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Abstract. Climate sensitivity and aerosol forcing are two of the most central, but uncertain, quantities in climate
science that are crucial for assessing historical climate as well as future climate projections. Here, we use a
Bayesian approach to estimate inferred climate sensitivity and aerosol forcing using observations of temperature
and global ocean heat content as well as prior knowledge of effective radiative forcing (ERF) over the industrial
period. Due to limited information on uncertainties related to the time evolution of aerosol forcing, we perform
a range of sensitivity analyses with idealized aerosol time evolution. The estimates are sensitive to the aerosol
forcing pathway, with the mean estimate of inferred effective climate sensitivity ranging from 2.0 to 2.4 K,
present-day (2019 relative to 1750) aerosol ERF ranging from − 0.7 to −1.1 Wm−2, and anthropogenic ERF
ranging from 2.6 to 3.1 Wm−2. Using observations and forcing up to and including 2022, the inferred effective
climate sensitivity is 2.2 K with a 1.6 to 3.0 K 90 % uncertainty range. Analysis with more freely evolving aerosol
forcing between 1950 and 2014 shows that a strong negative aerosol forcing trend in the latter part of the 20th
century is not consistent with observations. Although we test our estimation method with strongly idealized
aerosol ERF pathways, our posteriori estimates of the climate sensitivity consistently end up in the weaker end
of the range assessed in the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC
AR6). As our method only includes climate feedbacks that have occurred over the historical period, it does not
include the pattern effect, i.e., where climate feedbacks are dependent on the pattern of warming which will likely
change into the future. Adding the best estimate of the pattern effect from IPCC AR6, our climate sensitivity
estimate is almost identical to the IPCC AR6 best estimate and very likely range.

1 Introduction

Historically, anthropogenic aerosols have partly masked the
greenhouse-gas-driven warming due to their general cooling
effect. The magnitude of this aerosol cooling over the past
century is one of the main uncertainties in our understanding
of historical climate change (Forster et al., 2021) and a lim-
iting factor for future climate projections (Watson-Parris and
Smith, 2022).

Climate feedbacks, especially those governed by highly
parameterized processes in climate models (e.g., cloud feed-
backs), are another large source of uncertainty in climate
predictions (Hawkins and Sutton, 2009) and a reason for
the large spread in climate sensitivity in climate models
(Zelinka et al., 2020; Sherwood et al., 2020). The total cli-
mate feedback strength is commonly quantified by the equi-
librium climate sensitivity (ECS), defined as the equilib-
rium surface air temperature change following a doubling of
the atmospheric CO2 concentration. Complementary to ECS
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quantified from climate model simulations, observed histor-
ical climate change can be used to constrain the total feed-
back strength. However, this method is limited by the uncer-
tain historical forcing of the climate (Gregory et al., 2020;
Forster, 2016; Knutti et al., 2017), where aerosol forcing is
the main source of uncertainty (Forster et al., 2021, 2024).
The forcing of the climate system is commonly expressed as
effective radiative forcing (ERF), defined as the change in
the Earth energy balance relative to pre-industrial conditions
due to a change in an external driver of climate change and
including adjustments to this forcing that are not mediated
by changes in surface temperature (Sherwood et al., 2015).
For aerosols, adjustment processes, especially those related
to clouds, are important and contribute to the large uncer-
tainties in aerosol ERF (Bellouin et al., 2020). Importantly,
both the magnitude of the present-day total aerosol ERF and
the historical pathway of aerosol ERF – how aerosols have
evolved over time – contribute to the uncertainty in obser-
vational constraints on climate sensitivity. Both the climate
feedbacks and aerosol ERF are crucial for assessing histori-
cal climate change using models (Gillett et al., 2021).

For several models contributing to the sixth phase of the
Coupled Model Intercomparison Project (CMIP6), modeled
temperatures in the middle to late 20th century are colder
than observed (Flynn and Mauritsen, 2020) and show a more
rapid warming than in the observations since the early 1980s
(Tokarska et al., 2020). Studies point to aerosol ERF that is
too strong as part of the reason for the mismatch between
modeled and observed temperatures in the second half of the
20th century (Flynn et al., 2023; Flynn and Mauritsen, 2020;
Gillett et al., 2021; Smith and Forster, 2021; Zhang et al.,
2021). Aerosol ERF is diagnosed from models contributing
to CMIP6 within the Radiative Forcing Model Intercompari-
son Project (Pincus et al., 2016) (RFMIP) and the Aerosol
Chemistry Model Intercomparison Project (Collins et al.,
2017) (AerChemMIP). It is noteworthy that the aerosol ERF
time evolutions from these models, driven by the same emis-
sion inventory, show considerable variation, with the timing
of the peak in negative total aerosol ERF varying from 1975
to 2010 (C. J. Smith et al., 2021).

Estimated climate sensitivity based on historical observa-
tions has also been found to be sensitive to different aerosol
forcing pathways (Skeie et al., 2018). In IPCC AR6, time se-
ries of ERF from 1750 to 2019 were presented for a range
of climate forcers (Forster et al., 2021), and more recently
these have been extended to 2022 (Forster et al., 2023) and
2023 (Forster et al., 2024). The uncertainties in these forcing
time series are presented as the 5th and 95th percentiles, but
uncertainties in the time evolution of these forcings are not
quantified. As shown in C. J. Smith et al. (2021), the differ-
ent representations of model physics result in different path-
ways of the total aerosol ERF. In addition, uncertainties in
aerosol and aerosol precursor emissions will add additional
uncertainties to the aerosol time evolution (C. J. Smith et al.,
2021).

In the emission inventory provided for CMIP6 there are
no quantifications of uncertainties (Hoesly et al., 2018). For
historical global anthropogenic SO2 emissions, uncertainties
of 8 %–14 % (5 % to 95 % confidence interval) have previ-
ously been estimated, while regional emission uncertainties
are larger (Smith et al., 2011). For black and organic car-
bon emissions from fuel combustion, uncertainties in global
emissions are larger than a factor of 2 (Bond et al., 2007).
The lifetime of aerosols is short, on the order of days (Sam-
set et al., 2014; Textor et al., 2007) and both chemical con-
version in the atmosphere (Manktelow et al., 2007) and the
forcing efficiency (Shindell et al., 2015; Kasoar et al., 2018)
are dependent on the location of emissions. Therefore, uncer-
tainties in geographical distribution and their trends, as well
as the total quantity of emissions, will add additional uncer-
tainties to aerosol ERF as diagnosed in the models.

Due to air pollution quality controls, the global emissions
of SO2 have been rapidly decreasing due to emission controls
in Europe and North America (Hoesly et al., 2018; Aas et al.,
2019) and over the latest decade in East Asia (Zheng et al.,
2018). From both observations and modeling efforts, there
is now robust evidence of a reversal of the trend in aerosol
ERF, with a reduced cooling contribution from aerosols over
the last decades (Quaas et al., 2022).

Here, building on previous work (Skeie et al., 2018, 2014;
Aldrin et al., 2012), we investigate the importance of aerosol
ERF time evolution for observational constraints on ERF and
climate sensitivity. The estimated climate sensitivity is the in-
ferred effective climate sensitivity (ECSinf), and for known
reasons ECSinf differs from ECS as calculated in climate
models (e.g., Armour et al., 2024; Sherwood et al., 2020),
which we will discuss in the Discussion section. We use a
Bayesian framework considering an energy balance model
and use the most up-to-date ERF time series and observa-
tions of temperature and ocean heat content to constrain the
ERF and ECSinf. Using a range of idealized aerosol ERF evo-
lutions, we assess the sensitivities of these estimates to the
aerosol pathway. Finally, we also allow the ERF for aerosol–
cloud interaction to freely evolve within the IPCC AR6 un-
certainty range in the most sensitive period of 1950 to 2014
and discuss the aerosol trend and its relation to the increase
in the radiative imbalance as seen from space.

2 Method

In this work ERF and climate sensitivity are estimated using
a Bayesian framework with prior estimates of historical an-
thropogenic and natural ERF and historical observations of
surface temperature and ocean heat content (OHC).

2.1 Bayesian estimation model

The Bayesian estimation model was first documented in
Aldrin et al. (2012) and further developed in Skeie et al.
(2014, 2018). The full model consists of a dynamic process
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model with an idealized representation of the Earth’s energy
balance – a simple climate model (hereafter referred to as the
SCM), a data model that describes how various observations
are related to the process states, and a parameter model that
expresses our prior knowledge of the parameters. The model
is described in detail in Appendix A. The method simultane-
ously estimates posterior estimates (including uncertainties)
of the ERFs, the ECSinf, and other model parameters.

2.2 Effective radiative forcing

The prior time series for the ERF used in this study is from
the IPCC AR6 (C. Smith et al., 2021; Forster et al., 2021) and
the extension of these forcing time series to 2022 (Forster et
al., 2023), hereafter named AR6 extended.

The IPCC AR6 provides the best estimate and the 5th and
the 95th percentile of the forcing time series. The aerosol
ERF is separated into ERF due to aerosol–radiation interac-
tions (ERFari) and aerosol–cloud interactions (ERFaci). Ta-
ble A1 lists the forcing components included in our estima-
tion. The implementation of the ERF uncertainties from AR6
and AR6 extended is described in Appendix A, and the ERF
priors are shown in Figs. S1 and S2 in the Supplement.

2.3 Observational data

The observational-based data series used in the Bayesian
estimation model are annual hemispheric means of surface
temperature (blended sea surface temperature over ocean
and 2 m temperature over land), global annual OHC for 0–
700 m and 700–2000 m, and an El Niño–Southern Oscilla-
tion (ENSO) index. Three different data series for surface
temperature and seven different data series for OHC are used.
As an ENSO index the monthly Southern Oscillation Index
(SOI) is used. The observation-based data series used are
listed in Table A2 and shown in Figs. S3–S5.

In the Bayesian estimation we use the temporal evolution
of the reported errors for the observation-based series and es-
timate their magnitudes within the model, taking into account
the possibilities that the reported standard errors may under-
estimate or overestimate the true uncertainty. For OHC, we
choose to use the temporal evolution of the uncertainty from
one dataset, as the reported uncertainties (Fig. S6) may not
include the full uncertainties in OHC (see Appendix A). It is
important to attempt to represent the full uncertainty as the
OHC data have previously been shown to have a profound
influence on observationally constrained climate sensitivity
estimates (Johansson et al., 2015; Skeie et al., 2014).

As the representation of deep-water formation in the SCM
is simplified, putting heat at the bottom layer of the model,
we compare the OHC for 700 to 2000 m in observations to
OHC below 700 m in the model. We do not include observa-
tions of OHC data below 2000 m due to limited observation
time series and assume that these are within the uncertainties
in the observed OHC.

2.4 Estimations

As a starting point, we use the baseline estimation from Skeie
et al. (2018), where the IPCC AR5 time series (Myhre et
al., 2013b) were used as the ERF priors and observations up
to 2014 were included (Skeie18). We replace the AR5 prior
with the AR6 prior and further with the AR6 extended prior.
In Fig. S1 the AR5, AR6, and AR6 extended ERF priors are
compared. IPCC AR5 did not provide estimates of how the
uncertainties evolved in time, and in Skeie et al. (2018) we
assumed that the uncertainties in ERF scaled with time and
not magnitude of the forcing as in AR6. By updating the
ERF prior by extending up to 2019 (Base) and 2022 (Base
extended), respectively, more recent observations could also
be included. When forcing priors are replaced and additional
years with observations are included (Table 1), this is done
stepwise as described in Appendix A and summarized in Ta-
ble A3.

For each ensemble member in the Bayesian estimation, the
sampled uncertainty scale factor for each ERF component is
applied to the whole time series. There are hence no uncer-
tainties in the time evolution of the ERF, identified as a limi-
tation of the method (Skeie et al., 2018). Therefore, a range of
sensitivity tests are done for the setup in Base, where aerosol
ERFs from AR6 are replaced with idealized alternative path-
ways. Four sets of sensitivity tests are performed where the
priors for ERFari and ERFaci are adjusted (Figs. S7 and S8).
First, we perform a sensitivity test where the aerosol ERFs
are smoothed. Thereafter we perform a second group of sen-
sitivity tests where aerosol ERFs in different time periods
are adjusted. In the third group of sensitivity tests we change
the year of the strongest aerosol ERF by replacing the AR6
aerosol ERF from 1950 to a chosen year by a linear ERF. The
fourth and final set of sensitivity tests is similar to the third
group of sensitivity tests, but the aerosol ERFs are kept con-
stant for the years following the end of the linear change. The
entire aerosol ERF time series is scaled, so the 2019 aerosol
ERF prior distribution is equal to the AR6 distribution. The
baseline for the two latter groups of sensitivity tests is the
smoothed aerosol ERFs. We compare the different sensitivity
tests and the baseline estimation to see the effect of different
aerosol ERF pathways on the posterior estimates of ECSinf
and ERF.

Finally, based on results from the sensitivity tests of ad-
justing the aerosol ERF in different time periods, we do a
test where ERFaci values in 1950 and 2014 are independent
of each other. We draw from the distribution of ERFaci in
1950 and use this scaling factor prior to 1950. Similarly, we
draw from the distribution in 2014 and use that scaling fac-
tor thereafter. In the period between we linearly interpolate
these two scaling factors. The rate of change in the ERFaci
prior therefore has much larger variability than in the base-
line setup.

The setup and stepwise update of the baseline estimations
as well as all the sensitivity tests are summarized in Table A3.
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Table 1. List of estimations performed with a description of the setup, ERF prior used, and end year. A description of the stepwise change
in data as well as the priors used for estimations and all the sensitivity tests are given in Table A3.

Simulation Description ERF prior End year

Skeie18 The main analysis in Skeie et al. (2018) AR5 2014
Base Base simulation with AR6 prior AR6 2019
Base extended Base simulation with AR6 extended AR6 extended prior 2022
Sensitivity tests ERFari and ERFaci from AR6 are modified in specific time

periods (see description of each test in Table A3)
AR6 2019

Sensitivity test: ERFaci trend ERFaci uncertainties in 1950 (and before) and 2014 (and after)
independent of each other

AR6 extended 2022

3 Results

In this section we present constrained estimates of ECSinf,
anthropogenic ERF, and aerosol ERF using observations of
OHC and surface temperature as well as prior forcing time
series. First, we use observations and ERF up to 2019 and
thereafter update our analysis based on data including the
year 2022. We investigate the sensitivity of the posterior es-
timates to the prior aerosol ERF temporal evolution and fi-
nally let the ERFaci evolve more freely within the uncer-
tainty range.

3.1 Estimations using AR6 and AR6 extended ERF time
series

The starting point for the analysis is the results from Skeie et
al. (2018). For Base, when the AR5 forcing prior is replaced
by the AR6 prior and estimation includes data up to 2019
(Table 1), the ECSinf posterior mean is 2.1 K and the 90 %
confidence interval (CI) is 1.5 to 2.9 K. The posterior mean
ECSinf is 0.2 K higher and the 90 % CI is narrower compared
to Skeie18, which only included data up to 2014.

We further extend the analysis up to 2022 using the ex-
tended AR6 ERF time series from Forster et al. (2023)
(Figs. S1 and S2) and updated and extended observational
time series (Table A2, Figs. S3 and S5). For this setup (Base
extended) the ECSinf estimate shifts to slightly larger values
compared to Base, with a mean estimate of 2.2 K and the
90 % CI ranging from 1.5 to 3.0 K (Fig. 1). Each step for
updating and extending the data is described Table A3, and
the resulting posteriori ECSinf is presented in Table S1 in the
Supplement.

For the transient climate response (TCR), the posterior
mean is 0.1 K higher using AR6 forcing as a prior and ob-
servations up to 2019 compared to Skeie18 with data up to
2014 (Fig. S9). In Base, the mean value is 1.5 K, and the 90 %
CI is 1.1 to 2.0 K. Extending the analysis up to 2022 resulted
in a slight increase in the TCR, with a mean value of 1.6 K
and a 90 % CI of 1.1 to 2.1 K (Fig. S9, Table S2).

The prior and posterior distributions of the anthropogenic
ERF are shown in Fig. 2. For Skeie18 with AR5 forcing prior,
the posterior and prior distributions were similar in 2014,

while in Base the prior and posterior distributions are quite
different (Fig. 2a). The prior ERF distribution in 2014 is sim-
ilar for AR5 and AR6 (Fig. 2a), while the time evolution of
the prior is quite different (Fig. 2c). The posteriori distribu-
tions of the anthropogenic ERF for each step updating ERF
prior and extending the data (Table A1) are shown in Ta-
ble S3. From this stepwise update and extension of the data
used in the estimation, the temporal evolution of the forc-
ing pathway, when replacing AR5 with AR6 forcing prior,
seems to play a large role in explaining why the prior and
posterior distributions of the anthropogenic ERF for the end
year are so different using AR6 forcing prior and similar us-
ing AR5 forcing prior (Fig. 2b). For Base, the posterior mean
is 3.1 Wm−2, with a 90 % CI from 2.6 to 3.7 Wm−2, where
the lower limit is close to the prior mean of 2.7 Wm−2 from
AR6 (Table S3).

Extending the analysis further to 2022 using the AR6 ex-
tended forcing prior, resulted in a posterior mean for an-
thropogenic ERF of 3.2 Wm−2 and 90 % CI from 2.7 to
3.7 Wm−2, which are similar to values for 2019 using the
AR6 prior (Base). The posterior distributions of anthro-
pogenic ERF in Base (for 2019) and Base extended (for
2022) were similar despite the prior distribution being shifted
to larger values in the latter (Fig. 2b).

Looking at all the individual forcing components, the Base
prior and posterior distributions of the ERF in 2019 are sim-
ilar for all components except for ERFaci (Fig. S10). This
points to aerosols for the difference in the prior and posterior
anthropogenic ERF (Fig. 2). Figure 3 shows the prior and
posterior distribution of the total aerosol ERF, which is the
sum of ERFaci and ERFari. In Base, the posterior values for
2019 are shifted to weaker values and the distributions are
narrower compared to the AR6 prior (Fig. 3b), with a poste-
rior mean of −0.68 Wm−2 and 90 % CI ranging from −1.1
to −0.28 Wm−2 (Table S4). Stronger aerosol ERF than the
prior mean of −1.1 Wm−2 in 2019 is not supported by this
analysis. Also, for Base extended, the posterior distribution
for aerosol ERF in 2022 is mostly in the weaker half of the
prior distribution (Fig. 3b).

However, the prior time evolutions in AR5 and AR6 are
quite different for aerosol ERF (Fig. 3c). In AR5 the aerosol
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Figure 1. Posterior inferred effective climate sensitivity (ECSinf) for the different analyses and sensitivity tests. The 5th to 95th percentile
ranges are indicated by a solid line and the mean values as a dot. The vertical lines indicate the posterior mean value and the 90 % CI for
Smooth, as it is used as a starting point for the Linear sensitivity tests shown. The posterior mean, median, and 5th and 95th percentiles
are presented in Table S1, and a description of all estimations can be found in Table A3. For AR5 we use the best estimate of 2xCO2
radiative forcing from AR5, while for AR6 we use the 2xCO2 ERF corresponding to the posteriori estimate of the historical CO2 ERF for
the conversion from the climate sensitivity parameter to ECSinf (see Appendix A).

ERF strengthened gradually from 1950 to around 2000 and
was quite constant thereafter. In AR6 the aerosol ERF shows
a steep strengthening from the 1950s to 1970s, the period
when the global anthropogenic SO2 emissions rapidly in-
creased (Hoesly et al., 2018); then the aerosol ERF is quite
stable for some decades with some interannual variability,
and from around 2005 the aerosol ERF weakens in magni-
tude. Looking at the time evolution of the 5th percentile of
total anthropogenic ERF (Fig. 2c) for Base, the prior shows
a reduction in anthropogenic ERF from the 1950s until the
1970s, while in the posterior the ERF is flat over this period.
The observed temperature and OHC used in the estimation
do not allow for a weakening in the anthropogenic ERF in
the second half of the century and hence do not allow for a
stronger aerosol ERF than the prior median (Fig. 3c). A pos-
sible explanation of the weak aerosol ERF for the end year in
Base and Base extended compared to the prior is that the ob-
servations do not allow for aerosol ERF in the stronger range
earlier in the period (1970–1990s) and hence exclude ERF in
the stronger range later in the period as well, as the uncer-
tainty is represented as a fixed factor for the entire historical
period.

3.2 Sensitivity test for aerosol ERF evolution

In the setup for Base and Base extended, no uncertainties
in the time evolution of the ERF time series are included.
For each ensemble member, a fixed scaling factor is used for
the entire period. For Base and Base extended, the posterior
aerosol ERF ended up in the weaker part of the prior distri-
bution for 2019 and 2022, respectively (Fig. 3b). The pos-
sible explanation outlined above is that the observations do
not allow for a strong aerosol ERF earlier in the period and
therefore not in the later part of the period either. To investi-
gate this potential explanation further we perform four sets of
sensitivity tests where the AR6 aerosol ERF prior is replaced
by idealized ERF priors (Table A3).

The prior for aerosol ERF shows some year-to-year vari-
ability (Fig. 3c). Therefore, the first test is to replace the
aerosol ERF from AR6 with a smoothed forcing time se-
ries (Fig. S7a) to see the effect of the year-to-year variabil-
ity in the forcing prior on the posterior estimates. With a
smoothed aerosol ERF prior, the posteriori distributions of
ECSinf, TCR, aerosol ERF, and anthropogenic ERF are sim-
ilar to Base (Figs. 1, S9, 3b, S11a, 2b, and S12a). This indi-
cates that the posterior estimates are not sensitive to interan-
nual variability in the forcing prior.
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Figure 2. Prior and posterior distributions of anthropogenic ERF. In (a) is the probability density function of the prior (dashed line) and
posterior (solid line) ERF in 2014 for Base using the AR6 prior (black) and Skeie18 using the AR5 prior (green). In (b) the posterior 90 %
CI is indicated by a solid line and the posterior mean as a dot; the prior 90 % CI is indicated by a dashed line and the prior mean as a square.
The results are shown for the end year in the analysis. In (c) the prior and posterior time evolutions of the anthropogenic ERF are shown for
Skeie18 and Base. The underlying numbers for (b) are presented in Table S3.

Figure 3. Same as Fig. 2, but for aerosol ERF. The underlying numbers for (b) are presented in Table S4.
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The second group of sensitivity tests adjusts the aerosol
ERF in different time periods to identify periods where the
posteriori estimates are sensitive to the aerosol forcing time
evolution (Fig. S7b). Adjusting the time series prior to 1950
had a minor effect on the posteriori estimates of ECSinf (Ta-
ble S1). Also adjusting the aerosol ERF from 2014 led to only
minor changes in the posterior ECSinf compared to Base.
However, adjusting the aerosol forcing pathway from 1950
and onwards had a greater impact on the posteriori estimates.
For the two periods 1950 to 1980 and 1980 to 2019, the dif-
ference for the 95th percentile of ECSinf between the two
tests performed was approximately 0.5 K (Table S1).

The third group of sensitivity tests investigates the sen-
sitivity of shifting the year of the strongest aerosol ERF
to later years. The aerosol ERF evolution from 1950 to a
given year was replaced by a linear strengthening of the
aerosol ERF (Fig. S7c). The smoothed AR6 aerosol ERF
prior (Smooth) was used as the starting point here, as the
aerosol ERF in AR6 shows large interannual variability in the
early 21st century. The posteriori present-day aerosol ERF
strengthened as the aerosol ERF maximum was shifted from
around 1980 as in Smooth to 1990, 2000, and 2010 (Fig. 3b),
and accordingly the present-day anthropogenic ERF weak-
ened (Fig. 2b). The posteriori ECSinf increased from 2.1 K in
Smooth to 2.3 K in these sensitivity tests (Fig. 1). With a lin-
ear reduction of aerosol ERF from 1950 all the way to 2019,
the posteriori distribution of aerosol ERF in 2019 is similar
to Linear1950to2010 (Fig. 3b), but the estimated ECSinf is
quite different, where the posterior mean is reduced by 0.2 K
(Fig. 1). Due to the shape of the aerosol ERF history, the
integrated posterior aerosol ERF between 1950 and 2019 is
weaker in Linear1950to2019 compared to Linear1950to2010
(Fig. S11c), and correspondingly the integrated total anthro-
pogenic ERF is stronger in Linear1950to2019 compared to
Linear1950to2010 (Fig. S12c). This further highlights the
importance of the time evolution of the prior ERF and not
only the present-day ERF value for constraining ECSinf.

The final set of idealized sensitivity tests is similar to the
linear sensitivity test, but here the aerosol ERF is kept con-
stant for the period following the linear strengthening of the
forcing. The full aerosol ERF time series is then scaled so the
aerosol ERF distribution in 2019 is similar to AR6 (Fig. S7d).
These aerosol ERF time series may represent a saturation of
the aerosol ERF after the strongest ERF is reached, where
an additional increase or decrease in aerosol or aerosol pre-
cursor emissions has only a minimal influence on the aerosol
ERF. In these sensitivity tests the aerosol ERF stabilizes over
the recent decades, like the AR5 prior where the aerosol forc-
ing stabilized after the 1990s (Fig. 3c). The later the stabi-
lization period starts, the stronger the posteriori aerosol ERF
in 2019 (Fig. 3b) and the larger ECSinf and TCR (Figs. 1
and S1). For the test with a linear reduction of aerosol ERF
from 1950 to 2000 and a constant value thereafter, the pos-
teriori distribution of aerosol ERF for 2019 is similar to the

AR6 prior (Fig. 3b); the posteriori mean ECSinf is 2.5 K and
the 95th percentile is 3.6 K.

3.3 Sensitivity test adjusting the ERFaci trend

Based on the results from the sensitivity tests replacing the
AR6 ERF time series with idealized aerosol ERF pathways
in specific time periods, we do a test where the aerosol ERF
trend is allowed to vary more than in the baseline setup. We
build this test on Base extended using data up to and includ-
ing 2022. We draw from the uncertainty distribution of ER-
Faci in 2014 and 1950 independently. Prior to 1950 and af-
ter 2014 we use the respective scaling factors, while for the
period between 1950 and 2014 we linearly interpolate these
two factors. An ensemble with a weak ERFaci in 1950 and a
strong ERFaci in 2014 will have a different temporal pathway
than a strong ERFaci in 1950 and a weak ERFaci in 2014.

The ECSinf posteriori mean was similar, but the 90 % CI
widened in this test compared to Base extended, with an up-
per value of 3.3 K compared to 3.0 in Base extended (Fig. 1).
Also, the posteriori estimates of TCR with a 90 % CI of 1.1
to 2.2 K were wider compared to Base extended, with a 0.1 K
higher upper limit of the 90 % CI (Fig. S1).

In Fig. 4 the distributions of the ECSinf and aerosol ERF
in 2022 for this sensitivity test and Base extended are shown.
The joint distribution is stretched towards higher values of
ECSinf in this test (Fig. 4b) compared to Base extended
(Fig. 4a). The posterior mean aerosol ERF in 2022 was
−0.80 Wm−2, with a 90 % CI of−1.2 to−0.36 Wm−2 com-
pared to the prior mean of−0.98 Wm−2 and 90 % CI of−1.6
to−0.41 Wm−2 (Fig. 3b). Still, the strongest aerosol ERF in
AR6 extended for 2022 is not supported by this analysis even
though the aerosol ERF in the latter half of the 20th century
is not directly tied to the ERF in 2022.

4 Discussion

Although we test our estimation method with a wide range
of highly idealized aerosol ERF pathways, our posteriori es-
timates of the climate sensitivities (Fig. 1) are weaker than
community estimates of climate sensitivity (Forster et al.,
2021; Sherwood et al., 2020) and estimates from most cli-
mate models. A total of 21 out of 42 CMIP6 models have
climate sensitivities larger than the maximum 95th percentile
of 3.6 K (Fig. 1) (C. Smith et al., 2021). In the following dis-
cussion, we will first relate our estimates of ECSinf to the
climate models’ climate sensitivities. Then we will discuss
the influence of the aerosol ERF pathway on our estimates
and at the end how the results here relate to the Earth energy
imbalance (EEI) as observed from space.

4.1 ECSinf versus ECS

In this work we estimate the inferred effective climate sen-
sitivity based on historical observations of temperature and
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Figure 4. The joint posterior distribution of aerosol ERF in 2022 and posterior ECSinf (a) for Base extended and (b) with the aerosol ERFaci
uncertainties in 1950 and 2014 treated independently. The 5th and 95th percentiles in the aerosol ERF prior for 2022 are shown as horizontal
dashed lines.

OHC. For calculations of climate sensitivity in climate mod-
els, the models are run with an abrupt quadrupling of the
CO2 concentrations from pre-industrial levels. Equilibrating
the models requires running the model for at least thousands
of years (Rugenstein et al., 2020). The climate models are
instead run for a shorter period, often 150 years, and sur-
face temperature anomalies and top-of-atmosphere (TOA)
net downwelling radiative flux anomalies regressed to project
the climate sensitivity, a method developed by Gregory et al.
(2004) and used for CMIP6 models in Zelinka et al. (2020).
This climate sensitivity is termed effective climate sensitiv-
ity (ECS) and does not include feedbacks occurring over
timescales longer than 150 years. The ECSinf calculated here
will differ from the climate models’ ECS for several reasons,
which we will go through below.

First, the observed time series for global mean tempera-
tures are blended products of measured air temperature (2 m
above surface) over land and sea surface temperature over
ocean, termed global mean surface temperature (GMST).
In the SCM this definition of temperature change is imple-
mented, while in climate modeling, the global mean surface
air temperature (GSAT) is used for calculation of ECS. In
IPCC AR6 the difference between the long-term change in
GSAT and GMST was assessed to be less than 10 %, but
with low confidence in the sign of the difference (Gulev et
al., 2021a) as GSAT increases faster than GMST in climate
models, while a limited numbers of observational studies
show the opposite. To illustrate the effect of the definition of
temperature on the ECSinf, the probability density function
of ECSinf in Base is enhanced by 4 % and 10 % (Fig. 5a).
We only illustrate an increase here as changes in GSAT are
larger than GMST in climate models. For a 10 % increase in
the temperature response, the ECSinf median value increased
from 2.1 to 2.3 K (Fig. 5c).

Both the historical CO2 ERF and the ERF for a doubling
of CO2 concentration (2xCO2 ERF) are assessed with un-
certainties (Forster et al., 2021), and there is considerable
spread in CO2 ERF diagnosed in climate models (Smith et
al., 2020). The difference in CO2 forcing in the climate mod-
els has implications for ECS diagnosed from the model sim-
ulations (Cess et al., 1993; Soden et al., 2018), as a larger
forcing results in a larger temperature response. For illus-
tration, for the 90 % uncertainty range of 2xCO2 ERF from
IPCC AR6 (3.46–4.40 Wm−2) and a best estimate of the
climate sensitivity parameter of 0.76 K(Wm−2)−1 (3 K per
3.93 Wm−2) (Forster et al., 2021) the ECS will increase or
decrease by 0.36 K (12 %) relative to the best estimate of 3 K.
In addition, the forcing strength can also change as the cli-
mate changes. The instantaneous radiative forcing of CO2
is found to be dependent on the climatic base state and in-
creases by 25 % for every doubling of CO2 (He et al., 2023).
This contributes to a∼ 15 % to 20 % increase in climate sen-
sitivity for every doubling of CO2. ECS diagnosed in climate
models from 4 times the CO2 concentration will hence be
larger than ECSinf derived from observations over the histor-
ical period where the CO2 concentration has only increased
by ∼ 50 %.

The strength of the climate feedbacks can also change over
time (Armour, 2017; Senior and Mitchell, 2000), and one
reason for this is the so-called “pattern effect” (Stevens et al.,
2016). The radiative feedbacks depend on the spatial pattern
of the warming (e.g., Andrews et al., 2015), and as the spatial
pattern of surface temperature evolves over time, the climate
feedbacks change. From climate model simulations over the
historical period, the ECS inferred from different climate re-
alizations can differ by 0.7 K (Dessler, 2020) due to inter-
nal natural variability (Dessler, 2020). This further highlights
challenges in inferring climate sensitivity from historical ob-

Earth Syst. Dynam., 15, 1435–1458, 2024 https://doi.org/10.5194/esd-15-1435-2024



R. B. Skeie et al.: The aerosol pathway and climate sensitivity 1443

Figure 5. Illustrations of the reasons for differences between observational estimates of ECSinf and effective climate sensitivity (ECS) as
diagnosed from climate models. In (a) the influence on ECS for different definitions of temperature is illustrated. The ECSinf values estimated
in Base, based on observations of GMST, are enhanced by 4 % and 10 % as changes in GMST are larger than GSAT in climate models. In (b)
different assumptions of the “pattern effect” are added to the ECSinf estimate from Base. The different values for α′ are given in the legend.
For Base α′ = 0. In (c) the results are summarized by the mean value (filled circle), median value (×), and 5th to 95th percentile range as a
solid line. Also indicated is the assessed best estimate of equilibrium climate sensitivity from IPCC AR6 (filled circle) and the very likely
(solid line) and likely (dashed line) uncertainty range.

servations, as we only have one realization of the Earth’s his-
torical climate.

To take this time dependency of the feedbacks into ac-
count, the equilibrium climate sensitivity can be written as
ECS=−1F2xco2/(α+α′), where α is the effective feedback
parameter estimated over the historical period and α′ repre-
sents the change in the feedback parameter between the his-
torical period and the time of equilibrium for a 2xCO2 forc-
ing (1F2xco2). The α′ factor can be calculated from Earth
system models, and IPCC AR6 assessed α′ to be in the range
of 0.0 to 1.0 Wm−2 K−1 (Forster et al., 2021). The feed-
back parameter α [Wm−2 K−1] quantifies the change in net
energy flux at the TOA for a given change in global tem-
perature and represents the Planck response and all other
feedbacks. In the SCM, the climate sensitivity parameter λ
[K [Wm−2

]
−1
] represents these feedbacks. The relationship

between the effective λ and α (as estimated based on ob-

servations over the historical period) is λ=− 1
α

. To test the
effect of changes in the climate feedback over time we cal-
culate ECS from an adjusted climate sensitivity parameter
λ+ λ′ =− 1

α+α′
=

λ
(1−λα′) . For the posteriori estimates of λ

we convert to λ+ λ′ for four different values of α′ (0.1, 0.3,
0.5, 1.0) in addition to α′ equal to zero as in Base, span-
ning the range of 0.0 to 1.0 Wm−2 K−1 from IPCC AR6. The
probability density functions are then shifted to larger values,
stretching the tail towards higher values for the climate sensi-
tivity (Fig. 5b). A pattern effect of 0.5 Wm−2 K−1 shifts the
ECSinf mean value in Base to 3 K, which is equal to the best
estimate of the ECS assessed by IPCC AR6. A stronger pat-
tern effect of 1 Wm−2 K−1 gives much larger climate sensi-
tivity estimates with a mean value of 6.4 K (Fig. 5c), but note
that the values of λ now extends our prior range.

The observed sea surface temperature pattern, with a
stronger warming in the western Pacific and a cooling in the
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eastern Pacific, is not simulated within coupled atmosphere–
ocean climate models (Fueglistaler and Silvers, 2021; Wills
et al., 2022). Natural internal variability, as represented in
the model, are unlikely to be the reason for the observed
temperature in the Pacific, and Wills et al. (2022) point at
model biases in the response to historical forcing as part of
the discrepancy. Recently, using an ensemble from a single
climate model with idealized step changes in aerosol emis-
sions, Hwang et al. (2024) found that the equatorial Pacific
cooled following an increase in aerosol emissions and that
the cooling persisted for several decades after the aerosols
were removed due to the lag in the oceanic thermal response
of the aerosol forcing. Limitations in our understanding of
the drivers of the observed sea surface temperature patterns
and uncertainty in the strength of the “real-world” pattern ef-
fect and how it will evolve in the near future substantially
increase the uncertainty about future warming (Zhou et al.,
2021).

Although the temperature definition and CO2 ERF can
explain some of the differences between climate sensitivity
calculated from climate models and inferred from observa-
tions, the assumptions on the pattern effect are crucial. Pat-
tern effects within the IPCC AR6 assessed range of 0 to
1 Wm−2 K−1 can shift the mean value of ECSinf to values
larger than the upper very likely limit of 5 K from IPCC
AR6. The upper limit of climate sensitivity cannot be con-
strained by historical observations due to the pattern effect
by definition. The recognition of the pattern effect reconciled
the previous discrepancies of historical constrained climate
sensitivity estimates and ECS in climate models (Forster et
al., 2021), and the pattern effect is a limiting factor in the
quest for constraining the “true” climate sensitivity. Combin-
ing multiple lines of evidence, also including paleoclimate
data, may give a stronger constraint on the ECS (Sherwood
et al., 2020).

The TCR should be less influenced by the pattern effect. In
Base extended the posteriori mean is 1.6 K, with a 90 % CI of
1.1 to 2.1 K. The posteriori distributions of TCR are weaker
compared to the IPCC AR6 assessment (Forster et al., 2021),
where the 90 % CI includes values lower than the very likely
lower bound of 1.2 K from IPCC AR6 but not values greater
than the likely upper bound of 2.2 K from IPCC AR6 (Forster
et al., 2021) (Fig. S9).

4.2 Aerosol forcing trend

In Base, the posteriori distribution of the present-day (2019
relative to 1750) aerosol ERF was shifted to weaker values
compared to the prior based on IPCC AR6, with a very likely
range of −1.7 to −0.4 Wm−2. The uncertainty in aerosol
ERF in Base was not allowed to change over time. In the
estimation, updating the aerosol forcing values based on ob-
served temperature change and OHC, a strong aerosol forc-
ing from the mid-20th century was prohibited (Fig. 3c) and
hence a strong present-day aerosol forcing (Fig. 3b) and

a weak present-day anthropogenic ERF (Fig. 2b) were ex-
cluded.

From the sensitivity test on historical aerosol time evo-
lution, the posteriori distribution of the present-day aerosol
ERF can be very different for different assumptions on the
aerosol ERF time evolution (Fig. 3b). This underlines the
importance of the pathways of the aerosol ERF, not only
for this approach of estimating ECSinf and ERFs based on
historical observations, but also for climate models evalu-
ated on historical changes and used for projections of fu-
ture climate evolution. As also highlighted in Smith and
Forster (2021), if the forcing is not correct, the tempera-
ture in the past and projections for the future will be biased.
The climate models contributing to RFMIP and AerChem-
MIP showed quite variable time evolution of the diagnosed
aerosol ERF (C. J. Smith et al., 2021). Using an emission
to forcing relationship based on the diagnosed aerosol ERF
in these CMIP6 models and a climate emulator trained on
CMIP6 models, C. J. Smith et al. (2021) constrained the
aerosol ERF using observed near-surface warming and the
1971 to 2018 Earth energy uptake. They estimated aerosol
ERF in 2019 with a slightly narrower uncertainty range than
IPCC AR6 of−1.5 to−0.4 Wm−2 and a modest recovery in
aerosol forcing (+0.025 Wm−2 per decade) between 1980
and 2014. We find a slightly larger change in aerosol forcing
of +0.031 Wm−2 per decade over the same period in Base
extended, slightly weaker than +0.035 Wm−2 per decade in
the prior. If we then let the ERFaci evolve more freely within
the AR6 uncertainty range between 1950 and 2014 compared
to Based extended, the trend in aerosol ERF is similar to
C. J. Smith et al. (2021), with +0.024 Wm−2 per decade be-
tween 1980 and 2014.

In Fig. 6, the 20-year linear trend for six different periods
after 1950 is shown for Base extended and the test where ER-
Faci evolves more freely within the AR6 uncertainty range.
As the aerosol ERF prior is quite stable from the 1970s to
early 2000s (Fig. S1) and the uncertainties are tied to the
uncertainty in the end year, the prior and the posterior for
the aerosol ERF trend are narrow and close to zero in this
period. When the ERFaci is allowed to evolve more freely
within the IPCC AR6 range, both the prior and the posterior
90 % CI for the aerosol ERF trend are broadened (Fig. 6).
For the two earliest periods, 1950–1969 and 1960–1979, the
posterior trends are weaker than in the prior. This is the pe-
riod where the global anthropogenic SO2 emissions rapidly
increased before peak emissions around 1980 (Hoesly et al.,
2018). For the latest period, 2009–2019, the posterior aerosol
ERF trend is also weaker than in the prior, in the weaker
range of C. J. Smith et al. (2021), and similar to Albright et
al. (2021) with increased variance, as presented in Quaas et
al. (2022). Keep in mind that in this test, the ERFari is still
tied to the AR6 ERFari pathway, as is ERFaci post-2014. For
comparison, the median aerosol ERF trend of 0.1 Wm−2 per
decade for the 2000 to 2019 period is a third of the increase
in CO2 ERF over the same period.
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Figure 6. The 20-year aerosol ERF linear trend for six different periods. The posterior aerosol ERF trends are shown for Base extended
(blue) and the test with independent uncertainties in 1950 and 2014 (green), with the corresponding prior distribution plotted in gray to
the left of the posterior. The median (crosses for prior and squares for posterior), 30th to 70th percentiles, and 5th to 95th percentiles are
shown. For the first five time periods, the linear trend in the ERF diagnosed from nine CMIP6 models in C. J. Smith et al. (2021) is shown as
stars, and the linear trends are calculated on smoothed time series of ERF. For the last period (2000 to 2019) the mean and the 5th and 95th
percentiles presented in Quaas et al. (2022) from Albright et al. (2021) and C. J. Smith et al. (2021) are shown.

Also shown in Fig. 6 are trends calculated from aerosol
ERF diagnosed within CMIP6 models (C. J. Smith et al.,
2021). The spread in trend is large in all periods, and for
the 1960 to 1979 period the modeled ERF trends are in the
weaker range of the priors and more consistent with our pos-
terior distributions. In the 1980 to 1999 period most of the
CMIP6 models have a negative aerosol ERF trend, while the
posteriori mean is close to zero but the 90 % CI is wide.

4.3 Energy imbalance

The trend in the Earth energy imbalance (EEI) can be esti-
mated based on satellite retrievals (Loeb et al., 2018a) and
can in principle give additional information on the aerosol
ERF pathway. The EEI is the net radiative flux at the top of
atmosphere (TOA), and it determines the evolution of global
temperature change. For a positive imbalance at the TOA,
less energy is leaving than entering the system, heat is stored
in the system, and surface temperature will increase to restore
the energy balance at TOA. The EEI is the portion of the ra-
diative forcing that has not yet been responded to (Hansen
et al., 2005). In a linear framework this can be written as
EEI= ERF+α1T , where α is the net total feedback param-
eter [Wm−2 K−1], which represents the combined effect of
the various climate feedbacks. In this study the climate sen-
sitivity parameter λ=−1/α represents these feedbacks.

From the TOA Earth radiation budget from the Clouds and
the Earth’s Energy System (CERES) data, the trend in EEI
can be analyzed (Loeb et al., 2018a). As the absolute values
of the radiation fluxes are too uncertain, these are anchored
to the mean of observed rate of heat gain, mainly storage
of heat in the ocean over a reference period (2005 to 2015)
(Loeb et al., 2018b). The trend in CERES data can be used
as additional information in our Bayesian setup, as the trend
in EEI is independent of the OHC data that are already in-
cluded in our estimation. Here, however, we only compare
the posterior estimates of EEI with the CERES EEI trend.

Figure 7a shows the EEI from Base extended from the
forced temperature response as well as the temperature re-
sponse including ENSO variability. Including ENSO, the
median value averaged over the period 2006 to 2020 of
0.74 Wm−2 is in good agreement with the 0.76± 0.2 Wm−2

from von Schuckmann et al. (2023), which also holds for
the longer period 1971 to 2020 with a median value of
0.49 Wm−2 in this study and 0.48 Wm−2 in von Schuck-
mann et al. (2023). This is as expected as observational-
based time series of OHC used in this study are included in
the assessment of von Schuckmann et al. (2023) (see also
Fig. S4). For the trend in EEI, the forced EEI with and
without the ENSO response is 0.2 Wm−2 per decade from
2005 to 2022. This is clearly weaker than the linear trend for
the 12-month running mean CERES EEI of 0.44 Wm−2 per
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decade (Fig. 7a). Adding the ENSO temperature response en-
hanced the year-to-year variability in EEI, but the variability
is weaker than in CERES (Fig. 7a), which shows pronounced
interannual variability driven primarily by clouds (Loeb et
al., 2018a, 2021), variability that an SCM would not capture.

Although the posteriori results of EEI averaged over the
period 2005 to 2019 for the baseline as well as all sensitivity
tests are within the CERES uncertainties from Loeb et al.
(2021) (Fig. 7b), there are several possible reasons why the
posteriori EEI does not reproduce the CERES trend.

From the linearized equation of the EEI, the EEI will in-
crease with time if ERF increases at a greater rate than α1T .
Over the last decades, there has been rapid reduction of SO2
emissions, especially over China (Zheng et al., 2018), con-
tributing to an increase in the total anthropogenic forcing
trend (Forster et al., 2023). If the trend in ERF is wrongly
implemented, this will influence our EEI estimate. The ide-
alized aerosol experiments, changing the time evolution of
aerosol ERF, strongly influence the trend in EEI (Fig. 7b
and c). The posterior EEI trend increases by∼ 50 % in sensi-
tivity tests, with weaker aerosol ERF towards 2019 compared
to Base, but is still in the lower range of the CERES trend.
Sensitivity tests with strengthening of the aerosol ERF all the
way to 2019 as well as constant aerosol ERF after the year
2000 resulted in a very weak EEI trend from 2005 to 2019,
less consistent with CERES data. These results suggest that a
weakening of the aerosol ERF has contributed to the trend in
EEI as observed by CERES. Other studies also find a contri-
bution of weakened aerosol ERF to the EEI trend observed by
CERES (Raghuraman et al., 2021; Hodnebrog et al., 2024).
The trend in EEI from CERES is dominated by an increase in
absorbed solar radiation with a dominant contribution from
clouds (Loeb et al., 2021), hinting at a possible important
role of either aerosol–cloud interactions or cloud feedbacks.
However, from the CERES data alone it is difficult to sepa-
rate the ERFaci from the cloud feedback (Loeb et al., 2021;
Raghuraman et al., 2023).

As discussed above, the feedback parameter can change
over time but is assumed to be constant in our approach. As
the climate feedbacks are dependent on the pattern of the
temperature change, this effect must be included in EEI re-
constructions to match observed EEI from CERES (Zhou et
al., 2021). Andrews et al. (2022) indicated that the pattern
effect might have been particularly strong in recent decades
and waning post-2014. The possibility that the feedbacks
have changed over the recent decades relative to what is es-
timated in our approach using observations over a longer pe-
riod is not included in our methodology.

The rate of ocean heat gain is a key component for the
quantification of the EEI. In our method the information on
EEI trend is taken from the OHC data used. Studies inves-
tigating the trend in several different OHC datasets find a
weaker trend than in CERES (Li et al., 2023; Minière et al.,
2023), but Minière et al. (2023) highlighted the overlapping
uncertainties in both methods for assessing the EEI trends

and the challenges of assessing trends over such a short pe-
riod.

The trend in EEI can be implemented in our estimation
method to give an additional constraint on the recent forcing
time evolution. The two sensitivity tests with weaker aerosol
ERF towards 2019 strongly change the trend in EEI (Fig. 7b)
but had a limited influence on the posteriori ECS estimate
(Table S1). Note that the end year for our estimation is 2022,
meaning that the analysis does not include the rapid increase
in EEI from CERES data in 2023 (Fig. 7) or the record high
temperatures in 2023 (Voosen, 2024).

5 Conclusions

We have used the most up-to-date ERF time series, obser-
vations of temperature change, and observations of ocean
heat content in a Bayesian framework to estimate climate
sensitivity, aerosol forcing, and aerosol forcing pathway.
Aerosol ERF is the largest contributor to the uncertainties
in the total anthropogenic ERF (Forster et al., 2021, 2024).
As prior knowledge of the uncertainties in the time evolu-
tion of aerosol ERF is lacking, we use a range of idealized
aerosol ERF time series to investigate the sensitivity of our
observational-based estimates to the assumed aerosol path-
way.

Our estimate of climate sensitivity is the inferred climate
sensitivity, and it only includes feedbacks that have come
into play over the historical period considered. The histori-
cal warming pattern favors lower climate sensitivity values
than what is expected from long-term increases in CO2 con-
centrations from climate model simulations (Andrews et al.,
2018). The ECSinf does not include this so-called pattern ef-
fect. If a pattern effect of 0.5 Wm−2 K−1 (the central esti-
mate in IPCC AR6) is added to our Base estimate, the cli-
mate sensitivity estimate is almost identical to the IPCC AR6
very likely range of 2 to 5 K, with a best estimate of 3 K
(Forster et al., 2021). The pattern effect limits historical ob-
servations to constraining the upper end of climate sensitiv-
ity (Sherwood et al., 2020; Armour et al., 2024). For near-
term climate policy that aims for net zero emissions by mid-
century (UNFCCC, 2015) the ECSinf might be as relevant as
climate sensitivity estimates that consider climate feedbacks
over longer timescales. Furthermore, both CO2 forcing (He
et al., 2023) and feedbacks might be climate-state-dependent
(Bloch-Johnson et al., 2021) and therefore differ between
high forcing scenarios (as 2 or 4xCO2) and near-term net
zero emission scenarios.

The ECSinf estimate is dependent on the aerosol pathway.
The upper 95th percentile of ECSinf differs by 1.1 K for the
different sensitivity tests, and the ECSinf is most sensitive to
the aerosol ERF pathway between 1950 and 2014. Allowing
ERFaci to evolve more freely within the AR6 uncertainties
between 1950 and 2014 and using forcing time series and ob-
servational data up to and including 2022, the mean ECSinf
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Figure 7. Posterior Earth energy imbalance and Earth energy imbalance trend. In (a) the gray shading shows the 5th to 95th percentile
of the posteriori EEI for the forced temperature response, while the red shading shows the posteriori EEI including ENSO variability for
Base extended. The dashed gray and red lines indicate the least-squares linear fit for the posterior median of EEI without and with ENSO
variability included for the period 2005 to 2022, and the trends over this period are indicated in the plot. The orange lines are the EEI from
von Schuckmann et al. (2023) of 0.76 Wm−2 (solid line)± 0.2 Wm−2 (dashed lines) for the 90 % confidence interval for the period 2006 to
2020. CERES data are shown as a 12-month running mean in blue (Loeb et al., 2018a) (including data for January 2024) and the least-squares
linear fit from 2005 to 2022 (dashed blue line). In (b) the posteriori forced EEI trend over the period 2005 to 2019 is shown for the 5th to
95th percentile as a solid line, with the median value as a dot. At the bottom the mid-2005 to mid-2019 estimates of the trend for the net
CERES TOA energy flux of 0.50± 0.47 Wm−2 per decade (90 % confidence interval) from Loeb et al. (2021) are indicated with a black
square and a solid line. In (c) the posteriori median of the forced EEI from 2000 onwards is shown for selected sensitivity tests as annual
values (dashed lines), and the linear trend from 2005 to 2019 is shown as a solid line. The trends in EEI over this period are indicated in the
legend as Wm−2 per decade.

is 2.3 K with a 90 % CI from 1.4 to 3.4 K. The estimate is
shifted to larger values compared to our estimates where the
aerosol pathways are more fixed, with a mean ECSinf of 2.1 K
(90 % CI: 1.5 to 2.9) with the AR6 ERF prior and observa-
tions to 2019 in Base and 2.2 K (90 % CI: 1.5 to 3.0) with the
AR6 extended ERF prior and observations to 2022 in Base
extended.

The present-day posteriori distribution of the aerosol ERF
is strongly influenced by the different aerosol pathways. As
the prior in Base is tied to the present-day ERF and the ob-
servations do not allow for decreasing total anthropogenic
ERF in the 1950s to early 1970s, the present-day aerosol
ERF shifts to more negative values when the prior for the
ERF in the 1960–1970s is weakened in the sensitivity tests.

Also, when the historical ERFaci is not tied to the present-
day aerosol forcing, the negative aerosol ERF trend in the
1950s to 1970s is weakened compared to the prior. Stronger
aerosol forcing than around −1.4 Wm−2 in the 1960s and
1970s, the period leading up to the peak SO2 emissions
(Hoesly et al., 2018), is less consistent with observations.
Over the more recent period, the pathways with a weaken-
ing of the aerosol ERF are more consistent with observations
of the Earth’s energy imbalance from space from CERES
since 2005. Currently, observations on OHC constrain the
estimated EEI in our method. Future work can implement
the trend in EEI from CERES as an additional constraint in
observational-based estimation of climate sensitivity, aerosol
ERF, and aerosol ERF pathways.
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For assessing future climate change, evaluating historical
climate change is crucial and hence knowledge of how the
different drivers have changed over time is critically impor-
tant. In previous literature, the focus has mostly been on
present-day aerosol forcing relative to pre-industrial. Bet-
ter knowledge of the historical aerosol ERF pathway is,
however, needed, not only related to how aerosol ERF has
changed over the recent decades (Lund et al., 2023; Quaas et
al., 2022) but also further back in time. For future work, prior
uncertainties in the time evolution of aerosol ERF based on
expert judgment should be implemented considering uncer-
tainties in historical aerosol and aerosol precursor emissions,
as well as uncertainties in the physical processes of aerosol–
radiation and aerosol–cloud interactions.

Appendix A

In this section, additional information on the methods is pre-
sented.

A1 Model

The core of the model framework is a simple climate
model (SCM), which is a deterministic energy balance
and upwelling–diffusion model (Schlesinger et al., 1992;
Schlesinger and Jiang, 1990; Sandstad et al., 2024). The
model calculates annual hemispheric near-surface tempera-
ture change (blended sea surface temperature and surface air
temperature over land) and changes in global ocean heat con-
tent (OHC) as a function of ERF time series. The output from
the SCM, the time series of temperature and OHC, can be
written as mt (x1750:t ,θ ), where x1750:t represents the ERFs
from 1750 until year t , which are the true, but unknown, in-
put values to the SCM. The true but unknown parameters of
the SCM are represented by θ , which is a vector of seven
parameters, where one of these is the climate sensitivity pa-
rameter (λ). The other parameters determine how the heat is
mixed into the ocean (e.g., mixed layer depth, air–sea heat
exchange coefficient, vertical diffusivity in the ocean, and
upwelling velocity).

The true state of some central characteristics of the climate
system in year t can be written as gt =mt (x1750:t ,θ )+nt ,
where nt is a stochastic process, with three terms represent-
ing long-term and short-term internal variability and model
error. For the short-term internal variability, the Southern Os-
cillation Index is used to account for the effect of the El
Niño–Southern Oscillation (ENSO) on the temperature. For
the long-term internal variability, the dependence structure is
based on a control simulation from a CMIP5 model (Skeie
et al., 2014). This term will also represent other slowly vary-
ing model errors due to potential limitations of the SCM and
the ERF time series. The last error term accounts for more
rapidly varying model errors.

For gt corresponding long-term observational data are
available with individual error terms. Data on surface temper-

atures are considered separately for the Northern and South-
ern Hemisphere and OHC separately for 0–700 m and below
700 m. For each of the elements of gt several corresponding
observational-based data series are available (Table A1). To
gain as much information as possible, we use several datasets
for the same physical quantity simultaneously.

The model parameters (θ ) and the ERF time series
(x1750:t ) are given prior distributions, and we apply a
Bayesian approach and use Markov chain Monte Carlo tech-
niques to sample from the posterior distribution.

In the SCM the climate sensitivity is represented as a cli-
mate sensitivity parameter (λ). λ is multiplied by the ERF
for a doubling of CO2 (2xCO2) to present the climate sen-
sitivity as ECSinf. Here we use the 2xCO2 corresponding to
the posterior estimate of CO2 ERF for the conversion from λ

to ECSinf, while in previous work CO2 forcing was included
in the combined greenhouse gas forcing time series and the
best estimate of 2xCO2 from AR5 (Myhre et al., 2013b) was
used (Skeie et al., 2018). The TCR is calculated using the
SCM with the joint posteriori distributions of the parameters
forced with an ERF time series of 1 % increase per year in
CO2 concentration until a doubling of CO2 is reached. The
ERF time series used is consistent with the forcing prior used
and hence different for AR5 and AR6 priors (Forster et al.,
2021). If we use an ERF time series corresponding to the
posterior of the CO2 ERF, the posteriori distribution of the
TCR is similar to using the best estimate of the CO2 ERF
time series (Fig. S13). Also, for ECSinf, the probability den-
sity function is similar using a fixed factor and a factor corre-
sponding to the posterior CO2 ERF for the conversion from
λ to ECSinf (Fig. S13).

A2 Effective radiative forcing

How the ERF uncertainties from IPCC AR6 and AR6 ex-
tended are implemented is described below and summarized
in Table A1.

For most of the forcing components, the relative uncer-
tainty is symmetrical and constant in time, and we assume
a normal distribution for these components. For the forc-
ing components with a skewed 90 % confidence interval pre-
sented in AR6, the uncertainty in the forcing is implemented
as a combination of two normal distributions as in AR6. The
asymmetric uncertainty ranges and the fractional uncertainty
were determined by considering ranges below and above the
best estimate separately, by dividing the 5th percentile by the
best estimate to derive the lower uncertainty range and the
95th percentile by the best estimate to determine the upper
range, treating them as two halves of a Gaussian distribution.

In IPCC AR6 the forcing time series for aerosol–radiation
interactions (ERFari) was constructed using a linear relation-
ship between ERFari and emissions of SO2, BC, OC, and
NH3 for sulfate, black carbon, organic carbon, and nitrate
aerosols, respectively (C. Smith et al., 2021). The emission to
forcing coefficients were based on multi-model results from

Earth Syst. Dynam., 15, 1435–1458, 2024 https://doi.org/10.5194/esd-15-1435-2024
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Table A1. Forcing components included in the estimations, their relative uncertainties, and a description of the distribution. The forcing time
series, uncertainties, and distributions are implemented as in IPCC AR6 (Forster et al., 2021). The uncertainties are presented as percentages:
(best−pc05)/best and (best−pc95)/best, where “best” is the best estimate, and pc05 and pc95 are the 5th and 95th percentile, respectively.
The 90 % uncertainty is symmetrical if only one number is presented, and if not otherwise stated, the uncertainties are constant in time. If
the uncertainties in AR6 extended (Forster et al., 2023) were updated, this is presented in parentheses in the table.

Forcing components Uncertainties [%] Distribution

co2 12 % Normal
ch4 20 % Normal
n2o 16 % Normal
other_wmghg 19 % (19 % in 2022) Normal (normal, not constant in time)
o3 50 % Normal
h2o_stratospheric 100 % Normal
Contrails 67 % lower, 69 % upper (55 % lower, 70 % upper) Two normal
aerosol–radiation_interactions 119 % in 2019 (99 % in 2022) Normal, not constant in time
aerosol–cloud_interactions 72 % lower, 70 % upper in 2019

(74 % lower, 70 % upper in 2022)
Two normal, not constant in time

bc_on_snow 100 % lower, 125 % upper Two normal
land_use 50 % Normal
Solar 50 % of the amplitude of the solar cycle+ a linear 1750

to 2019 trend of ±0.07 Wm−2 (5 %–95 %)
Sum of two independent normal distributions

Volcanic 25 % Normal

Myhre et al. (2013a) and rescaled so the total ERFari of
−0.3± 0.3 Wm−2 for present day in the assessment is pre-
served. The relative uncertainty of ERFari is not constant in
time, but it is symmetrical. To get the same 5th and 95th per-
centiles as in AR6 for the ERFari time series, we assume a
normal distribution and correct the uncertainties by a con-
stant for each year to match the historical uncertainties from
AR6.

The forcing time series for the aerosol–cloud interactions
(ERFaci) in AR6 are based on fits to 11 CMIP6 models with
historical time-varying ERFaci of a logarithmic function of
emissions of SO2, BC, and OC (C. Smith et al., 2021). A
100 000-member ensemble was drawn, and the median of
this ensemble was scaled to the assessed value for present-
day ERFaci in AR6. The 90 % confidence interval for ER-
Faci is unsymmetrical and not constant in time, and hence
the left and the right halves of the prior distribution are mod-
eled by the left and the right halves of two, possibly different,
normal distributions. These normal distributions are different
from one year to another.

For implementing the solar forcing, a 0.50 fractional un-
certainty was applied to the amplitude of the solar cycle,
and a linear 1750 to 2019 trend of±0.07 Wm−2 (5 %–95 %)
range was added to this to represent the uncertainty in the
change in the underlying solar forcing of 0.01 Wm−2, as was
done in generating the ERF time series uncertainties in AR6
(C. Smith et al., 2021).

In the SCM, the ERFs are split on hemispheres for
ozone, aerosol–radiation interactions, aerosol–cloud interac-
tions, and land use. This split is constant in time, and for
ozone it is calculated from multi-model results of ozone forc-
ing time series from CMIP6 (Skeie et al., 2020) and land

use and aerosols from ERF diagnosed from CMIP6 models
(Smith et al., 2020).

A3 Observational data

Table A2 lists all the observational-based time series used in
the estimation. As described in the Method section, we only
use the temporal profile of the reported error and estimate the
magnitude within the model. For OHC we choose to use the
temporal development of the uncertainty from Domingues
et al. (2008) for all time series as the reported uncertainties
(Fig. S6) may not include the full uncertainties in OHC.

https://doi.org/10.5194/esd-15-1435-2024 Earth Syst. Dynam., 15, 1435–1458, 2024
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A4 Estimation

As a starting point we use the main analysis in Skeie et al.
(2018). Stepwise, we updated the observational-based time
series for surface temperature and ocean heat content, then
replaced the IPCC AR5 forcing time series by the IPCC
AR6 time series (Forster et al., 2021) with end year 2014 be-
fore extending the data used in the estimation to year 2019.
For a better representation of the distribution of heat in the
ocean, the priors for two of the parameters in the SCM are
widened compared to what was used previously (Aldrin et
al., 2012): the vertical velocity and upwelling rate as well
as the polar parameter with a new uniform prior of [0.55,7]
and [0.161,2], respectively. When replacing the ERF prior
with the extended ERF time series (Forster et al., 2023) and
adding additional years in the observations, a stepwise re-
placement and extensions of observations and forcings are
performed here as well.

Table A3 lists all the different estimations performed in
this study.

https://doi.org/10.5194/esd-15-1435-2024 Earth Syst. Dynam., 15, 1435–1458, 2024
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Table A3. List of estimations performed with a description of the setup, forcing prior used, and end year of observational data used.

No. Simulation Description ERF prior End year

1 Skeie18, AR5 prior The main analysis in Skeie et al. (2018). AR5 2014
2 Update obs. end year 2014 Same as no. 1 but use updated observational-based data series. AR5 2014
3 Replace AR5 prior with AR6 Same as no. 2 but replace AR5 ERF priors with AR6 ERF priors. AR6 2014
4 End year 2019 Same as no. 3 but extend from 2014 to 2019. AR6 2019
5 Base Same as no. 4 but with new priors for the upwelling velocity

[0.55,7]myr−1 and the polar parameter [0.161,2]; both priors are
uniform as before (Aldrin et al., 2012).

AR6 2019

Sensitivity test For all sensitivity tests below, the ERFari and ERFaci from IPCC AR6
are modified in specific time periods.

6 Smooth As no. 5, but ERFari and ERFaci smoothed using locally weighted
scatterplot smoothing in the Python statmodels module over the entire
time period.

AR6 2019

AR6 2019
7 Linear1750to1900 As no. 5, but a linear ERFari and ERFaci from 1750 to 1900. AR6 2019
8 Weaker1900to1950 As no. 5, but weaker ERFari and ERFaci between 1900 and 1950

multiplying the AR6 forcings by a sine curve.
AR6 2019

9 Stronger1900to1950 As no. 5, but stronger ERFari and ERFaci between 1900 and 1950
multiplying the AR6 forcings by a sine curve.

AR6 2019

10 Weaker1950to1980 As no. 5, but weaker ERFari and ERFaci between 1950 and 1980
multiplying the AR6 forcings by a sine curve.

AR6 2019

11 Stronger1950to1980 As no. 5, but stronger ERFari and ERFaci between 1950 and 1980
multiplying the AR6 forcings by a sine curve.

AR6 2019

12 StrongerWeaker1980to2019 As no. 5, but stronger and then weaker ERFari and ERFaci between
1980 and 2019 multiplying the AR6 forcings by a sine curve.

AR6 2019

13 Stronger1980to2019 As no. 5, but stronger ERFari and ERFaci between 1980 and 2019
multiplying the AR6 forcings by a sine curve.

AR6 2019

14 LinWeaker2014to2019 As no. 5, but linearly weaker ERFari and ERFaci from 2014 to 2019.
The ERFari and ERFaci is weaker in 2019 than in AR6.

AR6 2019

15 Linear1950to1990 As no. 6, but with a linear ERFari and ERFaci between 1950 and 1990. AR6 2019
16 Linear1950to2000 As no. 6, but with a linear ERFari and ERFaci between 1950 and 2000. AR6 2019
17 Linear1950to2010 As no. 6, but with a linear ERFari and ERFaci between 1950 and 2010. AR6 2019
18 Linear1950to2019 As no. 6, but with a linear ERFari and ERFaci between 1950 and 2019. AR6 2019
19 Linear1950to1980 then flat As no. 6, but with a linear ERFari and ERFaci between 1950 and 1980

and constant ERFari and ERFaci thereafter.
AR6 2019

20 Linear1950to1990 then flat As no. 6, but with a linear ERFari and ERFaci between 1950 and 1990
and constant ERFari and ERFaci thereafter.

AR6 2019

21 Linear1950to2000 then flat As no. 6, but with a linear ERFari and ERFaci between 1950 and 2000
and constant ERFari and ERFaci thereafter.

AR6 2019

Extension up to 2022

22 Replace AR6 prior with AR6
extended

Same as no. 5 but replace the AR6 prior ERF priors with the extended
AR6 ERF time series (Forster et al., 2023).

AR6 extended 2019

23 Updata obs. end year 2019 Same as no. 22 but update all observational-based time series. AR6 extended 2019
24 Base extended (end year 2022) Same as no. 23 but extend from 2019 to 2022. AR6 extended 2022

ERFaci trend test

25 Unc. in 1950 and 2010
independent

Same as no. 24 but uncertainties in 1950 (and before) and 2014 (and
after) independent of each other; uncertainty scaling factor linearly
interpolated for the years in between.

AR6 extended 2022
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