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Abstract. Co-occurring extreme climate events exacerbate adverse impacts on humans, the economy, and the
environment relative to extremes occurring in isolation. While changes in the frequency of individual extreme
events have been researched extensively, changes in their interactions, dependence, and joint occurrence have
received far less attention, particularly in the East African region. Here, we analyse the joint occurrence of pairs
of the following extremes within the same location and calendar year over East Africa: river floods, droughts,
heatwaves, crop failures, wildfires and tropical cyclones. We analyse their co-occurrence on a yearly timescale
because some of the climate extremes we consider play out over timescales up to several months. We use bias-
adjusted impact simulations under past and future climate conditions from the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP). We find an increase in the area affected by pairs of these extreme events, with
the strongest increases for joint heatwaves and wildfires (+940% by the end of the century under RCP6.0 relative
to present day), followed by river floods and heatwaves (+900%) and river floods and wildfires (+250%).
The projected increase in joint occurrences typically outweighs historical increases even under an aggressive
mitigation scenario (RCP2.6). We illustrate that the changes in the joint occurrences are often driven by increases
in the probability of one of the events within the pairs, for instance heatwaves. The most affected locations in the
East Africa region by these co-occurring events are areas close to the River Nile and parts of the Congo basin.
Our results overall highlight that co-occurring extremes will become the norm rather than the exception in East
Africa, even under low-end warming scenarios.
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1 Introduction

Climate change studies show that the frequency, intensity,
and spatial extent of various extreme events have increased
due to global warming (Seneviratne et al., 2021). Most of
these studies report changes in individual drivers or extreme
events (Frieler et al., 2017; Lange et al., 2020). However, the
extent to which these extreme events interact with each other,
possibly boosting or buffering each other, has only recently
started receiving attention (e.g. Batibeniz et al., 2023). At
present, there is limited knowledge on the degree to which
climate and impact models can be used to illustrate these in-
teractions and dependencies (Zscheischler et al., 2020b). In-
teracting climate extremes are commonly termed compound
climate extremes. More broadly, compound climate events
are defined as a set of multiple climate drivers and/or hazards
that directly affect the society and environment (Zscheis-
chler et al., 2018, 2020a). These events often have more de-
structive impacts on humans, the economy, and the environ-
ment as compared to independent events (Zscheischler et al.,
2018, 2020b). For example, (i) the co-occurring drought and
heatwaves experienced during the 2014 California drought
resulted in record-breaking water shortages and massive
wildfires despite the drought itself not being the most ex-
treme one recorded in the region (Aghakouchak et al., 2014);
(ii) the co-occurring hot and dry conditions experienced in
the Upper Nile basin during the past decades resulted in crop
failures and water shortages (Coffel et al., 2019; Zscheischler
et al., 2020b); and (iii) the occurrence of the 2019 floods in
East Africa that followed the extreme drought of 2018–2019,
the floods of March–May 2018, and the drought of 2016–
2017 led to an accumulation of adverse impacts (Rateb and
Hermas, 2020; FEWS-NET, 2020).

In various regions of the world, compound extremes have
been experienced in the past decades (Aghakouchak et al.,
2014; Rateb and Hermas, 2020; Weber et al., 2020; Witte
et al., 2011; Messori and Faranda, 2023), and it is projected
that associated risks will increase due to the changing cli-
mate and population exposure (de Ruiter et al., 2020). Global
warming plays a major role in the increase in frequency and
intensity of these compound climate extremes, resulting in
more harmful climate hazards such as heatwaves, droughts,
wildfires, and floods (Mora et al., 2018).

According to Weber et al. (2020), East Africa (composed
of Uganda, Kenya, Tanzania, Rwanda, Burundi, South Su-
dan, Ethiopia, Somalia, Djibouti and parts of Eritrea, Sudan,
Zambia, Malawi, Mozambique, the Central African Repub-
lic, and the Democratic Republic of the Congo (DRC)), with
a population of at least 326 million (Worldometer, 2022), is
the most affected region by co-occurring droughts and heat-
waves in Africa and is also highly affected by consecutive
droughts and floods. The region is further expected to ex-
perience extreme heat conditions under global warming of
2 °C (Harrington and Otto, 2018; Weber et al., 2020) and
is prone to compound extreme events in the future (Weber

et al., 2020). Although there is some historical information
on the occurrence of compound climate extremes in the re-
gion (e.g. Nicholson, 2014; Rateb and Hermas, 2020; FEWS-
NET, 2020), little is known on how often these occur (Weber
et al., 2020). This indicates the need for a detailed analysis
of compound extremes in East Africa that will allow for a
better understanding of the possible dependencies between
extreme events, their recurrence, and the effect of different
future emission scenarios on their frequency. This is not only
important for disaster risk management but is also key for
climate change adaptation planning by the government au-
thorities in the region.

The state-of-the-art climate impact simulations from the
Inter-Sectoral Impact Model Intercomparison Project phase
2b (ISIMIP2b) provide a multi-model database of climate
impacts across several sectors at both global and regional
scales under a range of emission scenarios (Frieler et al.,
2017) and present an ideal dataset to analyse compound cli-
mate extremes. Specifically, the processed dataset of Lange
et al. (2020), which contains land areas exposed to six cate-
gories of climate extreme events on a global scale (as used
in Thiery et al., 2021a), allows for the analysis of the impact
of climate change on the frequency of compound extremes
across East Africa under both present-day conditions and fu-
ture climate change scenarios.

In this study, we aim to understand the occurrence of com-
pound extremes in East Africa at annual timescales and fo-
cus specifically on co-occurring extremes. Here, the term co-
occurring extremes refers to two extreme events occurring
within the same location and calendar year. We consider the
occurrence of two out of six categories of extreme events
within the same year in East Africa: river floods, droughts,
heatwaves, crop failures, wildfires, and tropical cyclones.
Several of these events have been reported to directly impact
the livelihood and economy of the region (Coffel et al., 2019;
Jacobs et al., 2016; Zscheischler et al., 2020b; Weber et al.,
2020). We explore the changes in frequency, concurrence,
consecutive occurrence, and spatial extent of 15 pairs of these
extreme events and changes in their correlation. Lastly, we
determine the main drivers of changes in the occurrence of
co-occurring extremes in the region, by comparing an early
industrial period (1861–1910), the present day (1956–2005),
and the end of the century (2050–2099) under three future
climate scenarios.

2 Data

We use the dataset from Lange et al. (2020), who processed
impact model simulations available within ISIMIP2b, and se-
lect the region 24° N and 13° S and 18 and 55° E. The dataset
has a spatial resolution of 0.5°× 0.5° and includes extreme
event simulations under both historical climate conditions
(1861–2005) and future climate conditions (2006–2099) fol-
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lowing Representative Concentration Pathways (RCPs) 2.6,
6.0, and 8.5.

The dataset includes yearly maps indicating the exposed
area for each of the six categories of climate extreme events
as defined by Lange et al. (2020) (see Table 1). It is com-
prised of output from process-based impact models forced by
bias-adjusted output of four global climate models (GCMs)
available under phase five of the Coupled Model Intercom-
parison Project (CMIP5): GFDL-ESM2M, HadGEM2-ES,
IPSL-CM5A-LR, and MIROC5. This approach is followed
for all the extreme event categories except for heatwaves,
where the exposed land area is diagnosed directly from the
GCM surface air temperature output (Thiery et al., 2021a).
In this study, a multi-model ensemble approach is followed
such that all available impact models per extreme event cate-
gory (see Table 1), driven by the four aforementioned GCMs,
are used to represent the region’s exposure to extremes. To
guarantee physical consistency in our analyses, we only iden-
tify co-occurring extremes from cross-category impact mod-
els driven by the same GCM. For instance, in diagnosing
co-occurring river floods and wildfires, we use output data
from the impact model CLM45 for river floods and data from
CARAIB for wildfires where both are driven by the same
GCM, e.g. GFDL-ESM2M. We then repeat the calculation
for the same two impact models but both driven by another
GCM and so on. We finally combine the results after having
computed concurrence for all GCMs. This dataset allows us
to analyse the joint occurrence of extreme events within the
study region for three 50-year periods: the early industrial
period (1861–1910), the present day (1956–2005), and the
end of the century (2050–2099).

The dataset we use comes with several caveats. A minor
caveat is that it does not contain crop failure projections un-
der RCP8.5. More importantly, the data represents the occur-
rence of an extreme event category as a single event within
a grid cell per year, no matter if it occurred once or several
times within the same location in the same year. Finally, an
extreme event such as a wildfire, river flood, or tropical cy-
clone can only partly cover a given grid cell, whereas other
extreme events (heatwaves, droughts and crop failures) are
assigned by default to the entire grid cell. Thus, for the for-
mer three extremes, we consider that a grid cell is entirely
affected when more than 0.5 % of the 0.5°× 0.5° grid cell
area is simulated to be affected by the extreme event. Whilst
these are limitations of the dataset, we have three distinct
motivations to use it throughout our analysis: (i) the dataset
is amongst the most detailed and complete of its kind, and
provides information on the occurrence of extreme events
within the study region over a very long time period (from
1861 until 2099); (ii) some of the climate extremes we con-
sider play out over longer timescales, for example droughts
may last several months to even years, wildfires may rage for
several months, and crop failures may result from extreme
conditions during the entire growing season; (iii) the impacts
of compound extremes may be larger than those for individ-

ual events even in the case where the concurrence is not on
a daily timescale. These are sometimes termed temporally
compounding extremes (e.g. Zscheischler et al., 2020b). For
example, impacts of drought events on vegetation can be ag-
gravated by droughts in consecutive growing seasons (e.g.
Bastos et al., 2021; Wu et al., 2022). Similarly, societal vul-
nerability to floods is modulated by the occurrence of suc-
cessive flood episodes (Chacowry et al., 2018), and wildfires
and hydrological extremes can also compound across sea-
sons (Yu et al., 2023; Moody and Ebel, 2012; Larsen et al.,
2009). We therefore use the yearly dataset as the backbone
for this study.

3 Methods

3.1 Probability of joint occurrence of extreme events

We identify co-occurring extreme events by considering the
probability of joint occurrence at grid cell level (similar to
Kappes et al., 2010). The occurrence of an extreme event
within a grid cell during each year is represented as a
Boolean expression (Eq. 1).

Occurrence of an
extreme event =


1, if the exposed area in a cell

≥ 0.5%
0, otherwise

(1)

We analyse the probabilities of joint occurrence of two ex-
treme events at a single grid cell as follows (Eq. 2).

P (joint occurrence)=
no. of years with co-occurring

extremes
total no. of years

considered

(2)

Here, the number of years with co-occurring extremes rep-
resents the years when occurrence of both extreme events is
equal to 1. To inspect the change in area affected by these co-
occurring extremes, we quantify the percentage of the study
area affected by the compound event pairs (Eq. 3).

Percentage of area
affected =

Total area of grid cells affected
by co-occurring extremes

Total domain area
·100% (3)

As already mentioned, we take a multi-impact model en-
semble approach to determine the average percentage of the
region affected by co-occurring extreme event pairs during
each of the 50-year periods. We also calculate the maximum
number of consecutive years with joint occurrence of two ex-
treme events under historical conditions and future climate
scenarios.

3.2 Changes in bivariate distributions

For each extreme event pair, we plot the bivariate distribu-
tions of the percentage of the region affected by each ex-
treme event. The distributions are plotted for each time pe-
riod and RCP (for the end-of-century time period). These
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Table 1. Definitions of extreme event categories and impact models considered in this study

Extreme event Definition in Lange et al. (2020) Impact models

River floods Daily river flow within a pixel greater than 100-year return flow
during pre-industrial times.

CLM45, H08, JULES-W1, LPJmL, MPI-HM,
ORCHIDEE, PCR-GLOBWB, WaterGAP2

Heatwaves Occurrence in entire pixel when the Heat Wave Magnitude In-
dex daily (HWMId) recorded that year exceeds the 99th per-
centile of the HWMId during pre-industrial times. Russo et al.
(2017) define HWMId as the annual maximum magnitude of
heatwaves, whereby a heatwave consists of a minimum of three
consecutive days with temperatures above the daily threshold
between 1981 and 2010.

HWMId99 (directly diagnosed from GCMs)

Droughts Drop in soil water content below the 2.5th percentile of the dis-
tribution during pre-industrial times considering periods longer
than 6 months. Here, data on monthly soil moisture at different
soil layer depths (as close as possible to 100 cm) depending on
the impact model were used (See Text S2 in Lange et al., 2020).

CLM45, H08, JULES-W1, LPJmL, MPI-HM,
ORCHIDEE, PCR-GLOBWB, WaterGAP2

Crop failures Drop in crop yield below the 2.5th percentile of the distribution
during pre-industrial times.

GEPIC, LPJmL, PEPIC

Wildfires Total annual burnt area CARAIB, LPJ-GUESS, LPJmL, ORCHIDEE,
VISIT

Tropical cyclones Exposure to hurricane-induced winds (wind speed≥ 64 kn) sus-
tained for at least 1 min during the year.

KE-TG-meanfield

The impact models are described in CLM45 (Lawrence et al., 2011; Thiery et al., 2017), H08 (Hanasaki et al., 2018), JULES-W1 (Best et al., 2011), LPJmL (Schaphoff et al.,
2018a, b), MPI-HM (Hagemann and Gates, 2003; Stacke and Hagemann, 2012), ORCHIDEE (Guimberteau et al., 2018), PCR-GLOBWB (Wada et al., 2014, 2016), WaterGAP2
(Müller Schmied et al., 2014, 2016), HWMId (Russo et al., 2015, 2017; Lange et al., 2020), GEPIC (Folberth et al., 2012), PEPIC (Liu et al., 2016), CARAIB (Dury et al., 2011),
LPJ-GUESS (Smith et al., 2014), VISIT (Ito and Oikawa, 2002; Ito and Inatomi, 2012), and KE-TG-meanfield (Emanuel, 2013).

bivariate distributions illustrate the changes in area affected
by co-occurring extreme events and the changes in the de-
pendence between the areas affected by individual extremes
due to climate change, whereby the latter changes can sig-
nificantly increase the risks associated with co-occurring ex-
tremes (de Walle et al., 2021; Zscheischler and Seneviratne,
2017; Zscheischler et al., 2020b, 2021). This dependence
is quantified with the Spearman’s rank correlation coeffi-
cient, ρ, for the different climate scenarios (as also used
by Zscheischler and Seneviratne, 2017; Zscheischler et al.,
2021). Note that the percentage of the region affected by in-
dividual extreme event categories in the same year does not
inform us as to whether the pairs of events occur at the same
location (grid cell). It instead represents their joint occur-
rence within the entire region in that year. Thus, the bivariate
distributions highlight the effects of climate change on the
compound events at a regional scale. In the next section, we
define a metric to address the dependencies among pairs of
extremes at the same location.

We also plot the distributions for individual extremes using
the kernel density estimation (KDE) method (Wȩglarczyk,
2018) to calculate the probability density functions. This then
allows us to analyse shifts in the percentage of area affected
by either one of the extreme events in each pair.

3.3 Determinants of changes in co-occurring extreme
occurrences

Considering that the processed impact model simulations ac-
count only for climate-induced changes in the extremes (as
defined by Lange et al., 2020) and not for other changes such
as land use, here we only analyse the climate change-driven
effects on co-occurring extremes. At a given location, from
a statistical perspective, the probability of co-occurring ex-
treme events can be affected by the effect of climate change
on (i) the probability of the individual extreme events and/or
(ii) the dependence between the events (Bevacqua et al.,
2020; Zscheischler et al., 2020b). To gain insights into the
determinants of the changes, we compute the change in the
probability of co-occurring extreme events when assuming
(i) changes in the probability of extreme events in one vari-
able only and (ii) changes in the coupling (dependence) be-
tween the variables only (Bevacqua et al., 2020). Here, the
term “dependence” is used in a statistical sense and does not
presuppose knowledge of an underlying physical mechanism
nor of causality.

We deal with binary variables (X, Y ), for which the prob-
ability of joint occurrence of extreme events (P (x,y)) can be
expressed as follows:

P (x,y)= P (x) ·P (y) ·D(x,y), (4)
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where P (x) and P (y) are the probability of occurrence of
extreme events of X and Y , respectively, and D(x,y) repre-
sents their coupling (dependence). The coupling can enhance
(D(x,y)> 1) or dampen (D(x,y)< 1) the probability of co-
occurring extremes relative to the case of independence be-
tween the variables (D(x,y)= 1).

Here, to quantify changes in the probability of co-
occurring extremes, we follow a probability ratio approach
whereby the effect of climate change is determined by di-
viding the probability of occurrence of an event under future
climate conditions by the probability of the same event under
past climate (Krikken et al., 2021; Philip et al., 2022) – for
the latter, we consider here the early industrial period (1861–
1910):

PR=
P (x,y)future
P (x,y)past

=
P (x)future ·P (y)future ·D(x,y)future
P (x)past ·P (y)past ·D(x,y)past

, (5)

where the latter equality derives from Eq. (4). Based on
Eq. (5), we derive changes in the probability when assuming
changes in the occurrence of extremes in X only (i.e. P (x)),
by computing the probability ratio as follows:

PRchange inX =
P (x)future ·P (y)past ·D(x,y)past

P (x)past ·P (y)past ·D(x,y)past

=
P (x)future

P (x)past
, (6)

where P (x)past and P (x)future can be directly estimated from
the data. The change in the probability when assuming
changes in P (y) only is obtained similarly to PRchange inY =
P (y)future
P (y)past

. We similarly derive the change in the probability of
co-occurring extremes when assuming a change in the cou-
pling only as follows:

PRchange inD =
P (x)past ·P (y)past ·D(x,y)future

P (x)past ·P (y)past ·D(x,y)past

=
D(x,y)future

D(x,y)past
, (7)

where D(x,y) for past and future periods can be de-
rived from Eq. (4) as D(x,y)past =

P (x,y)past
P (x)past·P (y)past

, and

D(x,y)future =
P (x,y)future

P (x)future·P (y)future
. Equation (7) should be in-

terpreted carefully when changes in P (x) and/or P (y) are
large. In fact, as a caveat of the fact that we deal with bi-
nary variables, by construction, when positive changes in
P (x) and/or P (y) are large, the estimated future dependency
tends to be small (i.e. D(x,y)future ' 1) despite the con-
tinuous variables from which the binary variable X and Y
are possibly being coupled. This, in turn, affects the esti-
mated PRchange inD . However, we also note that under such
potentially very large changes in P (x) and/or P (y), such
changes control the actual change in the probability of co-
occurring extremes, and dependency changes become irrele-
vant (Bevacqua et al., 2022). In the case of very large nega-
tive changes in P (x) and/or P (y), the denominator in Eq. (7)

would be very small, and thus it is not obvious to get a small
future dependency. For a thorough assessment of the changes
in the dependencies, continuous rather than binary variables
X and Y (Bevacqua et al., 2020), as well as larger sample
sizes (Bevacqua et al., 2023), would be required.

4 Results

4.1 Frequency and spatial extent of co-occurring
extremes

An increase in the area affected by co-occurring extremes
is projected for most pairs in the future climate scenarios
(Fig. 1). Compound event pairs that include river floods,
heatwaves, crop failures, or wildfires generally show a higher
increase in spatial extent compared to the compound event
pairs that include tropical cyclones or droughts. This, how-
ever, does not mean that the frequency of tropical cyclones or
droughts as individual extremes will not increase due to cli-
mate change but rather means that their spatial co-occurrence
with other extremes will not increase substantially across the
region.

Out of the 15 pairs of co-occurring extremes (all shown
in Fig. 1), 7 show substantial changes in spatial extent by
the end of the century under all three RCPs: (i) river floods
and wildfires, (ii) river floods and heatwaves, (iii) heatwaves
and wildfires, (iv) heatwaves and crop failures, (v) droughts
and heatwaves, (vi) crop failures and wildfires, and (vii) heat-
waves and tropical cyclones. We define substantial changes
as the median of the future scenarios exceeding the 75th
quantile of the present-day distribution. The former three
pairs show the strongest relative median increase under high-
warming scenarios.

The spatial extent of river floods and wildfires, river floods
and heatwaves, and heatwaves and wildfires is projected to
more than double by the end of the century under RCP6.0
compared to present-day conditions. For most of the RCP
scenarios, the highest absolute increase in end-of-century
spatial extent relative to the present day is projected for
the heatwaves and wildfires compound event pair (+600%,
+940%, and +1440% under RCP2.6, 6.0, and 8.5, respec-
tively), followed by the river floods and heatwaves compound
event pair (+400%, +900%, and +1800%) and the river
floods and wildfires compound event pair (+100%,+250 %,
and +600%). Notable increases in the spatial extent of these
three extreme event pairs can already be observed in the
present day when compared to the early industrial period
(+400%, +100%, and +100%, respectively; see Fig. 1).

We focus the rest of our analysis on the heatwaves and
wildfires, river floods and heatwaves, and river floods and
wildfires pairs, as these are the ones displaying the largest
recent and projected future changes. However, we provide
the results for the 12 other pairs as additional information
(Appendix Figs. A1–A4 and B1–B4). The probability of oc-
currence of these co-occurring extremes markedly increases
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Figure 1. Boxplots showing the annual average percentage of the region affected by each of the 15 pairs of co-occurring extreme events under
past, present, and future climates. The extreme events are river floods (RF), wildfires (WF), heatwaves (HW), crop failures (CF), droughts
(DR), and tropical cyclones (TC). Three 50-year periods are considered for computing the average for each time window (1861–1910 for
early industrial, 1956–2005 for present day, and 2050–2099 for the future period). A multi-model ensemble mean is shown that considers
all available combinations of extreme event simulations in the dataset driven by the same GCM. Boxplots display the median (centre line)
and upper and lower quartiles (box limits), with whiskers extending to the last value located within a distance of 1.5 times the interquartile
range. The yellow circles show mean values. Outliers are not shown. Average global warming level (shown in the brackets within the legend)
for each climate scenario, with respect to the early industrial period, is determined using ISIMIP global mean temperature (GMT) anomalies
considering the mean across the respective 50-year windows.

in the end-of-century climate projections, with co-occurring
river floods and heatwaves and river floods and wildfires no-
tably in locations close to the Nile and Congo rivers (Fig. 2c–
d and 2g–h, respectively) and co-occurring heatwaves and
wildfires affecting large parts of the Nile and Congo basins
(Fig. 2k–l). The maps shown in the figure evidence not only
an increase in affected area across the domain but also an
increase in the local event frequencies in the affected areas.
All pairs show only small changes between the present-day
period (1956–2005) and the early industrial period (1861–
1910) relative to the end-of-century projected changes un-
der the RCP2.6 scenario. In the present-day period, most
locations show low values of joint probability. Higher val-
ues start to occur for co-occurring heatwaves and wildfires
under RCP2.6 in specific locations across savanna ecosys-
tems, such as the southeastern DRC and parts of the Central
African Republic. Substantially higher values of joint prob-
ability of river floods and wildfires, river floods and heat-
waves, and heatwaves and wildfires are widespread under
RCP8.5 when compared to both present and future RCP2.6
climates. The plots clearly show a non-linear increase in the
frequency of these co-occurring events in the region under
higher-warming scenarios by the end of the century.

A large increase in the maximum number of consecu-
tive years (over 50-year periods) with co-occurring heat-

waves and wildfires is projected for some locations by the
end of the century under RCP2.6 (Fig. 3k). Co-occurring
river floods and wildfires and river floods and heatwaves in-
stead show comparatively small increases under the same
scenario (Fig. 3c, g, respectively). In contrast, a much larger
increase is projected for all the co-occurring extremes un-
der the RCP8.5 end-of-century scenario, particularly in ar-
eas close to the Nile and Congo rivers and along the Indian
Ocean coastline (Fig. 3d, h, l). For example, under RCP8.5
large parts of southern East Africa are at risk of experiencing
co-occurring heatwaves and wildfires over more than 30 con-
secutive years in the period 2050–2099, while parts of Sudan
close to the Nile may experience co-occurring river floods
and heatwaves over more than 15 consecutive years.

4.2 Extreme event dependence

We investigate the changes in extreme event dependence for
the co-occurring extremes. In a warmer climate, the bivari-
ate distributions of the co-occurring extremes illustrate an
increase in the mean (shown by the shift in marginal distri-
bution) of affected area by river floods and heatwaves. Addi-
tionally, we also see an increase in variance (shown by the
widening of the distribution) of the area affected by river
floods (Figs. 4, 5a–b, and Table 2). Such changes are particu-
larly pronounced under RCP 8.5. In contrast, the marginal
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Figure 2. Average probability of joint occurrence of river floods and wildfires (a–d), river floods and heatwaves (e–h), and heatwaves and
wildfires (i–l) across 50-year time periods (columns) representing the early industrial period (1861–1910), the present day (1956–2005),
and the end of the century (2050–2099) under RCP2.6 and RCP8.5. The average probability of joint occurrence of extremes represents the
multi-model ensemble mean across all available combinations of extreme event simulations in the dataset driven by the same GCM.

distributions for area affected by wildfires show relatively
small changes in the mean, while a decrease in the variance
is projected for higher-warming conditions.

A small increase in dependence in co-occurring river
floods and wildfires is projected by the end of the century
under all scenarios, as shown by an increase in ρ in these
warmer future climate scenarios compared to the early in-
dustrial conditions (Fig. 5a). Similarly, substantially higher
values of ρ for co-occurring river floods and heatwaves in
the future climate scenarios relative to the early industrial
period are obtained. This points to an overall increase in
dependence by the end of the century, even though it does
not seem to increase monotonically with increasing radiative
forcing (Fig. 5b). For co-occurring heatwaves and wildfires,
the changes in ρ are relatively small, and a negative corre-
lation is projected for all future climate scenarios (Fig. 5c).
Additionally, we present the marginal and bivariate distribu-
tions and correlations for the other 12 co-occurring extremes
in Appendix Figs. C1–C4.

4.3 Determinants of changes in co-occurring extremes
occurrence

We next investigate the causes of the changes in the fre-
quency of co-occurring extremes across East Africa. Here,
we compare maps (e.g. Fig. 6a–c) showing the contribut-
ing probability ratios (PRs) to changes in probability of joint
occurrence of extreme events under future warmer climate,
whereby we (1) assume only changes in either of the ex-
tremes per pair (first and second columns) and (2) assume
changes only in the dependence of two co-occurring ex-
tremes (third column). As illustrated in Figs. 6 and D1–D4,
a PR ≥ 1 represents a more likely occurrence of the ex-
tremes, while PR< 1 represents less likely occurrence, under
a warmer climate in comparison to the early industrial period.

In general, the changes in the frequency of individual ex-
treme events control the widespread increases in compound
events. This is illustrated by more locations within East
Africa having higher contributing PRs (> 1) for the indi-
vidual extremes per pair than the PR considering coupling
(dependence) as determined using Eqs. (6) and (7), respec-
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Figure 3. Average maximum number of consecutive years with joint occurrence of river floods and wildfires (a–d), river floods and heat-
waves (e–h), and heatwaves and wildfires (i–l) across 50-year time periods (columns) representing the early industrial period (1861–1910),
the present day (1956–2005), and the end of the century (2050–2099) under RCP2.6 and RCP8.5. The average maximum number of consec-
utive years with joint occurrence of extremes represents the multi-model ensemble mean across all available combinations of extreme event
simulations in the dataset driven by the same GCM.

Table 2. Mean and variance of percentage area affected by extreme events under different climate scenarios. NA – not available.

Mean (%) Variance

Extreme event EI PD RCP2.6 RCP6.0 RCP8.5 EI PD RCP2.6 RCP6.0 RCP8.5

River floods 1 2∗ 4∗ 7∗ 11∗ 3 5 19 37 72
Heatwaves 1 8∗ 53∗ 73* 87∗ 8 144 501 460 201
Droughts 2 4∗ 4∗ 5∗ 4∗ 5 14 14 17 1
Crop failures 0.5 1∗ 3∗ 4.1∗ NA 0.3 2 4 8 NA
Wildfires 40 39 39 40 48∗ 275 267 245 265 103
Tropical cyclones 1 1 2∗ 2∗ 2∗ 1 1 1 1 1

Here EI is the early industrial period, while PD is present-day conditions. Note that (1) the extreme events dataset used in this research does not
contain crop failures projections under RCP8.5. (2) We considering a multi-model ensemble approach, whereby the values of mean and variance are
averaged across all impact pairs driven by the same GCM. (3) The mean values denoted by an asterisk (∗) represent instances where there is a
statistically significant difference between the mean percentage area affected by the respective extreme event during that climate scenario and that
during the early industrial period. Here, we use Welch’s t test to determine significant difference in the means (Welch, 1947).

tively. Thus, changes in the coupling between extremes ap-
pear to have comparably small effects (Figs. 6 and D1–D9),
which is in line with previous studies (e.g. Bevacqua et al.,
2020, 2022).

The statistical determinant of the projected increase in co-
occurrence of river floods and wildfires is the increase in
the frequency of river floods by the end of the century un-
der RCP8.5 (Fig. 6a–c). Similarly, the widespread strong in-
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Figure 4. Boxplots showing the annual average percentage of the region affected by each of the six categories of extreme events under
past, present and future climates. The extreme events are river floods (RF), wildfires (WF), heatwaves (HW), crop failures (CF), droughts
(DR), and tropical cyclones (TC). Three 50-year periods are considered for computing the average for each time window (1861–1910 for
early industrial, 1956–2005 for present day, and 2050–2099 for the future period). A multi-model ensemble mean is shown that considers all
available impact model simulations and driving GCMs in the dataset. Boxplots display the median (centre line) and upper and lower quartiles
(box limits), with whiskers extending to the last value located within a distance of 1.5 times the interquartile range. The yellow circles show
mean values. Outliers are not shown. Average global warming level (shown in the brackets within the legend) for each climate scenario, with
respect to the early industrial period, is determined using ISIMIP global mean temperature (GMT) anomalies considering the mean across
the respective 50-year windows.

crease in the frequency of heatwaves by the end of the cen-
tury under RCP8.5 is the main determinant of the increase
in probability of joint occurrence with both river floods
(Fig. 6d–f) and wildfires (Fig. 6g–i). Furthermore, we illus-
trate the determinants of changes in occurrence of the 12
other co-occurring extremes by the end of the century under
RCP6.0 and 8.5, with the former for pairs including crop fail-
ures and the latter for the rest of the co-occurring extremes
(Appendix Figs. D1–D9).

5 Discussion

5.1 Frequency and spatial extent of co-occurring
extremes

Three pairs of co-occurring extremes show a marked increase
in their frequency and spatial extent in East Africa under all
the three future climate projections relative to the present-
day climate: (i) river floods and wildfires, (ii) river floods
and heatwaves, and (iii) heatwaves and wildfires. These three
pairs also show an increase in the maximum number of con-
secutive years with co-occurring extreme events, notably in
areas surrounding the Nile and Congo rivers. Higher end-
of-the-century warming results in an increased median fre-
quency for all three compound event pairs. However, large
differences in spatial extent of the co-occurring extremes
emerge between different RCP scenarios (Fig. 1). This shows

that the occurrence of these co-occurring events is highly
sensitive to future global warming conditions.

Even under a low-emission RCP2.6 scenario, large in-
creases in co-occurring extremes may be expected. For ex-
ample, for co-occurring river floods and heatwaves, the per-
centage area affected under RCP2.6 conditions is roughly 4
times that affected in present-day conditions. Under RCP2.6,
the percentage affected by co-occurring heatwaves and wild-
fires is approximately 6 times that affected in present-day
conditions. To provide a term of comparison, the difference
between the area affected by all three co-occurring extreme
pairs discussed above under RCP2.6 and present-day con-
ditions will be substantially larger than the difference be-
tween the present-day and early industrial periods (Fig. 1),
and is projected to be even markedly larger under the warmer
RCP6.0 and 8.5 conditions. Global warming thus has a non-
linear effect in increasing co-occurring extreme events across
East Africa, leading to potentially larger climatic impacts
in the region than may otherwise be expected. This effect
is related to the shapes of the distributions of events and to
how these are shifted and otherwise modified under climate
change (Fig. 5).

Under all the three future climate scenarios, the hot spots
for co-occurring river floods and wildfires and river floods
and heatwaves are areas in close proximity to the Nile and
Congo rivers, presumably because the latter are the most fre-
quent source of extensive riverine flooding in the region. Per-
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Figure 5. Bivariate distribution of (a) river floods and wildfires,
(b) river floods and wildfires, and (c) heatwaves and wildfires,
across 50-year time periods representing the early industrial period
(1861–1910), the present day (1956–2005), and the end of the cen-
tury (2050–2099) under RCP2.6, 6.0, and 8.5. The marginal dis-
tributions of each extreme event (per scenario), based on the KDE
method (Wȩglarczyk, 2018), are shown along the top and right axes
of the plots. The contours (dotted lines) illustrate smooth estimates
of the underlying distribution of co-occurring extremes. The 68th
percentile contour, which envelops data within 1 standard deviation
to either side of the mean, is used per scenario to show a general-
ized view of the distribution of the percentage of area affected by
co-occurring extremes per year during the respective scenarios.

haps less expectedly, these locations are also hot spots for co-
occurring heatwaves and wildfires under all the future scenar-
ios, in addition to large parts of southern East Africa and the
Congo basin.

Within the other 12 co-occurring extremes, relatively
small increases in the frequency and spatial extent are pro-
jected in East Africa under RCP2.6, 6.0, and 8.5, with
the highest increases expected under the warmer end-of-
century scenarios for co-occurring heatwaves and crop fail-
ures, droughts and heatwaves, crop failures and wildfires, and
heatwaves and tropical cyclones (Figs. 1 and A1–A4).

5.2 Bivariate distributions of extremes

The changes in the bivariate distributions are key for un-
derstanding the impacts of climate change on the probabil-
ity of each of the extreme events in the East Africa region
and their dependence. These in turn affect the frequency
of co-occurrence of the extreme events (Zscheischler et al.,
2020a, b). The sharp increase in mean and variance of the
area affected by river floods projected under all three fu-
ture climate scenarios (Fig. 4 and Table 2), in comparison to
the small changes in the area affected by wildfires, explains
the relatively small increase in the correlation between area
affected by river floods and wildfires in a warmer climate
(Fig. 5a). This corresponds to a small increase in dependence
relative to early industrial conditions for this pair.

The percentages of area affected by river floods and heat-
waves are also projected to become more correlated by the
end of the century even under RCP2.6 compared to the early
industrial period, which could be a result of the sharp in-
crease in mean and variance of the area affected by these
individual extremes (Table 2, Figs. 4, and 5b). However,
their correlation is projected to decrease with the warmer
future climate scenarios RCP6.0 and 8.5 relative to RCP2.6
(Fig. 5b). This could be as result of a much stronger increase
in affected area by heatwaves under RCP6.0 and 8.5 relative
to the increase in area affected by river floods (Table 2 and
Fig. 4).

The bivariate distributions consider the variations in af-
fected area for each extreme event type as estimated by all
possible combinations of available extreme event simulations
driven by the same GCM. Here we discuss the inter-model
spread for wildfires, since the percentage of area affected
by wildfires is the only multimodal distribution evident in
our analysis. We observe that the percentage of area affected
by wildfires is highly dependent on the impact model, as
illustrated by the very different marginal and bivariate dis-
tributions separated by impact model (Fig. 7). Lange et al.
(2020) reports that modelling uncertainty for wildfires within
this dataset is mainly driven by the global vegetation models
(GVMs), whereby VISIT and ORCHIDEE simulate signifi-
cantly larger burnt area in relation to the other GVMs. This
could be due to differences in the representation of human
influence (such as wildfire prevention and management). It
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Figure 6. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint occur-
rence of river floods and wildfires (a–c), river floods and heatwaves (d–f), and heatwaves and wildfires (g–i), whereby we illustrate the PR
assuming only changes in one of the extremes per pair (a, d, g and b, e, h) and the PR assuming changes only in the dependence of two co-
occurring extremes (c, f, i). The resulting PRs compare the end-of-century conditions under RCP8.5 to the early industrial period conditions,
whereby PR ≥ 1 represents more likely occurrence of the extremes and PR < 1 represents less likely occurrence. The shaded grey areas did
not experience either of the extreme events in each pair (a, d, g and b, e, h) or co-occurrences (c, f, i) during the early industrial period.

likely explains the high variation illustrated in the marginal
distributions of percentage of area affected by wildfires by
the impact models even when driven by the same GCM, as
well as the bivariate distribution of co-occurring extremes
(Fig. 7). Lange et al. (2020) also discusses the uncertainties
within the modelling of the other extremes, which include
(but are not limited to) definitions of extreme events such as
the return period for river floods, representation of the carbon
dioxide fertilization effect (Deryng et al., 2016), and agricul-
tural management techniques (Minoli et al., 2019) for crop
failure estimation.

It is important to note that even though our results come
with model uncertainties, it is unlikely that the uncertain-
ties would alter our main findings that future climate change
will greatly increase the frequency and spatial extent of co-
occurring extreme events in East Africa by the end of the
century for all RCP scenarios, with more drastic changes

expected under higher global warming scenarios. This is il-
lustrated by the bias-adjusted simulations that already show
an increase in percentage area affected by the individual
extreme events under present-day conditions in compari-
son to early industrial conditions (Table 2 and Fig. 4), and
project further increase under higher global warming sce-
narios considering the aforementioned multi-model ensem-
ble approach. This, in turn, suggests a projected increase in
their joint occurrence at regional scale.

5.3 Determinants of the co-occurring extremes

It is important to note that the six extreme events in this study
each have different meteorological and physical drivers, i.e.
heatwaves and tropical cyclones have mainly meteorological
drivers, while river floods, crop failures, droughts, and wild-
fires have mostly bio-physical drivers. Additionally, some
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Figure 7. Bivariate distribution of heatwaves and wildfires across 50-year time periods representing the early industrial period (1861–1910),
the present day (1956–2005), and the end of the century (2050–2099) under RCP2.6, 6.0, and 8.5. The figure separates the impact models
by driving GCM: (a) GFDL-ESM2M, (b) HadGEM2-ES, (c) IPSL-CM5A-LR, and (d) MIROC5. The ρ values represent the average value
across all the impact models under their respective historical or future climate scenarios. The marginal distributions of each extreme event
(per scenario), based on the KDE method (Wȩglarczyk, 2018), are shown along the top and right axes of the plots. The contours (dotted lines)
illustrate smooth estimates of the underlying distribution of co-occurring extremes. Here, the 68th percentile contour, which envelops data
within 1 standard deviation to either side of the mean, is used per scenario to show a generalized view of the distribution of the percentage
of area affected by co-occurring extremes per year and per impact model driven during the respective scenarios. For each GCM, wildfire
distributions for each impact model are shown separately.

droughts and wildfires can also be driven by meteorology.
Given that we utilize extreme event data from processed im-
pact model simulations, diving into the meteorological and
physical drivers of the co-occurring extreme events presents
near-insurmountable challenges. Therefore, we focus on the
statistical determinants leading to co-occurring extremes in
the same year in East Africa. Here, we consider the changes
in the frequency of the individual extremes and their depen-
dence per pair, under a future warmer climate scenario in
comparison to the early industrial period.

We identify heatwaves as the statistical determinant of in-
creases in co-occurring river floods and heatwaves and heat-
waves and wildfires in East Africa by the end of the century
under RCP8.5 (Fig. 6). Similarly, we identify increases in

river floods as the main determinants of rising co-occurring
river floods and wildfires under RCP8.5. Increases in de-
pendence between pairs of extremes generally play a small
role in explaining the modelled increases in co-occurring ex-
tremes.

As stated in the Sixth Assessment Report by Working
Group II of the Intergovernmental Panel on Climate Change
(IPCC), East Africa is highly likely to experience an in-
crease in the frequency and intensity of hot days by the end
of the century in comparison to the pre-industrial period, as
global warming levels reach 2 °C and above, with more sig-
nificant increases expected at higher warming levels (IPCC,
2023). As a result of the warming, more frequent heatwaves
are projected by the end of the century (Niang et al., 2014;
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Seneviratne et al., 2021). Therefore, the increase in proba-
bility of co-occurring heatwaves and wildfires by the end of
the century with heatwaves as the main determinant of the
co-occurrence (Figs. 2i–l and 6g–i) can be explained by the
expected warming and increase in heatwaves (with high con-
fidence) in the region (Niang et al., 2014; Seneviratne et al.,
2021).

According to Niang et al. (2014) and Seneviratne et al.
(2021), the East African region is also projected to experi-
ence increased intense precipitation by the end of the cen-
tury (with high confidence) under the RCP8.5 scenario. This
could be linked to projected changes in large-scale modes of
variability, such as the Indian Ocean Dipole (IOD) and the
El Niño–Southern Oscillation (ENSO), which influence pre-
cipitation across East Africa and are already showing change
under present-day conditions relative to the pre-industrial pe-
riod (medium confidence, Seneviratne et al., 2021). In ad-
dition to large-scale teleconnections, projected changes in
mesoscale circulation and local land–atmosphere feedbacks
may further affect future precipitation patterns in the region
(Souverijns et al., 2016). However, in relation to river floods
occurrence, IPCC reports that there is low confidence in the
end-of-century projections of flood intensities and frequency
due to inadequate data (Arias et al., 2021). Nonetheless, Al-
fieri et al. (2017) still projects that global warming will in-
crease the frequency of river floods in the Nile and Congo
basins, thereby greatly affecting the DRC and Sudan (Al-
fieri et al., 2017; IPCC, 2023). The significant increase in
the frequency of co-occurring river floods and wildfires in
the region by the end of the century can therefore be ex-
plained by the expected increase in frequency of river floods,
which are the main determinant of co-occurrence within this
pair (Figs. 2a–c and 6a–c). While, as stated above, we find
that heatwaves are a major determinant for the increase in
their joint occurrence with river floods by the end of the cen-
tury under RCP8.5, increases in river floods themselves also
shape these co-occurrences (Fig. 6d–e).

5.4 Potential mechanisms underlying the co-occurring
extreme events

Changes in frequency of large-scale modes of variability
such as the Indian Ocean Dipole (IOD) could potentially in-
crease the coupling between the individual extreme events
in East Africa. For example, the increase in frequency of ex-
treme positive IOD events in East Africa, as a result of global
warming, would lead to intense precipitation and increased
susceptibility to flooding (Palmer et al., 2023). Similarly,
positive IOD events substantially influence the frequency
and intensity of tropical cyclones (Mahala et al., 2015), and
thus under a future warmer climate, more coupling of river
floods and tropical cyclones could occur during positive-IOD
years by the end of the century. This aligns with our analy-
sis that illustrates an increase in dependence (with high con-
tributing PRchange in D > 6) in areas along the coast of East

Africa under RCP8.5 (Fig. D2i). However, in general, we
find that dependence of the rest of the extreme event pairs
is not the main determinant of co-occurrence of extremes
(PRchange in D ≤ 1); instead, the increase in the frequency of
the individual extremes is main determinant in both present-
day conditions and future warmer climate (Figs. 6 and D1–
D9).

5.5 Recommendations for further research

This research only focuses on the area exposed (in terms of
pixels and grids) to co-occurring extreme events on a yearly
basis. To better understand the risks associated with com-
pound extremes, it is recommended to consider the intensity
and duration of these events in this region alongside the pop-
ulation, assets, and services exposed, as well as their vulnera-
bility (IPCC, 2023; Zscheischler et al., 2018). Such analyses
should be conducted both at sub-regional level and across the
entire East African region.

Further research into co-occurring extremes in East Africa
could also expand the methodology taken in this study to
consider more than two extreme events occurring in the same
location and year, thus carrying out a more complete mul-
tivariate analysis. Additionally, we recommend the imple-
mentation of other metrics, such as propensity (Rosenbaum
and Rubin, 1983) and co-occurrence ratio (Kornhuber and
Messori, 2023), to further understand the occurrence of co-
occurring extremes in East Africa. Lastly, we recommend the
application of our methods to other regions to illustrate how
climate change may modulate co-occurring extremes in dif-
ferent parts of the globe.

6 Conclusions

This research illustrates the role of climate change in mod-
ulating the frequency and spatial extent of 15 types of co-
occurring extreme events in East Africa by considering pairs
of six different categories of extreme events: river floods,
droughts, heatwaves, crop failures, wildfires, and tropical cy-
clones. To this end, we compare probabilities of joint oc-
currence, maximum number of consecutive years with co-
occurring extremes, percentage of the region affected by
these extremes, and their bivariate distribution during the
early industrial period, present day, and the end-of-century
conditions under three RCPs.

Most co-occurring extreme pairs are projected to increase
in frequency and spatial extent by the end of the century
due to climate change, with co-occurring extremes involv-
ing river floods, heatwaves, or wildfires projected to have
the largest increases in East Africa. Increases in heatwaves
and river floods are identified as the main determinants of
the changes in frequency and spatial extent of the above co-
occurring extremes.

For most of the co-occurring extreme event pairs, an in-
crease in probability of joint occurrence of the extreme
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events is found already in the present day when compared
to the early industrial period. These changes are projected
to substantially amplify across the East Africa region by the
end of the century. Notably, the effects of climate change ap-
pear to be non-linear, meaning that higher-emission scenarios
disproportionately amplify the frequency of several pairs of
co-occurring extremes.

Our results, in conclusion, endorse the need for govern-
ments on both a regional and global scale to set policies
and long-term goals in alignment with the Paris Agreement
to limit global average warming to well below 2 °C above
pre-industrial levels as a means to reduce the risks and
impacts associated with climate change (UNFCCC, 2016).
Rapid, sustained, and deep greenhouse gas emission reduc-
tions by governments worldwide could significantly reduce
the risks associated with co-occurring climate extremes in
East Africa. We nonetheless underscore that large increases
in co-occurring events in East Africa may occur even under
low-emission scenarios. Additionally, governments and lo-
cal authorities in East Africa should urgently embark on cli-
mate change adaptation measures to reduce the risk associ-
ated with the upcoming escalation of co-occurring extremes
in the region.
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Appendix A: Probability of joint occurrence

In most of the co-occurring extreme event pairs, no substan-
tial increase in the probability of joint occurrence of the ex-
treme events within the region is already observed in the
present day when compared to the early industrial period
(Figs. A1–A4). For some extreme event pairs, these proba-
bilities increase substantially in both spatial extent and fre-
quency across the region by the end-of-century considering
future climate projections under the low RCP2.6 and under
RCP6.0 and 8.5.

Figure A1. Average probability of joint occurrence of droughts and wildfires (a–d), droughts and heatwaves (e–h), and river floods and
droughts (i–l) across 50-year time periods (columns) representing the early industrial period (1861–1910), the present day (1956–2005),
and the end of the century (2050–2099) under RCP2.6 and RCP8.5. The average probability of joint occurrence of extremes represents the
multi-model ensemble mean across all available combinations of extreme event simulations in the dataset driven by the same GCM.

https://doi.org/10.5194/esd-15-429-2024 Earth Syst. Dynam., 15, 429–466, 2024



444 D. Muheki et al.: Co-occurring climate extremes in East Africa

Figure A2. Average probability of joint occurrence of heatwaves and tropical cyclones (a–d), wildfires and tropical cyclones (e–h), river
floods and tropical cyclones (i–l), and droughts and tropical cyclones (m–o) across 50-year time periods (columns) representing the early
industrial period (1861–1910), the present day (1956–2005), and the end of the century (2050–2099) under RCP2.6 and RCP8.5. The average
probability of joint occurrence of extremes represents the multi-model ensemble mean across all available combinations of extreme event
simulations in the dataset driven by the same GCM.
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Figure A3. Average probability of joint occurrence of heatwaves and crop failures (a–d), crop failures and wildfires (e–h), and river floods
and crop failures (i–l) across 50-year time periods (columns) representing the early industrial period (1861–1910), the present day (1956–
2005), and the end of the century (2050–2099) under RCP2.6 and RCP6.0. The average probability of joint occurrence of extremes represents
the multi-model ensemble mean across all available combinations of extreme event simulations in the dataset driven by the same GCM.

Figure A4. Average probability of joint occurrence of droughts and crop failures (a–d), and crop failures and tropical cyclones (e–h) across
50-year time periods (columns) representing the early industrial period (1861–1910), the present day (1956–2005), and the end of the century
(2050–2099) under RCP2.6 and RCP6.0. The average probability of joint occurrence of extremes represents the multi-model ensemble mean
across all available combinations of extreme event simulations in the dataset driven by the same GCM.
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Appendix B: Average maximum number of
consecutive years with compound extremes

Figure B1. Average maximum number of consecutive years with joint occurrence of droughts and wildfires (a–d), droughts and heat-
waves (e–h), and river floods and droughts (i–l) across 50-year time periods (columns) representing the early industrial period (1861–1910),
the present day (1956–2005), and the end of the century (2050–2099) under RCP2.6 and RCP8.5. The average maximum number of consec-
utive years with joint occurrence of extremes represents the multi-model ensemble mean across all available combinations of extreme event
simulations in the dataset driven by the same GCM.
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Figure B2. Average maximum number of consecutive years with joint occurrence of heatwaves and tropical cyclones (a–d), wildfires and
tropical cyclones (e–h), river floods and tropical cyclones (i–l), and droughts and tropical cyclones (m–p) across 50-year time periods
(columns) representing the early industrial period (1861–1910), the present day (1956–2005), and the end of the century (2050–2099) under
RCP2.6 and RCP8.5. The average maximum number of consecutive years with joint occurrence of extremes represents the multi-model
ensemble mean across all available combinations of extreme event simulations in the dataset driven by the same GCM.
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Figure B3. Average maximum number of consecutive years with joint occurrence of heatwaves and crop failures (a-d), crop failures and
wildfires (e–h), and river floods and crop failures (i–l) across 50-year time periods (columns) representing the early industrial period (1861–
1910), the present day (1956–2005), and the end of the century (2050–2099) under RCP2.6 and RCP6.0. The average maximum number of
consecutive years with joint occurrence of extremes represents the multi-model ensemble mean across all available combinations of extreme
event simulations in the dataset driven by the same GCM.
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Figure B4. Average maximum number of consecutive years with joint occurrence of droughts and crop failures (a–d) and crop failures
and tropical cyclones (e–h) across 50-year time periods (columns) representing the early industrial period (1861–1910), the present day
(1956–2005), and the end of the century (2050–2099) under RCP2.6 and RCP6.0. The average maximum number of consecutive years with
joint occurrence of extremes represents the multi-model ensemble mean across all available combinations of extreme event simulations in
the dataset driven by the same GCM.
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Appendix C: Bivariate distribution plots

Figure C1. Bivariate distribution of (a) droughts and wildfires, (b) droughts and heatwaves, and (c) river floods and droughts across 50-year
time periods representing the early industrial period (1861–1910), the present day (1956–2005), and the end of the century (2050–2099)
under RCP2.6, 6.0, and 8.5. The marginal distributions of each extreme event (per scenario), based on the KDE method (Wȩglarczyk, 2018),
are shown along the top and right axes of the plots. The contours (dotted lines) illustrate smooth estimates of the underlying distribution of
co-occurring extremes. Here, the 68th percentile contour, which envelops data within 1 standard deviation to either side of the mean, is used
per scenario to show a generalized view of the distribution of the percentage of area affected by co-occurring extremes per year during the
respective scenarios.
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Figure C2. Bivariate distribution of (a) heatwaves and tropical cyclones, (b) wildfires and tropical cyclones, and (c) river floods and tropical
cyclones across 50-year time periods representing the early industrial period (1861–1910), the present day (1956–2005), and the end of
the century (2050–2099) under RCP2.6, 6.0, and 8.5. The marginal distributions of each extreme event (per scenario), based on the KDE
method (Wȩglarczyk, 2018), are shown along the top and right axes of the plots. The contours (dotted lines) illustrate smooth estimates of
the underlying distribution of co-occurring extremes. Here, the 68th percentile contour, which envelops data within 1 standard deviation to
either side of the mean, is used per scenario to show a generalized view of the distribution of the percentage of area affected by co-occurring
extremes per year during the respective scenarios.
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Figure C3. Bivariate distribution of: (a) droughts and tropical cyclones, (b) heatwaves and crop failures, and (c) crop failures and wildfires
across 50-year time periods representing the early industrial period (1861–1910), the present day (1956–2005), and the end of the century
(2050–2099) under RCP2.6, 6.0, and 8.5. The marginal distributions of each extreme event (per scenario), based on the KDE method
(Wȩglarczyk, 2018), are shown along the top and right axes of the plots. The contours (dotted lines) illustrate smooth estimates of the
underlying distribution of co-occurring extremes. Here, the 68th percentile contour, which envelops data within 1 standard deviation to either
side of the mean, is used per scenario to show a generalized view of the distribution of the percentage of area affected by co-occurring
extremes per year during the respective scenarios.
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Figure C4. Bivariate distribution of (a) river floods and crop failures, (b) droughts and crop failures, and (c) crop failures and tropical
cyclones across 50-year time periods representing the early industrial period (1861–1910), the present day (1956–2005), and the end of the
century (2050–2099) under RCP2.6 and 6.0. The marginal distributions of each extreme event (per scenario), based on the KDE method
(Wȩglarczyk, 2018), are shown along the top and right axes of the plots. The contours (dotted lines) illustrate smooth estimates of the
underlying distribution of co-occurring extremes. Here, the 68th percentile contour, which envelops data within 1 standard deviation to either
side of the mean, is used per scenario to show a generalized view of the distribution of the percentage of area affected by co-occurring
extremes per year during the respective scenarios.
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Appendix D: Determinants of changes in
co-occurring extremes

Figure D1. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint oc-
currence of droughts and wildfires (a–c), droughts and heatwaves (d–f), and river floods and droughts (g–i), whereby we illustrate the PR
assuming only change in one of the extremes per pair (first and second column) and the PR assuming change only in the dependence of two
co-occurring extremes (third column). The resulting PRs compare the end-of-century conditions under RCP8.5 to the early industrial period
conditions, whereby PR ≥ 1 represents a more likely occurrence of the extremes and PR < 1 represents less likely occurrence. The shaded
grey areas represent areas that did not experience at least one of the extreme events per pair during the early industrial period.
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Figure D2. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint occur-
rence of heatwaves and tropical cyclones (a–c), wildfires and tropical cyclones (d–f), river floods and tropical cyclones (g–i), and droughts
and tropical cyclones (j–l), whereby we illustrate the PR assuming only change in one of the extremes per pair (first and second column) and
the PR assuming change only in the dependence of two co-occurring extremes (third column). The resulting PRs compare the end-of-century
conditions under RCP8.5 to the early industrial period conditions, whereby PR ≥ 1 represents more likely occurrence of the extremes and
PR < 1 represents less likely occurrence. The shaded grey areas represent areas that did not experience at least one of the extreme events per
pair during the early industrial period.
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Figure D3. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint occur-
rence of heatwaves and crop failures (a–c), crop failures and wildfires (d–f), and river floods and crop failures (g–i), whereby we illustrate
the PR assuming only change in one of the extremes per pair (first and second column) and the PR assuming change only in the dependence
of two co-occurring extremes (third column). The resulting PRs compare the end-of-century conditions under RCP6.0 to the early industrial
period conditions, whereby PR ≥ 1 represents more likely occurrence of the extremes and PR < 1 represents less likely occurrence. The
shaded grey areas represent areas that did not experience at least one of the extreme events per pair during the early industrial period.
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Figure D4. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint occur-
rence of droughts and crop failures (a–c) and crop failures and tropical cyclones (d–f), whereby we illustrate the PR assuming only change
in one of the extremes per pair (first and second column) and the PR assuming change only in the dependence of two co-occurring extremes
(third column). The resulting PRs compare the end-of-century conditions under RCP6.0 to the early industrial period conditions, whereby
PR ≥ 1 represents more likely occurrence of the extremes and PR < 1 represents less likely occurrence. The shaded grey areas represent
areas that did not experience at least one of the extreme events per pair during the early industrial period.
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Figure D5. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint oc-
currence of river floods and wildfires (a–c), river floods and heatwaves (d–f), and heatwaves and wildfires (g–i), whereby we illustrate the
PR assuming only change in one of the extremes per pair (first and second column) and the PR assuming change only in the dependence of
two co-occurring extremes (third column). The resulting PRs compare present-day climate to the early industrial period conditions, whereby
PR ≥ 1 represents more likely occurrence of the extremes and PR < 1 represents less likely occurrence. The shaded grey areas represent
areas that did not experience at least one of the extreme events per pair during the early industrial period.
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Figure D6. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint oc-
currence of droughts and wildfires (a–c), droughts and heatwaves (d–f), and river floods and droughts (g–i), whereby we illustrate the PR
assuming only change in one of the extremes per pair (first and second column) and the PR assuming change only in the dependence of
two co-occurring extremes (third column). The resulting PRs compare present-day climate to the early industrial period conditions, whereby
PR ≥ 1 represents more likely occurrence of the extremes and PR < 1 represents less likely occurrence. The shaded grey areas represent
areas that did not experience at least one of the extreme events per pair during the early industrial period.
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Figure D7. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint occur-
rence of heatwaves and tropical cyclones (a–c), wildfires and tropical cyclones (d–f), river floods and tropical cyclones (g–i), and droughts
and tropical cyclones (j–l), whereby we illustrate the PR assuming only change in one of the extremes per pair (first and second column)
and the PR assuming change only in the dependence of two co-occurring extremes (third column). The resulting PRs compare present-day
climate to the early industrial period conditions, whereby PR ≥ 1 represents more likely occurrence of the extremes and PR < 1 represents
less likely occurrence. The shaded grey areas represent areas that did not experience at least one of the extreme events per pair during the
early industrial period.
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Figure D8. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint occur-
rence of heatwaves and crop failures (a–c), crop failures and wildfires (d–f), and river floods and crop failures (g–i), whereby we illustrate the
PR assuming only change in one of the extremes per pair (first and second column) and the PR assuming change only in the dependence of
two co-occurring extremes (third column). The resulting PRs compare present-day climate to the early industrial period conditions, whereby
PR ≥ 1 represents more likely occurrence of the extremes and PR < 1 represents less likely occurrence. The shaded grey areas represent
areas that did not experience at least one of the extreme events per pair during the early industrial period.
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Figure D9. Determinants of change in co-occurring extreme event occurrence. Contributing PRs to the change in probability of joint occur-
rence of droughts and crop failures (a–c) and crop failures and tropical cyclones (d–f), whereby we illustrate the PR assuming only change
in one of the extremes per pair (first and second column) and the PR assuming change only in the dependence of two co-occurring extremes
(third column). The resulting PRs compare present-day climate to the early industrial period conditions, whereby PR ≥ 1 represents more
likely occurrence of the extremes and PR< 1 represents less likely occurrence. The shaded grey areas represent areas that did not experience
at least one of the extreme events per pair during the early industrial period.
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