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Abstract. Heavy rainfall in eastern Africa between late 2019 and mid 2020 caused devastating floods and
landslides throughout the region. These rains drove the levels of Lake Victoria to a record-breaking maximum in
the second half of May 2020. The combination of high lake levels, consequent shoreline flooding, and flooding
of tributary rivers caused hundreds of casualties and damage to housing, agriculture, and infrastructure in the
riparian countries of Uganda, Kenya, and Tanzania. Media and government reports linked the heavy precipitation
and floods to anthropogenic climate change, but a formal scientific attribution study has not been carried out so
far. In this study, we characterize the spatial extent and impacts of the floods in the Lake Victoria basin and then
investigate to what extent human-induced climate change influenced the probability and magnitude of the record-
breaking lake levels and associated flooding by applying a multi-model extreme event attribution methodology.
Using remote-sensing-based flood mapping tools, we find that more than 29 000 people living within a 50 km
radius of the lake shorelines were affected by floods between April and July 2020. Precipitation in the basin
was the highest recorded in at least 3 decades, causing lake levels to rise by 1.21 m between late 2019 and
mid 2020. The flood, defined as a 6-month rise in lake levels as extreme as that observed in the lead-up to
May 2020, is estimated to be a 63-year event in the current climate. Based on observations and climate model
simulations, the best estimate is that the event has become more likely by a factor of 1.8 in the current climate
compared to a pre-industrial climate and that in the absence of anthropogenic climate change an event with the
same return period would have led lake levels to rise by 7 cm less than observed. Nonetheless, uncertainties in the
attribution statement are relatively large due to large natural variability and include the possibility of no observed
attributable change in the probability of the event (probability ratio, 95 % confidence interval 0.8—15.8) or in the
magnitude of lake level rise during an event with the same return period (magnitude change, 95 % confidence
interval 0—14 cm). In addition to anthropogenic climate change, other possible drivers of the floods and their
impacts include human land and water management, the exposure and vulnerability of settlements and economic
activities located in flood-prone areas, and modes of climate variability that modulate seasonal precipitation.
The attribution statement could be strengthened by using a larger number of climate model simulations, as
well as by quantitatively accounting for non-meteorological drivers of the flood and potential unforced modes
of climate variability. By disentangling the role of anthropogenic climate change and natural variability in the
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high-impact 2020 floods in the Lake Victoria basin, this paper contributes to a better understanding of changing
hydrometeorological extremes in eastern Africa and the African Great Lakes region.

1 Introduction

Between late 2019 and mid 2020, eastern Africa experienced
heavy rainfall that led to flooding and landslides across the
region, displacing over a million people according to some
sources! and causing hundreds of casualties®. In 2019, the
rainy season of October, November, and December (OND,
known as the short rains) was one of the heaviest seen in
the region in the last 3 decades (Wainwright et al., 2021a).
Wet conditions compared to the climatological average con-
tinued into the 2020 rainy season of March, April, and May
(MAM, known as the long rains), causing additional floods
and landslides in 2020. The heavy rains aggravated one of
the most serious desert locust outbreaks the region has seen
in decades. Moreover, this occurred concurrently with the
COVID-19 pandemic, setting the stage for a perfect storm
of compounding impacts on people’s lives and livelihoods?.
Lake Victoria, the second largest freshwater lake in the
world, shared between Kenya, Uganda, and Tanzania, also
received above-average precipitation. The lake’s levels began
to rise in late September 2019 until reaching record-breaking
levels in mid May 2020, thereby exceeding the previous max-
imum levels measured in 1964 (Fig. 1). From April 2020,
floods were reported in the Lake Victoria basin, both along
the lake shores and in the floodplains of rivers flowing into
the lake. For example, in Kenya, an estimated 40 000 people
were displaced when the Nzoia River burst its banks in early
May 2020*. In Tanzania, in the Kagera and Mara basins,
5000 people were displaced due to flash and river floods
between March and May 2020°. In Uganda, lake shoreline
flooding affected the cities of Entebbe and Kampala®, and
over 3800 people were displaced from the lake islands of the

]https://reliefweb.int/map/somalia/, last access: 1 March 2024.

zhttps://reliefweb.int/report/ethiopia/, last access:
1 March 2024, https://www.theeastafrican.co.ke/tea/news/,
last access: 1 March 2024, https://floodlist.com/africa/
kenya-floods-north-central-regions-may-2020, last ac-
cess: 1 March 2024, https://floodlist.com/africa/
rwanda-floods-07-may-2020, last access: 1 March 2024, https:
/Mloodlist.com/africa/uganda-floods-kampala-september-2020, last
access: 1 March 2024.

3https://reliefweb.int/report/world/, last access: 1 March 2024

4https://reliefweb.int/report/kenya/, last access: 1 March 2024.

5https://reliefweb.int/report/united—republic—tanzania\/, last ac-
cess: 1 March 2024.

6https://www.reuters.com/article/, last access: 1 March 2024.
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Mayuge District’. Some media® and government reports (e.g.
Government of Kenya and UNDP, 2021) linked the heavy
precipitation and floods to anthropogenic climate change, but
the connection has not been scientifically investigated with
extreme event attribution methods so far.

This study aims to investigate whether human-induced cli-
mate change contributed to the probability and magnitude
of the flooding and record-breaking lake levels observed in
2020 in the Lake Victoria basin by following an established
protocol for probabilistic extreme event attribution (Philip
et al., 2020). Event attribution studies classically define an
extreme event based on its meteorological driver. For exam-
ple, previous attribution studies have mostly defined flood
events based on accumulated precipitation amounts (e.g. Otto
et al., 2018b; Philip et al., 2018a). Some notable exceptions
have extended the analysis, defining the event based on hy-
drological variables instead (e.g. Pall et al., 2011; Schaller
etal., 2016; Philip et al., 2019). Here, we expand on the clas-
sical framework by focusing on an impact-relevant variable,
namely by defining the flood event based on lake levels.

The eastern Africa region is comparatively under-studied
in relation to flood attribution, with most previous studies
having focused on drought events, generally finding either
no attributable role of anthropogenic climate change (e.g.
Uhe et al., 2018; Philip et al., 2018b; Otto et al., 2018a;
Kew et al., 2021) or a significant increase in the likelihood of
drought events (e.g. Funk et al., 2016, 2019; Marthews et al.,
2019; Kimutai et al., 2023), depending on the specific loca-
tion, framing, and variable being attributed in the study. One
study has analysed the flood-inducing heavy long rains sea-
sons that occurred in Kenya in 2012, 2016, and 2018, finding
no significant trend attributable to human-induced climate
change (Kimutai et al., 2022). To our knowledge, this study
is the first to use water balance or hydrological modelling to
attribute flood events in the region.

To study the floods, we follow a three-step methodology.
First, we estimate the flooded area and number of people im-
pacted through a remote sensing analysis. We then use a wa-
ter balance model for Lake Victoria to reconstruct historical
lake levels and identify which water balance terms drove the
2020 flooding. Finally, we use the water balance model as
an impact model within a probabilistic extreme event attri-
bution framework to detect the role played by anthropogenic
climate change on the observed rapid rise in lake levels. We

7https://www.m0nitor.co.ug/News/National/, last  access:

1 March 2024.
8https://www.theguardian.com/global-development/2020/, last

access: 1 March 2024, https://theconversation.com/lake-victoria-

could-burst, last access: 1 March 2024.
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compare our estimate of impact with emergency databases
and media and government reports and frame the results from
statistical attribution within the context of previous research
on changing hydro-climatic conditions in the region and on
other possible drivers of the floods.

1.1 Event definition

In this study, we focus on lake levels to define the 2020 flood
event, as (i) lake levels are closer to flooding impacts com-
pared to accumulated precipitation amounts, which are the
proximate meteorological driver of the event, and (ii) the lake
levels were record-breaking in 2020, making headline state-
ments in media reports and raising public interest. Further-
more, since tributary river floods are aggravated by backwa-
ter effects when lake levels are high (WMO et al., 2004), we
assume that (iii) the lake levels are a proxy for the flooding
of tributary rivers. Finally, (iv) the long historical time series
of lake level measurements allows for more robust statistical
attribution statements.

In the 8 months between September 2019 and May 2020,
lake levels rose by 1.44 m, reaching the record-breaking level
of 13.46 m measured in situ on 17 May 2020 (Fig. 1). Of
this rise, 84 % (1.21 m) occurred in the 6 months between
November 2019 and May 2020. We define the 2020 flood
event as a 6-month rate of change in levels as extreme as
that observed in the lead-up to May 2020. By using the rate
of change in lake levels instead of absolute lake levels, we
focus on signals in seasonal and year-to-year variability and
limit the influence of decadal trends. The choice of a 6-month
time window reflects the balance between, on the one hand,
limiting the influence of decadal trends, and, on the other
hand, defining the event in a way that represents the slow ac-
cumulated response of lake levels to seasonal accumulations
of precipitation (Khaki and Awange, 2021). We test the sen-
sitivity to these choices in Sect. 3.3 and Appendix Sect. B3.

1.2 Previous variations in lake levels

Lake level fluctuations are the result of the lake’s water bal-
ance, which consists of precipitation on the lake surface
(~70 %) and inflow from tributary rivers (~ 20 %-30 %) as
input terms and evaporation from the lake surface (~ 70 %-—
80 %) and outflow from the Nalubaale dam complex in Jinja
(~20 %—-30 %) as output terms (Vanderkelen et al., 2018a).
Lake precipitation and inflow control seasonal and interan-
nual lake level variability, as evaporation and outflow are
characterized by lower variability (Sene et al., 2021). Out-
flow from the lake is managed as a function of lake levels
following the Agreed Curve (Sene, 2000, see Sect. 2.1.2).
Lake Victoria’s levels have varied by over 3.2 m since the
beginning of instrumental measurements in the late 19th cen-
tury (Fig. 1). Seasonal variations in lake levels are generally
small compared to interannual variations (Sene et al., 2021).
In 1954, the first dam of the Nalubaale dam complex, which
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controls the lake outflow and is located near Jinja, Uganda,
was completed (Sutcliffe and Petersen, 2007). Subsequently,
a remarkable spike in lake levels occurred in the early 1960s,
which has been attributed to an increase in eastern African
precipitation that affected the levels of multiple lakes in the
African Great Lakes region (Sene et al., 2021; Kite, 1981).
A period of generally declining lake levels occurred from the
mid 1960s to the mid 2000s, which was linked to a combina-
tion of low precipitation and excessive release from the lake’s
dam (Vanderkelen et al., 2018b; Sene et al., 2021). From then
on, levels show a generally positive trend and increased by
approximately 3 m between 2006 and 2020. A particularly
rapid increase in levels occurred between late 2019 and mid
2020, and the levels measured in May 2020 broke the previ-
ous 1964 record by approximately 7 cm.

1.3 Precipitation variability, extremes, and model
representation in eastern Africa

The Lake Victoria basin is located in the African Great Lakes
region and characterized by a bimodal rainfall distribution
pattern, with rains concentrated in the “long rains” season in
March, April, and May and the “short rains” season in Oc-
tober, November, and December (Thiery et al., 2015; Van-
derkelen et al., 2018a). The region exhibits strong interan-
nual variability in precipitation, influenced by the El Nifio—
Southern Oscillation (ENSO) and the Indian Ocean Dipole
(IOD) (Nicholson, 2017; Ummenhofer et al., 2009; Black,
2005; Palmer et al., 2023). The spatial distribution of pre-
cipitation in the basin is influenced by topography and the
presence of the lake, with high accumulated precipitation
amounts and a tendency for hazardous night-time thunder-
storms over the lake surface (Thiery et al., 2016; Van de
Walle et al., 2020). The heavy 2019 short rains rainy season
in eastern Africa was linked to a strong positive IOD event
(Wainwright et al., 2021a; Nicholson et al., 2022; Khaki and
Awange, 2021), with anomalies in sea surface temperatures
leading to weakened westerlies in the Indian Ocean and wet-
ter than usual conditions in eastern Africa (Wainwright et al.,
2021a; Black, 2005; Nicholson, 2017).

Global and regional climate models generally project an
increase in average annual precipitation amounts over eastern
Africa with climate change (e.g. Rowell et al., 2015; Aku-
rut et al., 2014; Dunning et al., 2018; Souverijns et al., 2016;
Olaka et al., 2019), particularly during the short rains (Palmer
et al., 2023), as well as an increasing frequency of extreme
positive 10D events (Cai et al., 2014, 2018). At the same
time, there is evidence of biases in coupled climate mod-
els in representing seasonal precipitation in eastern Africa,
particularly with respect to the long rains (see Discussion
Sect. 4; Wainwright et al., 2019; Palmer et al., 2023; Ayugi
et al., 2021). Nonetheless, since our study is not restricted
to the long rains season, and since coupled global climate
models (GCMs) remain invaluable tools to simulate factual
and counterfactual (i.e. in the absence of anthropogenic cli-
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Figure 1. Lake Victoria levels (1896-2022) with high and low peaks labelled. The time series is reconstructed based on monthly in situ
measurements from the UK Centre for Ecology and Hydrology (UKCEH, 1896-1948), daily in situ measurements from the WMO Hydrom-
eteorological Survey (1948-1992), and satellite-derived 10-daily measurements from the Database for Hydrological Time Series of Inland

Waters (DAHITI) (in ma.s.l.) converted to in situ (1992-2022).

mate change) climate conditions in the most complete way
(Otto, 2017), extreme event attribution studies of hydrolog-
ical changes in the region using coupled GCMs and other
modelling setups can still contribute to improving our under-
standing of ongoing changes in the region (e.g. Philip et al.,
2018b; Kew et al., 2021; Kimutai et al., 2022, 2023).

2 Data and methods

2.1 Data
2.1.1 Remote sensing imagery and population data

The spatial extent of the flooding in the Lake Victoria
Basin is estimated by applying the HASARD flood detec-
tion algorithm (Sect. 2.2.1) to remote sensing imagery from
the Sentinel-1 and Sentinel-2 missions of the Copernicus
programme of the European Union. We analyse Sentinel-
1 level 1 ground range-detected C-band synthetic aperture
radar (SAR) over a 3-month window from early April to the
end of June 2020 (5 April 2020—1 July 2020). This period
is centred around 17 May 2020, when lake levels reached
their record high, and spans the period of reported flood-
ing impacts in media reports and emergency and disaster
databases, such as the Emergency Events Database (EM-
DAT) of the Centre for Research on the Epidemiology of
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Disasters (CRED). SAR imagery is well suited for flood
detection, as it provides imagery throughout day and night
in all weather conditions (Chini et al., 2020). The imagery,
collected in Interferometric Wide Swath mode, has a spa-
tial resolution of 5 by 20m, and a combined cycle revisit
time of 6d at the latitude of Lake Victoria. In addition,
the algorithm uses optical imagery from the Sentinel-2 mis-
sion for the same period and spatial extent as a secondary
data source. Sentinel-1 and Sentinel-2 imagery is accessed
and processed through the Geohazards Exploitation Platform
(GEP) operated by Terradue and developed in the framework
of the European Space Agency Thematic Exploitation Plat-
forms (TEP) and the Web Advanced Space Developer In-
terface (WASDI) operated by WASDI (Luxembourg) with
Earth observation (EO) services developed by LIST (Lux-
embourg). To correct for permanent waterbodies that are er-
roneously identified as flooded, we use the waterbody mask
of the Copernicus Global Digital Elevation Model at 30 m
resolution (COPDEM GLO-30; Fahrland et al., 2020).
High-resolution gridded population data are obtained from
the WorldPop database for Kenya, Uganda, and Tanzania
(Appendix Fig. C1). The dataset is based on 2020 census data
from the three countries, disaggregated based on building
footprints and ancillary geospatial datasets (top-down con-
strained data, Stevens et al., 2015; WorldPop, 2018), and has

https://doi.org/10.5194/esd-15-225-2024
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a spatial resolution of 3 arcsec (approximately 100 m at the
Equator).

2.1.2 Lake level observations

A time series of lake level measurements from 1896-2021
is assembled from different sources. For the period 1 Jan-
uary 1948-1 August 1996, daily measurements recorded in
situ at Jinja are available from the World Meteorological
Organization (WMO) Hydrometeorological Survey (here-
after Hydromet; WMO-UNDP, 1974). The data gaps in the
years 1977 (whole year), 1978 (9-31 August), 1979 (15—
31 December), 1979 (1 January-9 May), 1981 (1 October—
31 December), and 1982 (15 July—2 December) are filled
through linear interpolation. From 27 September 1992 to
2021, satellite-derived measurements are obtained from the
Database for Hydrological Time Series of Inland Waters
(DAHITI) at an approximately 10-daily resolution. In situ
Hydromet measurements are converted to absolute levels in
metres above sea level with a geoid datum and are corrected
to match satellite-derived DAHITI measurements by adding
the remaining average difference between the two datasets
for the overlapping period (1992-1996), as in Vanderkelen
et al. (2018a). The total resulting geoid correction applied
to the Hydromet time series to obtain absolute lake levels in
metres above sea level is 1123.32 m.

Furthermore, the near-daily in situ lake level measure-
ments are supplemented by a monthly time series from the
UK Centre for Ecology and Hydrology (Sene et al., 2021;
Sutcliffe and Petersen, 2007) for the period 1896-1948. We
thus create a single 127-year lake level time series, which
we use in the observational attribution analysis. We test the
attribution statement for sensitivity to the different temporal
resolutions of the older and more recent data and find a sim-
ilar attribution signal when the data are artificially upscaled
to monthly resolution.

2.1.3 Observed global mean temperatures

As a measure of anthropogenic climate change, we use a time
series of global mean surface temperature (GMST) obtained
from the National Aeronautics and Space Administration
(NASA) Goddard Institute for Space Science (GISS) sur-
face temperature analysis (GISTEMP; Hansen et al., 2010;
Lenssen et al., 2019). The time series is expressed as an
anomaly relative to the 1951-1980 global average. A 4-year
running mean low-pass filter is applied to remove higher-
frequency variability and signals linked to ENSO, as recom-
mended in Philip et al. (2020).

2.1.4 Observational data for water balance terms

The water balance of Lake Victoria is modelled using an up-
dated version of the model described in Vanderkelen et al.
(2018a) using observational data for the period 1983-2020.

https://doi.org/10.5194/esd-15-225-2024

As input data, the water balance model (WBM) employs
daily data for precipitation over the lake and basin and lake
evaporation and a time series of dam outflow.

Daily observational gridded precipitation data are ob-
tained for 1983-2020 from the satellite-derived dataset Pre-
cipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks — Climate Data Record
(PERSIANN-CDR; Ashouri et al., 2015) at a 0.25° spatial
resolution (approximately 28 km at the Equator). This dataset
has been shown to perform better than other satellite-derived
and reanalysis-based products in the study area (Nicholson
and Klotter, 2021). Missing data occur mostly in the first
decades of the dataset (419 total missing days spread across
32 years, of which 95 % are between 1983 and 1999 and 5 %
are between 2007 and 2014, Appendix Fig. C2), with a third
of the missing days concentrated in the 2-year period 1983—
1984, and thus we restrict our analysis of the precipitation
anomaly to the period 1985-2020 (see Appendix Sect. B1).

Daily inflow, evaporation from the lake surface, and out-
flow from the dam are calculated as in Vanderkelen et al.
(2018a). Inflow is estimated from precipitation based on
land use, soil type, soil hydrological characteristics, and an-
tecedent moisture conditions using the USDA curve number
method (USDA-SCS, 2004, see further details in Appendix
Sect. B2). Evaporation from the lake surface is estimated
based on the latent heat flux term simulated by the regional
climate model COSMO-CLM? forced with ERA5 reanaly-
sis data over the African Great Lakes region for the period
19962008 (Thiery et al., 2015, 2016). The latent heat flux
is converted to an evaporated water amount by dividing the
flux term by the latent heat of vaporization of water, held
constant at 2.5 x 10°Jkg~!. A yearly climatology of evapo-
ration is calculated by averaging each day across all calendar
years, and the resulting climatology is held constant for all
WBM simulation years. Outflow is obtained from measure-
ments at the Jinja—Nalubaale dam complex, and in periods
without observations it is estimated using the Agreed Curve
equation. This relationship prescribes the volume of water
that should be released each day from the dam as a func-
tion of lake levels and is the object of international agree-
ments between Uganda and downstream countries. The re-
lationship aims to balance water availability at the lake and
downstream in the Nile Basin with hydropower requirements
at Jinja by mimicking natural outflow. Mathematically, the
Agreed Curve is expressed as follows (Sene, 2000):

Oout = 66.3(L —7.96)>01, 1)

where Q, is outflow at Jinja (m3 s~!) and L indicates in situ
lake levels (m). The outflow time series for the period 1950-
2006 from Vanderkelen et al. (2018a) is extended for the
periods 1948-1950 and 2006-2020 using the Agreed Curve
and from March 2020 to December 2021 with daily outflow
measurements made at Jinja. The time series is overall simi-
lar to the theoretical amount prescribed by the Agreed Curve
but shows deviations in certain periods (Appendix Fig. C3).

Earth Syst. Dynam., 15, 225-264, 2024
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All gridded input data to the WBM are cropped to the study
area (5° S-2°N, 28-36° E) and remapped to the resolution of
the WBM (0.065° ~ 7 km) using second-order conservative
remapping.

2.1.5 Climate model data for water balance terms

To isolate the effect of anthropogenic climate change on lake
level variations, we force the WBM with daily precipita-
tion simulated by a subset of global climate models (GCMs)
participating in CMIP6 and the Detection and Attribution
Model Intercomparison Project (DAMIP). Simulations from
six models are used, namely CanESM5, CNRM-CM6-1,
GFDL-ESM4, IPSL-CM6A-LR, MIROC6, and MRI-ESM2-
0, with one ensemble member each (see experiment descrip-
tions in Table Al). The data have previously been bias ad-
justed and statistically downscaled to a spatial resolution of
0.5° (~55km at the Equator) within the Inter-Sectoral Im-
pact Model Intercomparison Project Phase 3b (ISIMIP3b)
using the trend-preserving ISIMIP3BASD method (Lange,
2019a, 2020, 2021) and the WS5ES5 observational dataset,
which is a bias-adjusted version of ERAS (Lange, 2019b;
Cucchi et al., 2020).

To simulate lake levels under “factual” climate condi-
tions, the WBM is driven by GCM simulations with all his-
torical forcings included (hereafter referred to as hist sim-
ulations), whereby observed trends of atmospheric green-
house gas concentrations, from both anthropogenic and nat-
ural sources, are prescribed. Historical climate simulations
(1850-2014) are complemented with simulations under the
Shared Socioeconomic Pathway and Representative Concen-
tration Pathway SSP3-RCP7.0 for the period 2015-2020.
Lake levels in a “counterfactual” hypothetical world without
anthropogenic climate change are simulated by driving the
WBM with simulations from the same GCMs, with only nat-
ural forcings, such as solar variability and volcanic emissions
(hereafter referred to as hist-nat simulations) for the period
1850-2020. For each GCM experiment, an annual time series
of simulated global mean surface temperature (GMST) with
a4-year moving average low-pass filter is derived and is used
as a covariate in the statistical analysis. All gridded data are
remapped to the WBM resolution using second-order conser-
vative remapping.

2.2 Methodology

2.2.1 Flood detection

We use the automated flood mapping algorithm HASARD
(Chini et al., 2017) to identify flooded areas in the period
of interest based on remote sensing imagery. The algorithm
compares successive pairs of SAR images to detect per-pixel
changes in the amplitude of the backscattered signal that in-
dicate an area has been flooded. Flood maps are automati-
cally combined to create a multi-temporal binary flood map
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showing the maximum cumulative flood extent and opti-
cal imagery is used to corroborate SAR-derived flood maps
(Chini et al., 2017, 2020).

We apply HASARD on SAR Sentinel-1 and optical
Sentinel-2 imagery with standard parameters (Ashman co-
efficient 2.4, HSBA depth —1, minimum blob size 150; see
Chini et al., 2017, for details) over the 3-month interval
from April to June 2020. Flood mapping initially detects
large amounts of spurious flooding, including large parts of
the lake surface that are identified as flooded due to waves
causing surface roughness changes and consequent changes
in backscatter amplitude between subsequent satellite im-
ages. We remove permanent water erroneously identified as
flooded using the COPDEM GLO-30 permanent waterbody
mask. Second, spuriously identified flooding outside the area
of interest is removed with a buffer that only retains informa-
tion within 50 km from the lake shores and within the lake
basin, resulting in an area of approximately 72 000 km? that
is analysed for potential flooding. To calculate flooded area,
flood maps are reprojected to the UTM 36S geographic pro-
jection. Third, the cumulative binary flood map is remapped
using nearest-neighbour remapping from its native 20 to
100 m horizontal resolution of the population maps and is
multiplied with gridded population data to obtain the num-
ber of people affected. Fourth, we perform a case study on
the highly impacted basins of the Nzoia and Yala rivers in
Kenya. For the case study, SAR imagery is visually anal-
ysed using multi-temporal false-colour composites. Finally,
we compare the estimated impact of flooded area and number
of people affected, with grey literature, newspaper reports,
and EM-DAT. All remote sensing analysis was carried out
on the WASDI and GEP platforms.

2.2.2 Water balance model

Lake levels are simulated using an updated version of the
WBM described in Vanderkelen et al. (2018a), whereby the
water balance is calculated as follows:
AL Qin - Qout

—=P-E+

At A @)

where L (m) indicates lake levels, P (md~!) is over-lake
precipitation, £ (md~!) is evaporation from the lake surface,
Oin (m3 d1) is lake inflow, Oout (m3 d’l) is outflow from
the Nalubaale dam complex, and A (mz) is the lake area. The
model runs at daily resolution (At is equal to 1 d). Each term
in the model is calculated in metres of lake level equivalent,
assuming a constant lake area of approximately 66 800 km?.

To simulate observed lake levels for the period 1983-2020,
the model is forced with observed over-lake precipitation, in-
flow based on observed basin precipitation, outflow time se-
ries, and model-based lake evaporation. The model is evalu-
ated against observed lake levels and is used to determine the
driving water balance terms of the 2020 flood event.

https://doi.org/10.5194/esd-15-225-2024
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2.2.3 Statistical attribution methods

To estimate the role of anthropogenic climate change in the
2020 floods, we follow the probabilistic extreme event attri-
bution methodology described in Philip et al. (2020) and van
Oldenborgh et al. (2021). The steps include (i) event defini-
tion, (ii) probability and trend calculation from observations,
(iii) model validation, (iv) multi-model multi-method attribu-
tion, and (v) synthesis of attribution statements. More details
on the methodology are given in the Supplement.

i.

ii.

Event definition. We define the 2020 event in a univari-
ate class-based way as the 6-month increase in levels
observed between November and May 2020 (see also
Sect. 1.1). Based on this definition, the attribution vari-
able used in this study is

AL .
AL for At = previous 180d. 3)

Probability and trend calculation from observations.
We calculate the return period of the flood event as the
inverse of the probability of exceeding the AL/Af mag-
nitude observed in 2020 and estimate whether a change
in return period due to anthropogenic climate change
is detectable in observations. To this end, we first gen-
erate a “daily” time series of the attribution variable
AL/At from observed lake levels for the period 1896—
2020 by applying the time window A¢ with a daily mov-
ing window. Next, we extract the annual block maxima
of this time series and fit it to a non-stationary general-
ized extreme value (GEV) distribution, described by the
location (u), shape (&), and scale (o) parameters. We
model non-stationarity by applying the shift fit method
described in Philip et al. (2020). This method assumes
that the shape and scale parameters are constant, while
the location parameter is modelled as a linear function
of the smoothed GMST covariate (T”), which is taken
as a proxy for anthropogenic climate change. We esti-
mate the parameters of the linear model (1o and 1), to-
gether with the shape and scale parameters, using max-
imum likelihood estimation. We then calculate the val-
ues of the location parameter in a “current” ((pew) and
a “pre-industrial” climate (urf), defined, respectively,
based on the GMST in 2020 and 1900:

Mnew = 1o + L1 T2/02Q9 4
Iiret = 0 + 121 Tig00- (5)

Based on this fit, we calculate the return period, proba-
bility ratio, and change in magnitude of the flood event.
The probability ratio (PR) expresses the change in the
probability of exceeding the magnitude observed in
2020 between the pre-industrial climate (prer) and the
current climate (ppew):

PR — Pnew . (6)
Pref
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iii.

231

The change in magnitude expresses the difference be-
tween the magnitude of lake level rise observed in 2020
and the magnitude of lake level rise that has the same
return period in a pre-industrial climate. To quantify
uncertainty, 95 % confidence intervals (CI) for distribu-
tion parameters, PR, and change in magnitude are com-
puted through bootstrapping using 1000 members with
replacement.

Model validation. Historical climate model simulations
are evaluated by comparing their representation of the
seasonal cycle and spatial pattern of precipitation in the
Lake Victoria basin with observations. We then force
the WBM with precipitation coming from historical cli-
mate model simulations for the period 1850-2020. Out-
flow is calculated using the Agreed Curve, and the ob-
servational lake evaporation climatology is held con-
stant (see Sect. 2.1.4). The resulting lake levels are
used to compute the annual block maxima time series
of the variable AL/At, which is subsequently fitted to
a non-stationary GEV distribution similar to observed
lake levels but using a GCM-derived GMST time series
as a covariate. The parameters of the resulting fits are
compared to the observation-derived parameters. Fol-
lowing the method in Ciavarella et al. (2021), we ex-
clude the GCMs for which the simulated precipitation
results in very different GEV fits compared to the obser-
vational fits, namely where the shape and scale parame-
ters do not overlap within confidence intervals with the
observation-derived parameters.

iv. Multi-model attribution. To estimate the change in the

return period of the flood event based on GCMs, we ad-
ditionally fit non-stationary GEV distributions with the
shift fit method to lake levels derived from hist-nat sim-
ulations as well as historical simulations. To account for
model biases in simulated event magnitude, we iden-
tify the AL /At magnitude for which the return period
in the historical GCM simulations matches the return
period of the 2020 event, as recommended as a simple
bias correction method in Philip et al. (2020). For every
GCM simulation, we calculate the probability ratio and
the change in magnitude using the same definitions for
a current (GMST in 2020) and a pre-industrial climate
(GMST in 1900) as in the observational analysis. Fi-
nally, for each model, we combine the results from his-
torical and hist-nat simulations. To this end, we first cal-
culate the PR between the probability of observing the
event in a current climate in historical and hist-nat simu-
lations. We then calculate the change in magnitude of an
event with the same return period as the 2020 event in a
current climate in historical and hist-nat simulations.

Synthesis of attribution statement. Finally, we synthe-
size the results from observations and climate models
to derive final estimates for a probability ratio and mag-
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nitude change with their 95 % confidence intervals, fol-
lowing Philip et al. (2020). To this end, the probabil-
ity ratios and magnitude changes obtained in step (iv)
are first averaged for all GCMs, assuming these are log-
normally and normally distributed, respectively, using
an “unweighted” synthesis methodology to avoid ar-
tificially reducing uncertainties. The resulting model-
derived average is then averaged with the estimate ob-
tained from observations in step (ii), which is treated
as a separate sample that contributes to the final result.
This means all climate models are collectively given the
same weight as observations and that observations play
a relatively large role in the final synthesis result. The
synthesis step is carried out using the KNMI-WMO Cli-
mate Explorer.

3 Results

In this section, we first analyse the precipitation anomaly that
drove the 2020 floods and estimate of the number of people
impacted by the floods. We then carry out a sensitivity anal-
ysis of the event definition and analyse what water balance
terms drove the lake level rise. Subsequently, we estimate the
change in probability and magnitude of the flood event from
observations, evaluate the WBM and GCMs, and carry out a
multi-model attribution analysis. Finally, we present the syn-
thesis of observational and GCM-derived attribution results.

3.1 Meteorological driver of the floods

The 2020 floods were driven by heavy precipitation in 2019
and 2020, which was above-average in nearly the entire study
area (Fig. 2). The highest precipitation anomalies occurred
over the lake, with values up to 493 mm yr~! (averaged over
both years) above the climatological mean, which corre-
sponds to a 38 % positive anomaly (Fig. 2b, e). Averaged
over Lake Victoria and its basin (outline shown in Fig. 2a),
precipitation between May 2019 and May 2020 was consis-
tently above average relative to the climatology (Fig. 3a).
The OND short rains season of 2019 ranks second wettest
after 1997; the January and February dry season of 2020
ranks second wettest after 1998; and the MAM long rains
season of 2020 ranks fourth wettest, after 2018, 1988, and
1990 (Fig. 3b—d). Whereas none of the individual seasons
was record-breaking in 2019 or 2020, accumulated precipi-
tation during the 3-year period leading up to the flood event
was above average (Fig. 4a), with 2020 ranking as the wettest
year in the basin since 1985, and the 2-year period 2019-
2020 and the 3-year period 2018-2020 breaking the record
by an even greater margin (Fig. 4b).

Regression analysis shows generally weak trends in ac-
cumulated yearly and seasonal precipitation amounts (Ap-
pendix Fig. C4). A weak and non-robust positive temporal
trend is visible in accumulated yearly precipitation over the
lake and its basin between 1985 and 2020, linked to a neg-
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ative trend in the MAM long rains season, counterbalanced
by a positive trend in the OND short rains season and weak
positive trends in the January—February and June—September
dry seasons. Considerable scatter is present around all trends,
and there is larger uncertainty in precipitation amounts in
the 1980s and 1990s due to more missing data in these early
decades, which makes it difficult to robustly carry out trend
analysis or compare precipitation in different years. Accumu-
lated precipitation in the basin, in particular during the short
rains, is strongly positively correlated with the Indian Ocean
Dipole index during the same months (Appendix Fig. C5).

3.2 Estimation of flooded area and affected population

Based on remote sensing analysis, a total area of approxi-
mately 642.5km? in the lake basin within 50 km of the lake
shores is estimated to have been affected by flooding between
April and July 2020 (Fig. 5). This corresponds to approx-
imately 0.9 % of the 50 km buffer around the lake shores.
Key areas identified as flooded include the basins of the
Nzoia and Yala rivers and the Kisumu and Homa Bay Coun-
ties in Kenya; the floodplains of large rivers (including the
Mara, Grumeti, Simiyu and Kagera rivers) in Tanzania; and
shoreline and wetland locations near Masaka, Entebbe, and
Kampala and along the coasts of lake islands in Uganda.
Flooding is also detected along the shoreline of most of the
lake. Within 50 km of the shores of Lake Victoria, a total of
29 070 people are estimated to have been affected by flooding
between April and June 2020, which corresponds to about
0.12% of the total population living in this area (23 mil-
lion people). The affected population is identified through-
out the area in both coastal and inland locations near river
floodplains.

Detailed visual analysis of SAR images for the Nzoia
River basin, which was reported as heavily affected in media,
shows important flooding between April and May 2020. The
area is mostly non-flooded on 2 April (Appendix Fig. C6a)
and starts to show early signs of flooding in late April fol-
lowed by important flooding on 8 May 2020 (Appendix
Fig. C6b, d). By 20 May, large parts of the floods have re-
ceded, but some traces are still visible along the floodplain
and in the southern and south-eastern sections of the area
(Appendix Fig. C6c). Overlaying the area detected as flooded
by the HASARD algorithm in the Nzoia basin between April
and June 2020 with gridded population data allows us to
identify where people were affected by flooding (Fig. 6).

Estimates of population affected by flooding in the Lake
Victoria area and the larger eastern Africa region vary widely
between media, grey literature, disaster response reports, and
the disaster database EM-DAT (Table 1). In part this is be-
cause they refer to different geographical areas and time
periods. The estimate of people affected by flooding over
the larger eastern Africa region in 2019-2020 spans from

https://doi.org/10.5194/esd-15-225-2024
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Figure 2. (a) Observed average annual precipitation from PERSIANN-CDR for the period 1985-2020. The Lake Victoria basin outline is
shown in red. Absolute precipitation anomaly in the years (b) 2019-2020, (c) 2019, and (d) 2020. Relative precipitation anomaly in the
years (e) 2019-2020, (f) 2019, and (g) 2020. All anomalies are calculated with respect to the period 1985-2020.

700 000° to over 2 million people!’. The disaster database
EM-DAT reports over 980000 affected people and 326 ca-
sualties including all flooding events in Uganda, Kenya, and
Tanzania for the period between April and November 2020.
Filtering the EM-DAT entries to include all those that which
include parts of the regions included in our study area (out-
line in Fig. 5) results in over 830000 affected people and
292 casualties, with the highest number of people affected
in Kenya. However, these EM-DAT entries include many ad-
ministrative units that are far from Lake Victoria and there-
fore unrelated to our study area (Guha-Sapir et al., 2022, Ta-
ble 1).

Analysis of media sources covering the studied regions
give an estimate of approximately 32 500 to 54 800 affected

9Wikipedia, https://en.wikipedia.org/wiki/2020, last access:
1 March 2024.
lohttps://reliefweb.int/map/somalia/, last access: 1 March 2024.
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people aggregated over the three countries, which broadly
agrees with our remote-sensing-based estimate (Table 1). For
instance, in Kenya, media sources from May 2020 report
3000 people left homeless in the Budalangi constituency of
Busia County!! (Fig. 5 box 1). As an effect of the Nzoia
River flood in early May 2020 alone, UN OCHA reports at
least 40000 people were made homeless'?. Media sources
report 400 families still displaced in August 2020 due to
the Nzoia floods!3. Later in the year, in October 2020, the
Kenya Red Cross society reported 7000 homes affected by
Lake Victoria backflow in the Budalangi Constituency of Bu-

HINTV Kenya (3 May 2020), https://www.youtube.com/watch?
v=19060uUW-hw, last access: 1 March 2024.

I2UN OCHA (7 May 2020), https:/reliefweb.int/disaster/
1-2020-000128-ken, last access: 1 March 2024.

3Reuters (19 August  2020), https://news.trust.org/item/
20200819141141-rb3c8, last access: 1 March 2024.
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Figure 3. (a) Monthly accumulated precipitation over Lake Victoria and its basin for the period 2019-2020, shown relative to the climatology
(calculated based on the period 1985-2020). Periods of positive anomaly are shown in blue, and periods of negative anomaly are shown in
red. (b) Accumulated precipitation in OND rainy season, JF dry season, and MAM rainy season, with the long-term seasonal average for the

period 1985-2020 shown as a dashed grey line.

sia County, Kenya'“. Other media sources report 3000 peo-
ple displaced in the Rachuonyuo Sub-county of Homa Bay
County due to backflow! (Fig. 5 boxes 2-3). A conference
held by the Aga Khan University with representatives of local
governments, the International Federation of the Red Cross
and Red Crescent societies, and universities, reported al-
most 20 000 people displaced in Busia County, 3000 in Siaya
County, and 700 in Homa Bay County in Kenya'® (Fig. 5
boxes 1-3). In Uganda, media reports more than 3800 peo-
ple displaced from the lake islands in the Mayuge district!’

l4Fl00dlist (22 October  2020),  https://floodlist.com/
africa/kenya-lake-turkana-floods-october-2020, last access:
1 March 2024.

I5The Nation 6 January 2021),

https://nation.africa/kenya/counties/homa-bay/, last
1 March 2024.
16East Africa Institute (26 May 2020), https://www.youtube.com/
watch?v=DBbHZS8LTZE, last access: 1 March 2024.
U The Daily Monitor Qa May
https://www.monitor.co.ug/uganda/news/, last
1 March 2024.

access:

2020),

access:
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I8 (Fig. 5 east of box 13), whereas important flooding was
not identified using HASARD in these islands. In Tanzania,
disaster response sources report approximately 5000 people
impacted in the Kagera and Musoma regions .

3.3 Event definition

As outlined in Sect. 1.1, we focus on the rate of change in
lake levels (AL /At) instead of on absolute lake levels to de-
fine the event, choosing a time window (At) of intermedi-
ate length corresponding to 180d, and subsequently extract
annual block maxima of the AL/A¢ time series. The 2020
event thus defined corresponds to a lake level increase of
1.21 m that occurred in the 180 d leading up to 17 May 2020,
and is the third most extreme event since 1897, ranking after
1998 (1.39m) and 1962 (1.30 m; Fig. 7). Lake levels usually

I8Floodlist (4 May 2020), https://floodlist.com/africa/
uganda-floods-western-northern-region-may-2020, last access:
1 March 2024.

I9TFRC (8 May 2020), https://reliefweb.int/report/united-
republic-tanzania/, last access: 1 March 2024.
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Figure 4. Annual accumulated precipitation anomaly with respect
to the period 1985-2020 in the Lake Victoria basin for (a) 1 year,
(b) a 2-year rolling window, and (c) a 3-year rolling window. The
record-breaking year is marked with an asterisk.

rise by approximately 0.28 m in the period November—May,
meaning the 2020 event approximately represents a 0.93 m
anomaly compared to the whole time series. No clear tem-
poral trend is visible in the resulting time series, although a
clustering of high values is visible between 1960 and 1962
(Fig. 7b). We test the sensitivity to this choice of event defi-
nition in Sect. B3.

3.4 Water balance modelling
3.4.1 Water balance modelling: model evaluation

The water balance model forced with observational data re-
produces the observed lake levels reasonably well (Fig. 8).
The model generally captures the timing of increasing and
decreasing levels, but sometimes underestimates or overesti-
mates the magnitude of these variations resulting in a mean
bias of 0.06 m and a root-mean-square error of 0.45 m. The
large and consistent overestimation from 2005 to 2015 could
be due to the modelled outflow, which was assumed to fol-
low the Agreed Curve from 2005 on (Fig. C3), while in this
period, the real outflow likely exceeded the Agreed Curve,
resulting in lower lake levels (Vanderkelen et al., 2018a).
Nevertheless, the model does not show systematic wet or
dry biases, which justifies its use for the attribution analy-
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sis. Moreover, as the attribution variable is based on lake
level variations, biases in absolute levels are less relevant.
The lake level peak in May 2020 is reproduced by the model,
but underestimated by 0.41 m (Figs. 8 and C8a). Between
May 2018 and January 2020, the model reproduces observa-
tional lake levels well, but from then on it consistently under-
estimates lake levels (Appendix Fig. C8a, b). The divergence
between modelled and observed levels is fastest between Jan-
uary and May 2020 (Appendix Fig. C8c).

For the 180 d rate of change in lake levels, the WBM gen-
erally reproduces the time series derived from observations
(Fig. 9) but tends to attenuate extremes (Fig. 9a, b, e). Ac-
cordingly, the distribution of (AL/At) shows less extreme
high and low values compared to observations (Fig. 9d).
Furthermore, the modelled seasonality of AL/At is slightly
shifted in time, leading observations by about 10 d to 1 month
(Fig. 9¢). In 2020, the maximum 180d increase in levels is
shifted in time in the WBM simulation compared to observa-
tions: in the former it is modelled between September 2019
and March 2020 (with a magnitude of 0.94m), whereas
in the latter it was observed between November 2019 and
May 2020 (with a magnitude of 1.21 m). Nonetheless, the
annual block maxima A L /At time series derived from mod-
elled lake levels leads to an estimate of the rank of the 2020
event that is high and similar to observations, with the 2020
event ranking second after 1998 (Appendix Fig. C9).

Given (i) the overall skill of the observation-driven WBM
simulation, (ii) the similarity of the rank of the 2020 event
in the modelled and observed time series, and (iii) the appli-
cation of a simple bias correction (Sect. 2.2.3), we conclude
that the WBM can be trusted to attribute the 2020 event in
combination with observed lake levels.

3.4.2 Water balance modelling: analysis of drivers

The input terms of the lake’s water balance reflect the sea-
sonal cycle of precipitation in the basin, with peaks in over-
lake precipitation and inflow in the MAM and OND rainy
seasons (Fig. 10a). Annually averaged based on the 1983—
2020 period, over-lake precipitation supplies 125 mm per
month (475.7 %) and is approximately balanced by an evap-
orative loss of 123 mm per month (—74.7 %). Inflow provides
40 mm per month (424.3 %) of input, and 42 mm per month
(—25.3 %) is lost through outflow, agreeing with estimates in
Vanderkelen et al. (2018a). Lake precipitation has the highest
interannual variability (Fig. 10a).

Over-lake precipitation and inflow were generally above
average between May 2019 and April 2020 (Fig. 10b—c
and Appendix Fig. C10a). Both were particularly anoma-
lous in October 2019 (Fig. 10b), when lake precipitation was
a nearly 4 SD anomaly (330 mm) and inflow was a 3.5SD
anomaly (122 mm lake level equivalent) compared to the
long-term mean for the month, and they both broke records
since 1983.
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Figure 5. Key areas affected by flooding as detected by the HASARD automated flood event retrieval algorithm of LIST (Luxembourg),
over the period April-June 2020, limited to an area within 50 km from the lake shoreline (area of interest, AOI): (1) Nzoia and Yala rivers,
Busia—Siaya counties, Kenya; (2) Sondu and Nyando rivers, Kisumu—Homa Bay Counties, Kenya; (3) Olare, Homa Bay County, Kenya; (4)
River Kuja, Migori County, Kenya; (5) Mara River, Mara Region, Tanzania; (6) Makojo, Mara Region, Tanzania; (7) Grumeti and Mbalangeti
rivers, Mara Region, Tanzania; (8) Simiyu River, Simiyu Region, Tanzania; (9) Magongo and Isanga Rivers, Mwanza Region, Tanzania; (10)
Muleba district, Kagera region, Tanzania; (11) Bukoba rural district, Kagera region, Tanzania; (12) Masaka area and Ssese Islands, Central
Region, Uganda; and (13) Entebbe—Kampala area and islands, Central Region, Uganda.

In the WBM simulation, the maximum 6-month AL /At
ending in 2020 occurs between September 2019 and
March 2020, with a magnitude of 0.93m. This deviates
from observations, where the maximum rise happens be-
tween November 2019 and May 2020 and has a magni-
tude of 1.21 m, which is further discussed in Sect. 3.4.1. Be-
tween September 2019 and March 2020, accumulated over-
lake precipitation and inflow reached levels similar to their
total annual long-term average (Appendix Fig. C10b). Lake
precipitation saw an anomaly of +0.59 m (472 %), inflow
of +0.26 m (493 %), outflow of +0.01 m (440 %), and lake
level equivalents compared to climatological average, result-
ing in a positive residual of approximately 40.75m (Ap-
pendix Fig. C11). This is smaller than the full magnitude
of the modelled event (4-0.93 m) because 19 % of the 2020
event corresponds to the climatological average rise in lake
levels for the period from September to March (4+0.18 m),
whereas 81 % of the event (40.75 m) was due to anomalous
precipitation and inflow, which were only partially balanced
by above-average outflow following the rise in lake levels.

https://doi.org/10.5194/esd-15-225-2024

Lake precipitation and inflow contributed 70 % and 30 %, re-
spectively, to the anomalous lake level rise. Since this is sim-
ilar to the historical proportion between the two input terms
in the lake’s water balance in climatology (see Sect. 1.2), in
relative terms these can be understood to have contributed
equally to the anomalous rise, although precipitation was a
greater contributor in absolute terms.

3.5 Observational analysis: return period and trend
analysis

The 2020 observed increase of 1.21 m is estimated to have a
return period of 63.2 years in the current climate (CI 27-395
years; Fig. 1la-b). This implies that if we have no prior
information on circulation, sea surface temperatures, dam
management, or further increases in GMST, there is a 1.6 %
chance each year of experiencing a 180d lake level increase
of 1.21 m in today’s climate. The large confidence interval
indicates there is considerable uncertainty in the estimate,
meaning this could be quite a common event that we expect

Earth Syst. Dynam., 15, 225-264, 2024
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Figure 6. Flood-affected populated grid cells (red) in the Nzoia—Yala area (box 1 in Fig. 5), estimated by combining the flooded area between
April and June 2020 (blue) retrieved using the HASARD algorithm of LIST (Luxembourg) and population data provided by WorldPop.

to occur every few decades, or it could be quite a rare event,
expected to occur only every few hundred years. In a pre-
industrial climate, the event has an estimated return period of
104 years (CI 43-1097 years), which results in a probability
ratio of 1.7 (CI 0.3-3.9), indicating that the event is estimated
to be 1.7 times as likely in the current climate compared to a
pre-industrial climate. The confidence interval does however
not exclude 1, meaning that uncertainty includes the possibil-
ity that no detectable change in the likelihood of the event has
occurred. In a pre-industrial climate, lake levels would have
risen 0.11 m (0-0.23 m) less than observed, with uncertainty
including the possibility of no attributable change. Observa-
tional results for key distribution parameters and return peri-
ods are shown in Tables 2 and 3. The estimated return period
of the event in the current climate is taken as the return pe-
riod to calculate a model-specific magnitude threshold that
represents the flood event in each climate model historical
and hist-nat simulation pair.

While some non-homogeneity is introduced in the time se-
ries due to a different temporal resolution of lake level ob-
servations in 1896-1948 (monthly) and 1948-2021 (daily to
10-daily), we test the sensitivity of the observational attribu-
tion to this, by artificially reducing the resolution of the entire
lake level time series from daily to monthly and repeating the
return period estimates. The results are robust, giving similar

Earth Syst. Dynam., 15, 225-264, 2024

estimates of the return period of the event in the current cli-
mate (best estimate of 63.5 years, CI 27426 years), and of
the probability ratio (best estimate 1.4, CI 0.2-3.4) and mag-
nitude change (best estimate +7 cm, CI —4 cm to +20cm)
compared to a pre-industrial climate.

Furthermore, we test the sensitivity of our estimates to the
presence of overlapping blocks in the annual block maxima
time series (see Sect. B3 and Appendix Fig. C7). We exclude
the overlapping blocks by removing any year with a block
ending between October and December. Results give similar
estimates of the return period of the event in the current cli-
mate (best estimate of 64.8 years, CI 27-467 years) and of
the probability ratio (best estimate 1.4, CI 0.2-3.4) and mag-
nitude change (best estimate +8 cm, CI —4 cm to +23 cm)
compared to a pre-industrial climate.

3.6 GCM-driven water balance model simulations
3.6.1 GCM evaluation

All GCMs, when used to force the WBM, underestimate the
magnitude of a 63-year event compared to observations (Ta-
ble 2). Nonetheless, since the WBM simulations also show
this bias when driven by observational precipitation, this
could be due to a bias introduced by using the WBM as
well as GCM biases in representing precipitation. The loca-
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Figure 7. (a) Rank of the 2020 event in the 1897-2021 time se-
ries of annual block maxima of the rate of change in lake levels
(AL/At) based on the size of the time window (At). Red indicates
a higher rank (more extreme), while blue indicates a lower rank (less
extreme). The rank of the 2020 event with the chosen event defini-
tion (Ar = 180d) is highlighted by the red box. (b) Annual block
maxima time series (AL/At)max With At =180d for the period
1897-2021 and 10-year rolling mean of the time series.

tion and scale parameters of all distribution fits agree well
with each other and with observations (Table 2). While the
observational fit results in a slightly positive shape param-
eter, all GCM-driven fits result in negative shape parame-
ters. Nonetheless, the shape parameter is also slightly neg-
ative in the observationally driven WBM simulation, and
the confidence intervals of the shape parameters of models
and observed lake levels overlap for all models, except for
MIROC6, which shows a very negative parameter. For this
reason, we reject MIROC6 and exclude this model in further
analysis. Both the seasonal cycle of basin precipitation (Ap-
pendix Fig. C14) and the spatial pattern (Appendix Figs. C12
and C13) are reasonably represented by all models.

3.6.2 Multi-model attribution

The attribution signal is similar in observed lake levels and
historical climate model simulations. Based on WBM sim-
ulations driven with historical GCMs and applying a shift
fit, a 1-in-63-year event in the current climate is modelled
to be slightly rarer in a pre-industrial climate in all models,
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with best estimates of the pre-industrial return period ranging
from 66 to 142 years. This leads to best estimates of probabil-
ity ratios between the current and pre-industrial climates that
are slightly above unity, ranging from 1.1 to 2.2 across his-
torical simulations (Table 3, Method 2). Nonetheless, none
of the confidence intervals for the probability ratios exclude
unity. Similarly, all GCMs indicate an increase in the magni-
tude of the event between a pre-industrial and a current cli-
mate, with best estimates ranging from approximately 0.01 m
to approximately 0.08 m. Nonetheless, the confidence inter-
vals for the change in magnitude of individual models all in-
clude zero, suggesting that uncertainty due to natural vari-
ability is high.

The non-stationary fits based on counterfactual WBM sim-
ulations driven with precipitation from hist-nat (natural forc-
ing only) GCM simulations, show probability ratios near
unity and magnitude changes close to 0 (Table A2), indi-
cating that there is no trend in the likelihood of the event
due to natural forcings. When combining the historical and
hist-nat simulations for each model, the best estimate is that
the event has been made more likely and that the magnitude
has slightly increased due to anthropogenic climate change
(Table 3, Method 3). Nonetheless, all confidence intervals
include the possibility of no attributable change, indicating
large natural variability. Furthermore, the hist-nat simula-
tions of CanESM5 and MRI-ESM2-0 have infinite upper
bounds in the confidence intervals of the return period of
the event in a current climate without anthropogenic climate
change. This suggests that the event could be extremely un-
likely in a counterfactual world but also that the uncertainty
of areturn period estimate based on these models is very high
(Table A2). As aresult, the upper bound of the probability ra-
tio estimated combining historical and hist-nat simulations of
these two models is also infinity (Table 3, Method 3). To syn-
thesize the results of observations and all models, we cap the
upper bound of the confidence interval of the PR from both
models to 10000, assuming anything higher than this to be
an overestimation.

3.7 Hazard attribution synthesis

Synthesizing observations and models, the best estimate is
that the event is approximately 1.8 times as likely in the
present-day climate compared to a pre-industrial climate (CI
0.8-15.8, Fig. 12). Models and observations generally agree
on a slightly positive best estimate for a PR but with a con-
fidence interval that always includes unity. Further, the intra-
model uncertainty due to internal variability is larger than
the inter-model uncertainty due to model disagreements. The
upper bound of the confidence interval of the probability ra-
tio is determined by the chosen limit to the unbounded con-
fidence intervals of the probability ratios of CanESMS5 and
MRI-ESM2-0, and it thus should be interpreted with cau-
tion. Further, the best estimate is that the magnitude of the
event has been slightly increased by climate change and that
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Figure 8. Comparison of observed lake levels and lake levels modelled with the observational simulation of the WBM. Model bias is shown

in grey (note different scales of the axes).

Table 2. Validation results based on seasonal cycle, spatial pattern, and fitted scale o and shape & parameters, with 95 % confidence intervals
in brackets. Results are shown for observed lake levels for the period 1897-2020 (observations), lake levels simulated by the WBM driven
by observational precipitation for the period 1983-2020 (observational WBM), and lake levels simulated by the WBM driven by GCM
simulations. For observations and the observational WBM the magnitude of the 2020 event is shown. For GCMs the magnitude of a 63-
year event in the current climate estimated based on a non-stationary GEV fit is shown. The location parameter jtpew represents the current
climate. * MIROCS is rejected from the analysis due to statistical parameters.

Data Seasonal  Spatial Magnitude Mnew o & Conclusion
cycle pattern (m) (m) (m)

Observations and observational WBM

Observations 1.21  0.33(0.23,0.44) 0.21(0.18,0.24) 0.01 (—0.12,0.13)

Observational WBM 0.94 0.32(0.2,0.5) 0.18 (0.14, 0.22) —0.03 (—0.69, 0.28)

GCM historical-ssp370 (ISIMIP3BASD)

CanESM5 good reasonable 0.99 0.38(0.27,0.5) 0.2(0.18,0.22)  —0.15(—0.23, —0.07)  good

CNRM-CM6-1 good reasonable 1.08 0.31(0.18,0.46) 0.25(0.22,0.28) —0.15(—0.23, —0.06) good

GFDL-ESM4 good reasonable 09 0.34(0.22,0.48) 0.2(0.17,0.22) —0.19 (—0.29, —0.1)  good

IPSL-CM6A-LR good reasonable 095 0.3(0.20,041) 0.19(0.17,0.21) —0.10(—0.22, —0.01)  good

MIROC6 good reasonable 0.64 0.31(0.25,0.39) 0.17(0.16,0.19) —0.45(—0.54, —0.36)  rejected™

MRI-ESM2-0 good reasonable 1.16 0.36(0.25,0.49) 0.24(0.21,0.26) —0.11(—-0.2, —0.01)  good

the in a pre-industrial climate an event with a 63-year return
period would have led lake levels to rise by 7 cm less than
observed. Nonetheless, the confidence interval ranges from
no attributable change in magnitude to a possible 14 cm at-
tributable increase in lake levels, which would correspond to
9350 m? of water.

Although the best estimates indicate a slight increase in
the likelihood and magnitude of the event in the current cli-
mate compared to a pre-industrial or counterfactual climate,
the confidence intervals of the synthesized PR and magni-
tude change both include the possibility of a null signal. This
indicates that uncertainty due to natural variability is large,
and results include the possibility that there is no detectable
change in the likelihood or magnitude of the event that is at-

Earth Syst. Dynam., 15, 225-264, 2024

tributable to anthropogenic climate change. Further, the un-
certainty estimated through bootstrapping is a measure of
natural variability, but neglects epistemic model uncertainty,
for example that related to the impact of anthropogenic cli-
mate change on atmospheric dynamics, and neglects the un-
certainty linked to potential confounding factors that are not
included in the statistical modelling applied here. This could
point at a potentially larger true uncertainty than quantified
here. Nonetheless, for a variable related to seasonal precipita-
tion accumulations, which is less directly associated with the
thermodynamical effects of anthropogenic climate change
than short-duration precipitation extremes, and with no con-
ditioning on modes of climate variability applied, the gen-
eral agreement between models is conspicuous and points to

https://doi.org/10.5194/esd-15-225-2024
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Figure 9. Bias in how water balance model represents AL /At for At = 180. (a) Time series of AL/At in observations and WBM. (b) Bias
in AL/At, smoothed with a 3 d rolling window. (¢) Climatology of AL /At in observations and WBM for overlapping period. (d) Comparing
the distribution of the variable AL /At in observations and in the WBM. (e) Joint distribution of variable AL /At in observations and WBM

and ordinary least-squares regression line of best fit through the data.

a possible, albeit potentially weak, role of anthropogenic cli-
mate change in the 2020 flood event.

4 Discussion

The 2020 flooding in the Lake Victoria basin was a high-
impact event, which affected tens of thousands of people.
Not only the lake shorelines but also tributary rivers flooded.
People were impacted both by being displaced and by dam-
age to infrastructure and sources of livelihood. The event oc-
curred while floods and landslides were affecting the wider
eastern Africa region, and impacts were compounded by
COVID-19 and a locust outbreak that damaged crops (Salih
et al., 2020). The event was driven by heavy precipitation
that lasted nearly a year and was linked to a positive IOD
event, which is known to intensify OND short rains in east-
ern Africa (Wainwright et al., 2021a). The floods and their
impacts were likely also influenced by land use patterns,
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the type and number of infrastructure and dykes present on
rivers, the management of the Lake Victoria dam complex,
and people’s exposure due to the location of settlements
in flood-prone areas. Given this complexity, the attribution
carried out here is necessarily a partial study of the event.
Nonetheless, it represents a first step towards disentangling
the multiple drivers of the event and quantifying the role of
anthropogenic climate forcing.

Areas identified as flooded through remote sensing analy-
sis in this study overlap well with areas reported as affected
in news and disaster response sources. The flood mapping
adds spatial detail to sources that otherwise provide mostly
county, district or regional-level information. There are how-
ever several ways in which the remote sensing analysis could
be refined. First, the HASARD algorithm is known to iden-
tify flooding well over farmed and open areas but to perform
less well in built-up areas, where trees and partly inundated
houses can complicate the backscatter signal Chini et al.

Earth Syst. Dynam., 15, 225-264, 2024
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Figure 10. (a) Climatology of water balance terms modelled over the period 1983-2020, expressed in lake level equivalent (1.1.e.), with the
uncertainty bands spanning 1 standard deviation. Water balance terms in (b) 2019 and (c) 2020 compared to climatology. Evaporation is not
shown in (b) and (c) as the annual cycle is fixed by modelling design for all years.
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(2017, 2019, 2020). Since built-up areas are densely popu-
lated, underestimating floods in these areas likely leads to
underestimating the number of people affected. Next, much
of the identified flood occurred in farmed areas in flood-
plains, suggesting the floods had an impact on economic ac-
tivity, which is not taken into account when defining impact

Earth Syst. Dynam., 15, 225-264, 2024

only based on resident population affected. Furthermore, the
HASARD algorithm overestimates flood over open water-
bodies through the detection of waves on the water surface
that temporarily increase surface roughness. This spurious
flood signal is partly removed by using permanent water-
body masks, but some overestimation of flood could still
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Table 3. Estimated return periods, probability ratios, and magnitude changes of the flood event in a current and a pre-industrial climate based
on observed lake levels for the period 1897-2020 (observations), lake levels simulated by the WBM driven by observational precipitation for
the period 1983-2020 (observational WBM), and factual (historical) and counterfactual (hist-nat) climate model simulations. In Methods 1
and 2 “current” corresponds to a 2020 climate, while “pre-industrial” corresponds to a 1900 climate. In Method 3 “current” corresponds to a
2020 climate in historical simulations, while “pre-industrial” corresponds to a 2020 climate in hist-nat simulations. Only models that passed

the evaluation are shown.

Data Return period in Return period in Probability Magnitude
current climate  pre-industrial climate ratio change
(years) (years) (PR) (m)
Method 1: observation-based time period comparison (shift fit)
Observations 63 (27, 395) 104 (43, 1100) 1.7 (0.3, 3.9) 0.11 (0,0.23)
Observational WBM 34 (12, 00) 79 (16, 00) 2.3(0,6.6) 0.14(—0.18,0.53)
Method 2: GCM historical-ssp370 time period comparison (shift fit)
CanESMS5 63 (21, 335) 142 (57, 1160) 2.2(04,6.6) 0.08(—0.03,0.21)
CNRM-CM6-1 63 (23, 307) 66 (34, 253) 1.1(0.2,2.9) 0.01(-0.13,0.16)
GFDL-ESM4 63 (16, 711) 88 (43, 464) 1.4(0.1,5.4) 0.03(-0.08,0.15)
IPSL-CM6A-LR 63 (28, 300) 85 (42, 813) 1.3(0.3,3) 0.04(-0.07,0.15)
MRI-ESM2-0 63 (26, 358) 86 (43, 383) 1.4(0.2,3.3) 0.05(—0.09,0.19)
Method 3: GCM hist and hist-nat comparison
CanESMS5 63 (21, 335) 170 (58, c0) 2.7 (0.5, 00) 0.1 (—0.05, 0.29)
CNRM-CM6-1 63 (23, 307) 97 (46, 1634) 1.5(0.3,22.8) 0.05(-0.12,0.24)
GFDL-ESM4 63 (16, 711) 69 (28, 1580) 1.1(0.08,31.4) 0.01 (—0.17,0.2)
IPSL-CM6A-LR 63 (28, 300) 129 (50, 4910) 2(0.4,74.6) 0.07 (-0.09, 0.22)
MRI-ESM2-0 63 (26, 358) 139 (54, c0) 2.2(0.35,00) 0.09 (—0.11,0.31)

be present, in particular around the lake shoreline. These
sources of error could be estimated by comparing HASARD-
derived flood maps with high-resolution optical imagery over
a small study area.

The WBM performs well in the observational period, with
the water balance of the lake closing without applying a
residual term, in the same way as in Vanderkelen et al.
(2018a, b). Our WBM simulations show that the rapid rise
in lake levels was driven by anomalous precipitation and
inflow, accumulated between late 2019 and mid 2020. The
modelling setup does not account for various factors, which
could be additional drivers. First, land use along rivers that
are tributaries of the lake was reported in the media as a
compounding factor due to decreased vegetation cover caus-
ing increased erosion, sediment transport, and siltation of
river channels and higher peak discharge amounts (Mati
et al., 2008; Mugo et al., 2020). The WBM uses land cover
data prescribed from the Global Land Cover 2000 project
(Mayaux et al., 2003) to calculate runoff from precipitation,
but as this is not transient, the impact of land use and land
cover change on runoff is not accounted for. For instance, we
do not include potential changes such as wetland encroach-
ment that could increase runoff into the lake. Second, the
modelling setup assumes lake evaporation follows a clima-
tology during the modelled period and thus omits interannual
variations in lake evaporation. Third, other possible drivers
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of the flood extent and its impacts include human dam man-
agement, including of infrastructure along tributary rivers,
which are not represented in our model, and outflow from
the dam complex at Jinja, Uganda, for which data are not
fully available for the 2019-2020 period. Finally, impacts are
determined by the exposure and vulnerability of settlements
and economic activities, with those located close to the lake
shores, within wetlands, or in river floodplains more likely to
be affected. The extent to which exposure and vulnerability
changes drove flood impacts in 2020 is not quantified here.
The underestimation of the lake level rise simulated by the
WBM between late 2019 and mid 2020 corresponds to a bias
whereby the WBM mutes the magnitude of the most extreme
6-monthly variations in lake levels. For 2020, this bias could
be due to (i) an underestimation of true precipitation amounts
in the PERSIANN-CDR data product; (ii) uncertainties in the
curve number method leading to an underestimation of true
inflow; (iii) an overestimation of true evaporation from the
lake surface; (iv) an overestimation of true outflow, which
could have been below Agreed Curve levels; or (v) varia-
tions in other water balance terms (e.g. groundwater) that are
not accounted for in the WBM but might lead the WBM to
underestimate peaks in AL/A¢t. Since observational outflow
was used for the period March—-May 2020, an overestima-
tion of outflow could participate to the model bias in the first
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Figure 12. Synthesis of (a) PR and (b) change in magnitude esti-
mates from observations and models between a current factual cli-
mate and a counterfactual or pre-industrial climate, following the
methodology explained in Philip et al. (2020). Coloured bars indi-
cate the 95 % CI, with the best estimate shown as a black line. Un-
certainty denotes natural variability and takes model representativ-
ity into account but neglects intrinsic epistemic model uncertainty.
The red bar is an average of model results, computed through an un-
weighted synthesis methodology. The purple bar shows the average
of observations and models.

months of 2020 but is unlikely to be the main cause of the
2020 bias.

In terms of the event definition, the 180d rate of change
in lake levels was found to be a good compromise between
representativity of the event and limiting the influence of
decadal trends compared to raw lake levels, and allowed us
to move beyond an attribution of a meteorological variable
to the attribution of an impact-relevant variable (Otto, 2016).
Nonetheless, the variable relates only indirectly, through
backflow effects, to tributary river floods, which caused a
large part of the impacts in 2020. Moreover, an increased
frequency of high AL /At events can be caused by increased
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interannual variability in seasonal precipitation, which, if not
preceded by already high lake levels, would not necessarily
represent a high-impact flooding event. Further, lake levels
preceding the AL/At event would be influenced by evap-
oration rates, particularly during dry seasons, which do not
vary in our study but might change under climate change.
Furthermore, as discussed in Sect. B3, the daily variable does
not fully meet the theoretical assumptions of extreme value
theory, since it is not independent and identically distributed.
Moreover, while some annual blocks extracted from the ob-
servations were found to be overlapping, our results were
found to be robust, and we find a similar attribution signal
when the overlapping blocks are excluded from the analysis
(Sect. 3.5). Finally, while we cannot readily assume that our
annual block maxima time series is in the asymptotic tail of
the distribution of maxima, similar objections can be raised
to a number of extreme event attribution studies that study
slow-onset extremes (e.g. Philip et al., 2018b; Kew et al.,
2021), and while these limitations are recognized they do not
impede us from providing useful information on these events
(see discussions in, e.g. Philip et al., 2020; van Oldenborgh
etal., 2021).

Possible sources of non-stationarity not linked to anthro-
pogenic warming must be considered. Decadal variability
linked to atmospheric dynamics and modes of climate vari-
ability such as the IOD can introduce a non-stationarity that
might be unforced and not linked to anthropogenic warm-
ing and that can therefore act as a confounding factor in our
analysis (Shepherd, 2014, 2016; Philip et al., 2020). More-
over, other factors such as land use changes and dam man-
agement can introduce non-stationarity in observations that
is not linked to anthropogenic climate forcings. Finally, the
different resolution of data before and after 1948 could also
introduce non-stationarity, although our attribution results
were found to be robust to an artificial reduction in the tem-
poral resolution of the data (see Sect. 3.5).

Strong dynamically induced variability can introduce un-
certainty in frequentist probabilistic extreme event attri-
bution statements (Shepherd, 2016, 2021; Faranda et al.,
2020). Probabilistic attribution statements are recognized to
be strongest when the greatest source of non-stationarity is
thermodynamical and when previous knowledge on the phys-
ical processes linking the observed change to anthropogenic
forcings are high, as is the case, for instance, in relation to
short-duration temperature and precipitation extremes (Otto,
2017, 2020). Further, the shift fit method assumes a linear
relationship between anthropogenic forcings (often repre-
sented by global surface warming) and the response in the
modelled distribution of the variable. More complex inter-
actions are likely in our variable, as seasonal precipitation
amounts in eastern Africa are mediated by sea surface tem-
peratures in the Indian Ocean and circulation dynamics (Cai
et al., 2018; Wainwright et al., 2019). Decadal variability in
precipitation amounts is extensively documented in the re-
gion and linked to various factors including ENSO and the
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IOD (Wainwright et al., 2019, 2021a, b; Cai et al., 2018;
Marthews et al., 2019; Nicholson, 2014, 2015, 2017, 2018;
Rowell et al., 2015; Ummenhofer et al., 2009; Conway et al.,
2005; Dunning et al., 2016). The anomalous precipitation in
eastern Africa in 2019 was linked to a persistent extreme pos-
itive IOD in the same year (Wainwright et al., 2021a; Khaki
and Awange, 2021), which was the strongest on record since
1950 (Nicholson et al., 2022). Previous positive IOD condi-
tions were likely linked to the heavy 1961 and 1998 precipi-
tation seasons in the basin (Wainwright et al., 2021a; Nichol-
son et al., 2022), which emerged as very rare events in our at-
tribution study as well. The statistical methods applied in this
study neglect such sources of decadal variability by assum-
ing anthropogenic climate change is the only source of non-
stationarity. According to Philip et al. (2020) decadal vari-
ability can be a problem for probabilistic attribution when
the variability is larger than the signal of anthropogenic cli-
mate change. One possible solution would be to condition the
return period estimates on the IOD Dipole Mode Index value
observed in 2020 by including it as an additional covariate
in the shift fit method, as recently done in Kimutai et al.
(2023). Conditioning the analysis on a dynamical state moves
towards the storyline approach to extreme event attribution
(Shepherd, 2021, 2019, 2016; Otto, 2017; Otto et al., 2015).
Previous studies have regressed out the influence of modes
of climate variability (as in Philip et al., 2018b, to account
for the influence of ENSO on precipitation in Ethiopia), but
Cai et al. (2014, 2018) suggest that an increase in frequency
and intensity of the positive IOD is projected with climate
change in the region, meaning that regressing out its influ-
ence could remove a pathway of influence of anthropogenic
climate change on the regional climate via a dynamical me-
diator. Nonetheless, there is currently no consensus on the
detection and attribution to anthropogenic forcings of an ob-
served increasing trend in the IOD (Gulev et al., 2021), so
it is likely premature to assume we are already observing a
climate change signal in a positive observed IOD trend.
Additional scientific challenges are recognized in rela-
tion to attributing extreme events and their impacts in the
Global South, linked to the limited availability of reliable
long-term observational and impact data, sometimes flawed
representation of climate processes in models, and high natu-
ral variability of some of the variables being attributed, mak-
ing it harder for a trend to emerge as signal from the noise
(Otto et al., 2020a, b). For instance, despite a projected in-
crease in average annual precipitation amounts over eastern
Africa in most global and regional climate models participat-
ing in the Coupled Model Intercomparison Project Phases 5
and 6 (CMIP5 and CMIP6; Rowell et al., 2015; Akurut
et al., 2014; Dunning et al., 2018) and the Coordinated Re-
gional Climate Downscaling Experiment (CORDEX; Sou-
verijns et al., 2016; Olaka et al., 2019), a drying trend was
observed in eastern Africa between the mid 1980s and 2010,
leading to what has been termed the “East African Pre-
cipitation Paradox” (Rowell et al., 2015; Souverijns et al.,

https://doi.org/10.5194/esd-15-225-2024

2016; Wainwright et al., 2019; Palmer et al., 2023) and to
investigations of whether this is linked to a misrepresenta-
tion of processes driving seasonal precipitation variability
in coupled GCMs (e.g. Rowell et al., 2015; Seager et al.,
2019). Recent studies have shown climate model projec-
tions of increasing average precipitation in the region are
mostly driven by representations of longer and heavier Oc-
tober, November, and December “short rains” in the future
(Dunning et al., 2018; Cook et al., 2020), while the observed
drying has been linked to a shorter duration of the March,
April, and May “long rains” season, which has partly re-
versed since 2010 (Wainwright et al., 2019; Palmer et al.,
2023). An improvement to the attribution carried out here
would be to include simulations from different modelling se-
tups, for instance with prescribed sea surface temperatures
or dynamics, to control for some of these biases (Stone et al.,
2019; Cook et al., 2020). Finally, the coarse resolution of
GCMs does not allow us to fully represent the mesoscale
processes that characterize the Lake Victoria basin, which
are linked to the interaction of the atmosphere with the re-
gion’s complex orography and the lake surface (Thiery et al.,
2016, 2017; Van de Walle et al., 2020, 2021), meaning that
higher-resolution convective-permitting models could be of
added value (Van Lipzig et al., 2023).

5 Conclusions

In 2020, heavy rainfall caused Lake Victoria’s shorelines to
flood and its tributary rivers to spill over their banks, dis-
placing thousands of people and threatening lives and liveli-
hoods. Media and government reports linked the heavy pre-
cipitation and subsequent floods to anthropogenic climate
change. In this study, we mapped the impact of the floods and
investigated the influence of anthropogenic climate change
on the event by combining probabilistic extreme event attri-
bution methods with a water balance model of the lake.
Based on remote sensing analysis, we estimate that be-
tween April and July 2020 an area of 640 km?” close to Lake
Victoria flooded, affecting more than 29 000 people. Impacts
were caused by lake shoreline and river flooding. For the at-
tribution analysis, we define the 2020 event as the change in
lake level over 180d. In the 180d leading up to May 2020,
Lake Victoria’s levels rose by 1.21 m, ranking as the third
most extreme event after 1998 and 1962. The event was
driven by anomalous lake precipitation and inflow, which
contributed to 70 % and 30 % of the anomalous lake level
rise, respectively. Outflow was also above average, but was
insufficient to balance the increased input into the lake.
Based on observational data, the flood event has an esti-
mated return period of 63 years (CI 27-395 years) in the cur-
rent climate, and in a pre-industrial climate lake levels would
have risen 11 cm (0-23 cm) less than observed. This change
in magnitude is, however, associated with a relatively large
uncertainty, including the possibility of no forced change.
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The WBM forced with observational data reproduces the ob-
served event reasonably well, although it underestimates its
magnitude and anticipating its timing. Five out of six climate
models reproduce lake level variations well, performing in a
similar way to the observational WBM, whereas one model is
rejected due to excessive biases. Based on a synthesis of ob-
servations and climate model simulations, the observed event
is slightly more likely in the current climate than in a pre-
industrial climate by a factor of 1.8 (CI 0.8-15.8), although
uncertainty is relatively large and includes the possibility of
no change. Similarly, we estimate that in the absence of an-
thropogenic climate change a 63-year event would have re-
sulted in lake levels rising 7 cm (CI 0-14 cm) less than ob-
served, which corresponds to approximately 6 % (0 %—13 %)
of the total November—May rise in lake levels.

The multi-model attribution carried out showed agreement
in the sign and magnitude of change over all GCMs that
passed the model evaluation step, which in turn agreed with
observations. For a precipitation-related variable, where at-
tribution statements are generally weaker than temperature-
related variables, this is a conspicuous result. Accordingly,
natural variability was found to be a greater determinant
of uncertainty than inter-model disagreement. Further, while
the ensemble of climate models used is small, the choice of
using a bias-adjusted ensemble was confirmed by the good
spatial and seasonal pattern the models showed and the rel-
atively realistic lake level simulation results. The best esti-
mates for the probability ratios and magnitude changes es-
timated by models and observations all point to a slight in-
crease in the likelihood and magnitude of the event linked to
anthropogenic forcings. Using a larger model ensemble and
different statistical methods could strengthen the attribution
statement, but irreducible uncertainty linked to high natural
variability in the region must be recognized.

While limitations in the models, data, and statistical meth-
ods used must be taken into account when interpreting our
results, this study provides a first step towards disentan-
gling natural variability from a forced response due to an-
thropogenic climate change behind the high-impact 2020
Lake Victoria floods. The eastern Africa region is compara-
tively under-studied in attribution, and high natural variabil-
ity means that both droughts and floods are common in the
region. However, given the high vulnerability of local com-
munities in the region, it is of key importance to better under-
stand how anthropogenic climate change is affecting extreme
events in eastern Africa.
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Appendix A: Appendix tables

A1 Climate model experiments

247

Table A1. GCM experiments used in this study. All simulation outputs were previously bias corrected and statistically downscaled from their
native resolution to a 0.5° resolution (~ 55 km at the Equator) within ISIMIP3b using the ISIMIP3BASD method (Lange, 2021, 2019a).

Model Scenario Experiments Ensemble member
CanESMS5 factual hist 1850-2014 rlilplfl
SSP3-RCP7.0 2015-2020  rlilplfl
counterfactual  hist-nat 1850-2020 rlilplfl
CNRM-CM6-1 factual hist 1850-2014 rlilplf2
SSP3-RCP7.0 2015-2020  rlilplf2
counterfactual  hist-nat 1850-2020 rlilplf2
GFDL-ESM4 factual hist 1850-2014 rlilplfl
SSP3-RCP7.0 2015-2020 rlilplfl
counterfactual  hist-nat 1850-2020 rlilplfl
IPSL-CM6A-LR  factual hist 1850-2014 rlilplfl
SSP3-RCP7.0 2015-2020  rlilplfl
counterfactual  hist-nat 1850-2020 rlilplfl
MIROC6 factual hist 1850-2014 rlilplfl
SSP3-RCP7.0 2015-2020  rlilplfl
counterfactual  hist-nat 1850-2020 rlilplfl
MRI-ESM2-0 factual hist 1850-2014 rlilplfl
SSP3-RCP7.0 2015-2020 rlilplfl
counterfactual  hist-nat 1850-2020 rlilplfl

A2 Return period estimates for hist-nat simulations

Table A2. Estimated return periods, probability ratios, and magnitude changes of the flood event in a 2020 and a 1900 climate based on
counterfactual (hist-nat) climate model simulations using a non-stationary GEV fit. Magnitude changes indicate the difference in lake level
rise expected during an event with the same return period. For historical simulations the return period in the 2020 climate is held equal to
that estimated from observations to estimate a model-specific magnitude threshold. For hist-nat simulations the model-specific magnitude
threshold from the corresponding historical simulation is used to estimate the return periods. Only models that passed the evaluation are

shown.

Data Return period Return period Probability Magnitude
in 2020 climate in 1900 climate ratio change
(years) (years) (PR) (m)

GCM hist-nat time period comparison (shift fit)
CanESMS5 170 (58, o0) 139 (53, 65 000) 0.8(0,2.4) —0.02(-0.06, 0.02)
CNRM-CM6-1 97 (46, 1634) 85(37,1340) 0.9(0.1,1.8) —0.01 (—0.06, 0.03)
GFDL-ESM4 69 (28, 1580) 55 (30, 323) 0.8(0,2) —0.02(—0.09, 0.04)
IPSL-CM6A-LR 129 (50, 4910) 132 (55, 2440) 1(0,2.7) 0(—0.05, 0.05)
MRI-ESM2-0 139 (54, 00) 136 (56, 6.19 x 107) 1(0,2.5) 0(-0.02, 0.01)
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Appendix B: Appendix text

B1 PERSIANN-CDR missing data and comparison with
other observational data sources

To assess the importance of the missing days in PERSTANN-
CDR data we (i) count the number of missing days per year
and per month and (ii) compare the yearly accumulation of
precipitation in the Lake Victoria basin with estimates com-
ing from two other state-of-the-art observational datasets:
Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS; Funk et al., 2015), obtained for the period
1981-2020, and Multi-Source Weighted-Ensemble Precipi-
tation V2.2 (MSWEP; Beck et al., 2019), obtained for the
period 1979-2016. All datasets are remapped to our study
area using the same procedure.

PERSTANN-CDR data have 419 missing days, which are
concentrated in the early decades of the dataset (Appendix
Fig. C2a, b, d). The year with the most missing days is 1984,
where a third of all days are missing. Nonetheless, even in
the early years, PERSIANN-CDR shows similar accumu-
lated yearly precipitation estimates compared to CHIRPS
and MSWEP (Appendix Fig. C2c). Moreover, PERSTANN-
CDR generally provides higher estimates of precipitation
compared to the other datasets. Correcting for the missing
days in PERSIANN-CDR by interpolating between missing
values or replacing missing days with their climatological
average causes the water balance model to drift and over-
estimate lake levels, suggesting this correction overestimates
true precipitation amounts. For this reason we do not correct
for the missing days. We run the water balance model for the
whole 1983-2020 period, as this gives very similar results to
running the model from 1985. We instead analyse the precip-
itation anomaly starting from 1985 to avoid overestimating
the positive temporal trend in yearly precipitation amounts.

B2 Water balance modelling: curve number method

In the water balance model, the inflow term (Qjy) is calcu-
lated using the USDA Natural Resources Conservation Ser-
vice curve number (CN) method to estimate runoff (USDA-
SCS, 2004), as in Vanderkelen et al. (2018a). The reader is re-
ferred to Vanderkelen (2016) and Vanderkelen et al. (2018a)
for more details. The CN method relates accumulated pre-
cipitation to runoff based on an empirical relationship. To-
tal runoff is modelled as a function of accumulated rainfall
and a parameter referred to as the curve number, which is
specific to each land grid cell. The CN parameter is in the
range 1 <CN <100 and is a function of the hydrologic soil
type, land use, hydrologic surface condition, and antecedent
moisture conditions. The CN method can be summarized by
the following equations (Descheemaeker et al., 2008; USDA-
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SCS, 2004):

0 if P<I, B1
=\ el e psy, ®BD
I, =AS, (B2)

25400
S=—— —254, (B3)
CN

where Q is the total runoff (mm) produced by the total ac-
cumulated precipitation P (mm); I, is the initial abstraction
parameter (mm), indicating the minimum initial amount of
water that must be in the soil before runoff can start; and S
is the maximum water retention capacity of the soil (mm),
which indicates the maximum amount of water the soil can
hold. X is a dimensionless parameter, commonly set equal to
0.2, which expresses the initial abstraction amount necessary
as a fraction of the total maximum soil water retention capac-
ity. As visible in Eq. (B3), S depends on the CN parameter
of the soil. The magnitude of the CN determines the propor-
tion of grid cell precipitation that is converted to runoff. The
higher the CN, the greater the proportion of precipitation that
turns into runoff (Eq. B1). For open waterbodies the CN is set
to 100, meaning that all precipitation becomes runoff.

In Vanderkelen et al. (2018a) a CN was assigned to each
grid cell in the study area under standard moisture condi-
tions as a function of land cover and the hydrologic soil group
(HSG) of the grid cell. Within the water balance model, the
CN then varies temporally based on the antecedent moisture
condition (AMC), whereby cumulative 5d antecedent pre-
cipitation over the grid cell is calculated, and if this value is
below a dry threshold or above a wet threshold (Table B1),
the CN of the grid cell is modified based on Egs. (B4) and
(BS).

CN = Chu , (B4)
2.281 —0.01281CNyg
CN
CNyp = = . (B5)
0.427 4+ 0.00573CNyy

Each grid cell therefore has three possible CNs. The CN is
decreased under dry conditions (CNj < CNyy), meaning that
maximum soil water retention increases and the proportion
of precipitation that becomes runoff decreases. Under wet
conditions the opposite is true, the CN is increased by apply-
ing the AMC (CNy > CNyp), meaning that the proportion
of precipitation that becomes runoff increases. To calculate
the inflow term (Qj, in Eq. 2), the direct runoff calculated in
all basin grid cells is summed for each day. This calculation
disregards groundwater flow and any river routing, assuming
that all direct runoff calculated in each grid cell immediately
enters the lake. Regardless of these assumptions, the model
was shown to work well for the Lake Victoria catchment in
Vanderkelen et al. (2018a).

https://doi.org/10.5194/esd-15-225-2024



R. Pietroiusti et al.: Attribution of 2020 Lake Victoria levels and floods 249

Table B1. Antecedent moisture condition (based on Vanderkelen
et al., 2018a; Descheemaeker et al., 2008).

Condition  Cumulative 5 d antecedent precipitation ~CN
Dry P5q <12.5mm CNp
Standard 12.5mm < P54 <27.5mm CNp1
Wet Psq>27.5mm CNiip

B3 Event definition: sensitivity analysis

We develop a univariate class-based definition of the 2020
flood event. The choice of definition has, on the one hand,
to be representative of the event, for example by maximiz-
ing its hydro-meteorological extremity or by being as close
as possible to its impacts (Philip et al., 2020), but it should,
on the other hand, minimize serial correlation and unforced
low-frequency interannual trends that violate the statistical
assumptions made in the attribution methodology.

As outlined in Sect. 1.1, we focus on the rate of change
in lake levels (AL /At) instead of on absolute lake levels to
define the event, reducing the influence of decadal trends.
Consequently, an appropriate length of the time window (At)
has to be selected. A smaller window results in a daily time
series that shows less serial correlation, while a larger win-
dow reduces the independence of subsequent observations
and causes interannual trends to become visible in the daily
time series. At the same time, the rate of increase in lake lev-
els observed in 2020 is most extreme when the window is
large. When the time window considered is 1 year, the 2020
event ranks second after 1962 (Fig. 7a), while the extremity
of the event decreases quickly as the window shrinks to 60
or 30d (Fig. 7a). An intermediate time window is therefore
chosen of 180 d, and the annual block maxima of the AL /At
time series is extracted. The 2020 event thus defined corre-
sponds to a lake level increase of 1.21 m that occurred in the
180d leading up to 17 May 2020, and is the third most ex-
treme event since 1897, ranking after 1998 (1.39 m) and 1962
(1.30 m; Fig. 7a, b). Moreover, with this chosen interval, the
different temporal resolution of observed lake levels before
and after 1948 plays a small role and does not importantly
affect return period estimates (see Sect. 3.5).

The 180 d window of each block can extend from the pre-
vious year into the calendar year to which the value is as-
signed. Most of the intervals in the block maxima time series
occur in the 6 months between November or December and
May or June, capturing lake level increases due to part of the
OND short rains season and most of the MAM long rains
season (Appendix Fig. C7). There are overlaps only in eight
pairs of blocks in the 125-year time series. In these instances,
a late time window of the previous year partially overlaps
with an early time window of the subsequent year, generally
for a 2 to 3 month period. Since this violates the assumption
of independence of the annual block maxima time series, we
test the sensitivity of our results to these overlapping blocks
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in Sect. 3.5 and find a similar attribution signal regardless of
whether overlapping blocks are included or excluded from
the analysis.

Finally, we note that the parent daily AL /At variable from
which the annual block maxima time series is extracted does
not fully meet the theoretical assumptions of extreme value
theory (Coles, 2001). These assumptions are that (i) the daily
variable AL/At is independent and identically distributed,
except for the non-stationarity modelled by the shift fit, and
(i) the size of the sample from which each annual block
maximum is drawn is sufficiently large such that the distri-
bution of the maxima approaches its limit distribution (here,
a GEV). In relation to the first assumption, the realizations of
the variable AL /At cannot be considered independent since
(i) the time window upon which each subsequent daily ob-
servation is calculated overlaps with the previous observa-
tion for 179 out of 180d, and (ii) heavy precipitation days
are likely to be clustered in time. In relation to the sec-
ond assumption, we cannot readily assume that we are in
the asymptotic tail of the distribution of maxima. Although
block maxima are often drawn from a year of daily observa-
tions (Hammerling et al., 2019; Coles, 2001), in our case we
do not have 365 independent daily observations, but we in-
stead have 365 rolling 180 d windows, meaning that only two
windows each year are fully non-overlapping. Further, vari-
ability in 6-month rates of change in lake levels depends on
relatively low-frequency variability in seasonal precipitation.
The block maxima usually detect a part of the signal from
the OND short rains season and the whole of the MAM long
rains season, resulting in a time window that ends around the
month of May in most years. This suggests that we are not
extracting each block maxima from a very large sample of
independent observations but are instead analysing a time se-
ries that is closely linked to seasonal precipitation amounts.
Nonetheless, similar objections can be made to a number of
extreme event attribution studies that study relatively “slow”
climate variables, such as multi-month droughts (e.g. Philip
et al., 2018b; Kew et al., 2021), and these limitations are rec-
ognized by the community but do not impede the possibility
of carrying out such studies and providing useful information
(Philip et al., 2020; van Oldenborgh et al., 2020).
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Appendix C: Appendix figures
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Figure C1. WorldPop gridded population data (density per 100 m grid cell) in Kenya, Uganda, and Tanzania, cropped to the study area.
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Figure C2. Assessment of missing days in PERSIANN-CDR data and comparison with other observational data sources: (a) distribution of
the missing days in PERSIANN-CDR each year (419 total missing days in the period 1983-2014), (b) total number of missing days each
year, (c) total number of missing days grouped per month, and (d) comparison of yearly accumulated precipitation amounts in the Lake
Victoria basin in PERSIANN-CDR, CHIRPS and MSWEP V2.2 (CHIRPS and MSWEP have no missing data in this period).
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Figure C3. Daily outflow time series for the period 1948-2021 compiled from different sources and compared with the Agreed Curve
based on observational lake levels. The semi-observational outflow time series is created by extending the composite time series used in
Vanderkelen et al. (2018a). For the period 1948—1950, outflow is calculated with the Agreed Curve. From 1950 to 5 March 2006, the outflow
time series from Vanderkelen et al. (2018a) is used. In the period 1950-1997 this is based on monthly in situ measurements, for 1998—-1999
outflow is calculated with the Agreed Curve, for 2000-2004 outflow is digitized from a graph in Lake Victoria Basin Commission (2006),
and from 2004 to 5 March 2006 daily measurements are used. For the period 5 March 2006—17 March 2020 outflow is calculated using the
Agreed Curve. From 18 March 2020 to 2021 daily outflow measurements at Jinja are available.
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Figure C4. Linear regression of (a) yearly accumulated precipitation and (b) seasonal precipitation accumulations in the Lake Victoria basin
against time to estimate temporal trend for the period 1985-2020 (values are given in units of mm).
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Figure C5. Correlation of precipitation in the Lake Victoria basin in the period 1985-2020 with the Indian Ocean Dipole Mode Index.
Pearson correlation coefficients are shown for precipitation accumulated during (a) the OND short rains and (b), (c) the whole year, against
the Indian Ocean Dipole Mode Index averaged (a), (b) in the months October—December, and (¢) across the entire calendar year.
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Figure C6. Flooding along the Nzoia River from Sentinel-1A SAR GRD images, acquired (a) 2 April 2020 at 16:04:36 and 16:05:01,
(b) 8 May 2020 at 16:04:37 and 16:05:02, (c¢) 20 May 2020 at 16:04:38 and 16:05:03. Darker colours indicate less backscatter due to water.
(d) False-colour composite combination of panels (a) (R channel) and (b) (G, B channels), where the flood signal appears in red due to

decrease in backscatter between (a) and (b).
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Figure C7. The 180d time windows selected from the AL/A¢ time series by the annual block maxima methodology for each year in the
period 1897-2021. These indicate the period in which the largest 180 d rate of change in lake levels occurs in each calendar year. The value
is assigned to the year in which the final day in the 180d period is located (year n), but the period can start in the previous calendar year
(year n — 1). Blue bars do not overlap with blocks of other calendar years; purple portions of the bars indicate a partial overlap with the block
of the previous or subsequent calendar year. There are overlaps in the years 1899-1900, 1902-1903, 1961-1962, 1982-1983, 1997-1998,
2006-2007, 2011-2012, 2019-2020. The difference in the temporal resolution of lake level measurements before 1948 (monthly) and after
this year (daily to 10 daily) is visible as an increase in variability of the blocks.
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Figure C8. Water balance model bias in the period January 2018-December 2021: (a) observed and modelled lake levels, (b) lake level bias
(i.e. difference in modelled minus observed curves in a) smoothed with a centred 60 d moving average low-pass filter, and (c) daily rate of
change in smoothed lake level bias (i.e. approximation of first derivative of bias curve from b).
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Figure C10. (a) Monthly anomaly in each water balance term from January 2019 to December 2020. (b) The 6-monthly accumulated water
balance terms (1984-2020) in metres of lake level equivalent and resultant residual in the water balance. (¢) Yearly accumulated water balance
terms (1984-2020). Accumulated terms are calculated with a rolling window applied to a monthly time series to obtain the cumulative sum
over the previous (b) 6 months or (c) year. The residual is the difference between positive terms (precipitation and inflow) and negative terms

(evaporation and outflow).
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Figure C11. Cumulative monthly anomalies in water balance terms from January 2019 to December 2020 (a, cumulative version of
Fig. C10a) and resultant cumulative anomaly in the water balance residual term (b).
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Figure C12. Spatial pattern of mean annual precipitation accumulation in Lake Victoria basin in PERSIANN-CDR (a) and GCM historical
and SSP3-RCP7.0 simulations (b-g) for the period 1985-2020.
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Figure C14. Representation of seasonality of
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(PERSIANN-CDR) and bias-adjusted GCMs (historical and SSP3-RCP7.0) evaluated in this study for the period 1985-2020.
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Code and data availability. All code necessary to run the
water balance model and reproduce analyses is available here:
https://github.com/VUB-HYDR/2024_Pietroiusti_etal_ESD
(https://zenodo.org/doi/10.5281/zenodo.10794481, Pietroiusti,
2024). All non-restricted data necessary to reproduce the analysis
are available on Zenodo: https://doi.org/10.5281/zenodo.10793917
(Pietroiusti et al., 2024). This repository contains data to run
the water balance model, reproduced with permission from
Vanderkelen et al. (2018; https://doi.org/10.5194/hess-22-5509-
2018), i.e. lake evaporation data (originally from Thiery et
al., 2015; https://doi.org/10.1175/JCLI-D-14-00565), infor-
mation on land cover (originally from Mayaux et al., 2003;
https://publications.jrc.ec.europa.eu/repository/handle/JRC24914),
information on soil types (originally from Dewitte et al.,
2013; https://doi.org/10.1016/j.geoderma.2013.07.007),
basin and lake shapefiles (from  Hamilton, 2016;
https://doi.org/10.7910/DVN/PWFW26), and outflow data
from Vanderkelen et al. (2018) updated with new in situ data by this
study. The repository also contains data to reproduce the attribution
analysis, i.e. observed GISTEMP GMST time series from NOAA
(https://data.giss.nasa.gov/gistemp/, GISTEMP Team, 2024),
GMST time series from ISIMIP3b bias-adjusted CMIP6 simula-
tions from ISIMIP (https://doi.org/10.48364/ISIMIP.842396, Lange
and Biichner, 2021), data on the IOD Dipole Mode Index (DMI)
from NOAA (https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/,
Saji, 2003), and lake level observations for the period 1948—-1996
from Vanderkelen et al. (2018; https://doi.org/10.5194/hess-
22-5509-2018) and from DAHITI since 1983 (https:
//dahiti.dgfi.tum.de/en/products/water-level-altimetry/, last ac-
cess: 7 March 2022). The repository additionally includes output
from the water balance model simulations performed in this
study. Precipitation data are not included in the repository, but
are freely available. Precipitation data from PERSIANN-CDR are
available through NOAA (https://doi.org/10.7289/V51VSBWQ,
Sorooshian et al., 2014). Bias-adjusted data from the CMIP6
climate models are available in the ISIMIP data repository
(https://doi.org/10.48364/ISIMIP.842396.1, Lange and Biichner,
2021). The synthesis tool of the KNMI Climate Explorer is
available here: https://climexp.knmi.nl/ (KNMI/WMO, 2024).
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