zg(x) with respect to x is
26(0) = V2200 wi fi)(Fi(x)* ' 4 (1 = Fi(x)*~ ) > 0.
Hence, zg(x) is a non decreasing function of x. Since
the derivative of the function G(y) with respect to y is
also positive, the function Fo(x)=G Yzg(x)) is in-
creasing because it is the composition of two increasing
functions. In addition, using limy_, _F;j(x)=0 and
lim,_, o F;(x) =1 together with vazlwi =1, it is easy
to check that limy_, o Fg(x) =0 and lim,_, o F;(x)=1.
Hence, Fg is a proper CDF. |

The o pooling presented in Eq. (7) mitigates the principal
inconvenience of the log-linear pooling, since it eliminates
the 0/1 forcing property and it is well defined for all values
of Fj(x). In addition it seamlessly accommodates the case
Fi(x)=0and F;j(x) =1 withi # j.

Remark 1. The constraint on the sum of the weights
can be relaxed. In this case, if §= ZlNzlwi > 1, Fg will
still be a proper CDF because y is constrained to belong
to the interval [0, 1] in Eq. (9). But if S < 1, the lower and
upper limits of F will not be equal to O and 1, respec-
tively, with lim,_ _ooFg(x)=G ' (=S/a)=b>0 and
im0 Fg(x) =G (S/a)=1—b < 1.

In Appendix A, we present a closed-form expression
which is a very good approximate solution to Eq. (7) in
most cases, i.e. except when S > 1. Then in Appendix B,
we present some optimal properties of the o pooling pre-
sented above related to the fact that o pooling derives from
the general class of quasi-arithmetic pooling methods and
corresponds to a proper scoring rule (Neyman and Rough-
garden, 2023).

Earth Syst. Dynam., 15, 735-762, 2024
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An illustration is provided in Fig. 1a for N = 3 distribu-
tions Fj, F>, and F3 to be combined, respectively corre-
sponding to a lognormal CDF, a Gaussian one, and a Stu-
dent’s ¢ distribution. A uniform CDF is arbitrarily fixed as
a reference. Despite the fact that they belong to very dif-
ferent families, the four CDFs are constructed here such
that they have the same mean and variance; i.e. they respect
the constraints of our real-case application (see Sect. 3.1).
For this example, the estimated « parameter tends to O and
w1 = 0.06, wy =0.79, and w3 = 0. The higher value for w»
than for wy or w3 indicates that the reference uniform CDF
is closer to F; (i.e. the Gaussian distribution) than to the oth-
ers, which was expected considering the behaviour of F; and
F3 in the lower tail. Overall, given the difficulty of the il-
lustration (very different CDFs), the «-pooling pooled CDF
(shown by the dashed black line in Fig. 1a) is able to approx-
imate the reference CDF reasonably well (blue line), despite
some larger errors on the upper tail. Notice that it performs
significantly better than the linear pooling (red and green
lines). In addition, Fig. 1b displays the z scores (i.e. G as
a function of x in Eq. 8) for the three CDFs to be combined,
the reference one and the resulting «-pooling CDF.

3.5 Estimating the parameters and computing the
aggregated CDF

Given N CDFs F;,i =1,..., N and a reference CDF F, the
parameters are estimated by minimizing the quadratic dis-
tance:

K
Q= (x — xx-1)(Fo(x) — Fo(xx))%, (10)
k=1

where Fg(x) is obtained by solving Eq. (7) and where
Xo, - .., Xk 1s an increasing sequence discretizing the real line.
The L-BFGS-B optimization algorithm (Byrd et al., 1995) is
launched to minimize Eq. (10) and find the weights and the «
parameter. This algorithm is a limited-memory extension of
the BFGS quasi-Newton method and allows handling simple
bound constraints on the variables. The parameter o and the
weights must be positive, and the weights can be constrained
to sum to 1 or not. In the following, the sum S of weights is
let free, i.e. not necessarily equal to 1. Indeed, preliminary
results indicated that this freedom gives more flexibility to
the o pooling and thus better aggregated CDFs (not shown).
When unconstrained, it was found that in most cases the op-
timal sum S was close to 1. There are two reasons for this:
when S < 1, the pooled CDF varies from b to 1 — b (see Re-
mark 1). As a consequence, b must be as close to 0 as possi-
ble and hence S as close to 1 as possible for the pooled CDF
to be close to the reference; when S > 1, the inverse of all
values zg < —1/a (values zg > 1/a) leads to the same in-
verse equal to 0 (1). A value of S that is too high is therefore
likely to lead to a lack of fit in the lower and upper tails. How-
ever, when S < 1, as the aggregated CDF goes from b > 0 to

Earth Syst. Dynam., 15, 735-762, 2024
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1—b < 1, it is not a proper CDF per se. Hence, a “min—-max”
rescaling of the aggregated CDF Fg is performed such that
the rescaled CDF Fiegc is always in [0, 1].

Frose() = Fg(x) —miny (Fg(x))
‘ max, (Fg(x)) — miny (Fg(x))
_ Fgx)=b  Fgx)—b
T (=b)—b  1-2b

(1)

In practice, this rescaling is only very slight as b is very often
found to be extremely small, say less than 1073.

The weights are easily interpretable since, as a rule, the
higher the weight w;, the closer F; is to the reference Fy. The
parameter « has a less immediate interpretation. As shown in
Clarotto et al. (2022), the A, T transform can be seen as a
difference between the Box—Cox transformation of F'(x) and
that of (1 — F(x)) (see also Appendix A). The parameter o
can thus be interpreted as the power necessary to deform all
CDFs (reference and models) in order to get an optimal linear
pooling for these deformed CDFs, from log transform (o —
0) to no transform (o = 1), to quadratic transform (o = 2).

3.6 Benchmarking a pooling: CDF multi-model mean
(MMM) and linear pooling

As a benchmark for evaluating the «-pooling approach, two
CDF pooling methods are also applied. The first one is the
simplest and consists of defining a “mean” CDF based on
the N CDFs to be combined. Let us consider, for example,
N =2 GCMs with CDFs F; and F>, say of temperature, for
a given grid cell. For any temperature value x, the mean CDF
Fyvim(x) corresponds to the average of Fi(x) and Fa(x). An
example is given in Fig. la for the three distributions used
to illustrate the a-pooling method. Here, Fyvm is shown as
a dashed red line. Note that, for MMM, the reference CDF
is not used at all, as the N CDFs are linearly averaged with
weights all equal to 1/N, whatever the quality of the differ-
ent model CDFs with respect to that of the reanalysis. Hence,
it is not surprising that « pooling better approximates the ref-
erence CDF over the calibration period.

The second CDF pooling method applied for comparison
is the linear pooling described in Eq. (3). Here, contrary to
MMM, the reference CDF is used to infer the weight param-
eters. By comparing the linear and «-pooling methods, we
can assess the potential added value brought by the alpha pa-
rameter.

The same illustration as previously used is also given in
Fig. 1a for linear pooling, with the dashed green line. Based
on this illustrative — but difficult — example, it is clear that
the introduction of the o parameter allows us to get closer
to the reference CDF, at least over the calibration period.
This is clear from the value of the L? norm computed be-
tween the resulting CDF (i.e. « pooling, linear pooling, or
MMM) and the reference: o pooling has the smallest L2
(0.003), and linear pooling’s L? is doubled (0.006), while
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Figure 1. Illustration for N = 3 distributions F7, F>, and F3 to be combined, respectively corresponding to a lognormal CDF, a Gaussian
one, and a Student’s ¢ distribution. A uniform CDF is arbitrarily fixed as a reference. Note that the four CDFs are constructed here with the
same mean and variance to respect the constraints of our real-case application. Panel (a) displays the three CDFs to combine (orange lines),
the reference CDF (blue line), and the resulting e-pooling CDF (dashed black line), MMM CDF (dashed red line), and linear pooling CDF
(dashed green line). For each pooling method, the value of the L? norm between the resulting CDF and the reference one (i.e. the quadratic
distance Q in Eq. 10) is also indicated. Note that the reference is not used to perform MMM. Panel (b) shows the z scores (i.e. function G in
Eq. 8, where z = G(F(x)) with F(x) the CDF) for the three CDFs to be combined, the reference one, and the a-pooling CDF.

it is almost 10-fold for MMM (0.024). However, one major
objective of this study is also to evaluate how MMM, linear
pooling, and « pooling behave in a projection period wherein
climate changes occurs. When driven only by model CDFs
over a projection (future) period, are the three pooling meth-
ods able to capture the changes in reference (temperature or
precipitation) CDFs?

3.7 Bias corrections from CDF pooling results

The aggregated CDF can be used within a CDF-based bias
correction method applied to GCMs and, hence, to obtain
corrected simulations in a way that preserves the temporal
rank dynamics. Indeed, once F is estimated over a projec-
tion period, one can apply a quantile mapping technique (e.g.
Gudmundsson et al., 2012, among many others) between a
and the CDF F), of a given model m over the same period:
for any value x simulated by model m, it consists of finding
the value y such that F (y) = F,;(x) which is equivalent to

y=F(Fu(x), (12)
where ! is the inverse CDF, allowing computing the quan-
tile associated with a given probability. Therefore, by apply-
ing Eq. (12) successively to all simulations from model m,
we can obtain bias corrections. Those have the same rank
chronology as that of model m but their values follow distri-
bution F. By applying this bias correction technique to the
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different models employed within the MMM, linear pooling,
or a-pooling methods, the N bias-corrected time series have
the exact same distribution (i.e. F) but their temporal dynam-
ics are different, as stemming from the N models.

3.8 Model-by-model bias correction via CDF-t

To evaluate the pros and cons of the bias corrections brought
by the proposed pooling approaches, a more traditional
“model-by-model” bias correction method is also applied for
comparison: the “cumulative distribution function — trans-
form” (CDF-t) method (Michelangeli et al., 2009; Vrac et
al., 2012). It consists of a quantile mapping technique (e.g.
Panofsky and Brier, 1968; Haddad and Rosenfeld, 1997;
Déqué, 2007; Gudmundsson et al., 2012) allowing account-
ing for changes in the distributional properties of the climate
simulations from the reference to the projection period. The
reference CDF Fgp, over the projection period is first esti-
mated as a composition of Fre, Fmc, and Fyp, as well as the
reference CDF over the calibration period, the model CDF
over the calibration period, and the projection period:
Frp(x) = Fre(Fyge (Fup(x))). (13)
where F1\7Icl is the inverse CDF of Fyic. See Vrac et al. (2012)
or Francois et al. (2020) for more details. Based on the esti-
mated projection reference CDF, a quantile mapping is then
fitted between I:"Rp and Fup to bias-correct the simulations
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from the model M. Hence, in the case of N climate models
to adjust, N CDF-t bias corrections are defined and applied.

4 Design of experiments

In the following, three experiments are described to evaluate
and compare « pooling, linear pooling, MMM, and CDF-t.
For the sake of clarity and space, these experiments are car-
ried out separately over two seasons only: winter (December,
January, February — DJF) and summer (June, July, August —
JJA). Only winter results are given in the following but sum-
mer results can be found in the Supplement.

4.1 ERAS5 experiment

The first experiment considers ERAS reanalysis as a refer-
ence. When considering linear and «-pooling methods, for
each grid point and variable, we calibrate the approaches us-
ing N climate models with ERAS data as a reference over the
calibration period of 1981-2000. Then, we use the calibrated
parameters (w; and «) to combine the models CDFs over the
projection period of 2001-2020. For CDF-t, the same cali-
bration period (1981-2000) is used, and the corrections are
made for each model independently for the projection period
(2001-2020). For MMM, the CDFs of the climate models
are directly averaged over 2001-2020. The results of each
approach are then compared to the ERAS data over 2001-
2020.

In this experiment, only five GCMs are used. This is partly
constrained by the «-pooling method that can have stabil-
ity issues inferring the parameters when combining a large
number of models. When a relatively high number of mod-
els (i.e. CDFs) are combined, such as 10, depending on the
initialization values of the parameters in the inference algo-
rithm, the “optimal” final parameters may vary. In essence,
the optimized parameters are unstable in such a case. This
is because many local minima attain undistinguishable L>
distances. Indeed, while final parameters may differ between
initializations, the minimized criterion values — specifically
the quadratic distance in the CDF space outlined in Eq. (10)
— remain relatively consistent, often converging to similar or
nearly identical values. Although it has been tested with more
than 10 models, the use of five GCMs appeared to be a good
compromise in the sense that (i) it ensured not only stability
in the quadratic criterion but also consistency in the final op-
timized parameters, (ii) it allows a reasonable computation
time (e.g. no more than a few minutes of computations for
each location and/or variable), and (iii) it employs a suffi-
cient number of simulations to get robust results. These five
GCMs (indicated with “*” in Table 1) were selected on the
basis of a preliminary analysis showing that they approxi-
mately represent the spread of the future evolution of all 12
GCMs (not shown). Note that four models (IPSL-CM6A-
LR, MRI-ESM2-0, UKESM1-0-LL, GFDL-CM4) out of the
five selected ones are consistent with the choice made in the
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ISIMIP3 project (Lange and Biichner, 2021; Lange, 2021)
for bias correction objectives.

The evaluations are performed in terms of biases of the
obtained 2001-2020 temperature and precipitation with re-
spect to ERAS. For each grid point, dataset, variable, and
season (winter or summer), some statistics 7" are calculated.
For temperature, statistics include the mean, standard devia-
tion, and 99 % quantile (Q99). For precipitation, we consider
the conditional mean given a wet state (Cm), probability of a
dry day (P1), and the 99 % quantile. A day with a PR value
lower than 1 mm is considered dry (and thus > 1 mm wet).

Then, absolute biases are calculated as

B(m,T)=T(m)— T(ERA5) (14)
for temperature mean and Q99, while relative biases are cal-

culated as

Bom, T) = T (m) — T(ERAS5) (15)
T T(ERAS)

for temperature standard deviation and precipitation condi-
tional mean, P;, and Q99. m denotes the method (« pooling,
linear pooling, MMM, or CDF-t) and 7'(X) the statistics cal-
culated from dataset X (ERAS5 or method results).

4.2 Perfect model experiment (PME)

As the ERAS experiment evaluates the methods for a pro-
jection period (2001-2020) very close to the calibration one
(1981-2000), it does not allow understanding their quality in
a strong climate change context. To perform such an assess-
ment, we propose a “perfect model experiment” (e.g. de Elia
et al., 2002; Vrac et al., 2007, 2022; Krinner and Flanner,
2018; Robin and Vrac, 2021; Thao et al., 2022, among many
others). The main idea is that one model, among N, is taken
as the reference. For the four methods, the procedure is the
following.

— « Pooling and linear pooling are calibrated to combine
the other N — 1 models over 1981-2000. The obtained
parameters (i.e. w; and o for o pooling or w; only
for linear pooling) are next used to combine the N — 1
models over five different future 20-year periods: 2001—
2020, 2021-2040, 2041-2060, 2061-2080, and 2081-
2100.

— The same approach is followed for CDF-t: one model
serves as a reference over 1981-2000 to calibrate CDF-t
—here separately for each of the N —1 remaining models
— which is then used to bias-correct each model simula-
tion over the five future periods.

— As previously for the ERAS experiment, MMM does
not require any calibration. CDF averaging is directly
applied to combine the N — 1 models for each of the
five periods.
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Over each future period and each grid point, biases can then
be evaluated with respect to the reference model. For temper-
ature, it includes absolute biases (Eq. 14) of the mean, 1 %
quantile, 99 % quantile, minimum, and maximum, as well as
relative biases (Eq. 15) of standard deviation. For precipita-
tion, relative biases are computed for the conditional mean
a given wet state, probability of a dry (< 1 mm) day, stan-
dard deviation, conditional 99 % quantile a given wet state,
unconditional 99 % quantile, and maximum.

Hence, no observational or reanalysis data are used as a
reference in this experiment. Indeed, this PME is made under
the “models are statistically indistinguishable from the truth”
paradigm (e.g. Ribes et al., 2017), where “the truth and the
models are supposed to be generated from the same under-
lying probability distribution” (Thao et al., 2022). Therefore,
an evaluation framework based on this paradigm can con-
sider any model as the reference. In practice in our PME, the
same five models as in the ERAS experiment (Sect. 4.1) are
used and each model is used in turn as the reference. The
four methods are thus tested on a diversity of possible refer-
ences, encompassing cases where the truth can be either in
the centre of the multi-model distribution or far in the tail.

4.3 Sensitivity of projected future CDFs to the choice of
models

Finally, our third experiment aims to evaluate the uncertainty
brought by the choice of the N models to combine and/or
bias-correct. If this sensitivity is not very present over the cal-
ibration period — by construction, linear pooling, & pooling,
and CDF-t are relatively close to the reference CDFs over
this period — or over periods very close to the calibration,
the results of the four methods applied to long-term future
projections can be sensitive to the chosen N models. To eval-
uate this sensitivity, for each variable, linear pooling, & pool-
ing, and CDF-t are calibrated with respect to ERAS data over
1981-2000. Then, all methods are applied to 2081-2100 pro-
jections. However, in this experiment, linear pooling, o pool-
ing, and MMM do not combine a unique set of five models
(as in the ERAS experiment). Instead, 100 different sets of
N =5 models among the 12 presented in Table 1 are ran-
domly drawn. The resulting 100 samples have been checked
to contain each model in a uniform proportion (not shown).
The linear pooling, a-pooling, and MMM methods are then
applied 100 times, each with five models to combine, while
CDF-t is applied to the 12 models separately. The 2081-2100
results obtained from each method and set of models do not
allow any evaluation per se, as there is no reference over the
future period. However, the use of multiple sets of models
allows quantifying and comparing the statistical uncertainty
brought by the choice of models for each method. In this
experiment, for both temperature and precipitation, only six
grid points are considered, corresponding to major capitals
of the geographical domain: Paris (France), London (UK),
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Rome (Italy), Madrid (Spain), Berlin (Germany), and Stock-
holm (Sweden).

5 Results

5.1 ERADS experiment results

Before looking at the results of the ERAS experiment, it is
interesting to visually understand how the «-pooling param-
eters are spatially distributed over the geographical domain.
Hence, Fig. 2 displays maps of the winter (Fig. 2a and c)
and summer (Fig. 2b and d) for the o parameter, temperature
(Fig. 2a and b), and precipitation (Fig. 2c and d). First, note
that the range of « is not the same for 7 and PR. While for
temperature most of the values are lower than 1 (no unit), the
range goes up to 2.5 for precipitation. Moreover, for both sea-
sons, more pronounced spatial structures appear for 7' than
for PR, with the latter @« maps appearing more “pixelated”.
This can be explained by the widely recognized spatial vari-
ability of precipitation, encompassing both occurrence and
intensity, which is often challenging to accurately capture in
climate models and thus reflected in the spatial diversity in
the estimated alpha-pooling parameters. However, globally,
even for PR, large regions share similar « values, indicating
some spatial consistency of the parameters.

Regarding the weight parameters of « pooling, winter
maps are provided in Figs. 3 and 4 for temperature and pre-
cipitation, respectively. The results for summer are given in
Figs. S1 and S2 in the Supplement. The spatial structures of
the weights are clearly visible (for both T and PR) and even
more pronounced than for the o« maps. This strongly indicates
that o pooling identifies large zones where some models have
a larger influence on the combination and, thus, whose CDFs
are closer to that of ERAS. Note, however, that for both vari-
ables, none of the models has the highest weights for all grid
points of the domain. In other words, over this European re-
gion, each of the five models brings some valuable contribu-
tion, although there is contrast depending on the subregion.
For example, with temperature, UKESM (Fig. 3e) shows the
strongest contributions over the Mediterranean Sea, while
MRI-ESM2 (Fig. 3d) displays the largest weights over the
northeast part of the domain. Interestingly, the spatial distri-
butions of the weights are not the same for 7 and PR. Thus,
there is no clear link between the contribution of each vari-
able, confirming that results from one variable cannot be gen-
eralized to another.

A concentration index is displayed in panel (f) of Figs. 3
and 4, which is equal to the sum of the squares of the five nor-
malized weights. It takes the value 1 when one single GCM
takes all the weight and reaches a minimum of 1/N =0.2
when the five normalized weights are equally distributed.
The concentration index can only be applied to weights sum-
ming to 1. In our implementation of o pooling, the sum of
weights is let free and, thus, not constrained to 1. Although
this sum remains quite close to 1 (mostly between 0.95 and
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Figure 2. From o pooling, maps of the parameters o obtained within the ERAS experiment for temperature (a, b) and precipitation (c, d)

over winter (a, ¢) and summer (b, d) seasons.

1.05 for temperature and between 0.92 and 1.1 for precip-
itation, not shown), normalization is required, which is ac-
complished by dividing the weights by § = ZlN= (w; before
computing the concentration index. For temperature, Fig. 3f
shows relatively well-distributed weights (most concentra-
tion indices between 0.2 and 0.7) despite two zones (close
to Italy and close to Greece) strongly influenced by one sin-
gle GCM (UKESM1, see Fig. 3e). For precipitation, more
zones show a concentration index close to 1: for example, the
northwestern part of the domain and northern France (MRI-
ESM2, Fig. 4f), southern Norway and the northeastern part of
the domain (CNRM-CMB6, Fig. 4a), and the eastern Adriatic
coast (UKESM1, Fig. 3e). Also note that the maps of weights
obtained from linear pooling are given in Figs. S3 and S4 in
the Supplement for temperature and Figs. S5 and S6 in the
Supplement for precipitation. Interestingly, the spatial struc-
tures of the weights and concentration indices are very sim-
ilar to those from o« pooling. This confirms that the o pa-
rameter does not structurally modify the interpretation of the
weights but brings additional flexibility.

Earth Syst. Dynam., 15, 735-762, 2024

The biases of the different methods with respect to 2001—
2020 ERAS5 are shown in terms of mean, standard deviation,
and Q99 for winter temperature in Fig. 5 and in terms of con-
ditional mean given a wet state, probability of a dry day (Py),
and Q99 for winter precipitation in Fig. 6. The equivalent
figures for summer are provided in Figs. S7 and S8 in the
Supplement for temperature and precipitation, respectively.
In theses figures, the columns are associated with the differ-
ent biases. The top row shows maps of biases for MMM: row
2 for « pooling, row 3 for CDF-t, and the fourth row for lin-
ear pooling. Note that, because CDF-t is applied separately
for each GCM, the third row corresponds to the grid point
median of the CDF-t biases. The fifth (bottom) row displays
a more condensed view of the results via box plots of biases.

For temperature (Fig. 5), the differences between the maps
of biases from the four methods are not very pronounced.
This is especially true for the biases in mean temperature
and standard deviation (SD). Some more differences ap-
pear for Q99. For instance, MMM (Fig. 5c) shows relatively
high positive bias (~4 °C) over the northeastern part of the
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lat

Figure 3. Maps of the weight parameters from o pooling for winter obtained with the ERAS experiment for temperature over winter. Models
1 to 5 respectively correspond to CNRM-CM6-1-HR, GFDL-CM4, IPSL-CM6A-LR, MRI-ESM2-0, and UKESM1-0-LL. Panel (f) displays
the concentration index, equal to sum of the squares of the five normalized weights. The results for summer are given in Fig. S1.

domain (Sweden and Finland), while biases for «-pooling
Q99 (Fig. 5f), CDF-t (median) (Fig. 5i), and linear pooling
(Fig. 51) do not present this structure. Also, the CDF-t me-
dian Q99 (Fig. 51) has a positive (~ 1-2 °C) bias pattern over
the central domain (Germany, Italy, Poland, Hungary, Ro-
mania), while the three other methods show more nuanced
and mixed structures. When looking at the more integrated
box plot view (bottom row in Fig. 5), similar behaviour of «
pooling, linear pooling, and MMM is visible for the three bi-
ases: the box plots are relatively equivalent from one method
to another. However, even though this is also the case for the
CDF-t median biases — at least for mean and SD and to some
extent for Q99 — the individual CDF-t biases (i.e. GCM by
GCM) show much larger variability, indicating that relying
on a single GCM to perform the bias correction might lead
to stronger errors within this ERAS experiment.

For precipitation (Fig. 6), conclusions are somewhat sim-
ilar, but some more differences between methods are now
more visible. For example, in the Norwegian Sea, the rel-
ative biases of P; for MMM (Fig. 6b) have a large and
strongly positive structure (~ 1) that does not appear in the
other methods. Another example is the mostly negative bias
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(~—1) in a-pooling Q99 (Fig. 6f) over the North African
part of the domain, while MMM and (median) CDF-t show
mostly highly positive biases and linear pooling more mixed
patterns for this region. The box plot view for winter precip-
itation is similar to that for temperature: roughly equivalent
box plots for the four methods, with more variability from
the individual CDF-t results.

Note, however, that the ERAS experiment results for sum-
mer (Figs. S7 and S8) show more differences between the
four methods — especially in the box plots — slightly in favour
of the linear pooling and «-pooling methods, which show
box plots more centred around O for all biases and variables.

In the ERAS experiment, the results are relatively simi-
lar for the four methods. This indicates that the added flex-
ibility provided by « pooling may not be required over the
1981-2020 period of ERAS. This can nevertheless be differ-
ent when considering other projection periods and reference
datasets. Furthermore, the evaluation (2001-2020) and cal-
ibration (1981-2000) periods are quite close to each other,
resulting in similar outcomes for both periods. These two re-
sults suggest that distinguishing between the different meth-
ods may be challenging in a climate that is relatively stable
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Figure 4. Same as Fig. 3 but for precipitation. The results for summer are given in Fig. S2.

or undergoing minimal change. However, our primary objec-
tive is to assess and compare our various pooling strategies
in the context of significant climate change. Given that cli-
mate changes (in temperature and precipitation) from 1980
to 2100 in the SSP8.5 CMIP6 simulations are significantly
more pronounced than what can be seen in the whole ERAS
reanalysis dataset over western Europe, the perfect model ex-
periment (PME) will effectively and more clearly fulfil this
purpose.

5.2 PME results

PME is first applied here to winter temperature, and summer
results are in the Supplement. For each period and method,
the box plots of the different biases, computed at each grid
point, are provided in Fig. 7 (PME summer temperatures
are in Fig. S9 in the Supplement). As expected, for all bi-
ases, the more distant the period, the larger the box plots,
indicating an increase in possible statistical errors for peri-
ods further in the future. For brevity, we now focus on the
last period (i.e. p6, 2081-2100), which results in the most
pronounced differences between methods. For mean T bias
(Fig. 7a), all four approaches show similar performance, al-
though CDF-t has a wider box plot. The bias of minimum
temperature (Fig. 7e) is roughly equivalent for MMM and

Earth Syst. Dynam., 15, 735-762, 2024

the linear or a-pooling approaches, while CDF-t presents, on
average, a negative bias. However, @ pooling appears slightly
better than MMM and linear pooling for the temperature 1 %
quantile (QO1, Fig. 7c¢), with CDF-t having a median bias
(i.e. box plot centre) equivalent to & pooling but with larger
variability. For maximum temperature (Fig. 7f), CDF-t shows
a strongly positive bias, while its biases look reasonable —
at least more comparable to the other methods — for stan-
dard deviation (Fig. 7b) and 99 % quantile (Q99, Fig. 7d).
Globally, for temperature standard deviation (Fig. 7b), Q99
(Fig. 7d), and maximum value (Fig. 7f), o pooling is more ro-
bust than the other methods since it clearly provides smaller
biases over the 2081-2100 period.

Figure 8 shows the PME results for winter precipitation
(summer results are in Fig. S10 in the Supplement). As was
the case for temperature, the more distant the period, the
wider the box plots, although this is less pronounced here.
Over 2081-2100, CDF-t results are often the most biased,
except for the probability of a dry day (P;, Fig. 8b) where
it is as good as the other methods. As in Fig. 7f, the maxi-
mum values of precipitation from CDF-t (green box plot in
Fig. 8f) show strong biases with a high variability. Regard-
ing MMM, linear pooling, and «-pooling methods, they give
roughly similar biases in terms of conditional mean precip-
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Figure 6. Same as Fig. 5 but for winter precipitation with biases in conditional mean given a wet state (left column: a, d, g, j, m), probability
of a dry day (P, middle column: b, e, h, k, n), and 99 % quantile (right column: ¢, f, i, 1, 0). The results for summer are given in Fig. S8.
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Figure 7. Results of the perfect model experiment for winter temperature: box plots of biases from the three methods (red: MMM, light blue:
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maximum temperature. Note that, for CDF-t, the box plots are drawn from the concatenation of all the individual CDF-t biases. Results for

summer are provided in Fig. S9.

itation given a wet state (Cm, Fig. 8a) and P — 1 (Fig. 8b),
but more differences are visible for all other types of bias in
favour of « pooling. Indeed, for precipitation standard de-
viation(Fig. 8c), condition 99 % quantile (CQ99, Fig. 8d),
unconditional 99 % quantile (Q99, Fig. 8e), and maximum
value (Fig. 8f), the «-pooling biases (blue box plots) are al-

https://doi.org/10.5194/esd-15-735-2024

ways more centred around 0 and with a smaller variability
than the linear pooling and MMM biases.

The results from this PME allow us to conclude that the
proposed «-pooling method is robust in a climate change
context for both temperature and precipitation. In addition,
it also indicates that a bias correction technique based on

Earth Syst. Dynam., 15, 735-762, 2024
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Figure 8. Results of the perfect model experiment for winter precipitation: same as Fig. 7 but for precipitation. The different panels display

biases in (a) conditional mean precipitation given a wet state, (b) probability of a dry (< 1 mm) day, (c) standard deviation, (d) conditional
99 % quantile given wet conditions, (€) unconditional 99 % quantile, and (f) maximum precipitation. Results for summer are provided in

Fig. S10.

5.3 Sensitivity experiment results

an MMM (i.e. averaging) or linear combination of the GCM

CDFs can be useful and robust,

although the best results are

The conclusions brought by the perfect model experiment are

achieved by the a-pooling technique.

based on the pooling and bias correction of five climate mod-

els, somewhat arbitrarily selected. One can wonder about the
uncertainty or sensitivity of the resulting projected (i.e. fu-

ture) CDFs of T and PR if other climate models were se-
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lected. This is the reason why we perform the sensitivity ex-
periment detailed in Sect. 4.3.

For each of the six selected cities over 2081-2100, Fig. 9
shows the 75 % confidence envelope of the 100 winter tem-
perature CDFs obtained from MMM (red lines), « pooling
(blue lines), and linear pooling (light blue lines), as well as
the 75 % envelope from the 12 CDF-t results (green lines).
Figure 10 show the 75 % confidence envelopes for win-
ter precipitation CDFs. Summer CDF results are given in
Figs. S11 and S12 in the Supplement.

All temperature corrections show a shift of the CDFs to-
wards higher values for all six cities. All combination ap-
proaches (i.e. MMM, linear, and « pooling) have very simi-
lar 75 % envelopes for Paris (Fig. 9a) and are relatively close
for Berlin (Fig. 9¢) and Stockholm (Fig. 9f). The other cities
present some more differences. The three combination-based
methods show similar lower bounds for London but with
a higher upper bound for the linear pooling and «-pooling
techniques (depending on the quantiles). Rome and Madrid
have an MMM envelope shifted towards lower temperature
with respect to the other methods. CDF-t 75 % envelopes are
generally larger and thus comprise most of the envelopes for
any of the six cities. For precipitation (Fig. 10), as expected,
the future projections — and thus their corrections — show
varying trends depending on the cities. The combination-
based methods give 75 % CDF envelopes showing more rain
in Paris, London, Berlin, and, to some extent, Stockholm
(Fig. 10a, b, e, and f), while they result in less rain in Rome
(Fig. 10c). Madrid (Fig. 10d) appears to be the most uncer-
tain for linear and « pooling — whose CDF envelope contains
the ERAS precipitation CDF — while MMM shows more
frequent low to medium rain but less frequent heavy rain.
For most cities, CDF-t envelopes tend to have lower bounds
showing a potential negative shift of the precipitation CDFs
with respect to ERAS.

In addition to the position of these envelopes, their size
is also important. Hence, the widths of the 75 % CDF confi-
dence envelopes for the six cities over 2081-2100 in win-
ter are given in Fig. 11 for temperature and Fig. 12 for
precipitation. For temperature, it is clear that CDF-t has,
by far, the largest envelopes widths, while MMM generally
has the smallest ones. It was somewhat expected that linear
pooling and « pooling would have larger uncertainty than
MMM. Indeed, the use of weights means that models with
higher weights will have a stronger influence on the resulting
CDFs and bias corrections. Thus, even if these models do not
closely align with reality during the projection period, their
influence can lead to combined projections that can signifi-
cantly deviate from the simple average performed by MMM.
However, there is no such a systematic conclusion for pre-
cipitation, showing much more variable rankings, depending
on the cities and on the probability values.

Globally, the combination-based bias correction methods
(MMM, linear, and « pooling) show some robustness in their
application to future projections, with uncertainties and sen-
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sitivities to the chosen models not being much different from
those of the more usual CDF-t technique for precipitation and
being even smaller for temperature.

6 Conclusions and perspectives

In this study, we propose a new approach to perform bias
correction of climate simulations, taking advantage of com-
binations of climate models. Combinations are realized via
mathematical pooling of cumulative distribution functions
(CDFs) — characterizing the variable of interest as simulated
by the climate models — to provide a new CDF designed to
be more realistic, i.e. closer to a reference CDF over the cal-
ibration period. It is important to emphasize that the pro-
posed approach differs from the averaging of quantiles for
a given probability as in Markiewicz et al. (2020). It also
differs from the usual probability density aggregation, also
sometimes called probability fusion (Koliander et al., 2022).
Indeed, in our approach, we aggregate cumulative probability
distributions. Moreover, our aggregation is indirect in that we
aggregate transformed scores instead of directly aggregating
the probabilities. In the latter case, we would be restricted to
weights summing to 1, whereas in our approach there is no
such restriction.

Three pooling strategies have been tested: a CDF multi-
model mean (MMM), a linear pooling, and a new approach
named o pooling that allows more flexibility, as well as a
more traditional bias correction method (CDF-t) applied sep-
arately model by model. These four methods have been com-
pared with three different experiments relying on (i) an eval-
uation with respect to ERAS reanalyses over a historical pe-
riod, (ii) a perfect model experiment (PME) over future time
periods, and (iii) a sensitivity analysis to the choice of the
climate models to combine.

In a cross-validation framework over the historical period
(experiment (i), Sect. 5.1), the four methods generally behave
similarly, with most biases relatively well centred around O
in both temperature and precipitation. However, the applica-
tion of the “pure” bias correction method CDF-t to separate
GCMs can generate more biases with more variability. This
is because the change (in temperature or precipitation) sim-
ulated by a single climate model over the historical period
may not correspond to the change present in the reanalyses.
By combining CDFs coming from different GCMs, the pool-
ing techniques also combine the evolution (i.e. changes) over
time, resulting in bias-corrected projections that are more
consistent with the reanalyses.

The results of the PME show a good robustness of the three
pooling strategies, even for the MMM approach, with bi-
ases of most statistics (including extremes) around 0. More-
over, the biases in high quantiles, especially for maximum
values, are much lower for pooling-based methods than for
traditional BC methods represented here by CDF-t. Overall,
a quasi-systematic ranking of the four methods is observed

Earth Syst. Dynam., 15, 735-762, 2024
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Figure 9. Results of the sensitivity experiment: for winter temperature over 2081-2100 and six major cities in western Europe, 75 %
confidence intervals for o pooling (blue lines), linear pooling (light blue lines), MMM (red lines), and CDFt (green lines). The temperature
ERAS CDF (black line) over 1981-2000 is also displayed for visual evaluation of changes. Results for summer are provided in Fig. S11.

in this PME: while CDF-t can present some recurrent and
pronounced biases — getting larger for further time periods —
the MMM correction approach improves the results; the lin-
ear approach improves the results even more, and the best
results are obtained with the «-pooling technique for both
variables. This confirms the benefits of combining the infor-
mation (here CDFs) from different models to perform bias
correction, even in a strong climate change context. This is in

Earth Syst. Dynam., 15, 735-762, 2024

agreement with results from Vrac et al. (2022), who showed,
in a slightly different context, that accounting for the evolu-
tion of the mean temperature—precipitation correlation in an
ensemble of climate models allows getting more robust esti-
mates of future dependencies.

However, the CDFs resulting from our linear or a-pooling
approaches might depend on the selected ensemble of model
CDFs to combine. Hence, the choice of the models to com-
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Figure 10. Results of the sensitivity experiment: same as Fig. 9 but for precipitation. Note that the x axis is displayed in log scale to ease

evaluation. Results for summer are provided in Fig. S12.

bine remains key as it necessarily influences the results over
the (future) projection periods. Note, nevertheless, that this
is true for any combination strategy — i.e. not only our pro-
posed pooling methods — or for any bias correction technique
where the choice of the model simulation to correct will also
necessarily affect the final results (e.g. time series, CDFs).
We also note here that for the combination methods that in-
clude weights (i.e. linear and « pooling), the numerical opti-
mization of the weights results in redundant CDFs receiving

https://doi.org/10.5194/esd-15-735-2024

low weights. For instance, if two models result in the exact
same CDF, the optimization will result in weights that will be
shared between these identical CDFs and whose total would
be the weight corresponding to this CDF not being dupli-
cated. This is an important feature as it is known that some
models are closely related and, thus, tend to provide similar
forecasts.

The sensitivity analysis of the future (2081-2100) CDFs
to the choice of the ensemble of models shows that the un-

Earth Syst. Dynam., 15, 735-762, 2024
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in the Supplement.

certainty in long-term projections was found to be globally
comparable for the three pooling-based methods, although it
is slightly higher for o pooling and slightly lower for MMM
pooling. Indeed, as the « pooling and linear pooling associate
non-uniform weights with the different CDFs, they pull the
results towards the models with the highest weights, hence
generating more variability depending on the selected en-
semble of models to combine. Conversely, the MMM pool-

Earth Syst. Dynam., 15, 735-762, 2024

ing corresponds to a linear pooling with weights forced to
be uniform. Therefore, it provides smoother CDF results that
are less sensitive to the choice of the ensemble. The oppo-
site example is given by CDF-t that is applied model by
model and thus shows a high sensitivity to the selected en-
semble. While MMM pooling has the potential to lead to
overly confident projections, our novel pooling method may
offer a more realistic representation of scenario uncertainty.
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Figure 12. Same as Fig. 11 but for precipitation. Note that the y axis is displayed in log scale to ease evaluation. Results for summer are

provided in Fig. S14 in the Supplement.

Nevertheless, it is crucial to acknowledge the potential for
our «-pooling method to introduce unrealistic scenario un-
certainty. This aspect warrants further investigation in future
studies, especially for practical applications.

In terms of computation time, it is obvious that alpha pool-
ing is more computationally demanding than linear or MMM
pooling. This is in part due to the additional parameter « but
mostly to the non-linearity induced by « pooling. However,
for the combination of up to 10 climate models (i.e. CDFs),

https://doi.org/10.5194/esd-15-735-2024

the computational time for each location and variable time
series typically does not exceed a few minutes. Given the
substantial computational demands associated with running
individual climate models, the computational aspect of com-
bining them is trivial by comparison. Moreover, considering
that this post-processing of climate simulations does not need
to be performed on a daily basis but rather once for all, we
believe that this represents a reasonable computational cost,

Earth Syst. Dynam., 15, 735-762, 2024
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ensuring the method’s practical applicability without com-
promise.

As a conclusion, the a-pooling model appears to be a
promising approach for pooling model CDFs. More gener-
ally, the results of this study show that the CDF pooling strat-
egy for “multi-model bias correction” is a credible alternative
to usual GCM-by-GCM correction methods by allowing han-
dling and considering several climate models at once.

This work can be extended in various ways. First, even
though only temperature and precipitation were considered
in this study, many other climate variables — such as wind
and humidity — can be handled with this CDF pooling strat-
egy. Also, the proposed pooling method can be directly ap-
plied to regional climate model simulations, instead of GCM
simulations, in order to get more regional views of climate
changes.

In addition, some more technical and statistical develop-
ments could be made to improve the CDF pooling approach.
For example, the present linear pooling and «-pooling meth-
ods are based on the L? norm to estimate the parameters.
Other distances could be used, more specifically distances
between distribution functions, e.g. the Hellinger distance,
the total variation distance (Clarotto et al., 2022), the Wasser-
stein distance (e.g., Santambrogio, 2015; Robin et al., 2019),
or the Kullback-Leibler divergence (Kullback and Leibler,
1951). Such distribution-based distances could potentially
improve the quality of the fit and then provide more robust
pooled CDFs.

Moreover, even though spatial patterns are visible in the
parameters, there is variability between nearby grid cells that
complicates the interpretation of the parameters (see Figs. 3
and 4). Such variability can be reduced by constraining the
approach to provide more continuous and smoother spatial
structures, presumably at the cost of longer computations.

Also note that it would be interesting to account for rain-
fall specificities when applying a CDF pooling strategy to
precipitation. Indeed, in this study, the pooling was applied
to all daily precipitation values. In practice, a distinction be-
tween dry day frequencies and distributions of wet intensity
could be made by having two separate poolings. Although
the a-pooling results for precipitation in this article were
quite satisfying, such a rainfall-specific design could provide
additional improvements and should be tested in the future.

Other modelling extensions could be considered. One in-
teresting aspect could be to focus on extreme events. For ex-
ample, o pooling could be applied to conditional CDFs above
a high threshold related to the tail of the whole distribution
or applied to the CDF of block maxima. Distributions stem-
ming from the extreme value theory — such as the generalized
Pareto distribution (GPD) or the generalized extreme value
distribution (GEV) — would then have to be used. Besides
the practical results that such an application could bring, the
statistical properties of the resulting pooled (extreme) CDFs
would also be worth studying from a theoretical point of
view.
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Another interesting perspective, in terms of both practical
and theoretical aspects, concerns the extension of the o pool-
ing to the multivariate context. Indeed, so far, this pooling
method has been developed and applied only in a univariate
framework; i.e. different variables (temperature and precipi-
tation) are handled, combined, and bias-corrected separately.
An extension of o pooling allowing the combination of joint
(i.e. multivariate) CDFs would allow improving the mod-
elling of dependencies between the variables and, thus, pro-
viding more realistic inter-variable CDFs and bias-corrected
projections. Such an extended « pooling should then be com-
pared to other multivariate bias correction methods, such as
those studied in Frangois et al. (2020). It would then also al-
low investigating compound events (e.g. Zscheischler et al.,
2018, 2020) and their potential future changes more robustly.

Finally, more generally, it is worth noting that combina-
tion and bias correction are not new questions or require-
ments. However, this is the first paper coupling methods from
these two domains. This was made possible by our pool-
ing strategy working on CDFs (and not on specific quan-
tiles or statistical properties such as mean and max, as usu-
ally done), which is, in itself, an original contribution to the
combination framework. This CDF pooling strategy and this
hybrid combination—correction method deserve to be further
explored, as do its potential applications beyond combination
and bias correction.

Appendix A: An approximate solution to the a
pooling

The well-known Box—Cox transformation B(F)(x) = (1 —
F(x)*)/a, with « > 0, is well defined for all values F(x) €
[0, 1], with limy o B(F)(x) = —In F(x) when F(x) > 0 and
limy_,oB(1— F)(x) = —In(1 — F(x)) when F(x) < 1. Letus
consider a pooling approach that consists of assuming that
the Box—Cox transformation of the pooled CDF is, up to a
normalizing factor K, the weighted average of the Box—Cox
transformation, i.e.

B(K.Fp)(x)=  wiB(F;)(x) and
BK.(1 = Fg)(0 =Y wiB(1— F)(x).

After multiplying by « and rearranging, one gets
KOFp)* =14 wi(F()* 1) and
K= Fp(o) = 14+ wi(1 = Fio)® — 1),
From the fact that Fp(x)+ 1 — Fp(x) = 1, one thus gets
Fg(x)=

[1-S+ Z,Z-v:lwiFi(x)a]l/a

[1-S+ YN wiFx)*] "+
[1=S+ YN w1 = Fp]"®

, VxeR, (Al
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with § = 3" w;.

Let us now go back to the a-pooling approach described in
Sect. 3.4. Inspired by Eq. (A1), let us plug into the « pooling
in Eq. (7) a solution of the form Fg(x)* = (vazl w; Fi(x)*+
A)/Z and (1—Fy(x)* = (L wi(l - F;(x))* + A)/Z,
where Z is a normalizing factor. From Fg(x)+1—Fg(x) =1
we find that Z1/* = [vazlwiE(x)“—i—A]l/a—i-[ZfV:lw,-(l -
Fi(0)* + A]"" and

[N wiFio) +A]Y

Fr(x) =
" { [Z,}'\LlwiFi(x)a“FA]l/a‘i‘

[2N wi(l = F(o)* +A]Y®

which is nothing but Eq. (A1) with A =1 — S. Hence Fy =
Fp, and for the rest of this section, we will use the notation
Fp for both constructions. Fg is well defined for all @ > 0 if
S < 1. In this case, it can be shown that it is a non-decreasing
function of x because its derivative with respect to x is non-
negative. From

1= 8§/
lim FB()C):% and
X—>—00 (1— 1) + (A2)
A0 = g

one finds that Fp in Eq. (Al) is a proper CDF if and only
if the condition S =1 is verified. In this case, Fg has the
simpler expression

[vazlwiFi(x)a]l/a
[ZlNzlwi Fi(x)a]l/a+
[ZlN:lwi(l — Fi(x))oc]l/a

When o = 1, the pooling formula (Eq. A3) reduces to the
linear pooling. As o — 0, it is straightforward to check that
it boils down to the log-linear pooling (Eq. 4). As was the
case for the o pooling presented in Sect. 3.4, this pooling
formula thus generalizes both the log-linear pooling and the
linear pooling. It must be emphasized that replacing w; by
Kw; with K > 0in Eq. (A3) leads to the same value Fp 1(x).
Imposing Zf\/: jw; = 1 or not in Eq. (A3) thus has no conse-
quences for Fp 1.

The existence of two different pooling approaches, namely
F¢ and F, calls for some comments.

Fpi1(x)= (A3)

— In numerous tests, it was consistently found that the
CDF Fg obtained by the « pooling (Eq. 7) and the CDF
Fp.1 computed directly using Eq. (A3) are almost in-
distinguishable when imposing S = 1. In this case, the
direct computation in Eq. (A3) is 5 to 10 times faster
and should be preferred.

— However, as discussed in Sect. 3.4, Fg is a proper CDF
even if § > 1. There is thus an extra parameter avail-
able for the a-pooling approach, allowing for a better
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fit between the models and the reference. The cost is
increased computation time.

— When using the direct approach in Eq. (Al), S <1
leads to well-defined values Fg(x). It thus also offers
an extra parameter for the pooling, but the CDF Fp
varies between the limits in Eq. (A2) instead of [0, 1].
Strictly speaking, F'p is thus not a proper CDF. In prac-
tice, however, it was very often found that the quantity
(1 =Y+ 1)~1 was extremely small (say, less than
10_3) and the min—max rescaling shown in Eq. (11) can
be performed to get a proper CDF.

— In Eq. (A1) S > 1 must be avoided as it can lead to in-
consistent results, such as non monotonic functions Fp.

Appendix B: Optimal properties of @ pooling

We briefly report some optimal properties of the « pooling
presented in Sect. 3.4. We refer to Neyman and Roughgarden
(2023) for a complete presentation on proper scoring rules,
quasi-arithmetic pooling, and min—max optimal properties.
We first start with some generalities. For the sake of clarity, x
is fixed and we write F for F(x). We further define the vector
F = (F,1— F)'. In what follows, vectors will be written in
bold letters.

The accuracy of a pooling method for a probability distri-
bution is assessed using a metric, called a scoring rule, which
assigns a value (sometimes called a reward) when a probabil-
ity g is reported and outcome j happens according to a refer-
ence probability p. Among all possible scoring rules, we will
restrict ourselves to proper scoring rules, i.e. a scoring rule
that is maximized when the reported probability is ¢ = p.
Well-known examples of proper scoring rules are the Brier
scoring rule (Brier et al., 1950) and the logarithmic scoring
rule. As shown in Gneiting and Raftery (2007) and in Ney-
man and Roughgarden (2023, Theorem 3.1), proper scoring
rules can be derived from a function G(p), referred to as the
expected reward function. According to this theorem a scor-
ing rule is proper if and only if

s(p; j))=G(p)+(g(p),d; — p), (BD)

where g(p) is the gradient of G(p). Let j =1,...,J be the
possible outcomes with probabilities p = (p(1), ..., p(J)).
The Brier (also known as “quadratic”) scoring rule corre-
sponds to Ggrier(p) = j p(Jj )2 and the logarithmic scoring
rule corresponds to Giog(p) = ij(j)ln p(j). A necessary
condition on G is that it is a convex function with respect
to p. Neyman and Roughgarden (2023) call quasi-arithmetic
pooling any pooling formula defined by

gFo)=Y 1 wig(Fy),

y (B2)
w;>0,i=1,...,N, Zizlw,- =1,
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where g is the gradient of a proper scoring rule G. They show
(in Theorem 4.1) the following max—min property for quasi-
arithmetic pooling formula. Let us define the following util-
ity function,

N
u(Fs; j):= S(F;j)—ZwiS(Fi;j) (B3)

i=1

which corresponds to the expected difference between the
scoring rule applied to F and the scoring rule applied to
model i, chosen randomly according to w. Then, the mini-
mum minpu(F; j)is maximized by setting F' = F g as given
in Eq. (B2). In other words, the worst loss of scores (often
interpreted as a reward) is maximized using quasi-arithmetic
pooling.

In our case, for a given x, there are only two possible
outcomes, j € {0, 1}: being less than or equal to x, with
probability p(0) = F, and being above s, with probability
p(1) =1— F. We now consider the following convex func-
tion:

G(F)=F'"* 4 (1 - F)!*, (B4)

with the limit case limy—o0G(F)= FIn F+(1— F)In(1—F)
corresponding to the logarithmic scoring rule. Notice that
o =1 corresponds to the Brier scoring rule. The associated
gradient is

g(F)=(1+a)(F%, (1-F)"), (BS)

with limg_0g(F)=(1+InF, 1+In(1— F))’. Since in
Eq. (B4) the function G is convex, the scoring rule given by
Eq. (B1) is proper and each component of the gradient is a
continuous and injective function of F for all values o > 0.
The scoring rule associated with G(F) in Eq. (B4) thus varies
continuously from the logarithmic scoring rule to the Brier
scoring rule as « varies from 0 to 1. Notice that « is also al-
lowed to be larger than 1, but the scoring rule has no specific
name in that case. The pooling formula defined by

N
Hyg(Fg)=) . wiHxg(F)),

y (B6)
w20, i=1,..,N, Y " wi=l,
where H is the (1,2) Helmert matrix, corresponds exactly
to the o pooling presented in Sect. 3.4, which thus inherits
the optimal properties of quasi-arithmetic pooling.

Code and data availability. The CMIP6 model simulations can
be downloaded through the Earth System Grid Federation portals.
Instructions to access the data are available here: https://pcmdi.llnl.
gov/mips/cmip6/data-access-getting-started.html (PCMDI, 2019).
The ERAS reanalysis data used as a reference in this study can
be accessed via the Climate Data Store (CDS) web portal at https:
/lcds.climate.copernicus.eu (Hersbach et al., 2017).
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