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Abstract. The swift and ongoing rise of global temperatures over the past decades led to an increasing number
of climate variables showing statistically significant changes compared to their pre-industrial state. Determin-
ing when these climate signals emerge from the noise of internal climate variability (i.e., estimating the time
of emergence, ToE) is crucial for climate risk assessments and adaptation planning. However, robustly disen-
tangling the climate signal from internal variability represents a challenging task. While climate projections are
communicated increasingly frequently through global warming levels (GWLs), the ToE is usually still expressed
in terms of time horizons. Here, we present a framework to robustly derive global warming levels of emergence
(GWLoE) using five single-model initial-condition large ensembles (SMILEs) and apply it to four selected tem-
perature and precipitation indices. We show that the concept of GWLoE is particularly promising to constrain
temperature projections and that it proves a viable tool to communicate scientific results. We find that > 85 % of
the global population is exposed to emerged signals of nighttime temperatures at a GWL of 1.5 °C, increasing
to > 95 % at 2.0 °C. Daily maximum temperature follows a similar yet less pronounced path. Emerged signals
for mean and extreme precipitation start appearing at current GWLs and increase steadily with further warm-
ing (∼ 10 % population exposed at 2.0 °C). Related probability ratios for the occurrence of extremes indicate a
strong increase with widespread saturation of temperature extremes (extremes relative to historical conditions
occur every year) reached below 2.5 °C warming particularly in (sub)tropical regions. These results indicate that
we are in a critical period for climate action as every fraction of additional warming substantially increases the
adverse effects on human wellbeing.

1 Introduction

The Sixth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC) repeatedly confirmed that the
recent global warming is unequivocally caused by anthro-
pogenic activity (Masson-Delmotte et al., 2021). The latest
decade (2011–2020) saw 1.1 °C higher global temperatures
compared to pre-industrial times (1850–1900), and warm-

ing is projected to continue in the future under current cli-
mate policies (IPCC, 2022). To prevent adverse and poten-
tially catastrophic impacts of very high warming rates, the
Paris Agreement urges us to hold global warming “well be-
low 2.0 °C above pre-industrial levels”, ideally limiting it
to 1.5 °C (UNFCCC, 2015). However, a warming of 1.5 °C
will already impose negative impacts on ecosystems and hu-
man wellbeing (Masson-Delmotte et al., 2018), and a grow-
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ing body of literature highlights the adverse consequences
of even higher warming rates (e.g., Hoegh-Guldberg, 2019;
Schwingshackl et al., 2021). Many studies have elaborated
the benefits of limiting global warming to 1.5 °C compared
to 2 °C. These studies show, among other benefits, substan-
tially less area affected by desertification (Park et al., 2018),
less population exposed to extreme daily temperatures (Har-
rington, 2021; King and Karoly, 2017), a lower reduction in
water availability and a smaller increase in dry-spell length
(Schleussner et al., 2016), as well as a less-pronounced in-
crease in drought risk and risk of consecutive drought years
(Lehner et al., 2017a). Given the current warming rate and
the expected severe impacts if exceeding 1.5 °C of warming,
it is essential to estimate the consequences of warming lev-
els beyond political targets at incremental steps. Hence, it is
important to analyze at which warming level we can expect a
significant signal to emerge. Incremental steps of the global
warming level (GWL) are detrimental, since a discernable
response to even strong and sustained mitigation can be de-
layed by decades due to the inertia and internal variability of
the climate system (Samset et al., 2020).

The time of emergence (ToE) is a well-established con-
cept to estimate whether and when a climate change signal
is detectable (e.g., Lehner et al., 2017b; Hawkins and Sut-
ton, 2012). The ToE indicates the time when the considered
climate variable changes into a new state. This is generally
estimated by testing whether the distribution of this variable
is statistically significantly different from the respective dis-
tribution in a world without climate change. While express-
ing the ToE as distinct years is illustrative and easy to com-
municate, uncertainties of climate projections make a pre-
cise estimation challenging (Hawkins et al., 2014). Climate
projections are subject to three major sources of uncertainty:
uncertainty due to internal variability of the climate system,
structural uncertainty introduced by different model param-
eterizations, and scenario uncertainty reflecting differences
in potential future socioeconomic and related emission path-
ways (Hawkins and Sutton, 2009; Lehner et al., 2020). Var-
ious methods have been developed to quantify, distinguish
and constrain the different types of uncertainty (Lehner et
al., 2023).

Most ToE studies use multi-model ensembles, which
mainly consist of single realizations of different models,
thus accounting for structural uncertainty and scenario un-
certainty (Giorgi and Bi, 2009; King et al., 2015; Bador
et al., 2016; Douglas et al., 2022). However, these single-
realization ensembles can only partially account for the in-
trinsic uncertainty due to internal climate variability. Espe-
cially on regional to local scales, internal variability is large
compared to the other sources of uncertainty, showing the
largest fractional uncertainty (Lehner et al., 2020; Blanusa
et al., 2023). Accounting for internal variability when es-
timating the ToE is relevant since it can advance or delay
the ToE by up to several decades (Hawkins et al., 2014) and
can contribute half to two-thirds to the total ToE uncertainty

(Bador et al., 2016). To account for the influence of inter-
nal variability in ToE studies, single-model initial-condition
large ensembles (SMILEs) can be applied. SMILEs consti-
tute numerous independent, yet equally probable, climate
simulations, created by running a single climate model mul-
tiple times under the same external forcing (e.g., same emis-
sion scenario) but with marginally changed initial conditions
(Kay et al., 2015; Maher et al., 2019). It has been shown
that SMILEs are ideal tools to estimate the ToE due to their
ability to provide both statistically robust forced signals and
accurate quantifications of internal variability via the spread
across ensemble members (Lehner et al., 2017b; Schluneg-
ger et al., 2019, 2020; Wood and Ludwig, 2020). SMILEs are
widely used and have been proven to effectively disentangle
a robust forced response from internal variability (e.g., Deser
et al., 2020; Maher et al., 2021). Furthermore, they represent
a valuable tool for a robust assessment of extremes by exten-
sively sampling the tails of the distribution (Suarez-Gutierrez
et al., 2020; Wood et al., 2021). The increasing number and
availability of SMILEs over recent years (Deser et al., 2020)
make it possible to additionally address structural uncer-
tainty. Merging the information of multiple SMILEs to as-
sess the corresponding joint time of emergence should thus
allow for an even more robust detection of the ToE, as inter-
nal variability and model uncertainty can both be assessed.

In recent years, future climate projections have been ex-
pressed increasingly frequently through global warming lev-
els (GWLs) instead of fixed time horizons (e.g., the period
2071–2100; Seneviratne et al., 2021). This approach con-
strains scenario uncertainty by the question of which GWL
will be reached and expresses future climate projections in
a more policy-relevant way. Recently, first studies combined
the GWL and the ToE to provide global warming levels of
emergence (GWLoE) instead of the ToE in single-realization
multi-model ensembles (Abatzoglou et al., 2019; Seneviratne
and Hauser, 2020), reanalysis and observations (Raymond
et al., 2020), and in two SMILEs (Kirchmeier-Young et al.,
2019). However, GWLoE remains a rarely applied concept,
particularly when an application using multiple SMILEs in
a joint emergence framework is lacking. Thus, in this study,
we quantify the joint GWLoE of selected temperature and
precipitation indices using multiple SMILEs from the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6). By
using an ensemble of multiple SMILEs, we are able to ro-
bustly determine the emergence as a function of the GWL at
the grid-scale level, implicitly accounting for internal vari-
ability and structural uncertainty. Expressing emergence as
GWLs instead of time thereby constrains the scenario un-
certainty. Furthermore, we relate incremental changes in the
GWL to changes in the exposure to temperature and precip-
itation extremes by estimating increases in their probability
ratios for each 0.1 °C warming to analyze the linear or non-
linear response to warming. Lastly, we quantify the exposure
of population and land area, on a global and regional scale,
to emerged climate indices as a function of the GWL.
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2 Materials and methods

2.1 SMILEs and climate indices

We use five different SMILEs that are part of the
CMIP6 archive (ACCESS-ESM1-5, CanESM5, EC-Earth3,
MIROC6 and MPI-ESM1-2LR; see Table 1) with a suffi-
cient number of ensemble members (30–50) to represent in-
ternal climate variability (Milinski et al., 2020; Tebaldi et al.,
2021). A sufficiently large ensemble size is particularly rele-
vant for precipitation variability, where the ensemble should
comprise at least 30 members (Wood et al., 2021). We se-
lected four temperature and precipitation indices compiled
by the Expert Team on Climate Change Detection and In-
dices (ETCCDI): yearly maximum of daily maximum tem-
perature (TXx), yearly maximum of daily minimum temper-
ature (TNx), total annual precipitation (PRCPtot) and yearly
maximum 1 d precipitation (Rx1day). We selected those four
indices as they are frequently applied (e.g., Sillmann et al.,
2013; Deng et al., 2022) and allow easy interpretability. We
further aim to demonstrate the concept of GWLoE for a
broad range of indices; thus the selected temperature and
precipitation indices intentionally cover both, absolute (TXx,
TNx and PRCPtot) and intensity (Rx1day) metrics.

To make the results comparable across SMILEs and to fur-
ther calculate the joint emergence using multiple SMILEs,
the grids of the five SMILEs must be harmonized. Typi-
cally, either the finest or coarsest grid is selected as the target
resolution. The selection of the finest grid exploits the po-
tential of the high-resolution models. The coarser models,
however, might not be capable of resolving the processes
at a higher resolution for reasons of structure and parame-
terization (Prein et al., 2016). Using the finest grid would
then also require the introduction of new data points (ei-
ther through interpolation or downscaling). We thus opted
to remap all data sets to the spatial resolution of the coarsest
grid (CanESM5, ∼ 2.8°× 2.8°; Table 1) using a first-order
conservative remapping approach.

We further aim to analyze a wide range of potential fu-
ture GWLs to identify the impact of incremental changes of
global warming on selected indices and the related emerging
risks. Hence, we selected SMILEs under historical forcing
and the high-end scenario SSP5–8.5, which projects an in-
crease in radiative forcing of 8.5 W m−2 by the end of the
21st century (Gidden et al., 2019). The choice of this rather
high-end scenario allows us to analyze high warming levels
(above 3.5 °C) compared to pre-industrial conditions (1850–
1900; Fig. 1). In contrast, some of the lower-emission scenar-
ios might not even reach GWLs of 1.5 to 2 °C by the end of
the century despite an observed global warming of already
more than 1.1 °C over the last decade (2011–2020; Fig. 1).
Overall, the range of GWLs projected by the five selected
SMILEs for the end of the 21st century (3.8–7.1 °C; Fig. 1)
is in general agreement with the respective spread of the full
CMIP6 ensemble (Tebaldi et al., 2021).

2.2 Time of emergence (ToE) and global warming level
of emergence (GWLoE)

To calculate the ToE, we extract 20-year moving windows
for each year over the period 1901–2100. A two-sided
Kolmogorov–Smirnov test (K–S test) at 5 % significance
level is then used to test the resemblance to the pre-industrial
reference climate state (1850–1900; Mahlstein et al., 2012;
King et al., 2015). The climate signal is considered emerged
once the K–S test indicates that a 20-year time series was
drawn from a different distribution than the reference data.
These differences may refer to distribution shifts (mean
changes) and shape changes (variability). It is important to
account for both changes because they can either individually
or collectively contribute to the changes in extremes (van der
Wiel and Bintanja, 2021; Wood, 2023). For each ensemble
member, we define the ToE as the 10th year of the first 20-
year window where the p value of the K–S test determines
the significance. We further require the K–S test to remain
significant in all subsequent periods as well. The climate sig-
nal is regarded as not emerged by the end of the 21st century
if the K–S test for the last 20-year window (2081–2100) does
not yield significant differences. The calculations are carried
out for each index and each SMILE member on the grid cell
level.

To estimate the sampling uncertainty in the calculation of
the emergence, a bootstrapping approach is conducted. We
sample n members (n is the ensemble size) of each SMILE
from the available members with replacement, applying 1000
repetitions. Thereby, all individual members are sampled an
approximately equal number of times. For each of these 1000
bootstrapped ensembles, we then assign the ToE to the year
when at least 90 % of the drawn ensemble members show an
emerged climate signal (e.g., 45 of 50 members; similar to
the approach by Martel et al., 2018). This method accounts
for internal variability, expressed via the n SMILE members.
As we require 90 % of the members to be emerged, the ap-
proach yields a conservative yet robust estimate of the ToE.
The sampling uncertainty is presented as the 95 % confidence
interval derived from the 1000 ToE estimates. To transfer the
ToE into the global warming level of emergence (GWLoE),
we calculate the GWL as the change in the area-weighted
global average of annual surface air temperature (GSAT) in
each moving 20-year window relative to the pre-industrial
period following the approach by Hauser et al. (2019) as used
in IPCC AR6 (Seneviratne et al., 2021). The GSAT changes
are assigned to the 10th year of each 20-year period and de-
fine the GWL for that year in each member of each SMILE.
To derive the GWLoE, we assign the corresponding GWL to
the previously calculated year of climate signal emergence
(ToE) for each of the n members, thus replacing the time
axis with the GWL in all of the 1000 bootstrapped ensem-
bles through their sampled members. The final GWLoE of a
SMILE is then defined as the mean across all bootstrapped
ensemble members (i.e., the forced response), and the confi-
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Table 1. Overview of the five single-model initial-condition large ensembles (SMILEs) applied in this study. The CMIP6 historical and
SSP5–8.5 scenarios (in total covering the period 1850–2100) were used for all SMILEs. All models were conservatively remapped to the
coarsest model grid (CanESM5) for further analysis. The values for the equilibrium climate sensitivity (ECS) stem from Meehl et al. (2020)
and provide an estimate of the climate sensitivity of each SMILE.

SMILE Ensemble size Original resolution ECS (°C) Reference
(n members) (lat× long grid)

ACCESS-ESM1-5 40 ∼ 1.3°× 1.9° 3.9 Mackallah et al. (2022)
CanESM5 50 ∼ 2.8°× 2.8° 5.6 Swart et al. (2019)
EC-Earth3 50 ∼ 0.7°× 0.7° 4.3 Wyser et al. (2021)
MIROC6 50 ∼ 1.4°× 1.4° 2.6 Tatebe et al. (2019)
MPI-ESM1-2LR 30 ∼ 1.9°× 1.9° 3.0 Mauritsen et al. (2019)

dence interval is obtained using the same methodology as for
the ToE.

To further increase the robustness of the GWLoE esti-
mates, we calculate the joint emergence of the climate sig-
nal across all five SMILEs. We define this joint emergence
as the median GWLoE of the five SMILEs, calculated for
each index at the grid cell level. We additionally claim that
SMILEs agree in the signal emergence if at least four out of
the five SMILEs indicate an emergence within the 21st cen-
tury. Finally, we cap the GWLoE at 4 °C as not all SMILEs
reach that warming level by 2100 (Fig. 1); any emergence
after 4 °C is considered not emerged.

2.3 Exposure of population and land area to emerged
climate signals

For each of the four climate indices, we quantify the frac-
tion of population and the land area fraction affected by
emerged climate signals. We use historical population data
from ISIMIP2b (Frieler et al., 2017) and future population
scenarios according to the different SSPs (SSP1–SSP5; Jones
and O’Neill, 2016; Samir and Lutz, 2017). We opted to in-
clude a wide range of population projections despite a poten-
tial disagreement with the selected climate scenario (SSP5–
8.5) to analyze the impact of different possible population
trajectories on our results, as the usage of GWLs should
make the estimated emergence largely independent of the un-
derlying emission scenario (i.e., RCP8.5 in our case). We cal-
culate the population density for each population data set and
remap it to the common grid (CanESM5 grid; see Sect. 2.1)
using first-order conservative remapping. As the SSP popu-
lation data are available in 10-year intervals, we interpolate
them linearly in time to obtain annual data. To estimate the
time-dependent population exposure to emerged climate sig-
nals, the population of all respective grid cells is aggregated
globally or to larger regions. We express the result as a per-
centage of the (time-dependent) global and regional popula-
tion. Similarly, we calculate the fraction of global (and re-
gional) land area, on which a climate signal emerges, using
the (time-invariant) land area fraction of CanESM5.

Figure 1. Changes in global average annual surface air temper-
ature, i.e., global warming level (GWL). The GWL is calculated
relative to pre-industrial conditions (1850–1900) under historical
and SSP5–8.5 scenarios and is presented for the five SMILEs (col-
ors indicate their respective equilibrium climate sensitivity (ECS)
from low (blue) to high (red)) and the blended, observation-based
reference data set HadCRUT5 (black; Morice et al., 2021). Solid
lines indicate the ensemble mean, and shaded areas represent the
range (minimum to maximum) of the individual members for each
SMILE. Note that, following our methodology, the GWL was cal-
culated based on 20-year moving windows; thus the GWL shown
in this figure also reflects 20-year moving windows and not annual
data. Accordingly, the presented ensemble spread does not represent
inter-annual variability and is considerably narrower than for non-
smoothed annual data. Numbers in the legend indicate the ensemble
size of each SMILE (n members).

As population projections are time-dependent, the popula-
tion emergence as a function of the GWL can only be quan-
tified by considering the temporal evolution of the GWL. For
each GWL, we use the population of the year in which the
GWL is reached for the first time (see Sect. 2.2) and calculate
the global (and regional) population exposure by considering
all grid cells that have emerged at that GWL and the popula-
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tion in the respective year. Thus, population changes in a grid
cell that have already emerged at a lower GWL continue to
influence the total population exposure at higher GWLs. We
further quantify the uncertainty due to internal variability by
estimating the exposure of land area and population individ-
ually for each of the 1000 bootstrapped ensembles and by
calculating the 95 % confidence interval across all members.

2.4 Changes in probability ratio of climate index
extremes

In addition to considering the full probability distribution
of climate indices when determining the ToE and GWLoE
(based on K–S test), we further quantify how the probabil-
ity of their extreme values changes with global warming. We
define the frequency of extreme years as the number of years
exceeding the 95th percentile of the respective climate index
distribution in the reference period 1850–1900. We calcu-
late the probability ratio PR based on frequencies of extreme
events for each 20-year period as

PR=
nfut

yfut·mfut
nref

yref·mref

, (1)

where n is the event frequency during the reference (ref) and
future (fut) periods pooled across all members, y is the pe-
riod length (20 years for fut and 51 years for ref), and m is the
number of ensemble members. Probability ratios above and
below 1 indicate an increase and decrease, respectively, in
event frequency relative to the reference period 1850–1900.
By definition, the event probability equals 0.05 in the refer-
ence period when considering the 95th percentile threshold.
This is equivalent to a return period of 20 years for annual
maximum temperature and precipitation events (see Fig. S1a
in the Supplement for a conceptual illustration). Therefore,
the theoretical maximum probability ratio, during any 20-
year period, is PR= 20, which indicates that pre-industrial
extreme thresholds are exceeded every year in all SMILE
members. We quantify the GWL at which this saturation ef-
fect occurs for each of the four indices.

Furthermore, to derive the change in probability ratios of
extreme years as a function of the GWL, we linearly regress
the probability ratio against the GWL using the least-squares
approach. We account for non-linear changes in probabil-
ity ratios across the considered GWL range (1 to 4 °C) by
performing the linear regression piecewise for three global
warming intervals: 1 to 2 °C, 2 to 3 °C and 3 to 4 °C (see
conceptual illustration in Fig. S1b in the Supplement). The
estimated regression coefficients indicate the magnitude of
changes in probability ratios per 10th of a degree (0.1 °C) of
additional global warming. To account for inter-SMILE dif-
ferences, we average the regression coefficients, weighted by
the number of SMILE members, and mask out areas where
fewer than four SMILEs agree in the direction of the PR
change.

The 0.1 °C GWL step we apply is finer than the steps used
by other studies to investigate frequency changes at distinct
GWL thresholds (e.g., GWLs of 1.5 or 2.0 °C related to the
Paris Agreement). Those studies commonly employ distinct
GWLs or increments of 0.5 or 1 °C to obtain statistically ro-
bust change signals (Perkins-Kirkpatrick and Gibson, 2017;
King et al., 2018; Fischer and Knutti, 2015). However, our
setup using five SMILEs, with 30–50 ensemble members
each (220 members in total), ensures robust assessments and
allows us to analyze frequency changes of extreme events at
incremental GWLs. By considering GWL steps of 0.1 °C, we
are able to evaluate the contribution of incremental warming
steps to increases in extreme-event frequency with a partic-
ular focus on different warming intervals. This also allows
us to illustrate the potential consequences of overshooting
policy-agreed GWL targets by even a small margin.

3 Results

3.1 Global warming level of emergence for temperature
and precipitation indices

The joint emergences of the considered indices across all
SMILEs show distinct GWLoE patterns (Fig. 2). In partic-
ular, the temperature indices show a widespread emergence
at low GWLs, with substantial emergence occurring at the
present-day GWL (around 1.1 °C). This indicates that many
regions have already transitioned into a new climate state for
TXx and TNx. Emergences of TXx are particularly preva-
lent in the Southern Hemisphere, including large parts of
Africa and South America, as well as southern Europe, Cen-
tral America, and the Arabian Peninsula (Fig. 2a). In all other
regions, TXx is projected to emerge between a GWL of 1.0
and 2.0 °C except for a few regions with emergence only at
higher GWLs. TNx shows an even more pronounced and
widespread emergence at present-day warming (except for
Antarctica), reflecting that climate change has already im-
pacted the temperature indices across the globe (Fig. 2b). The
model agreement for the emergence of the temperature in-
dices is very high (no areas are hatched in Fig. 2a, b). While
the joint emergence of all SMILEs provides an estimate of
the GWLoE based on the median GWLoE across the five
SMILEs, individual models emerge at lower or higher GWLs
due to internal variability. Thus, the range of GWLoE across
SMILEs provides additional information on the robustness
of the results. The robustness is particularly high for TNx,
as indicated by a narrow range of GWLoE across SMILEs
(Fig. S2 in the Supplement ). While the range also yields a
generally high agreement for TXx, the patterns are more di-
verse, manifested by a larger range in eastern North America,
eastern Europe, central Africa and parts of southeastern Asia
(Fig. S2 in the Supplement).
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Figure 2. Joint global warming level of emergence (GWLoE) of the
considered indices. Maps show the joint emergence (multi-model
median) of the five applied bootstrapped SMILEs (see Materials
and methods) using historical and SSP5–8.5 scenarios for TXx (a),
TNx (b), PRCPtot (c) and Rx1day (d). Red areas indicate an earlier
emergence. Hatched areas indicate regions where emergence within
the considered GWL range is detected in fewer than four of the five
SMILEs. Grid cells that do not yield emergence at a GWL < 4 °C
are colored white. Light gray indicates non-land grid cells.

The precipitation indices generally emerge less
widespread and at higher GWLs than the temperature
indices (Fig. 2c, d). PRCPtot emerges at a GWL of around
2 °C in the northern high latitudes, central Asia, and parts
of tropical Africa and South America (Fig. 2c). For most of
these regions (except for South America), a general increase
in annual precipitation is projected (IPCC, 2021). Rx1day is
generally projected to increase over land due to dynamical
and thermodynamical adjustments (Seneviratne et al., 2021).
However, the Rx1day signal only emerges in parts of Africa
and South America for a GWL < 2.0 °C (Fig. 2d). For the
rest of the globe, PRCPtot and Rx1day do not emerge until
a GWL of 4 °C or higher, with large areas (particularly dry
regions) showing no emergence at all within the considered
GWL range. In addition to high internal variability (Fig. S15
in the Supplement), the inter-model range in GWLoE for
precipitation indices is substantially larger than for tempera-
ture indices, partly explaining that the precipitation indices
only emerge at higher GWLs (Fig. S2 in the Supplement).
Regions with a narrower GWLoE range predominantly
correspond to grid cells where the signals emerged in fewer
than four SMILEs; thus the narrow range in these regions
is due to fewer SMILEs and does not necessarily indicate
increased robustness.

3.2 Exposure of land area and population to emerged
climate signals

To quantify how the spatial extent of the emerged climate
signals changes over time, we next assess the percentage of
land area exposed to emerged climate signals as a function
of the GWL (Fig. 3). TXx has already emerged on 41 %–
56 % (range across all SMILEs) of the global land area under
the present-day climate. The emergence continues to increase
linearly until stabilizing around 2 °C when most of the land
fraction shows emerged signals (78 %–87 %; Fig. 3a). Africa,
western and southern Asia, South America, and southeastern
Asia can be identified as hotspots where TXx has already
emerged on most of the land under the present-day climate
(Fig. S3 in the Supplement). TNx shows a similar path but
with a larger fraction of land area having emerged climate
signals under present-day conditions (53 %–83 %; Fig. 3b
and Fig. S3 in the Supplement). At a GWL of 1.5 °C, 86 %–
94 % of the land area will be exposed to a new climate state
for TNx (Fig. 3b). All five SMILEs show similar changes for
TXx and TNx globally and for most of the analyzed regions,
except for southeastern Asia and Australia, where the land
area fraction with emerged signals varies strongly across the
different SMILEs (Fig. S3 in the Supplement).

The emergence of climate signals for the precipitation in-
dices occurs at higher GWLs than for the temperature in-
dices; thus emergences are only detectable over a small por-
tion of the land area under the present-day climate (1 %–
18 %; Fig. 3c, d). The fraction of land exposed to emer-
gences of PRCPtot shows a linear increase from around
1.5 °C onwards, with roughly one-fifth (11 %–37 %) of the
land area being exposed to a new climate state at a GWL
of 2.0 °C (Fig. 3c). However, we find strong regional differ-
ences, with emerged signals at 2.0 °C warming being more
widespread in northern and central Asia, Africa, and South
America than on average globally (Fig. S3 in the Supple-
ment). Particularly in northern and central Asia, the esti-
mated exposed land fraction also shows substantial differ-
ences across the five SMILEs. The fraction of land exposed
to Rx1day emergences increases linearly as well, starting at
a GWL of around 1.0 °C, but the rate of increase depends
strongly on the considered SMILE. Three of the five SMILEs
(MPI-ESM1-2-LR, MIROC6 and ACCESS-ESM1-5) follow
a similar path (around 8 %–10 % of the exposed area at a
GWL of 2.0 °C), while EC-Earth3 shows a much higher ex-
posed area (43 %) and CanESM5 shows a much lower ex-
posed area (2 %) at 2.0 °C.

The related sampling uncertainty due to composition of the
ensemble members at a global scale (shaded area in Fig. 3;
95 % confidence interval from bootstrapped member sam-
pling) is very low for all four climate indices. This is also
the case on a regional scale (Fig. S3 in the Supplement) ex-
cept for southeastern Asia and Australia, where the sampling
uncertainty plays a larger role than in the other regions. Nev-
ertheless, the structural uncertainty, originating from differ-
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Figure 3. Fraction of land area exposed to emerged climate indices dependent on the global warming level (GWL). The respective land
area fraction is presented for emerged signals of TXx (a), TNx (b), PRCPtot (c) and Rx1day (d). Different colors represent the five applied
SMILEs (with equilibrium climate sensitivity (ECS) increasing from blue to red), and shading indicates the sampling uncertainty (95 %
confidence interval estimated by bootstrapping; see Materials and methods).

ences across SMILEs, constitutes the dominating source of
uncertainty, both globally and regionally.

We further estimate the percentage of global population
that is exposed to emerged climate signals, considering the
uncertainty due to different population projections according
to the scenarios SSP1 to SSP5 (Fig. 4). In general, the pat-
terns of population exposure follow the path of land area ex-
posure, with large fractions of the global population affected
by emergences of TXx and TNx already at low GWLs. In
contrast, PRCPtot and Rx1day will emerge at higher GWLs
and consequently affect fewer people. For TXx, the exposure
under the present-day climate shows a rather large spread (af-
fecting 37 %–56 % of the global population) but increases to
68 %–88 % at a GWL of 2.0 °C (Fig. 4a). Regarding TNx,
72 %–80 % of the global population is already exposed to
emerged signals under the present-day climate, with model
agreement being higher than for TXx (Fig. 4b). This per-
centage is projected to increase to 86 %–93 % at 1.5 °C, and
at 2.0 °C virtually everybody (more than 95 % in all five
SMILEs) will be exposed to a new climate state of TNx
(Fig. 4b). Under present-day warming, the highest exposure
to TNx emergence can be found in Africa, southeastern Asia,
South America, and North and Central America, where more
than four out of five people already experience an emerged
climate signal (Fig. S5 in the Supplement). For PRCPtot, we
find lower exposure where up to a GWL of 2.0 °C only a
small but steadily increasing fraction of the population (3 %–
13 %) will experience a new climate state. For Rx1day, the
exposed population starts to steadily increase at a GWL of
1.0 °C but remains below 13 % up to a GWL of 2.0 °C in four

out of the five SMILES (40 % in EC-Earth3). The projections
of the different SMILEs diverge at higher GWLs, with EC-
Earth3 showing the largest increases and CanESM5 showing
the smallest increases. Particularly pronounced increases in
exposure to Rx1day are found in Africa and South America,
although with large uncertainties across SMILEs (Fig. S5 in
the Supplement).

Again, the sampling uncertainty is rather low at a global
scale for all four climate indices (Fig. 4). Regionally, how-
ever, it represents a substantial source of uncertainty (Fig. S3
in the Supplement), for example in southeastern Asia and
Australia for all four climate indices and, for PRCPtot and
Rx1day, also in several other regions. For most indices and
regions, the uncertainty due to different population projec-
tions only plays a minor role and is even smaller than the
sampling uncertainty. For TXx and TNx, the differences
across models clearly dominate the uncertainty of the glob-
ally exposed population (Fig. 4a, b) to emerged climate sig-
nals. For PRCPtot and Rx1day, the differences across models
also dominate the overall uncertainty, but the spread due to
the population scenarios becomes more prominent (Fig. 4c,
d).

3.3 Increase in probability ratios for different global
warming levels

Next, we investigate how the frequency of extremes in the
four climate indices changes with the GWL by examining
differences in their probability ratios (PRs) relative to pre-
industrial conditions (see Materials and methods). While, for
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Figure 4. Percentage of global population exposed to emerged climate indices as a function of the GWL. The respective exposed population
fraction is presented for emerged signals of TXx (a), TNx (b), PRCPtot (c) and Rx1day (d). Different colors represent the five applied
SMILEs (with equilibrium climate sensitivity (ECS) increasing from blue to red), and shading indicates the sampling uncertainty (95 %
confidence interval estimated by bootstrapping; see Materials and methods). The different lines indicate the exposure according to different
population scenarios, with the thick line corresponding to a population development according to SSP5 and the thin lines corresponding to
population developments according to SSP1–SSP4.

TXx and TNx, a widespread emergence of a climate change
signal regarding the local full index distributions (based on a
K–S test; Fig. 2) is detected for a GWL < 1 °C, the following
analysis focuses on the tails of the distribution. Both temper-
ature indices show a widespread increase in the frequency
of extreme events (positive changes in the probability ratio)
across all continents in the GWL range 1–2 °C (Fig. 5). For
TXx and TNx, the increase in the PR is largest for central
North America, South America, the Mediterranean and cen-
tral Asia and more pronounced for TNx than for TXx. In
these regions, the PR increase per 0.1 °C warming is larger
than 1. Thus, every additional 0.1 °C increase in the GSAT
leads to an increase in extreme-event frequency by at least
the number of events in the pre-industrial reference period.
Furthermore, the increase in probability ratios of TXx and
TNx indicates a non-linear behavior. The largest increases in
probability ratios are found in the GWL range of 1–2 °C, thus
at a GWL at which TXx and TNx already show widespread
emergence (Fig. 2). These increases get less steep once the
peak of the index distribution crosses the defined threshold
for extreme events (95th percentile in 1850–1900), and they
stabilize towards higher GWLs (at 3–4 °C or even higher).
The PR patterns remain similar for a more extreme threshold
(99th percentile, corresponding to a 100-year return period),
albeit yielding higher increase rates given the lower number
of events (Fig. S7 in the Supplement).

For PRCPtot and Rx1day, changes in the PR are gen-
erally less pronounced than for TXx and TNx (Fig. 5).

They increase by 0.25–0.75 per 0.1 °C (corresponding to a
25 %–75 % higher probability of extreme events per 0.1 °C
warming) in the northern high latitudes, Africa, the Hi-
malaya region and – for Rx1day – parts of South America.
These regions also emerge as hotspots under a more extreme
threshold (99th percentile; Fig. S7 in the Supplement). With
the precipitation indices showing emergence at rather high
GWLs, or no emergence at all, low PR changes in most re-
gions (aside from the northern high latitudes and tropical
Africa with GWLoE≤ 2 °C) originate from slow distribution
shifts where the extremeness threshold has not been crossed
yet. This is contrary to TNx and TXx. For PRCPtot, several
regions show a decrease in the probability ratio of −0.25
per 0.1 °C warming (Central and South America, southern
Africa, the Mediterranean region, and parts of Australia), in-
dicating a general decrease in precipitation in these regions,
in line with findings of the recent IPCC Assessment Report
6 (IPCC, 2021). Regions with a decreasing PR show lower
model agreement than regions with an increasing PR. In con-
trast to the temperature indices, the change patterns of the PR
for PRCPtot and Rx1day remain similar across GWL ranges,
indicating a more linear response to changes in the GSAT for
the considered GWL range (1–4 °C).

In several regions, PRs level off at high GWLs (Fig. 5).
If this occurs in regions with early GWLoE it indicates that
the maximum possible exceedance probability is reached:
each year surpasses the pre-industrial reference threshold.
This GWL of saturation is generally much lower for TXx
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Figure 5. Probability ratio (PR) increase for extremes in TXx, TNx,
PRCPtot and Rx1day in three ranges of global warming (1–2 °C, 2–
3 °C and 3–4 °C) per 0.1 °C warming with respect to 1850–1900.
PRs are calculated as the change in exceedance of the 95th per-
centile of the index distribution in 1850–1900. Areas ranging from
yellow to red indicate increasing PRs, while blue areas indicate de-
creasing PRs. Hatched areas indicate regions with low model agree-
ment (at least one SMILE disagreeing in the sign of the PR).

and TNx than for PRCPtot and Rx1day (Fig. 6), with satura-
tion being reached below 2 °C in southern and southeastern
Asia and in large parts of Africa and tropical South America.
Parts of North America and northern Australia reach satura-
tion between 2 and 3 °C (Fig. 6). In contrast, the precipita-
tion indices (PRCPtot and Rx1day) reach saturation in much
fewer grid cells and at much higher GWLs, except for the
Mediterranean and parts of South America, reaching satura-
tion for PRCPtot. At locations and GWLs where saturation
is reached, the projected index distributions show close to no
overlap with pre-industrial conditions.

4 Discussion

4.1 Adverse impacts of incremental GWL changes

Our results highlight that incremental GWL changes (i.e.,
steps of 0.1 °C) can strongly increase the emergence of new
climate states for the investigated indices. This is partic-
ularly the case for temperature extremes (TXx and TNx),
for which we already find a widespread emergence under
the present-day GWL. This finding is in line with the in-
creasingly frequently observed heat extremes that can be at-
tributed to climate change (Ciavarella et al., 2021; Philip et
al., 2022, 2023). The widespread emergence of TNx under
current climate conditions is of particular concern, as it cor-

Figure 6. Global warming level (GWL) of saturation for extremes
of the selected indices. Saturation maps for TXx (a), TNx (b),
PRCPtot (c) and Rx1day (d) based on values exceeding the 95th
percentile of the index distribution in 1850–1900. Saturation is de-
fined as the GWL where the maximum number of extreme events
in the analyzed 20-year periods is reached; i.e., each year is an ex-
treme year relative to pre-industrial conditions. The values indicate
the ensemble median across all SMILEs if at least four out of five
SMILEs show saturation values. Grid cells that indicate joint satura-
tion at GWLs higher than 4 °C are white, areas that show saturation
in fewer than four of five SMILEs are dark gray, and non-land grid
cells are light gray.

responds to elevated nighttime temperatures. This can reduce
people’s recovery potential and may thus adversely impact
their health conditions (Royé et al., 2021; Thompson et al.,
2022). At the same time, the precipitation indices Rx1day
and PRCPtot start to emerge in the GWL range 1–2 °C. This
indicates that we are currently in a crucial period, where ev-
ery fraction of a degree of additional warming may cause fur-
ther regions to transition into new climate states, in terms of
both the mean and the tails of the index distributions. Limit-
ing global warming to 2.0 °C would keep the population and
land fraction exposed to emergences of Rx1day and PRCP-
tot below 20 %. Beyond 2.0 °C the exposure to emergences
of these indices will rapidly increase. The current policies,
which put the world on track to reach a warming of 2.8 °C by
2100 (Liu and Raftery, 2021), would thus expose a consid-
erable fraction of the population and land to new precipita-
tion regimes and most of the population and land area to new
temperature regimes (Figs. S3 and S5 in the Supplement),
potentially outside the human climate niche (Lenton et al.,
2023). Additionally, the spatial patterns of exposure rates and
the frequency of future extremes show a strong regional het-
erogeneity, which might lead to increased socioeconomic in-
equality, especially in poorer regions of the world (King and
Harrington, 2018).
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4.2 Non-linearities and saturation of probability ratios

The responses of temperature and, to a lesser extent, pre-
cipitation extremes to global warming appear to follow a
non-linear path (Figs. 3 and 4). However, this does not di-
rectly speak to the linear or non-linear growth of extremes.
Rather, in each grid cell the majority of the distribution of a
given variable crosses the extremeness threshold at a distinct
GWL (see schematic illustration in Fig. S1a in the Supple-
ment). The contribution of this grid cell to the fraction of
emerged land is zero before the crossing and equal to the
fractional area of the grid cell afterwards. This continues si-
multaneously across all grid cells, forming the distribution
of emerged grid cells dependent on the GWL. The increase
in emerged land fraction (or population) is particularly steep
until the majority of the grid cells pass the threshold, and it
consequently flattens out afterwards. Once the thresholds are
exceeded in all grid cells, the fraction of emerged grid cells
reaches 100 % and can no longer increase.

Our results show a very rapid initial growth (i.e., a large
fraction of grid cells emerge at similar GWLs), particularly
for TNx and (slightly less pronounced) for TXx, in line with
saturation patterns corresponding to the non-linear growth
seen for CMIP5 models (Fischer and Knutti, 2015). For pre-
cipitation, the fraction of emerged land increases less steeply,
in line with a more linear growth as also seen in the CMIP5
results of Fischer and Knutti (2015). The respective trajec-
tories of precipitation and temperature extremes are never-
theless alarming. Firstly, the sharp increase in emerged tem-
perature extremes will strongly increase the human exposure
to extreme heat. Secondly, regional preparedness for future
temperature extremes might be insufficient for unexpectedly
rapid changes in the occurrence of extremes (King et al.,
2018). The usage of small GWL increments (e.g., 0.1 °C
as used in this study) thus seems imperative, as an assess-
ment across large increments (e.g., 0.5–1.0 °C) might under-
sample the temperature axis and potentially mask changes
in the slope of the underlying distribution. It also allows us
to demonstrate that implementing further policies to reduce
global warming is not futile, even if they result in incremental
reductions only – which would be impossible when employ-
ing larger increments.

Probability ratios of the temperature indices increase con-
siderably up to a GWL of 2.0 °C with widespread satura-
tion reached at a GWL of 2.0 °C. This would imply unprece-
dented heat conditions in southern Asia, northern Africa and
northern South America for most years even if the 2.0 °C tar-
get of the Paris Agreement was met (Fig. 5). Precipitation
indices reach saturation only at higher GWLs, which points
towards more inert adjustments of precipitation to chang-
ing climate. It is important to emphasize that the interpre-
tation of saturation levels (which are reached in widespread
regions particularly for temperature indices) should not be
overly generalized. They are subject to the considered index
and the underlying distributions and are dependent on the ap-

plied threshold (here 95th percentile; see Figs. S8–10 in the
Supplement for other percentiles) and the defined reference
period (here pre-industrial conditions; Harrington and Otto,
2018). Considering this, they can be used as a tool to indicate
that events considered “extreme” under pre-industrial con-
ditions occur on a yearly basis once saturation occurs and
thus become the new normal state. Reaching the saturation
level of exceedance, however, should not be confused with
reaching a “safe” state and does not impede further changes
in the magnitude and intensity of extremes (Harrington and
Otto, 2018). Instead, the exceedance of greater extremes (i.e.,
higher percentile thresholds) likely continues to rise. Even
hotter temperatures and heavier precipitation events are ex-
pected to occur at higher GWLs (Fig. S1a in the Supple-
ment).

4.3 Dependence of climate signal emergence on
remapping sequencing

To combine and display climate data with different spatial
resolution, remapping is essential. However, the order of op-
erations may vary, targeted towards the specific scope of the
study. Here, we remap the data to the grid of the coars-
est model (CanESM5) after calculating the climate indices
(TXx, TNx, PRCPtot and Rx1day) on their native resolution.
This sequencing takes advantage of model diversity by pre-
serving the precipitation and temperature fields of the mod-
els with higher spatial resolution when calculating the in-
dices. It yields a local representation of the considered ex-
treme indices, similar to what observational data sets would
deliver (de Vries et al., 2023). Alternatively, climate data can
be remapped before calculating the climate indices. This se-
quencing would lead to more harmonized model results but
removes the fine-scale information provided by models with
higher spatial resolution. For studies analyzing model per-
formance and focusing on model comparison, the latter ap-
proach would be preferable.

The impact of the processing order on the resulting fields
is expected to be more substantial for daily precipitation ex-
tremes (such as Rx1day) than for temperature or total annual
precipitation. When these precipitation extremes are calcu-
lated on the finer grid, they might occur on different days and
would then be aggregated to form the larger grid cells of the
remapped data. Remapping before the calculation of the ex-
treme indices would keep the temporal integrity but results in
a dilution of the precipitation extremes that often occur more
locally.

For our study, the former approach (remapping after cal-
culating the indices) is advantageous, as we aim to inves-
tigate local emergences of climate change signals and the
related exposure of the population. Moreover, we focus on
relative changes in the indices (assessed via ToE, GWLoE
and PR) rather than changes in their absolute values. We find
only negligible differences between both remapping orders
for TXx, TNx and PRCPtot for the land area fraction exposed
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to emerged signals (Figs. S11 and S12 in the Supplement).
However, we identify a substantial divergence for the emer-
gence of Rx1day. Focusing on local-level extremes (remap-
ping after calculating Rx1day) yields earlier Rx1day emer-
gences compared to the approach that harmonizes model re-
sults (remapping before calculating Rx1day). Additionally,
the latter approach reduces the model spread in case Rx1day
emergences are expressed as a function of the GWL (Fig. S12
in the Supplement). This spread remains unchanged if emer-
gences are expressed as a function of time (Fig. S11 in the
Supplement). This indicates that most of the model spread
for Rx1day emergences expressed as a function of the GWL
can be explained by model resolution, whereas the different
equilibrium climate sensitivity (ECS) seems to play a sec-
ondary role (Fig. 3d, Fig. S12d in the Supplement, Table 1).
The high sensitivity of the ToE and/or GWLoE to the selected
remapping order for Rx1day (and presumably also for sim-
ilar precipitation indices) highlights that this sequencing is
of great importance for quantifying related emergences. The
decision to perform the remapping before or after calculating
the desired index should thus not be an arbitrary choice. Our
results highlight that this is crucial not only for the investiga-
tion of changes in absolute values but also when the ToE or
GWLoE are of interest.

4.4 The concept of GWLoE as a tool to communicate
climate change impacts and related uncertainties

Combining the concept of the ToE with global warming lev-
els supports a more policy-relevant communication of the
emergence of climate signals as global policies are more fre-
quently based on warming levels (e.g., 1.5 or 2.0 °C targets
of the Paris Agreement). We find that the GWLoE provides a
feasible tool to constrain model uncertainty, particularly for
temperature variables and temperature-related indices. We
generally find a higher model agreement for TNx and TXx if
emergence is expressed as a function of the GWL (Figs. S3,
S5, S13 in the Supplement) instead of time (Figs. S4, S6,
S14 in the Supplement). However, regional differences re-
main. For PRCPtot and Rx1day, in contrast, we find better
agreement across SMILEs when expressing emergence as a
function of time. This indicates that precipitation changes are
not only impacted by thermodynamics but also by other pro-
cesses, such as aerosol forcing (Lin et al., 2016; Lehner and
Coats, 2021), which are characterized as a function of time
rather than of the GWL. In that regard, precipitation changes
are more dependent on the scenario pathway and thus more
prone to scenario uncertainties in some regions (Maher et al.,
2019). Additionally, precipitation changes are more affected
by small-scale processes and thus by model resolution, which
contributes to the larger model spread for precipitation than
for temperature indices as discussed above.

Internal climate variability represents a major source of
uncertainty for the estimation of GWLoE and thus needs to
be accounted for. Across indices, the spread originating from

internal variability (Fig. S15 in the Supplement) is of similar
magnitude to the inter-model range across SMILEs (Fig. 2).
For the temperature indices, internal variability regionally
even exceeds the across-model spread, particularly towards
the poles (Fig. S15 in the Supplement). This becomes even
more relevant for the assessment of impacts at low GWLs,
i.e., projections for the upcoming decades, where internal cli-
mate variability is a particularly large source of uncertainty
(Hawkins and Sutton, 2009; Lehner et al., 2020). This makes
SMILEs an essential tool to determine GWLoE, as they al-
low us to quantify internal variability and thus derive a robust
signal detection even at low GWLs (Maher et al., 2020). To
further increase the robustness of the GWLoE estimates, we
apply a 90 % emergence threshold across members (see Ma-
terials and methods). This rather conservative estimate en-
sures that internal variability is properly accounted for. Con-
sidering the joint emergence of multiple SMILEs then further
increases the robustness of GWLoE estimates and constrains
both internal variability and model uncertainty across a wide
range of GWLs.

Furthermore, the approach considering the GWL rather
than time to estimate emergence might be beneficial to over-
come the ”hot model problem” (Hausfather et al., 2022), i.e.,
the issue of selecting climate models that show a higher-than-
average equilibrium climate sensitivity (ECS) to increasing
CO2 levels (Suarez-Gutierrez et al., 2021). We find that a
time-dependent approach will generally lead to a model or-
der, where models with high ECS (Table 1) usually show the
highest exposure of population and land area to emerged cli-
mate signals (Figs. S4, S6, S14 in the Supplement). In con-
trast, our results show that a GWL-centered analysis results
in a model order that is largely independent of the models’
ECS (Figs. S3, S5, S13 in the Supplement). This holds partic-
ularly true for temperature indices and to a lesser degree also
for PRCPtot and Rx1day. In particular for Rx1day, model
resolution seems to be more impactful than ECS.

Our results are presented for GWLs extracted from sim-
ulations of transient climate that do not necessarily comply
with equilibrium conditions with long-term stabilization at
a certain GWL (Mitchell et al., 2016). Regional warming in
model experiments with quasi-equilibrium climate states can
be expected to be cooler than in transient warming scenar-
ios (King et al., 2020). This becomes even more prominent
for the magnitude of summer extremes, in turn also affecting
their frequency (King et al., 2020). Consequently, our results
do not reflect stabilized climate states as, for instance, occur-
ring in overshoot scenarios; thus they should not be misinter-
preted as long-term impacts if specific GWLs were met (e.g.,
the 1.5 °C target). Quantifying emergences under equilibrium
conditions would require a different study design with an en-
semble of SMILEs with stabilized GWLs (Mitchell et al.,
2016; King et al., 2020). Instead, our results represent snap-
shots of GWLs under transient climate conditions with a fo-
cus on their dynamics and changes at incremental GWLs,
which remain valid under the given constraints.
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Finally, our results are based on the high-end warming
scenario SSP5–8.5, which is considered to project a low-
probability high warming for the end of the 21st century,
given current climate policies (Hausfather and Peters, 2020).
Analyzing the impacts of high warming levels (> 3.0 °C),
however, requires the selection of rather extreme warming
scenarios (SSP3–7.0 or SSP5–8.5), as these scenarios are
the only ones that reach sufficiently high warming (Mein-
shausen et al., 2020). Furthermore, temperature and precipi-
tation changes were found to scale largely linearly across sce-
narios for moderate GWLs (Seneviratne et al., 2016). Given
that we use a cut-off GWL of 4 °C, our results can still be
considered robust for the range of GWLs that we investigate.

5 Conclusions

In this study, we present the global warming level of emer-
gence (GWLoE) of four temperature and precipitation in-
dices (TXx, TNx, PRCPtot and Rx1day) and the related ex-
posure of population and land area based on the joint emer-
gence of five SMILEs. Under current warming levels, large
parts of the global population and global land area are al-
ready exposed to TXx and TNx emergences, while PRCPtot
and Rx1day are about to emerge in several regions. We find
widespread emergence of TXx and TNx at a GWL of 2.0 °C
and mostly linear increases in the emergence of PRCPtot
and Rx1day over the GWL range 1.0–2.0 °C. Emergences
of TXx, PRCPtot and Rx1day continue increasing beyond
2.0 °C. These results confirm that a GWL of 2.0 °C should
not be misinterpreted as a safe target (Knutti et al., 2016).
For higher warming levels (> 2.0 °C), strong increases in the
fraction of exposed land area and population to emerged cli-
mate signals were identified for precipitation indices (PRCP-
tot and Rx1day). Furthermore, we identify a sharp increase
in the frequency of temperature extremes (assessed through
probability ratios of TXx and TNx), particularly at lower
GWLs. These results highlight that considering incremental
GWL steps for analyzing the emergence of climate change
signals is essential.

Given the dominant role of internal variability at low
GWLs that are close to present-day warming, we argue that
large-ensemble simulations are essential for two reasons:
firstly, to robustly detect the emergence of climate change
signals and, secondly, for their assessment at incremental
GWL steps, particularly for analyses of extreme events,
which we find to be of highly relevant magnitude at low
GWLs. Using GWLs over time to detect the emergence of
climate change signals proves to be particularly well suited
for temperature-based indices, as it substantially reduces the
uncertainty of signal emergence compared to a time-based
approach. For precipitation-based indices, we find lower un-
certainties when expressing their emergence as a function of
time instead of the GWL. The decision of whether to apply
the GWLoE or ToE thus depends on the considered climate

variable. Additionally, regional specifications should be re-
spected, as indicated by the large regional discrepancy in our
results. Furthermore, the strong sensitivity of the emergence
of Rx1day on the remapping sequencing highlights the need
to tailor the order of remapping to the individual research fo-
cus of each study.

Our results underline the importance of climate mitiga-
tion and the imminent need for an early achievement of net-
zero emissions (Iyer et al., 2022) to avoid strongly increas-
ing emergences of temperature and precipitation indices. We
urge the implementation of policies to ensure that global
warming is limited at least to the targets defined in the Paris
Agreement. Every fraction of a degree matters to prevent ad-
ditionally emerging adverse effects of climate change on hu-
man wellbeing.
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