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Abstract. Several general circulation models (GCMs) show bifurcations of their atmospheric state under a
broad range of warm climates. These include some of the more extreme global warming scenarios. This bifur-
cation can cause the transition to a superrotating state, a state where its angular momentum exceeds the solid
body rotation of the planet. Here we use an idealised GCM to simulate this transition by altering a single non-
dimensional control parameter, the thermal Rossby number. For a bifurcation-induced transition there is potential
for early warnings, and we look for these here. Typically used early warning indicators, variance and lag-1 auto-
correlation, calculated for the mean zonal equatorial wind speed, increase and peak just before the transition. The
full autocorrelation function taken at multiple lags is also oscillatory, with a period of 25 d preceding the transi-
tion. This oscillatory behaviour is reminiscent of a local supercritical Hopf bifurcation. Motivated by this extra
structure, we use a generalised early warning vector technique based on principal oscillation patterns (POPs) to
diagnose the dominant spatial modes of the horizontal wind field fluctuations. We find a zonal-wavenumber-0
pattern that we call the “precursor” mode that appears shortly before and disappears soon after the transition. We
attribute the increase in the early warning indicators to this spatial precursor mode. This mode is correlated to os-
cillations in strength of the Hadley cells. Following the transition, an eastward-propagating zonal-wavenumber-1
mode of period ∼ 4 d dominates the dynamics. This mode appears to be representative of the Kelvin–Rossby
instability others have previously identified. Although the control parameter used to simulate the transition is
unlikely to be relevant to future climate change, the Kelvin–Rossby transition mechanism may well be relevant,
and the simulations reported here do show early warnings and serve as a test bed for whether we can detect this
transition before it happens.

1 Introduction

Abrupt transitions in the climate often go by the name “tip-
ping points”, and early warnings of such tipping points are
currently an active area of research (Scheffer et al., 2009;
Lenton, 2011; Scheffer et al., 2012). The IPCC has defined
a tipping point as a “critical threshold beyond which a sys-
tem reorganises, often abruptly and/or irreversibly” (IPCC,
2023) and “for the climate system, the term refers to a crit-
ical threshold at which global or regional climate changes
from one stable state to another stable state” (IPCC, 2019).
One such example is the Atlantic meridional overturning cir-

culation (AMOC), which can abruptly change from an “on”
to “off” state as freshwater flux into the North Atlantic is in-
creased (Stommel, 1961; Vellinga and Wood, 2002; Mecking
et al., 2016). There are a variety of other postulated climate
tipping elements, including the Amazon rainforest, Green-
land ice sheet and West Antarctic ice sheet. Changes in at-
mospheric circulation patterns under anthropogenic climate
change are also interesting possible candidates for tipping
points, with the 3D nature of atmospheric circulation pre-
senting possibilities of novel early warning signals (EWSs)
(Tantet et al., 2015). For example, the West African mon-
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Figure 1. Schematic of the variables used to describe a superrotat-
ing atmospheric state on a planet of radius r rotating with angular
velocity�. θ is the latitude taken relative to the Equator, and u is the
zonal horizontal velocity of the atmosphere in the planet’s rotating
frame.

soon is sometimes classified as a tipping system (Loriani
et al., 2023), leading to very different vegetation states, e.g.
the “green Sahara” (Brovkin et al., 1998). The transition to
an atmospheric superrotating state in warm climates is an-
other possible tipping point. Here we look at whether there
are EWSs of the tipping point to superrotation in an idealised
scenario. However, the extension of EWSs we use is more
generally applicable as an approach to detecting precursors
of bifurcation-induced changes in state in any spatially ex-
tended or coupled system.

Mathematically, tipping points can be described by several
kinds of transitions. (a) Noise-induced transitions are prob-
abilistic transitions between multiple steady states induced
by large-amplitude noise, with large here meaning that the
probability of a perturbation large enough to push the sys-
tem into a different attractor over the timescale of interest
is non-negligible. These events have limited predictability
(Ditlevsen and Johnsen, 2010). (b) Rate-induced transitions
occur when the disturbance is too fast for the system to re-
main sitting in its current attractor, resulting in a jump to
a new stable state (Ashwin et al., 2012; Wieczorek et al.,
2010; Feudel, 2023). (c) Bifurcation-induced transitions oc-
cur when the current system state becomes unstable at the bi-
furcation as the disturbance (or control parameter) is slowly
changed. The system will then transition to a new stable state.
It is the third type, tipping due to a bifurcation, which has re-
ceived the most attention, as there is potential for early warn-
ings of this sort of transition (Wiesenfeld, 1985; Held and
Kleinen, 2004; Livina and Lenton, 2007; Dakos et al., 2008;
Lenton et al., 2012). A bifurcation of states has been reported
for the atmosphere when it transitions to a superrotating state
(Suarez and Duffy, 1992; Saravanan, 1993; Shell and Held,
2004; Arnold et al., 2012; Herbert et al., 2020).

An atmospheric superrotating state is said to occur when
the atmosphere rotates quicker than the planet beneath it or
(more precisely) when the zonal angular momentum of the
atmosphere exceeds the angular momentum from the solid-
body rotation of the planet. The solid-body angular momen-
tum per unit mass LE at latitude θ of a planet rotating at
angular velocity � with radius r is (see Fig. 1)

LE =�r
2cos2θ. (1)

For a shallow atmosphere moving with zonal velocity u at
latitude θ measured in the planet’s rotating frame, the angular
momentum per unit mass L is given by

L=
(
�+

u

r cosθ

)
r2cos2θ. (2)

A superrotating state occurs when L >max(LE) for some
θ . LE is maximal at the Equator (θ = 0), giving max(LE)=
�r2. For superrotation the zonal velocity of the atmosphere
u must be greater than the right-hand side of the following
equation:

u > �r
sin2θ

cosθ
. (3)

This condition has a minimum u at the Equator (θ = 0) where
zonal velocity need only be positive (u > 0). Moving away
from the Equator (|θ |> 0) the zonal velocity required for su-
perrotation increases steeply. If it occurs, superrotation will
almost certainly be present at the Equator as superrotation
at a higher latitudes would result in inertially unstable atmo-
spheric configurations. What this means for Earth rotating
west to east is that the prevailing easterlies at the Equator
(u < 0) change to prevailing westerlies. We label the bound
for superrotation uSR, which is found using the following
equation:

uSR =�r
sin2θ

cosθ
. (4)

Superrotating atmospheres exist on Venus and Titan (Read
and Lebonnois, 2018), and they may have occurred on
Earth in warmer, past climates. Caballero and Huber (2010)
showed a full-complexity general circulation model (GCM)
that transitioned to a superrotating state when equatorial sur-
face temperatures got sufficiently high, within the range of
temperatures thought to have existed in the early Cenozoic
period of Earth’s history (65 million years ago). This was a
period where it was around 10 °C warmer on average than
today. The atmospheres of other warmer periods such as the
early Pliocene and Eocene may also have been superrotating
(Tziperman and Farrell, 2009). Simulations of warm climates
that generate enhanced tropical convective variability seem
particularly prone to superrotation (Arnold et al., 2012), as
do those where convective heating strengthens (Laraia and
Schneider, 2015). This has led to the hypothesis that it may
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be relevant to future climate projections (Held, 1999; Pier-
rehumbert, 2000) and account for the superrotation seen in
extreme global warming simulations (Huang et al., 2001).
Even though the probability of transitioning to a surface su-
perrotating state is presently thought to be low as the Earth
warms into the future (Caballero and Carlson, 2018), the
possibility is a high risk. For example, if the prevailing Pa-
cific equatorial westerlies switched to the easterlies of an
atmosphere with superrotation at the surface, a permanent
El Niño state would result, along with all of the global im-
pacts that this would entail (Pierrehumbert, 2000). Tziper-
man and Farrell (2009) used this mechanism to explain the
permanent El Niño state that is thought to have existed in the
Pliocene. Although surface superrotation seems unlikely, su-
perrotation happens readily in the upper troposphere under
high-end global warming scenarios. The impact on surface
climate would, however, be less severe (Caballero and Carl-
son, 2018).

Superrotation implies the atmospheric angular momentum
locally exceeds that provided by the planet surface. This can
only be achieved through an up-gradient momentum flux that
is in excess or balances the removal of momentum by the
poleward large-scale meridional circulation and the zonal-
mean drag due to viscosity (Caballero and Carlson, 2018).
This up-gradient flux can be supplied by non-axisymmetric
eddies (Hide, 1969; Gierasch, 1975; Read, 1986). There
are many studies that examine the eddy dynamics respon-
sible for superrotation, of which there are two broad cat-
egories, although horizontal momentum transport by off-
equatorial waves feature in both (i) generation through non-
axisymmetric forcing (Scott and Polvani, 2008; Saravanan,
1993; Suarez and Duffy, 1992; Arnold et al., 2012; Shell
and Held, 2004) and (ii) generation through barotropic, baro-
clinic or Kelvin–Rossby instability (Williams, 2003; Wang
and Mitchell, 2014; Mitchell and Vallis, 2010; Zurita-Gotor
and Held, 2018; Zurita-Gotor et al., 2022). It is the sec-
ond category that is relevant to this paper, in particular the
Kelvin–Rossby instability mechanism. Theoretical work on
this mechanism (Wang and Mitchell, 2014; Zurita-Gotor and
Held, 2018; Zurita-Gotor et al., 2022) shows the transition
is via a loss of stability and so there should be early warn-
ing signals. In this mechanism, superrotation arises from the
wave–mean-flow interaction, specifically the interaction of
equatorial Kelvin waves and off-equatorial Rossby waves
that mutually amplify each other and generate a planetary-
scale mode that converges zonal momentum onto the Equa-
tor. Zurita-Gotor et al. (2022) show that the Kelvin–Rossby
coupling is a viable mechanism for producing terrestrial su-
perrotation and may explain the warm-climate superrotation
found by Caballero and Huber (2010).

Transitions to superrotating states may be smooth (Huang
et al., 2001; Caballero and Huber, 2010; Mitchell and Vallis,
2010) or abrupt (Suarez and Duffy, 1992; Saravanan, 1993;
Arnold et al., 2012; Zurita-Gotor et al., 2022). The smooth,
gradual type seems to be more common in simulations of

global warming scenarios or warm paleoclimates with com-
prehensive, multilevel GCMs (Arnold et al., 2012). Abrupt
transitions are seen more commonly in models with some de-
gree of idealisation; however, that does not rule them out in
more realistic scenarios (Held, 2016). The original example
of an abrupt transition to a superrotating state was found by
Suarez and Duffy (1992) in a two-layer GCM as the tropical
heating was increased. This transition also showed hystere-
sis, meaning that as the tropical heating was reversed below
the transition’s critical value, the superrotating state persisted
to a new and lower critical value. Arnold et al. (2012) have
found similar behaviour in a higher-resolution and multilevel
(albeit still idealised) GCM. This bistability is something we
will also investigate in a different setting in this paper.

Tipping points and bifurcation-induced transitions are of-
ten, but not necessarily, abrupt (Armstrong McKay et al.,
2022). Transcritical, supercritical pitchfork and supercritical
Hopf bifurcations (Strogatz, 2001) are examples that result
in smooth transitions but have early warnings due to the loss
of stability of the local state. The transition to superrotation
reported here is smooth. Nevertheless, early warnings of the
transition are shown, and therefore these simulations serve as
a test bed for whether we can detect this transition before it
happens.

In this paper the focus will be the fluctuations around the
mean wind field state and how their properties change as the
atmosphere gets closer to a superrotating state, the idea being
that these properties can serve as early warnings of the tran-
sition. We first introduce the idealised GCM used for these
numerical simulations and the control parameter we vary to
span Earth-like to fully superrotating atmospheric states in
Sect. 2. We then describe this range of simulated mean atmo-
spheric states in Sect. 3 before going to the main focus of the
paper: early warnings of the transition. We start by calculat-
ing the widely used early warning indicators in Sect. 4. Mo-
tivated by the bistability in the superrotating states observed
in the experiments of Suarez and Duffy (1992) and others,
we look for multiple co-existing states with our control pa-
rameter in Sect. 5. In Sect. 6, we generalise the usual scalar
early warning indicators to the vector setting by calculating
the principal oscillation patterns (POPs). This allows us to
diagnose the dominant spatial patterns in the wind field fluc-
tuations preceding the superrotation transition and the domi-
nant patterns following the transition. We discuss our results
and make conclusions in Sect. 7.

2 Methods

We use an idealised general circulation model (GCM) to sim-
ulate the transition to superrotation. The model framework
we use is Isca (Vallis et al., 2018), which is based on a spec-
tral dry dynamical core obeying the primitive equations of
motion of Gordon and Stern (1982). Isca is designed to be
highly configurable for use in exoplanet research in terms
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of both complexity (multiple radiation schemes and moist
or dry atmospheres are options) and parameter values (plan-
etary radius, rotation rate and fluid density are among the
many values that can be altered). The configuration we use
here is as simplified as possible and follows the approach
of Mitchell and Vallis (2010) closely. Simulations are per-
formed at T42 resolution (about 2.8° resolution at the Equa-
tor) and with 25 vertical sigma levels (equal pressure levels
σ = p/ps, where p is pressure and ps is surface pressure).

The surface of the planet is prescribed to be isotropically
smooth with no topography or continents present. No radi-
ation scheme is used either. Instead temperature is linearly
relaxed to a prescribed mean annual average state (Newto-
nian cooling) using the scheme of Held and Suarez (1994).
In particular, the surface temperature is relaxed to the zonally
symmetric profile

T0 = T [1+
1H

3
(1− 3sin2θ )], (5)

with T0 being the lowest-level temperature and T the global
average surface temperature. 1H is a non-dimensional pa-
rameter specifying the pole–Equator temperature difference.
The vertical temperature is assumed to relax to a moist adia-
bat with lapse rate 6 K km−1 capped at a minimum of 200 K
in the stratosphere. The radiative relaxation time is 40 d in
the free troposphere and approximately 4 d in the boundary
layer, the top of which is fixed at σ = 0.7 (see Held and
Suarez, 1994, for the full functional forms). As previously
mentioned, we follow Mitchell and Vallis (2010) closely, al-
though there are some minor differences: Mitchell and Vallis
(2010) use T = 315 K and1H = 0.2, here we use T = 314 K
and 1H = 0.215. As both of these parameters combine to-
gether in a non-dimensional number that will be used as
the control parameter in numerical experiments (the thermal
Rossby number; see below), these small differences should
be negligible in comparing our results with theirs.

Friction from the planet’s surface on the atmosphere re-
laxes horizontal velocities back towards zero in the atmo-
spheric boundary layer, and this is specified as an extra, lin-
ear and vertical-height-dependent (Rayleigh) drag term in the
equation for the horizontal velocity. This extra drag term is
applied as

∂v

∂t
= ·· ·− kv(σ )v, (6)

kv(σ )= kfmax
(

0,
σ − σb

1− σb

)
, (7)

where v is a vector of the horizontal velocities := (u,v). For
the full horizontal momentum equations, see Mitchell and
Vallis (2010). The reciprocal of the Rayleigh relaxation time,
kf , is taken to be 0.5 d−1 at the planet surface (σ = 1) and
linearly decreases to zero at the top of the boundary layer at
σb = 0.7. This is slightly smaller than the value of 1 d−1 used
in Mitchell and Vallis (2010).

The horizontal momentum equations governing the atmo-
spheric dynamics simplify in non-dimensional form when
subject to Rayleigh friction and Newtonian cooling. These
equations are then governed by just a few non-dimensional
parameters. The relevant non-dimensional parameter that is
varied in the experiments here and in Mitchell and Vallis
(2010) is the thermal Rossby number:

RoT =
RT01H

(2�r)2 . (8)

R here is the specific gas constant for dry air
(287 J K−1 kg−1). However, as the numerical model code
is dimensional, a dimensional parameter must be varied,
and here the planetary radius r has been chosen for this
purpose. By making this choice, the other non-dimensional
parameters, the Ekman number and thermal relaxation time,
remain unaltered.

Strictly RoT as given by Eq. (8) varies with latitude. How-
ever, in the following experiments we attribute a single value
of RoT to each simulation by replacing T0 with the average
temperature T , i.e. T0→ T in Eq. (8), which is the average
thermal Rossby number over the whole planet.

To summarise, in the following experiments we vary the
thermal Rossby number to go from Earth-like atmospheric
states through the transition to a fully superrotating state by
changing the planetary radius r for each simulation. All other
parameters will remain fixed. Each simulation is initialised
from a homogenous atmospheric state and integrated for ei-
ther 3 or 10 years (1080 or 3600 d, respectively). A stationary
state is reached after approximately 200 d. In the following
results we use the last 2 years of the 3-year simulation unless
stated otherwise.

3 Mean atmospheric state with varying RoT

In Fig. 2, we plot the mean zonal and vertical structure of
the atmosphere at selected values of RoT . The coloured line
contours show the zonal time mean wind speed u with lati-
tude θ and height σ = p/ps after the atmosphere has reached
a stationary state (the last 2 years of a 3-year integration).
The red line contours show regions of u > 0, the blue line
contours show regions of u < 0 and the black line contour
marks u= 0. Line contours are spaced at 5 m s−1 intervals.
The region enclosed by the dotted black line is superrotating,
meaning that it marks the region where u= uSR (Eq. 4) and
is centred at the Equator. The filled contours show the mean
meridional overturning.

We start simulations at Earth-like values of the control pa-
rameter (RoT = 0.02, Fig. 2a) and incrementally increase it
through the transition. No superrotation at any vertical level
is present in the Earth-like simulation. The transition occurs
first in the upper troposphere near the tropopause. This first
transition is around RoT ∼ 0.07 (Fig. 2c, dotted black region
at the Equator around σ = 0.2). We will refer to this as the
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first transition to an equatorial superrotating state. This small
superrotating region then extends further downwards into the
troposphere, upwards in the stratosphere and out into higher
latitudes as RoT is increased (Fig. 2d–f).

Superrotation is present atRoT = 0.87 (Fig. 2e) in the ma-
jority of the equatorial troposphere and lower stratosphere
above the height of the boundary layer (σ = 0.7) but absent
within it. For RoT > 0.87 (Fig. 2f), the third-lowest verti-
cal level in the model also starts to superrotate at the Equa-
tor. For all simulations we have investigated (RoT ≤ 11.4),
this is the lowest vertical level that superrotates and marks
the final vertical transition. We will refer to this as the final
transition to an equatorial superrotating state. All of the tro-
posphere at σ < 0.8 (and some of the stratosphere) is super-
rotating after this point. We study this final transition at the
lowest altitude that becomes superrotating in some detail in
this paper. This lowest vertical level, the third vertical level
is at σ = (0.7 0.79], with a mid-point at σ = 0.74, and this
level lies at a vertical height of ∼ 1–2 km above sea level.

As previously mentioned, none of the simulations show
superrotation in the two lowest vertical levels (σ > 0.8). This
could be due to Rayleigh drag within the boundary layer
(σ ≥ 0.7) decelerating the horizontal flow and acting as a
negative angular momentum flux for any u > 0. However,
the final transition occurs at a level within the atmospheric
boundary layer, and thus it still experiences a small amount
of drag. However, surface superrotation has been shown to
occur in small parameter regimes (Caballero and Carlson,
2018) and is not commonly seen in GCM simulations.

Other notable features are the midlatitude jets (the largest-
value red line contours in Fig. 2) in the Earth-like simulation
centred at σ ∼ 0.3 and at latitude θ ∼±50°. These jets tend
to move poleward as RoT increases. The mean meridional
overturning circulation (filled contours in Fig. 2) also tends
to reduce in intensity with increasing RoT .

We also show snapshots t = 900 d into the simulation of
the horizontal wind field (v = (u,v)) at the two vertical lev-
els where the first and final transitions occur (σ = 0.19 and
σ = 0.74, respectively) for various key values of the control
parameter RoT in Fig. 3. Earth-like simulations are shown
in Fig. 3a and b. The midlatitude instabilities are evident, as
is the lack of superrotation at the Equator (blue shading). In
Fig. 3c, the wind field just before the first transition is shown
at the vertical level it occurs at (RoT = 0.06, σ = 0.19).
There is a roughly equal mixture of red and blue shading
giving a zero mean zonal u. Lower levels are not showing
equatorial superrotation at this value of RoT (Fig. 3d). Fig-
ure 3f shows the wind field just before the final transition at
the vertical level it occurs at (RoT = 0.87, σ = 0.74). Again,
there is a roughly equal mixture of red and blue shading, giv-
ing zero mean zonal u. Figure 3e, g and h are all fully super-
rotating equatorial states (mainly red shading).

More information on the mean states and the mechanisms
of superrotation in these simulations is reported in Mitchell
and Vallis (2010). From here on we get to the main focus of

this paper, namely that we study the fluctuations around the
mean states and their properties as precursors to the transi-
tions.

4 Temporal early warning signals

In this section we calculate early warning signals (EWSs)
for the varying RoT simulations with the aim of early detec-
tion of the transition to a superrotating state. These indicators
are widely used to detect abrupt transitions resulting from lo-
cal bifurcations (Lenton, 2011; Thompson and Sieber, 2011).
Typically, these are designed to detect the increasing recov-
ery time and amplitude of small fluctuations δx(t) around
the mean stationary state, denoted as x, of some scalar state
parameter x(t) that is a function of time t . The state of the
system is therefore given by

x(t)= x+ δx(t), (9)

and it is often assumed to evolve autonomously according to
some function f (x) as ẋ = f (x) (overdots denote ordinary
time derivatives, i.e. ẋ := dx

dt ). f (x) is a non-linear function
of x in general. Provided the fluctuations are not too large,
one can approximate the dynamics well by performing Tay-
lor expansion on f (x) to the first order around the mean state,
i.e. f (x)≈ f (x)+ J (x)δx, where the Jacobian is given by
J (x)= ∂f (x)

∂x
|x=x . In this case the dynamics of the fluctua-

tions can be approximated with a linear first-order ordinary
differential equation (ODE), i.e.

˙δx ≈ J (x)δx. (10)

For a time-invariant mean state x (and time-invariant J (x)),
this simple ODE has the solution

δx(t)= eJ (x)tδx(0). (11)

There are three possible fates of an initial fluctuation in am-
plitude δx(0) depending on the sign of the real part of J (x).
(i) The real part of J (x) is negative (R(J (x))< 0), the ini-
tial fluctuation δx(0) decays and the system state will be
stable to perturbations eventually recovering to x. In this
case a recovery or e-folding time can be defined as the time
taken, τ , for the fluctuation to reach 1/eth of its initial value
as τ =−1/R(J (x)). (ii) The real part of J (x) is positive
(R(J (x))> 0), any initial fluctuation will get exponentially
larger with time and the system will not recover to x, i.e. x is
unstable. (iii) The real part of J (x) is zero, i.e. R(J (x))→ 0.
In this case, perturbations will not grow or decay. This neu-
tral stability occurs at a bifurcation.

Early warning indicators are designed to detect the in-
creasingly less negative value of R(J (x)) or equivalently the
increasing system recovery time τ as it approaches the bifur-
cation. This phenomenon is termed “critical slowing down”.
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Figure 2. Mean vertical and zonal structure of the atmosphere at various values of the control parameter RoT . Zonal mean u with latitude
and vertical height σ = p/ps is shown as coloured line contours: u > 0 contours are shown as red lines, the u= 0 contour is the black line
and u < 0 contours are shown as blue lines. Contour lines are spaced at 5 m s−1 intervals. The region enclosed by the dotted black line is
superrotating (c–f). This means that it marks the region where u= uSR (Eq. 4). The filled contours show the mean meridional overturning
as given by the mass streamfunction, with blue and red regions having anti-clockwise and clockwise circulation, respectively. An Earth-like
state is shown in (a) (RoT = 0.02). (b) A state close to the first superrotation transition. (c) A small region in the equatorial upper troposphere
that becomes superrotating. This region expands further down into the troposphere and up into the stratosphere as RoT increases (d–f). Panel
(e) shows the zonal-mean atmospheric state just before the third-lowest vertical level becomes superrotating. This is the lowest level that
superrotates, at least for RoT ∼O(1), and it marks the final transition. In (f) all of the troposphere σ < 0.8 is superrotating.

One popular indicator is the variance Var(x) of x with time

Var(x)= E[(x(t)− x)2
], (12)

= E[δx(t)2
], (13)

where E[.] is the expectation value. For the case where x
is a scalar variable with first-order dynamics subject to ran-
dom (white-noise) forcing (an Ornstein–Uhlenbeck process),
J (x) is also a real scalar, and the variance is given by

Var(x)=
σ 2
Q

2|J (x)|
. (14)

This measures the mean amplitude of the system fluctuations
σx =

√
Var(x) to a random forcing of mean amplitude σQ

(σQ is generally assumed to be constant as the bifurcation
is approached). The state x becomes less stable closer to the
bifurcation, and J (x) gets less negative, showing up in the
indicator as an increase in variance.

White-noise forcing is often assumed to approximate in-
ternally generated fast-timescale chaotic weather variability
when applied to climate applications, such as early warning
indicators, empirical orthogonal functions and linear regres-
sions (von Storch and Zwiers, 1999), and this is also what we
do throughout this paper.

Another popular early warning indicator is time-lagged
autocorrelation

α(tlag)= eJ (x)|tlag|, (15)

which measures the recovery time of the system to perturba-
tions. Again, for the case where x is a real scalar variable
with first-order dynamics subject to random (white-noise)
forcing, J (x) is a negative real number if the state is stable,
and α(tlag) is just an exponentially decaying function of tlag.
As a bifurcation is approached R(J (x))→ 0 and the indica-
tors σx→∞ and α(tlag)→ 1.

The temporal evolution of a scalar state variable x de-
scribed by a linear first-order ODE is constrained to only per-
mit exponential decay from a perturbation. However, a real-
valued state variable x may have oscillatory behaviour and
therefore must be described by higher-order ODEs. In this
case α(tlag) may have a more complicated functional form.
For example, a system with second-order dynamics can have
an autocorrelation function with an oscillatory term. Rele-
vant to our case is the approach to a Hopf bifurcation, whose
α(tlag) has the generic form (Bury et al., 2020)

α(tlag)= e−
|tlag|
τ cos(ωtlag). (16)

Earth Syst. Dynam., 15, 1483–1508, 2024 https://doi.org/10.5194/esd-15-1483-2024



M. S. Williamson and T. M. Lenton: Precursors to superrotation 1489

Figure 3. Snapshots (t = 900 d into each simulation) of the horizontal v = (u,v) wind field (shown as arrows) at the two vertical levels
σ = 0.19 and σ = 0.74. These vertical levels correspond to the first transition to superrotation at RoT ∼ 0.07 and the final transition at
RoT & 0.87, respectively. The underlying colour plot shows the u component of this field, with reds corresponding to u > 0 and blues to
u < 0 (u= 0 is white). Panels (a) and (b) show an Earth-like state. Panel (c) shows the wind field just before the first transition at the vertical
level it occurs at. Panel (f) shows the wind field just before the final transition at the vertical level it occurs at. Panels (e), (g) and (h) show
fully superrotating equatorial wind field states (predominately red colours at the Equator).

For a real-valued J (x) to describe a Hopf bifurcation, it must
be at least a two by two (non-symmetric) matrix with com-
plex eigenvalues, λ and λ∗, that appear in conjugate pairs (the
∗ denotes complex conjugation). The real part of the complex
eigenvalues of J (x) (τ =−1/R(λ)) determines the exponen-
tial decay envelope of the autocorrelation function. This en-
velope decays over a longer timescale as the bifurcation is
approached. Within this envelope there may also be oscil-
lations, whose frequency is given by the imaginary part of
J (x), ω = I(λ).

In most studies, the full autocorrelation function at all val-
ues of tlag is generally not used. It is usually the value of
the autocorrelation function at tlag = 1 (the lag-1 autocorre-
lation) that is used. This often works well as it is more robust

to sample size and signal to noise provided the oscillation
period, P = 2π

ω
, is large compared to the value of tlag that is

used to evaluate α(tlag). Formally, if ωtlag� 1, then Eq. 16

approximates to α(tlag)∼ e−
|tlag|
τ ; i.e. it is a good indicator

of the real part of the Jacobian eigenvalues and therefore of
critical slowing down.

We will also use the autocovariance function, R(tlag),
which encodes information of both variance and autocorrela-
tion, giving

R(tlag)= E[(x(t + tlag)− x)(x(t)− x)], (17)

or R(tlag)= Var(x)eJ (x)|tlag|. The variance is just given by
R(0) and α(tlag)= R(tlag)

R(0) .
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4.1 Temporal EWSs of the superrotation transition

We apply these early warning indicators to study the transi-
tion to superrotation at vertical level σ as follows. We look at
the statistics of the fluctuations, δu(σ, t), around the mean
zonal wind field state, u(σ ), where u(σ ) is the time- and
area-weighted spatial mean of a spherical segment centred
on the Equator at vertical height σ with edges at θ± =±10°
latitude. An equatorial band centred on the Equator is cho-
sen to analyse the zonal wind field u because, as previ-
ously discussed, this is the most likely place to observe su-
perrotation if it occurs. Formally, we compute R(σ, tlag) for
δu(σ, t)= u(σ, t)− u(σ ) where

u(σ, t)=
r

A

2π∫
φ=0

dφ

θ+∫
θ=θ−

u(σ,θ,φ, t)cosθdθ, (18)

where φ is the longitude and A= r
∫ 2π
φ=0dφ

∫ θ+
θ=θ−

cosθdθ is
the area of the spherical segment. We choose a section of
the time series u(σ, t) starting at a time ts that is sufficiently
after the simulation spinup so that the atmosphere is in an ap-
proximately stationary state. In the model configuration used,
the atmosphere reaches a steady state after roughly 200 d,
although we use ts = 361 d. The finish time tf is chosen to
be large for accurate determination of the statistical estima-
tors. Ideally this would be tf→∞; however, due to compu-
tational time we mostly limit this to tf = 1080 d. However,
when studying the first transition we have performed longer
simulations (10 years) to better resolve the long timescales
present around the tropopause and set tf = 3600 d; u(σ, t) is
then averaged over a period T = tf− ts to give

u(σ )=
1
T

tf∫
ts

u(σ, t)dt. (19)

In Fig. 4, u(σ ) is shown as it varies with vertical height σ and
the control parameter RoT .

4.1.1 Final transition: RoT ∼ 0.87 at σ = 0.74

The final transition where the majority of the equatorial tro-
posphere (σ < 0.8) starts to superrotate occurs at RoT ∼
0.87. In this subsection the statistics of δu(σ, t) at σ = 0.74
are analysed. This corresponds to the third-lowest vertical
level in the model. We look for early warnings of the first
transition in the following subsection.

In Fig. 5a, we plot the u(σ = 0.74, t) time series for se-
lected values of RoT (0.02 is blue (Earth-like), 0.87 is red
(close to the final transition) and 1.93 is green (fully superro-
tating)) over the 3-year simulation period. The mean u(σ, t)
over the last 2 years (u(σ )) is plotted as a corresponding dot-
ted coloured line. In Fig. 5c we show the fluctuations around
the mean, δu(σ, t), as a function of RoT . The larger, oscilla-
tory response of u(σ, t) close to the final transition is clearly

Figure 4. Here we show u(σ ) in an equatorial band with edges at
±10° latitude as it varies with vertical height σ and control param-
eter RoT . Red contours show positive u(σ ). Blue contours show
negative u(σ ). Both are spaced at 5 m s−1 intervals. The black line
denotes the zero contour and approximately marks the boundary be-
tween superrotating and non-superrotating regions.

visible in the time series. The time series looks much more
random and akin to first-order noisy dynamics (such as an
Ornstein–Uhlenbeck process) on either side of the final tran-
sition (blue and green).

In Fig. 5b we have plotted the autocovariance function
(Eq. 17),R(σ = 0.74, tlag), for each of the three selectedRoT
values during the last 2 years of each simulation. The value
at tlag = 0 is equivalent to the variance of u, Var(u). One can
see close to the transition (red) that variance is much higher
than either side of the transition (green and blue). One can
also see the functional form of R(σ, tlag) is also very different
close to the transition, showing an oscillation of around 25 d

contained in an exponential decay envelope
(
e−
|tlag|
τ

)
with

an e-folding time of approximately τ ∼ 35 d (see Eq. 16). In
contrast, the response of u(σ, t) to perturbations is neither os-
cillatory nor long lasting on either side of the final transition.

In Fig. 6a we plot u(σ ) in the equatorial spherical seg-
ment against RoT . Black dots are individual simulations,
and black lines connect these values. The dotted red line
is the threshold u(σ ) required for superrotation, uSR; see
Eq. (4). This is larger than the zero bound required for su-
perrotation at the Equator due to the finite latitude width of
the spherical segment. Superrotation at this vertical level oc-
curs approximately forRoT > 1. Interestingly, this plot is not
monotonically increasing with RoT – there is a local maxi-
mum atRoT ∼ 0.54 followed by a plateau toRoT ∼ 0.75 be-
low the superrotation threshold. There is another local (and
global) maximum in u(σ ) around RoT ∼ 1.9 when the at-
mosphere is in a fully superrotating state. In Fig. 6c we plot
the usual early warning indicators, variance of u(σ, t) (left-
hand plot, Var(u)) and lag-1 autocorrelation (right-hand plot,
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Figure 5. Mean u around an equatorial band at vertical height σ = 0.74. (a) Mean zonal wind speed u(σ, t) in a spherical segment centred on
the Equator and with edges at±10° latitude during a 3-year simulation (1080 d). Different colours correspond to a simulation with a different
value of RoT . We also show highlighted values of RoT ∈ {0.02 (blue) 0.87 (red) 1.93 (green)}. In (c) we show δu(σ, t)= u(t)−u(σ ), which
shows the fluctuations in u(σ, t) around the temporal mean u(σ ) over the last 2 years of the simulation as a function of RoT . Dotted lines
indicate u(σ ). (b) The autocovariance function R(σ, tlag) as a function of tlag. This function is oscillatory for RoT = 0.87 (red line) just
before the final transition.

Figure 6. Early warning indicators of the final transition at σ = 0.74. Each dot is an individual simulation. Coloured dots correspond to the
same coloured simulations in Fig. 5. (a) Mean zonal wind speed u(σ ) in a spherical segment centred on the Equator with edges at ±10°
latitude during the last 2 years of the simulation against RoT at vertical height σ = 0.74. The dotted red line is the threshold for superrotation
to occur (uSR). This is non-zero as the wind speed is averaged over a non-zero-thickness latitude band. (c) Typical early warning indicators of
a local bifurcation: with the left-hand plot showing the variance of mean zonal u(σ, t) and the right-hand plot showing lag-1 autocorrelation
of mean zonal u(σ, t). (b) Autocovariance function R(σ, tlag) and how it changes with RoT (y axis) and tlag. Oscillations of the 25 d period
appear for values of RoT ∼ [0.5 1.2] and have a maximum in amplitude around RoT ∼ 0.9.
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α(tlag = 1d)). Both indicators peak at RoT = 0.87, just be-
low u(σ )∼ 0, suggesting this is where the atmospheric state
at this vertical level is least stable.

There is an initially high value of lag-1 autocorrelation
whenRoT = 0.02 is at an Earth-like value, and this looks like
an outlier when compared to the other simulations in Fig. 6c.
The full (multiple lag) autocorrelation function of this simu-
lation as shown in Fig. 5b in blue is not oscillatory or with
high variance, but it does not look like a typical exponen-
tially decaying function like the other simulations performed
here. It has an approximate linear decay with increasing tlag.
As the autocorrelation is assumed to be an exponentially de-
caying function of tlag, lag-1 autocorrelation may not be the
best way to infer the decay timescale (and critical slowing
down) for this particular value of RoT . The mean equatorial
zonal flow may be in a different regime compared to the other
simulations as RoT is increased.

As shown in Fig. 5b, the autocorrelation function is not
necessarily only exponentially decaying with increasing tlag
as required for lag-1 autocorrelation to be a good indicator
of the stability of the state. However, as argued in Sect. 4, it
is a good indicator for an oscillatory autocorrelation function
provided ωtlag is much smaller than 1. In this case ωtlag ∼

1/4, meaning that taking α(tlag = 1d) should be sufficient for
those oscillatory functions.

Motivated by the extra information in multiple tlag values
of the autocovariance function close to the final transition,
we plot R(σ, tlag) in Fig. 6b as it varies with RoT . As previ-
ously mentioned, R(σ, tlag) encodes both variance (R(σ,0))
and lag-1 autocorrelation (R(σ,1)/R(σ,0)) as limiting cases,
making R(σ, tlag) a more complete information source and
early warning precursor. R(σ, tlag) is an even function around
tlag with a maximal value at R(σ,0).

For values of RoT < 0.57 and RoT > 1.2, R(σ, tlag) is
monotonically decreasing with |tlag| much like the exponen-
tial decay expected for first-order dynamics. Oscillations in
R(σ, tlag) start at RoT ∼ 0.57 and remain until RoT ∼ 1.2.
The start of the oscillations coincides with the start of the
plateau in u(σ ). The end of the oscillatory phase coincides
with the time when the full spherical segment begins to su-
perrotate (u > uSR as shown by the dotted red line). Oscil-
lations reach a maximum in amplitude at RoT ∼ 0.87 just
before u(σ )∼ 0. Throughout the range of their existence, the
oscillations have a constant period of approximately 25 d.

4.1.2 First transition: RoT ∼ 0.07 at σ ∼ 0.2

The atmosphere first becomes superrotating at the Equator
just below the tropopause (σ = 0.19) at RoT ∼ 0.07. We
look at the statistics of δu(σ, t) at σ = 0.19 in this subsec-
tion. This corresponds to the 14th-lowest vertical level in the
model. We look at the last 9 years of a 10-year integration.
We have performed longer simulations around the point of
the first transition because of the long timescales that are
present around the tropopause.

Similar to Fig. 5, in Fig. 7a, u(σ ) is shown near the
tropopause (σ = 0.19) with varying RoT . In Fig. 7b we show
the autocovariance function. All time series are very mean-
dering, appearing to be weakly guided random walks when
compared to the time series at lower vertical levels.

In Fig. 8, u(σ ) in the equatorial spherical segment against
RoT is shown. Superrotation at this vertical level occurs ap-
proximately for RoT > 0.08. In Fig. 8b and c we plot the
usual early warning indicators, variance of u(σ, t) (upper RH,
Var(u)) and lag-1 autocorrelation (lower RH, α(tlag = 1d)).
Both indicators peak just before RoT = 0.08; however, the
results are less convincing than the EWSs of the final transi-
tion in the preceding section. As mentioned in Sect. 1, previ-
ous work has shown this transition is due to a loss of stabil-
ity, and therefore it should be detectable by an increase in the
EWSs. However, the decay timescales at this vertical height
in the atmosphere are long (O(100) d), and thus they may re-
quire long time series to detect changes in EWSs reliably. For
example, the typical values of α(tlag = 1) corresponded to an
e-folding time of O(100) d. Compare this to the e-folding
timescales in the lower troposphere, which are an order of
magnitude smaller (O(10) d). Changes may also occur over
a small range of RoT that we have not resolved well with the
simulations performed.

4.1.3 Full vertical structure

In Fig. 9, the full vertical structure of the autocovari-
ance function of the zonal mean u in the equatorial band,
R(σ, tlag), is shown. The oscillations of 25 d period found
in R(σ, tlag) that peaked in amplitude around the final tran-
sition at σ = 0.74 and RoT = 0.87 are found throughout
the lower troposphere (σ > 0.3) between values of 0.54<
RoT < 1.29. These oscillations have their highest amplitude
at RoT = 0.87, σ ∼ 0.45. They have roughly the same pe-
riod as vertical height, and RoT varies throughout their exis-
tence. Oscillations are found up to roughly the height of the
top of the Hadley cells (σ ∼ 0.3). We have found the oscilla-
tions in zonal mean u are also correlated with the strength of
the Hadley cells in particular. Larger zonal mean u is simul-
taneously correlated with a weaker streamfunction in both
the Northern Hemisphere and Southern Hemisphere Hadley
cells. Conventional Hadley cells with ascent at the Equator
are known to flux momentum out of the equatorial region,
and this appears to be happening here. The transition to this
oscillatory phase of the lower troposphere at RoT > 0.54 is
accompanied by a large increase in decay timescale around
the tropopause (σ = 0.19) at RoT = 0.54.

5 Evidence of multiple states

As previously mentioned, Suarez and Duffy (1992) found
an abrupt transition to a superrotating state in a two-layer
GCM when the tropical heating was increased above a criti-
cal value. This tropical heating term was their control param-
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Figure 7. Mean u around an equatorial band at vertical height σ = 0.19. (a) Mean zonal wind speed u(σ, t) in a spherical segment centred on
the Equator and with edges at±10° latitude during a 10-year simulation (3600 d). Different colours correspond to a simulation with a different
value of RoT . We also show highlighted values of RoT ∈ {0.02 (blue) 0.08 (red) 0.12 (green)}. In (c) we show δu(σ, t)= u(t)−u(σ ), which
gives the fluctuations in u(σ, t) around the temporal mean u(σ ) over the last 9 years of the simulation as a function of RoT . Dotted lines
indicate u(σ ). (b) The autocovariance function R(σ, tlag) as a function of tlag. All of these functions have slow decay timescales, indicating
very lightly restored or unstable regions, as can be seen from the meandering time series in (a) and (c).

Figure 8. Early warning indicators of the first transition at σ = 0.19. Each dot is an individual simulation. Coloured dots correspond to the
same coloured simulations in Fig. 7. (a) Mean zonal wind speed u(σ ) in a spherical segment centred on the Equator with edges at ±10°
latitude during the last 9 years of the simulation against RoT at vertical height σ = 0.19. The dotted red line is the threshold for superrotation
to occur (uSR). This is nonzero as the wind speed is averaged over a non-zero thickness latitude band. (b, c) Typical early warning indicators
of a local bifurcation: (b) variance of mean zonal u(σ, t) and (c) lag-1 autocorrelation of mean zonal u(σ, t).
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Figure 9. R(σ, tlag) calculated for δu(σ, t) in a spherical segment centred on the Equator and with edges at±10° latitude over the last 2 years
of each RoT simulation. Subplot titles indicate the value of RoT .

eter and is different to the control parameter we alter in these
experiments (the thermal Rossby number). Not only was the
transition Suarez and Duffy (1992) found to be abrupt, un-
like the transition in this paper that seems smooth, but the
mean state also showed bistability, meaning that two sta-
ble states exist for the same value of the control parame-
ter. By slowly changing their control parameter across the
transition’s critical value from non-superrotating to a super-
rotating state and then slowly reversing the control param-
eter back again below the critical value, the superrotating
state persisted to a new and lower critical value. This showed
that there was a bistable region in which stable superrotating
and non-superrotating states can coexist. Unlike Suarez and
Duffy (1992) we find no evidence of bistability in the mean
equatorial zonal wind speed, although there is evidence of
“flickering” (Dakos et al., 2013), meaning a range of RoT
where there are noise-induced transitions between two stable
states.

To investigate whether bistability like that found in Suarez
and Duffy (1992) is present, we look at the final transition
at vertical height σ = 0.74. We slowly increase the value of
RoT = 0.11 through the final transition at RoT ∼ 1 and con-
tinue up to RoT = 1.64. We will refer to this part of the sim-
ulation as the “ramp up”. RoT is then slowly decreased from
1.64 back down to RoT = 0.11 at the same rate. We will re-
fer to this part of the simulation as the “ramp down”. As in
the fixed RoT simulations, the magnitude of RoT is changed
by altering the planetary radius r . Rather than a continuous
change in RoT , we step RoT up and then down by a small
increment of 0.11 for every 2 years of simulation due to ease

of implementation in the GCM. This gives a total simulation
time of 58 years. Because of the step transition every 2 years,
there is a small transient effect in the model state before set-
tling back to a stationary state after approximately 200 d. To
exclude any spurious effects in the early warning indicators,
we calculate them only for the last year (360 d) of each step
change in RoT .

Figure 10a shows how RoT varies with time. The solid
black line indicates the ramp-up of RoT , while the dotted
black line indicates the ramp-down of RoT . In Fig. 10c,
u(σ, t) (grey line) in the equatorial band is plotted against
time. The periods of increased variance and positive skew-
ness are clearly visible between years 6–18 and 42–50 (also
in Fig. 10b). Some of this large-amplitude response is a short
transient effect from adjustment to the step change in RoT
(although this quickly dies away); however, these periods of
increased variance and skewness are also present in the static
RoT simulations. Black dots (ramp-up) and black crosses
(ramp-down) in Fig. 10c are u(σ ) in the last year of the step
change, avoiding this transient effect. EWS variance and lag-
1 autocorrelation are shown in Fig. 10b and d, respectively.

Although u(σ ) looks relatively symmetric around 30 years
(the turning point of the control parameter), the EWSs do not.
We plot these same quantities as a function of RoT in Fig. 11
to assess if there is any hysteresis when the control param-
eter is reversed and therefore whether bistability can be de-
tected. In Fig. 11a we plot u(σ ) as it is ramping up (black
dots) and ramping down (black crosses). Apart from a small
region around the plateau in u(σ ) betweenRoT ∼ 0.57–0.76,
there does not appear to be any difference in the values of
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Figure 10. Ramped control parameter runs with time. (a) Control parameter RoT value with simulation year. We start at RoT = 0.11 and
make stepped increases of 0.11 every 2 years to mimic a slow continuous change in the control parameter as closely as possible. We ramp
up RoT to 1.64 over a period of 30 years (solid black line) before slowly ramping down back to 0.11 over the next 28 years (dotted black
line). (c) Zonal mean wind speed u(σ, t) at σ = 0.74 in the equatorial spherical segment with time (grey lines) and u(σ ) (black dots are the
ramp-up values, black crosses are the ramp-down values) for the last year of each stepped change in RoT . (b) Variance of u(σ, t) in the last
year of each stepped change in RoT . (d) Lag-1 autocorrelation α(tlag = 1) of u(σ, t) in the last year of each stepped change in RoT .

Figure 11. Ramped control parameter runs as a function of RoT similar to Fig. 10 but with RoT as the x axis variable. (a) Mean zonal wind
speed u(σ ) in the equatorial spherical segment for the last year of each stepped change in RoT . Black dots show values as RoT is ramped up
(years 0–30), and black crosses show those values as RoT is ramped back down (years 30–58). (b) Variance of u(σ, t) in the last year of each
stepped change in RoT . (c) Lag-1 autocorrelation α(tlag = 1) of u(σ, t) in the last year of each stepped change in RoT . Black dots indicate
values for the ramping up of RoT , while black crosses show RoT as it is ramping back down.

u(σ ) when ramping up and ramping down. In Fig. 11b and
c EWS differences are larger; however, this is probably due
to the short length of the time series used to calculate these
statistical estimators and small transient effects. Also, as the
standard error in the statistical estimators for a fixed sample
size grows as autocorrelation increases, estimation should be
worse in regions of large autocorrelation. Such a region ex-

ists for RoT ∈ [0.4 1.2], and this is where we find the largest
discrepancies. Therefore, we do not expect the small differ-
ences to be statistically significant.

Unlike Suarez and Duffy (1992), we find no evidence of
bistability in the mean equatorial zonal wind speed. How-
ever, our control parameter is markedly different from theirs.
This, however, does not completely rule out bistability. There
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may be smaller regions of RoT that these simulations have
not been able to resolve.

Although we have not found direct evidence of bistabil-
ity, there is some evidence for flickering. In a system with
multiple basins of attraction and noisy perturbations suffi-
ciently strong to kick the system between these basins, a sys-
tem may flicker between the attractors (Dakos et al., 2013).
Flickering between multiple states can show up as asymme-
try in the probability distribution of the system state vari-
able. This asymmetry can be measured by the skewness.
As previously mentioned, there are clearly visible periods
of increased variance and positive skewness in δu(σ, t) be-
tween years 6–18 and 42–50 (RoT ∼ 0.5 and RoT ∼ 1.2)
in Fig. 10c. We plot skewness with RoT at vertical height
σ = 0.74 in Fig. 12c (solid black line). Skewness peaks at
RoT = 0.44 during the ramp-up and RoT = 0.55 during the
ramp-down, although there is high positive skewness (Skew
(u)> 0.5) for 0.33<RoT < 0.87. This peak in skewness oc-
curs just before the oscillations start, although high positive
skewness is present throughout the existence of the oscilla-
tions. We have also looked at how skewness changes with
vertical height. Positive skewness peaks at σ = 0.74, which
is the level of the final transition. Negative skewness peaks at
σ ∼ 0.2 (dotted line in Fig. 12b), which is the vertical height
where the first transition occurs. At σ = 0.19 a similar graph
of skewness with RoT is found to that of σ = 0.74; how-
ever, positive skewness values are mapped to negative val-
ues. Little skewness is found around σ ∼ 0.3 (dashed–dotted
line); this is roughly the height of the top of the Hadley
cells. This may indicate the presence of multiple states in
the range 0.33<RoT < 0.87. This is also approximately the
range where the ramp-up and ramp-down values differ. The
flickering states seem to be the oscillating Hadley cell state
(typical of the final transition) and the superrotating upper
troposphere state (typical of the first transition).

6 Spatial precursors to the superrotation transition

The oscillations in the fluctuations, δu(σ, t), around the mean
zonal u(σ, t) in the equatorial band around the final transition
suggest the minimal approximate description of the dynam-
ics must be at a second-order or higher level. Motivated by
this and the interesting structure in the variance and autoco-
variance, we next use a method to diagnose any higher-order
dynamics of the fluctuations in the full global horizontal
wind field δv(σ,θ,φ, t)= (δu(σ,θ,φ, t),δv(σ,θ,φ, t)). We
look at the dominant spatial vector modes of δv and their
stability at vertical height σ .

In Sect. 4, the state parameter x(t) was a real-valued scalar,
and the theory developed to investigate the stability of a
stationary state, x, to small perturbations, δx(t), assumed
first-order dynamics. We remove the restriction on scalar x
and therefore make higher-order dynamics possible to de-
scribe and diagnose here. This is done by upgrading δx(t) to

δx(t), an N component vector (vectors are denoted by bold
type face). The technique we next describe goes by several
names, such as principal oscillation pattern (POP) analysis
(Hasselmann, 1988; von Storch and Zwiers, 1999), linear
inverse modelling (LIM) (Penland, 1989) or empirical nor-
mal mode (ENM) analysis (Penland and Ghil, 1993; Brunet,
1994). Amongst others, this approach has been used to study
the El Niño–Southern Oscillation (Penland and Magorian,
1993) and midlatitude jets (Farrell and Ioannou, 1995). The
technique we use here approximates a (typically) non-linear
dynamical system with a reduced number of linear modes.
However, there are approaches that remove this linear ap-
proximation. One such example is the reconstruction of the
Koopman operator (e.g. Budišić et al., 2012).

We can repeat the steps in Sect. 4 for the vector general-
isation (see Williamson and Lenton, 2015, and Appendix A
for details). We again want to study the response of small
fluctuations δx(t) around some mean state x to assess the
stability of that mean state. As the state becomes less sta-
ble approaching the transition, fluctuations become larger
and longer lived. Analogously to the scalar case, the dynam-
ics of the fluctuations are determined by the Jacobian J (x);
however, this is now a N ×N matrix. J (x) can be decom-
posed into N modes (the eigenvectors of J ) associated with
N timescales (the eigenvalues of J ), the largest of which will
dominate the dynamics of the fluctuations. The early warning
signals, i.e. autocorrelation and variance, are still functions
of J (x) in the vector setting, but they are now also matrices
(autocovariance and covariance matrices, respectively). We
will analyse the properties of J in the following as this is
what ultimately determines stability (and the EWSs, which
are functions of J ).

We identify the vector δx(t) at each time t in Eq. (A1) to
have components δxi(t) that are the δu(σ,θi,φi, t) at each
horizontal grid box labelled i in the GCM with coordinates
(θi,φi) at vertical level σ . This two-dimensional horizon-
tal field is area-weighted by grid box size, reshaped into a
column vector and concatenated with the analogous field of
δv(σ,θi,φi, t). Time is also a discrete variable in the GCM
output and has integer day values with the following inter-
val: 1t = 1 d. We label the full vector as δvt .

As the full-resolution horizontal field in this configuration
of Isca has 64× 128= 8192 grid boxes for each field of u
and v, the vector has 16 384 components. The resulting re-
constructed J would therefore be a real-valued result, but it
would be a non-symmetric 16384× 16384 matrix, and cal-
culating this matrix would be computationally costly. To re-
duce this cost, we project fields of δu and δv at each time t
onto their n largest empirical orthogonal functions (EOFs),
the dominant eigenvectors of the covariance matrix 6, to
capture the dominant dynamics of δv(t) (see von Storch and
Zwiers, 1999, for a description of the EOF technique). We
use n= 60, which captures between 76 % and 88 % of the
total variance depending on the value of RoT and σ . We have
experimented with using larger n, and while more of the to-

Earth Syst. Dynam., 15, 1483–1508, 2024 https://doi.org/10.5194/esd-15-1483-2024



M. S. Williamson and T. M. Lenton: Precursors to superrotation 1497

Figure 12. Ramped control parameter R(σ, tlag) at vertical height σ = 0.74 and skewness for δu(σ, t) at vertical heights σ = 0.74 (largest
positive skewness, final transition vertical height), σ = 0.32 (smallest absolute skewness values, height of top of Hadley cells) and σ = 0.19
(largest negative skewness values, first transition vertical height). The ramp-up starts from the bottom of the y axis, and the ramp-down starts
from RoT = 1.64 and continues up the y axis. (a) Although there are some small differences in ramp-up and ramp-down values, these are
minor, and oscillations in R(σ, tlag) appear in roughly the same place with the same amplitude and period. (b) High positive skewness (> 0.5)
and high negative skewness are present in δu(σ, t) for 0.33<RoT < 0.87 at vertical heights of σ = 0.74 and σ = 0.19, respectively. This
could indicate the presence of flickering, i.e. noise-induced transitions between attractors.

tal variance is captured, the results presented below remain
invariant. This is because we are interested in the dominant
modes of the dynamics (largest eigenmodes of J ), and these
are captured well by the projections on to the leading EOFs.

Using the reduced EOF basis for δvt , we calculate A and
6 (see Appendix A) using the last 2 years of each RoT sim-
ulation and therefore infer J using Eqs. (A21) and (A22) for
the full global horizontal vector wind field fluctuations.

6.1 Final transition: RoT ∼ 0.87 at σ = 0.74

We now apply the vector technique described in Appendix A
to the full spatial horizontal vector wind field δv(σ,θ,φ, t)
at vertical height σ = 0.74 and diagnose the dominant eigen-
values and eigenmodes as RoT is varied through the final
superrotation transition. Performing an eigendecomposition
to find the dominant modes and their stabilities on each re-
constructed J results in Fig. 13 for the final transition.

At vertical height σ = 0.74, we show that one particular
eigenmode, referred to as the “precursor” mode (Fig. 13b and
red lines in the middle column of Fig. 13), is responsible for
early warnings of the final transition. The precursor mode is
an oscillating mode with a zonal wavenumber of 0 and a 25 d
period. It becomes important in the dynamics just before the
final transition, dominates the dynamics at the final transi-
tion and decays quickly following the final transition. We can
therefore categorise the precursor mode as a spatial signature
heralding the final transition in addition to the usual widely
used temporal EWSs. This mode is correlated to oscillations

in the equatorial meridional overturning strength (the Hadley
cells) seen in Sect. 4.1.3.

After the final transition, the eigenmode referred to as the
“superrotation” mode (Fig. 13c and blue lines in the mid-
dle column of Fig. 13) dominates the fluctuation dynamics.
This is has a zonal wavenumber of 1 and propagates east-
ward (Fig. 14b) with a period of ∼ 4 d. The spatial pattern
of this mode appears very similar to the Kelvin–Rossby in-
stability that others have previously identified (Mitchell and
Vallis, 2010; Wang and Mitchell, 2014; Zurita-Gotor and
Held, 2018; Zurita-Gotor et al., 2022). In this mechanism,
off-equatorial Rossby waves (diagonal lobes in Figs. 13c
and 14b) centred around ±40° latitude couple with an equa-
torial Kelvin wave (equatorial lobe in the same figures) to
converge momentum onto the Equator and enable superrota-
tion.

6.1.1 Eigenvalues of J : timescales and oscillation
frequencies

The spectrum of each J (the first seven eigenvalues, λi
i ∈ {1,2, · · ·,N}, where R(λi)≥R(λi+1)) as a function of
RoT are shown in the middle column of Fig. 13. Gener-
ally each λi has a real and imaginary part. The real part,
R(λi), determines how dominant the associated eigenmode
is in the dynamics, with less negative values being more
dominant. Equivalently, the eigenmodes with the largest e-
folding timescales, τi , dominate the dynamics (recall τi =
−1/R(λi)). We choose to represent the real part of each
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Figure 13. Spatial precursors of the final superrotation transition at vertical height σ = 0.74. The seven leading eigenvalues of the Jacobian
of the global horizontal wind field fluctuations (δv(t)) around the mean state v as RoT changes. The real part of the eigenvalues, determining
the stability and the dominance in the dynamics of the associated mode, are shown in the upper-middle panel as a timescale τ =−1/R(λi ).
The corresponding imaginary part of the eigenvalues, determining the oscillation frequency of the associated mode, is shown as an oscillation
period

(
P = 2π

I(λi )

)
. Three of the largest eigenmodes are colour coded and tracked through different values of RoT to show how they evolve

in the spectrum of J (middle column). In (c) and (d) the eigenmodes associated with the colour-coded eigenvalues are shown. Eigenmodes
are dynamic but are shown at t = 0 before they oscillate with period P and damping takes place (exponential decay with timescale τ ). The
filled coloured contours indicate the magnitude of the δu(σ,θ,φ, t) component of the mode (eigenmodes are dimensionless) with δu < 0
(blue) and δu > 0 (red) shown. Arrows show the full vector field δv(σ,θ,φ, t). The modes are (a) Earth-like (black), (b) precursor (red),
(c) superrotation (blue) and (d) swirly (magenta).

eigenvalue as a timescale τi in the upper-middle panel of
Fig. 13.

The imaginary part of each eigenvalue, ωi = I(λi), deter-
mines the oscillation frequency of the associated eigenmode.
We choose to represent the imaginary part of each eigenvalue
as the period of the oscillation Pi = 2π

ωi
in the lower-middle

panel of Fig. 13.
Each black dot represents one of the seven leading eigen-

values. At low values of RoT , the timescales of the leading
modes are very close or the same (degenerate) within calcu-
lated error bounds from finite-sample-length tf− ts. This ef-
fective degeneracy in J can result in some non-uniqueness in
the decomposed eigenmodes. In contrast, leading τi become
well separated for RoT > 0.36 (around the start of the oscil-
lations where skewness peaks) and eigenmodes can be reli-
ably inferred. We have highlighted how the τi of three lead-
ing eigenmodes around the transition change with RoT in the
upper-middle panel and the associated oscillation periods Pi
in the lower-middle panel Fig. 13. These are colour coded
to the associated spatial mode: black is the Earth-like mode

(Fig. 13a), red is the precursor mode (Fig. 13b), blue is the
superrotation mode (Fig. 13c) and magenta is the “swirly”
mode (Fig. 13d).

6.1.2 Eigenvectors of J : spatial mode structure

The leading modes of J , the eigenvectors associated with the
eigenvalues with the largest τi around the final transition, are
discussed next. These are dynamic modes that change with
time according to Eq. (A10). We have tried to show the evo-
lution of the precursor and superrotation mode through one
full oscillation in Fig. 14 (animations of these modes are also
available; see the “Video supplement”). These modes show
how the vector wind field adjusts when perturbed from its
mean state. An analogy would be the most visible pattern of
a drum skin vibration (the dominant eigenmode) from rest
(the mean state) when hit with a drumstick (the perturba-
tion). Eigenvectors for a real-valued Jacobian are unique up
to a global sign provided eigenvalues are non-degenerate, i.e.
δx̃i ≡−δx̃i .
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Earth-like mode. This spatial pattern can only be identified
for RoT = 0.02, which is an Earth-like simulation (black,
Fig. 13a). Although it is the dominant mode, due to the
close spacing of the τi at RoT = 0.02, this pattern alone
does not account for very much of the dynamics of δv. It
has a timescale of τ ∼ 20 d and an oscillation frequency of
P ∼ 20 d. This mode is like a jet stream, capturing the mid-
latitude instabilities.

Precursor mode. The precursor mode spatial pattern (red,
Fig. 13b) appears at RoT ∼ 0.5 and is the dominant mode in
the fluctuation dynamics between RoT ≈ 0.75 and RoT =
0.87, although a second mode, the superrotation mode, is
similar in size during this RoT interval. At RoT = 0.87 the
mode peaks in τ with a decay timescale of τ ∼ 25 d, and this
is when the early warning indicators of Sect. 4 all peak just
before the transition. It is responsible for the shape of the
variance of zonal mean u in Fig. 6 and the oscillating au-
tocovariance function R(tlag) in the same figure as it is a
zonal-wavenumber-0 mode with P ∼ 25 d. This is why we
refer to this mode as the precursor mode. After the peak,
this mode then reduces quickly in importance until it is no
longer detectable at RoT ∼ 1.3. It is the third-largest mode
from RoT > 1. The evolution of this mode through one full
cycle is shown in Fig. 14b. Physically, this appears to repre-
sent the fluctuations in the strength of mean meridional over-
turning circulation, particularly in fluctuations in the strength
of the Hadley cells.

Superrotation mode. This mode alone clearly dominates
the dynamics (largest τi) when the atmosphere becomes fully
superrotating for RoT ≥ 1 (blue, Fig. 13c). It is also an im-
portant component of the fluctuation dynamics around the
transition at RoT ∼ 0.75 when it is a similar size to the pre-
cursor mode. This is also when it first appears as a mode
of J . We call this mode the superrotation mode. The e-
folding timescale of this mode gets as large as τ ∼ 200 d past
RoT > 1 and has an oscillation frequency of P ∼ 4 d. It is a
mode with a zonal wavenumber of 1. The evolution of this
mode through one full cycle is shown in the second row of
Fig. 14, and this shows that it is propagating eastward. This
mode is has a similar pattern to the Kelvin–Rossby instability
identified by Mitchell and Vallis (2010) and others for a fully
superrotating state, meaning that this is where an equatorial
Kelvin wave (the equatorial lobe) couples with off-equatorial
Rossby waves (the chevron-like lobes) that mutually amplify
each other and converge zonal momentum on to the Equator.

Swirly mode. This mode is significant in the fluctuation dy-
namics after the superrotation transition (magenta, Fig. 13d),
particularly for larger values of RoT , although it is never the
dominant mode. It is a mode with a zonal wavenumber of
2 and oscillation frequency P ∼ 2 d. We call this mode the
swirly mode.

The start of the plateau in u in Fig. 6 coincides with the ap-
pearance of the precursor mode, and the plateau ends with the
appearance of the superrotation mode. One could argue the
plateau in u is also a precursor to the superrotation transition.

However, it is the appearance of the precursor mode and its
properties that produce the EWSs (rising variance, increasing
α(tlag), R(tlag)) and heralds the transition to superrotation.

6.2 First transition: RoT ∼ 0.07 at σ ∼ 0.2

We next look at the eigenmodes around the first transition to
superrotation at vertical height σ ∼ 0.2. This first transition
occurs near the tropopause. Because of the long timescales
near the tropopause, we have run 10-year simulations and
calculated J for the last 9 years of the simulation to help
resolve the distinct modes (Fig. 15).

The first transition to superrotation occurs at vertical
height σ ∼ 0.2 at RoT ∼ 0.07, and here we find a zonal-
wavenumber-1 pattern very similar to the superrotation mode
developing prior to the transition and dominating the dy-
namics. It is a long-period (P ∼ 50–100 d) travelling mode;
however, it is propagating westward rather than eastward
(Fig. 15a). This mode propagates westward, increasing in
period until at the transition the mode becomes effectively
a standing mode (P →∞), at least up to the temporal
resolution the simulations are able to resolve. It then be-
comes a long-period travelling-wave pattern again around
RoT ∼ 0.09 but now propagates eastward like the superro-
tation mode following the final transition.

Around the point of the first transition, the westward-
propagating superrotation mode is replaced by a stand-
ing zonal-wavenumber-0 mode as the largest mode of J
(Fig. 15b), rapidly dominating the dynamics with relatively
large τ (green mode and line in Fig. 15). This remains the
dominant mode until at least RoT = 0.14.

It is harder to resolve modes well at vertical heights above
σ < 0.22 due to the increased timescales. Even at σ = 0.22
and with 9 years of daily data to reconstruct J , only the
“standing” mode (green mode) has a sizeable gap in between
eigenvalues to resolve the mode well.

6.3 Full vertical structure

The leading eigenmode structure follows a typical sequence,
like those displayed in Figs. 16 and 17, at vertical heights
between the first transition (σ ∼ 0.2) and the final transi-
tion (σ = 0.74). We have chosen vertical height σ = 0.66 to
show this typical sequence. This height is above the bound-
ary layer and thus does not experience Rayleigh damping.
The transition to superrotation at this vertical height occurs
at RoT ∼ 0.36.

The sequence of leading eigenmode from low to high RoT
is as follows. A zonal-wavenumber-1 pattern similar to the
superrotation mode (blue in Figs. 16 and 17) develops just
before the local transition to superrotation at that particular
vertical level. This eigenmode is then replaced by a zonal-
wavenumber-0 standing mode pattern (green) at the transi-
tion to superrotation at that particular vertical level. As RoT
is further increased, the precursor mode dominates until the
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Figure 14. Dynamic evolution of the eigenmodes of J at vertical height σ = 0.74. As the eigenmodes of δv(σ,θ,φ, t) change with time
according to Eq. (A10), we have tried to show this evolution through one full oscillation (please see the Video supplement for more in-
formation) of two of the dominant modes in Fig. 13. The filled colour indicates the δu(σ,θ,φ, t) component of the mode (eigenmodes are
dimensionless) with δu < 0 (blue) and δu > 0 (red) shown. Arrows show the full vector field δv(σ,θ,φ, t). The columns show the mode at
the start of the cycle (t = 0) and advance by a quarter of a cycle left to right. The rows of the figure show the modes: (a) precursor (red) and
(b) superrotation (blue).

final transition before the zonal-wavenumber-1 superrotation
mode finally comes back and dominates the fluctuation dy-
namics following the final transition.

Generically, the local transition to superrotation at a par-
ticular vertical level is preceded by a long-period zonal-
wavenumber-1 superrotation mode that is replaced at the
transition by a standing zonal-wavenumber-0 mode. The fi-
nal transition to superrotation, however, is preceded by the
precursor mode.

7 Discussion and conclusion

The motivation for this study came from Isaac Held’s ex-
cellent blog (Held, 2016). One of the posts on that blog
introduced the work of Suarez and Duffy (1992), who ob-
served an abrupt transition to a superrotating state in an ide-
alised two-vertical-level GCM as a longitude-dependent heat
source in the tropics was increased. The atmospheric state in
this model also showed bistability, i.e. both superrotating and
regular, and present-day atmospheric states were stable for
the same value of tropical heating. This example has many
similarities with other climate tipping points (Lenton et al.,
2019) – abrupt changes in state caused by relatively small
changes in forcing parameters. These are generally regarded
as low-probability, high-risk events. One such example is the

Atlantic meridional overturning circulation (AMOC), which
can abruptly change from an on state to an off state as fresh-
water flux into the North Atlantic is increased (Stommel,
1961; Vellinga and Wood, 2002; Mecking et al., 2016). The
AMOC can also show bistability. The off state can persist
as the freshwater flux is decreased back below the original
threshold. There are a variety of other widely studied cli-
mate tipping points (e.g. the Amazon rainforest, Greenland
ice sheet and Arctic sea ice); however, superrotation has not
received the same attention. One of the motivations of this
work was to begin to correct this deficiency.

Unlike Suarez and Duffy (1992), where the control pa-
rameter varied (the tropical heating) is arguably relevant to
future anthropogenic climate change, our control parameter,
the thermal Rossby number (RoT ), a non-dimensional num-
ber that controls the global atmospheric dynamics, is proba-
bly not relevant to future climate change. Unlike the abrupt
transition in equatorial mean zonal u observed in Suarez and
Duffy (1992), our transition is smooth as the control pa-
rameter is varied. The third difference is that we have not
been able to detect bistability (Sect. 5), although evidence of
noise-induced transitions between multiple states (flickering)
was found within a subset of the control parameter range.

Although the thermal Rossby number is not likely to
change very much as the climate warms, the mechanism
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Figure 15. Spatial precursors of the first superrotation transition at vertical height σ = 0.22. The seven leading eigenvalues of the Jacobian
of the global horizontal wind field fluctuations (δv(t)) around the mean state v as RoT changes. The real part of the eigenvalues, determining
the stability and the dominance in the dynamics of the associated mode, are shown in the left-hand upper panel as a timescale τ =−1/R(λi ).
The corresponding imaginary part of the eigenvalues, determining the oscillation frequency of the associated mode, is shown as an oscillation
period

(
P = 2π

I(λi )

)
. The two largest eigenmodes are colour coded and tracked through different values of RoT to show how they evolve

in the spectrum of J (left column). In the right column we show the eigenmodes associated with the colour-coded eigenvalues. The zonal-
wavenumber-1 superrotation eigenmode (blue) (a) is dynamic over a range of RoT but is shown at t = 0 before it oscillates with period P
and damping takes place (exponential decay with timescale τ ). The zonal-wavenumber-0 standing mode (green) is a standing wave pattern
(P →∞) and dominates the spectrum of J as the vertical level becomes superrotating. The filled coloured contours indicate the magnitude
of the δu(σ,θ,φ, t) component of the mode (eigenmodes are dimensionless) with δu < 0 (blue) and δu > 0 (red) shown. Arrows show the
full vector field δv(σ,θ,φ, t). The modes are (a) the superrotation mode (blue) and (b) the standing mode (green).

for the transition may well be relevant, namely the Kelvin–
Rossby instability. By changing the latitude of the baroclinic
instability forcing, Zurita-Gotor et al. (2022) found that an
abrupt transition to superrotation could be achieved via the
Kelvin–Rossby instability mechanism. They also postulated
this mechanism might be relevant for the transition found in
warm climates by Caballero and Huber (2010). The simula-
tions reported here do show early warnings of this transition
and therefore serve as a test bed for the second motivation
of this paper, namely whether we can detect this transition
before it happens.

In the simulations reported here, the first transition to
superrotation occurs just below the tropopause at vertical
height σ ∼ 0.2 and RoT ∼ 0.07. As RoT increases, this su-
perrotating region expands horizontally into the tropics, ver-
tically up into the stratosphere and downwards into the tro-
posphere. The superrotating region finally terminates at σ =
0.83 at RoT = 0.87 and does not extend any further, at least
for values up to RoT = 11.4. We term the transition of the
lowest vertical level to superrotation at σ = 0.74 as the final

transition. We therefore do not see surface superrotation in
these simulations, although this is known to occur in small
regions of parameter space (Caballero and Carlson, 2018).

The usual early warnings of local bifurcation type tipping
(rising variance and autocorrelation, Sect. 4) all increase be-
fore the both the first and final superrotation transition, in-
dicative of critical slowing down near a local bifurcation.
These EWSs are harder to detect near the tropopause around
the first transition due to the difficulty resolving the differ-
ences between the long timescales that are naturally present
in this part of the atmosphere.

In addition, the full autocovariance function, R(tlag),
showed oscillations of a period of P ∼ 25 d that became
increasingly less damped as the final transition was ap-
proached, reminiscent of a Hopf type bifurcation (see
Eq. 16). In a Hopf bifurcation, a pair of complex conju-
gate eigenvalues of the Jacobian move in the complex plane
from the negative real half and cross the imaginary axis at
the point of bifurcation (see Strogatz, 2001, for details). Be-
fore the bifurcation, this results in critical slowing down of
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Figure 16. Eigenmodes of J at vertical height σ = 0.66. The seven leading eigenvalues of the Jacobian of the global horizontal wind field
fluctuations, δv(t), around the mean state v as RoT changes. The three largest eigenmodes are colour coded and tracked through different
values of RoT to show how they evolve in the spectrum of J (middle column). In (c) and (d) we show the eigenmodes associated with the
colour-coded eigenvalues. The zonal-wavenumber-0 standing eigenmode (a) dominates the dynamics just after the vertical level σ = 0.66
becomes superrotating at RoT ∼ 0.36. The precursor mode (b) takes over as the 25 d oscillations become more prevalent (RoT > 0.5).
Following the final transition at RoT > 0.87, the superrotation mode (c) dominates the dynamics. The filled coloured contours indicate the
magnitude of the δu(σ,θ,φ, t) component of the mode (eigenmodes are dimensionless) with δu < 0 (blue) and δu > 0 (red) shown. Arrows
show the full vector field δv(σ,θ,φ, t).

the dynamics (increasingly less negative R(λ)) and oscilla-
tions of frequency ω = I(λ). These are observed in the su-
perrotation transition. These oscillations are not present all
the way through the troposphere. They exist for σ > 0.3 and
peak at σ ∼ 0.45. These oscillations were correlated with os-
cillations in the strength of the Hadley cells. Both Northern
Hemisphere and Southern Hemisphere cells simultaneously
increase and decrease in strength as δu(σ, t) decreases and
increases in strength, respectively.

In Thompson et al. (1994), the authors classify all
codimension-1 bifurcations via observations from a slow
control parameter sweep in a series of tables. Using this clas-
sification, our observations of a smooth transition, a Hopf-
like autocorrelation function and lack of hysteresis point to a
local supercritical Hopf bifurcation being present at the tran-
sition when the control parameter is the thermal Rossby num-
ber.

The presence of oscillations in δu motivated us to use a
more general technique to study the transitions. The usual
theory of EWSs relies on scalar state variables and first-order
dynamics. This does not permit oscillations or higher-order

dynamics. We gave a pedagogical introduction to the more
general theory based on POP analysis in Appendix A and
calculated the Jacobian and normal modes for the full global
vector wind field δv(σ,θ,φ). EWSs are designed to detect
changes in the stability of the mean state and therefore must
be functions of the Jacobian’s eigenvalues that entirely de-
scribe the linear stability of the mean state. We therefore
chose to study the eigenvalues and eigenmodes of the Ja-
cobian as they are the sole determinant of traditional EWSs
based on linear stability analysis.

When a system approaches a transition resulting from a
local bifurcation, often a single eigenmode of the Jacobian
starts to dominate the dynamics. Close to the final transi-
tion, we found two eigenmodes (or spatial patterns) that the
fluctuations, δv, preferentially oscillate in before slowly de-
caying back towards the mean state v. One of these modes,
the precursor mode, was a zonal-wavenumber-0 mode that
we attribute to the 25 d oscillations in the equatorial zonal
mean δu and the rise in variance and autocorrelation seen in
Sect. 4. There is also a second mode of roughly the same size
around the final transition – the superrotation mode – a zonal-
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Figure 17. Leading eigenmodes of J at vertical height σ = 0.66 as RoT is varied. The e-folding timescale of the mode and period is given in
each subtitle in units of days. Subtitles are colour coded by the representative mode. The superrotation-like zonal-wavenumber-1 mode (blue)
first appears as the leading eigenmode at RoT = 0.21. It is an eastward-propagating mode at this RoT and vertical level. This is replaced
by the standing mode (green), a mode with a zonal wavenumber of 0 and infinite period, as this vertical level becomes superrotating. This
is then replaced by another zonal-wavenumber-0 mode, the precursor mode (red), as the leading mode at RoT = 0.75. This is a previously
identified mode with period of P ∼ 25 d. This is then replaced by the superrotation mode (blue) again at RoT ≥ 0.97, which is also eastward
propagating.

wavenumber-1 mode that comes to dominate the dynamics
as the majority of the troposphere became fully superrotat-
ing. This is an eastward-propagating mode of a roughly 4 d
period that looks very similar to the coupled Kelvin–Rossby
mode identified by others.

Detecting the signature of the precursor mode in the spatial
or temporal correlations would serve as the best EWS of the
final transition. These modes were calculated for the global
wind field. It is plausible that the precursor mode would be
even more significant in the dynamics of the tropics if the
spatial analysis was performed over just the tropical region
rather than the entire globe. The attribution of a spatial sig-
nature as an early warning signal is something that has not
been reported before, as far as we are aware, for a climate
tipping point.

Just before the first transition, a zonal-wavenumber-1
mode very much like the superrotation mode appears, al-
though it is propagating very slowly westward rather than
eastward. At the first transition, this is replaced by a stand-
ing zonal-wavenumber-0 mode. As RoT increases, at ver-
tical heights σ > 0.3 this mode is replaced by the oscillat-
ing precursor mode, which peaks at the final transition at

RoT = 0.87 before the superrotation mode returns and dom-
inates for RoT > 0.87. Generically it appears the local tran-
sition to superrotation at a particular vertical level is pre-
ceded by a long-period zonal-wavenumber-1 superrotation
mode that is replaced at the transition by a standing zonal-
wavenumber-0 mode.

One may wonder why oscillations are not observed for
RoT > 1.3 after the precursor mode disappears from the dy-
namics in the scalar EWSs even though the dominant modes
in this regime, the superrotation mode and the swirly mode,
are oscillatory with periods of P ∼ 4 and P ∼ 2 d, respec-
tively. This is due to their zonal wavenumbers. Remember
that equatorial zonal u was averaged over a latitude band in
Sect. 4. For non-zero zonal wavenumbers, the average will
be always be zero, as there are an equal number of peaks
and troughs. A zonal-wavenumber-0 pattern like the precur-
sor mode. however, will have a non-zero average in a zonal
mean.

There are still questions about the dynamical mechanisms
giving rise to the observed eigenmodes around the transition.
There are a lot of interesting dynamics going on. The su-
perrotation mode appears to be the Kelvin–Rossby instabil-
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ity previously identified and studied by others (i.e. Williams,
2003; Wang and Mitchell, 2014; Mitchell and Vallis, 2010;
Zurita-Gotor and Held, 2018; Zurita-Gotor et al., 2022). In
this mechanism, superrotation arises from the wave–mean-
flow interaction, specifically the interaction of equatorial
Kelvin and off-equatorial Rossby waves that mutually am-
plify each other and generate a planetary-scale mode that
converges zonal momentum onto the Equator. The global
25 d oscillations present around the transition are correlated
to the strength of the Hadley cell intensity and are present up
until the top of the meridional overturning cells. The banded
zonal-wavenumber-0 structure also seems to hint that this
mode represents the meridional overturning dynamics. It is
also known that conventional Hadley cells with uplift at the
Equator flux momentum out of this equatorial region and
therefore should reduce the magnitude of superrotation based
on how strong these cells are (which is observed here). These
are hints at the underlying dynamics and details that have
been left to a future study.

The degree of spatial correlation in the fluctuations, partic-
ularly in the precursor mode, is reminiscent of a phase tran-
sition (Anderson, 1984). Traditionally, phase transitions are
studied via the statistics of the spatial fluctuations around the
mean state. The hallmarks of a phase transition are diverging
correlation length and correlation time (resulting in critical
slowing down) and an abrupt change in the order parameter
of the state. In particular, continuous phase transitions have
spatial correlation functions that are described by a power
law at the critical point giving rise to scale-invariant physics
and often involve a broken symmetry. What are the similar-
ities with the transition to superrotation? Diverging correla-
tion time is present (τ ), and diverging correlation length is
qualitatively present (as seen in the pattern of the precursor
mode, at least zonally), although we have not formally cal-
culated spatial correlation functions. However, Dylewsky has
found quantitative evidence via a neural network trained on
the spatial information from a 2D Ising model phase transi-
tion. This trained neural network clearly predicts the superro-
tation transition before it occurs (Daniel Dylewsky, personal
communication, 2023; see also Dylewsky et al., 2023).

Although the probability of transitioning to an equatorial
surface superrotating atmospheric state under future climate
change seems unlikely (Caballero and Carlson, 2018), it is
not zero (see Held, 2016). There is (limited) evidence that it
has happened in the past and can happen in the future (Huang
et al., 2001; Caballero and Huber, 2010; Tziperman and Far-
rell, 2009). As with other tipping points, this makes super-
rotation a low-probability but high-risk event. Even though
a surface superrotating atmospheric state seems unlikely, su-
perrotation happens readily in the upper troposphere under
high-end global warming scenarios. However, the impact on
surface climate would probably be less severe (Caballero and
Carlson, 2018). It would be interesting to repeat the experi-
ment of Suarez and Duffy (1992) with the Isca framework,
which would show a more relevant way of transitioning to su-

perrotation under climate change, and see if the EWSs iden-
tified here are still present.

Appendix A: Vector-valued state parameter
generalisation for early warnings of
bifurcation-induced tipping

We can repeat the steps in Sect. 4 for the vector generalisa-
tion (see Williamson and Lenton, 2015, for further details).
We again want to study the response of small fluctuations
δx(t) around some mean state x to assess the stability of that
mean state. As the state becomes less stable approaching the
transition, fluctuations become larger and longer lived. The
state of the system in analogy to Eq. (9) is

x(t)= x+ δx(t). (A1)

The N components of the vector x(t) can be written explic-
itly as

x(t)= (x1(t),x2(t), . . .,xN−1(t),xN (t))T . (A2)

Similar expressions can be written for δx and x. The su-
perscript T denotes the matrix transpose operator. The in-
dividual scalar components of x(t) are indexed with i, which
can take the values i ∈ {1,2, . . .,N − 1,N}. Each of the xi
values is assumed to evolve autonomously, each according
to a different and generally non-linear function fi(x). Note
that each fi has the multi-variable input x. This means that
fi is a function of all {x1,x2, . . .,xN } in general, meaning
that each xi value is coupled, possibly non-linearly. For-
mally, each xi evolves according to ẋi = fi(x). Provided
the fluctuations are not too large, the dynamics are approx-
imated well by making a multi-variable Taylor expansion
of each fi(x) to the first order around the mean state, i.e.
fi(x)≈ fi(x)+

∑N
j=1J (x)i,j δxj , where instead of a single

number describing the stability of the system, the Jacobian is
now an N ×N matrix encoding the linear coupling between
the components of x. The element in the ith row and j th col-
umn of J is given by J (x)i,j =

∂fi (x)
∂xj
|x=x . The dynamics of

the fluctuations can be now be approximated with a linear
first-order ODE; however, it is now a matrix equation

˙δx ≈ J (x)δx. (A3)

Analogous to the scalar x case, for a time-invariant mean
state x (and time-invariant J (x)), Eq. (A3) has the solution

δx(t)= eJ (x)tδx(0). (A4)

J (x) still determines the behaviour and fate of small per-
turbations from x and therefore x’s stability. However, J (x)
is a more complicated and general object than the single
number of Sect. 4 due to the couplings between the various
δxi (non-zero off-diagonal entries of J ). One can uncouple
the dynamics into N uncoupled modes, δx̃i , by transforming
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each of the δxi values into a new basis (denoted by a tilde)
that is a linear combination of the old δxi , i.e.

δx̃i(t)=
N∑
j=1

a
(i)
j δxj (t), (A5)

where a(i)
j represents scalar (and possibly complex) coeffi-

cients. These new δx̃i values are vectors, although they be-
have like scalars and evolve independently of each other.
Therefore, one can treat the dynamics as N scalar (although
generally complex, rather than real valued) first-order ODEs
like the one in Eq. (10). The problem of finding this new un-
coupled basis, where the off-diagonal entries of J are zero, is
equivalent to finding the eigendecomposition of the Jacobian

J =QJ̃Q−1, (A6)

where J̃ is a diagonal matrix (only non-zero entries are on
the diagonal) with N eigenvalues, each labelled by λi on the
diagonal of J̃ associated with the N eigenvectors of J , de-
noted qj , given by the j th column of matrix Q. The same
Q also diagonalises the matrix eJ (x)t . Thus, the new basis in
Eq. (A5) is simply given by δx̃i =

∑N
j=1(Q−1)i,j δxj , where

(Q−1)i,j ≡ a
(i)
j gives the coefficients to uncouple the equa-

tions. The new basis given by the set of δx̃i is the eigenmode,
but these also go by other names; i.e. they are often known
as linear, critical or normal modes.

How each of the δx̃i evolve now reduces to theN equation

δx̃i(t)= eλi tδx̃i(0), (A7)

and therefore again there are three possible fates of an initial
perturbation of amplitude δx̃i(0) on mode i depending on the
sign of the real part of each of the λi . (i) The real part of λi
is negative (R(λi)< 0), where the initial fluctuation in the
normal mode δx̃i(0) decays, and this particular mode will
be stable to perturbations. In this case a recovery time for
this mode can be defined as τi =−1/R(λi). (ii) The real part
of λi is positive (R(λi)> 0), where any initial fluctuation in
this mode will get exponentially larger with time, and this
mode will be unstable. (iii) The real part of λi is zero, i.e.
R(λi)→ 0. In this case, perturbations will not grow or decay
in this mode. This neutral stability occurs at a bifurcation.

The evolution of the fluctuations around the mean of the
entire system is described by a linear superposition of all N
modes, i.e.

δx(t)=
N∑
i=1

eλi tδx̃i(0). (A8)

Therefore, all N modes must be stable for the overall sys-
tem to be stable. If one or more of the modes are unstable,
as time increases the unstable mode with the most positive
real part will swamp the response of the other N − 1 modes
and cause the entire system to be unstable. This means that

for a stable system the requirement must be R(λi)≤ 0 ∀i.
Provided all the modes are stable, the δx̃i with the least neg-
ative R(λi) will dominate the dynamics of the system sim-
ply because they decay more slowly (larger τi) than those
modes associated with shorter τi (more negative R(λi)). This
means that the dynamics of the entire system may be de-
scribed well by just a few (n) modes, where n < N , with the
largest timescales such that

δx(t)≈
n∑
i=1

eλi tδx̃i(0), (A9)

where λi values are ordered in increasing size, i.e. R(λi)≥
R(λi+1). An extreme example is when a local bifurcation is
approached and the timescale of one (or more) of the modes
is τi→∞ (R(λi)→ 0) and dominates the dynamics to such
a degree that the system can be described by just that one (or
more) mode.

The eigenvalues λi can also have imaginary components.
These give rise to oscillations in the associated mode with an-
gular frequency ωi = I(λi). For a real-valued J , complex λi
values always occur in complex conjugate pairs with asso-
ciated complex conjugate eigenvectors. If eigenvalues (and
therefore eigenvectors) are complex, the superposition with
its conjugate mode gives a real but time-evolving spatial
mode. Explicitly, for a single dominant complex (oscillatory)
mode (R(λ1)�R(λi), ∀i 6= 1), the dynamics are

δx(t)∼ eλ1tδx̃1+ e
λ∗1tδx̃∗1, (A10)

∼ e
−

t
τ1
[
cos(ω1t)R(δx̃1)− sin(ω1t)I(δx̃1)

]
, (A11)

∼ e
−

t
τ1 cos(ω1t +φ1)|δx̃1|. (A12)

This means that the mode spatially oscillates between its real
and imaginary parts at angular frequency ω1. In the last line,
we define the following vector phase: φ1 = arg(δx̃1).

For a dominant real mode, the dynamics are

δx(t)∼ eλ1tδx̃1, (A13)

∼ e
−

t
τ1 δx̃1. (A14)

Since ω1 = 0 and I(δx̃1)= 0, there is no conjugate mode. A
mode associated with a real eigenvalue has real eigenmode,
and therefore the spatial pattern remains fixed, decaying ex-
ponentially and uniformly from the constant multiplier on

the pattern e−
t
τ1 . This case is analogous with the first-order

dynamics scalar case of Sect. 4, with the constant multiplier
being the lag-1 autocorrelation and the spatial mode analo-
gous to the scalar variable x.

One may wonder how Eq. (A3) describes higher-order dy-
namics since it is a first-order ODE. A N th-order system can
be written as a first-order vector ODE with N dimensions.
For example, the third-order system
...
x + aẍ+ bẋ+ cx = 0, (A15)
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can be written as a first-order vector ODE in three dimen-
sions by making the identifications y = ẋ and z= ẏ so that
Eq. (A15) can be written

ẋ = y, (A16)
ẏ = z, (A17)
ż=−cx− by− az, (A18)

or as a first-order vector ODEẋẏ
ż

=
 0 1 0

0 0 1
−c −b −a

xy
z

 , (A19)

which can be written more compactly in the same form as
Eq. (A3) as follows:

ẋ = Jx. (A20)

Under the assumption of white-noise forcing (or equiva-
lently independent errors in δxi), one can reconstruct J from
time series of the δxi , with each time series sampled at an in-
terval 1t between time steps as follows (see Williamson and
Lenton, 2015, for details)

eJ (x)1t
= A6−1, (A21)

where 6 is the covariance matrix of δx and A is the lagged
covariance matrix:

6 = E[δxtδx
T
t ], (A22)

A= E[δxt+1tδx
T
t ]. (A23)

One can then find the eigenmodes and eigenvalues of J (and
hence their stability). For vector-valued x, the analogous
EWSs to the scalar case (Sect. 4) are now matrix valued:

A6−1
≡ α(tlag), (A24)

6 ≡ Var(x). (A25)

However, we now have N modes (eigenvectors of J ) associ-
ated with N timescales (eigenvalues of J ). The autocorrela-
tion and variance of early warning signals are still functions
of J (x), but they are now also matrices (autocovariance and
covariance matrices, respectively). We analyse the properties
of J in this paper as this is what ultimately determines sta-
bility (and the EWSs, which are functions of J ).
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