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Abstract. Earth system models (ESMs) and general circulation models (GCMs) are heavily used to provide
inputs to sectoral impact and multisector dynamic models, which include representations of energy, water, land,
economics, and their interactions. Therefore, representing the full range of model uncertainty, scenario uncer-
tainty, and interannual variability that ensembles of these models capture is critical to the exploration of the
future co-evolution of the integrated human–Earth system. The pre-eminent source of these ensembles has been
the Coupled Model Intercomparison Project (CMIP). With more modeling centers participating in each new
CMIP phase, the size of the model archive is rapidly increasing, which can be intractable for impact modelers to
effectively utilize due to computational constraints and the challenges of analyzing large datasets. In this work,
we present a method to select a subset of the latest phase, CMIP6, featuring models for use as inputs to a sectoral
impact or multisector dynamics models, while prioritizing preservation of the range of model uncertainty, sce-
nario uncertainty, and interannual variability in the full CMIP6 ensemble results. This method is intended to help
impact modelers select climate information from the CMIP archive efficiently for use in downstream models that
require global coverage of climate information. This is particularly critical for large-ensemble experiments of
multisector dynamic models that may be varying additional features beyond climate inputs in a factorial design,
thus putting constraints on the number of climate simulations that can be used. We focus on temperature and
precipitation outputs of CMIP6 models, as these are two of the most used variables among impact models, and
many other key input variables for impacts are at least correlated with one or both of temperature and precipita-
tion (e.g., relative humidity). Besides preserving the multi-model ensemble variance characteristics, we prioritize
selecting CMIP6 models in the subset that preserve the very likely distribution of equilibrium climate sensitiv-
ity values as assessed by the latest Intergovernmental Panel on Climate Change (IPCC) report. This approach
could be applied to other output variables of climate models and, possibly when combined with emulators, offers
a flexible framework for designing more efficient experiments on human-relevant climate impacts. It can also
provide greater insight into the properties of existing CMIP6 models.

1 Introduction

The future evolution of the integrated human–Earth system
is highly uncertain, but one common approach to begin ad-
dressing this uncertainty is to use outputs from a variety
of computationally expensive, highly detailed process-based
Earth system models (ESMs) and general circulation mod-
els (GCMs) run under different scenarios. This approach

has been facilitated by the Coupled Model Intercomparison
Project (CMIP; Eyring et al., 2016), which has organized
experiments that are standardized across modeling centers.
Scenario simulations from CMIP, most recently through Sce-
narioMIP (O’Neill et al., 2016), are commonly used as in-
puts to downstream sectoral impact and multisector dynamic
models, both by individual modeling efforts and by large co-
ordinated impact modeling projects like AgMIP or ISIMIP
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(e.g., Rosenzweig et al., 2013, 2014; Warszawski et al., 2014;
Frieler et al., 2017). Using such multi-model ensembles cap-
tures the process and structural uncertainties represented by
sampling across ESMs/GCMs, scenario uncertainty, and, to
the extent that an ESM/GCM runs multiple initial-condition
ensemble members for a scenario, internal variability in the
individual ESM (Hawkins and Sutton, 2009, 2011; Lehner
et al., 2020). These Earth system uncertainties can then be
propagated through an impact model (perhaps after bias cor-
rection; Lange, 2019) to understand possible human-relevant
outcomes.

From the Earth system modelers who produce climate data
to the impact and multisector dynamic modelers who use it,
each step in this process is computationally expensive. For
Earth system modelers, variability across ESM/GCM projec-
tions of future climate variables can be significant (Hawkins
and Sutton, 2009, 2011; Lehner et al., 2020), and so the par-
ticipation of multiple modeling centers running multiple sce-
narios is critical to understanding the future of the Earth sys-
tem. Furthermore, statistical evaluation (Tebaldi et al., 2021)
suggests that 20–25 initial-condition ensemble members for
each scenario that an ESM/GCM provides are needed to es-
timate the forced component of extreme metrics related to
daily temperature and precipitation, which are key inputs to
many impact models covering hydrological, agricultural, en-
ergy, and other sectors. Fortunately, emulation of ESM/GCM
outputs to infill missing scenarios and enrich initial-condition
ensembles continues to improve (Beusch et al., 2020; Nath et
al., 2022; Quilcaille et al., 2022; Tebaldi et al., 2022). This
suggests that ESMs/GCMs do not necessarily have to pro-
vide all of the runs desired for capturing possible futures but
instead a subset of scenarios including initial-condition en-
sembles for emulator training. The total burden across the
modeling and analysis community to sample across ESM-
s/GCMs and scenarios still remains high, even with the po-
tential efficiency provided by emulators. Downstream from
the physical climate science community, impact modelers of-
ten seek to understand future climate impacts in the context
of ESM uncertainty using the outputs of multiple ESMs un-
der multiple scenarios as inputs to impact models (e.g., Prud-
homme et al., 2014; Müller et al., 2021). In a world unbur-
dened by time and computing constraints, an impact model
would take as input every projected dataset available (possi-
bly weighted according to observation and/or by model in-
dependence) to have a full understanding of the total vari-
ance in possible outcomes. Our world includes those bur-
dens, which are made even larger when impact models re-
quire bias-corrected climate data as input. This can quickly
become an intractably sized set of runs to perform and ana-
lyze for impact modelers. For the multisector dynamics com-
munity, whose modelers often attempt to integrate results
from multiple impact models to understand interactions of
different sectors (like energy, water, land, and economics) of
the integrated human–Earth system (Graham et al., 2020),
this challenge multiplies. Finally, multisector dynamic mod-

els are beginning to run large-ensemble experiments that vary
additional features beyond climate inputs in a factorial design
(e.g., Dolan et al., 2021, 2022; Guivarch et al., 2022) further
adding to the computational costs to be faced. The multisec-
tor dynamics approach is the approach that the examples in
this work focus on downstream models that require global
coverage of a variety of climate model output variables at
different temporal scales. Were a study to be focused on par-
ticular regions or localized impacts and dynamics, other se-
lection criteria, such as model skill (closeness to observation,
ability to replicate modes of variability known to be partic-
ularly important to that region, etc.) and the effect of down-
scaling and bias correction, known to introduce additional
sources of variability and uncertainty (Lafferty and Sriver,
2023) in that region could be explored.

For all communities involved, an efficient way to design
and then use climate model runs is critical. While there is
likely no perfect solution to balance the tension between the
competing priorities of different climate data creators and
climate data users, this work describes a method for select-
ing a subset of CMIP6 models that prioritizes retaining the
overall uncertainty characteristics of the entire data set, par-
ticularly in dimensions relevant to impact and multisectoral
modelers. The method proposed here exists in the context of
a rich literature on model selection, with methods focused
on model skill in comparison to observation and/or tracking
and controlling for climate model dependence (Abramowitz
et al., 2019; Brands, 2022; Merrifield et al., 2023; Parding
et al., 2020). These are critical aspects to consider when
subselecting climate models for downstream use. Merrifield
et al. (2023) do include model spread as a critical consid-
eration for model selection, but to our knowledge, there is
no uncertainty-first consideration of climate model selection.
The method we present in this work is an adaptable frame-
work that could complement other approaches based on skill
and climate model independence, and some of the choices
made in implementing this method may be adaptable for
other uses or priorities.

2 Methods

We approach the question of uncertainty in the full collec-
tion of CMIP6 models as being one of understanding the
total variance in the CMIP6 outputs, which, following the
Hawkins and Sutton framing of the problem (Hawkins and
Sutton, 2009, 2011; Lehner et al., 2020), we understand as
coming from three sources: internal variability and scenario
and model uncertainties. Rather than attributing fractions of
total variance to different sources and optimizing that as part
of the selection process, however, we focus on projecting the
data into a new coordinate basis designed to maximize total
variance. Principal component analysis (PCA) does exactly
this; it identifies a new set of basis vectors maximizing total
variance that data can be projected into. Once climate model
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data have been projected into this space (e.g., as in Fig. 3),
it is possible to sample a subset of climate models that cover
the spread of the projections of the full set of climate model
outputs in this variance-maximizing space.

The overall steps of this method are summarized in Ta-
ble 1. Section 2.1 and 2.2 provide fuller details on us-
ing PCA to characterize the full set of climate model data
(Sect. 2.1) and selecting a representative subset of climate
models within that characterization (Sect. 2.2). Table 1 espe-
cially highlights the choices made for this particular effort,
based on the authors’ experience with multisectoral impact
modeling. Section 2.3 outlines our approach to evaluating
the extent to which our model subset preserves the uncer-
tainty properties of the full data set. Nothing in the method
prevents its being adapted with different regions of interest,
indices of behavior, or ESM/GCM output variables, although
evaluation of results in new implementations would be nec-
essary.

2.1 Data preparation and characterization

Impact models often require multiple output variables from
a climate model on daily or monthly timescales, with tem-
perature and precipitation being the most common variables
needed. For tractability, we focus on the Intergovernmental
Panel on Climate Change (IPCC) Working Group I (WG1)
non-arctic land regions (Iturbide et al., 2022), as these re-
gions are primarily where humans live, consume water, gen-
erate electricity, and grow food; i.e., these are the places most
relevant in multisectoral models of the integrated human–
Earth system. We also limit ourselves to ESMs/GCMs that
completed all four ScenarioMIP Tier 1 experiments (Ta-
ble 2). This still results in more than 600 trajectories across
models, scenarios, and ensemble members for each region.

In this work, we are treating this collection of ESM-
s/GCMs and scenario results in these regions as the full set of
data of which we would like to faithfully represent the uncer-
tainty characteristics, and we then select a subset of climate
models for impact modelers to use, based on preserving those
characteristics. A critical point, however, is that once the full
set of climate data is characterized, as we outline in this sec-
tion, the selection step of the method includes a step to re-
strict the equilibrium climate sensitivity (ECS) distribution
of the model subset to reflect that of the IPCC Sixth Assess-
ment Report (AR6)-defined most likely distribution (Core
Writing Team et al., 2023). This shifts the average ECS value
of the selected subset down relative to the existing full data
covered in Table 2. Following this ECS distribution, a sin-
gle high ECS climate model is allowed to be included in the
subset, allowing the “hot model problem” (Hausfather et al.,
2022) to be addressed as part of the model subset selection
process, as well as ensuring that a range of model behaviors
across different ECS values is included. Models for which
we could not readily identify ECS values in the literature are
included in the characterization of the full space, but they are

not eligible for selection in the subset, as preserving the IPCC
distribution of ECS values is a critical filter in this selection
process for the examples outlined in this work (more details
in Sect. 2.2).

For each scenario, region, and available ensemble member
in each in each ESM/GCM, we extract the following tem-
perature and precipitation outputs: mid-century (2040–2059)
average anomaly relative to that model’s historical average
(1995–2014), the end-of-century (2080–2099) anomaly rel-
ative to the historical average, and the interannual standard
deviation (IASD). The interannual standard deviation is cal-
culated by detrending the regional average level temperature
and precipitation time series from 1994–2100, using non-
parametric and locally weighted smoothing (loess, as imple-
mented in the Python statsmodels package), and then taking
the standard deviation of the residuals. For each scenario and
model, these ensemble member values are used to calculate
the ensemble average to form our final indices in each re-
gion. These six indices (three for each of temperature and
precipitation) per ESM-scenario-region combination are se-
lected to result in data that represent the model uncertainty,
scenario uncertainty, and interannual variability in our full
set of data. By focusing on ensemble averages, models that
performed more realizations are not over-represented in the
overall space. When an ensemble size is only one realiza-
tion, then that realization’s value is used. The key question
is how to efficiently characterize this collection of data in a
way that enables an efficient subsampling of models that still
preserves the main dimensions of variations in the full en-
semble.

These full data can be written as a matrix A with
Nmodel∗Nscenarios rows and Nindices∗Nregions columns.
In the case of considering all 22 models listed in Table 2 as
representative of the full space, this makes 88 rows and 258
columns, and we use these numbers for simplicity in some
of the vector descriptions that follow. Below, we outline two
experiments that highlight the adaptability of this method by
considering model dependency in the CMIP6 models versus
not doing so. In the case of restricting to independent models
only to make up the full data, these numbers will, of course,
change.

Principal component analysis (PCA) is then a natural tech-
nique to understand the variance in this full data set by form-
ing the covariance matrix S= ATA. The eigenvectors of S
are a set of orthogonal basis vectors (each vector has a length
of 258) that is ordered by how much variance of the full data
each eigenvector explains. Mathematically, this means that
each row of A ({ai |i = 1. . .88}), representing the indices in
all regions for a single climate model scenario, can be pro-
jected into the space of eigenvectors {PCi |i = 1. . .88} and
written as ai =6j cijPCj for the projection coefficients (co-
ordinates in the basis of eigenvectors), cij . Thus PC1, for ex-
ample, represents some pattern of joint, spatiotemporal tem-
perature, and precipitation behaviors that explains the great-
est variance across ESM-/GCM-scenario observations. Each
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Table 1. Summary of method.

Step Description Experiment 1 Experiment 2

1 Identify relevant climate model output
variables

Temperature and precipitation
from all (22) ScenarioMIP Tier 1
participating models

Temperature and precipitation
from independent∗ (16)
ScenarioMIP Tier 1
participating models

2 Aggregate gridded time series to region
levels

IPCC WG1 non-arctic land IPCC WG1 non-arctic land

3 Identify and extract region indices for
each variable, for each model scenario to
capture characteristics of uncertainty in
the interest

Ensemble averaged to mid-
century
anomaly, end-of-century
anomaly,
interannual standard deviation

Ensemble averaged to mid-
century
anomaly, end-of-century
anomaly,
interannual standard deviation

4 Form a matrix of model–scenario rows
and region indices columns for the full
data and perform PCA; identify number
of eigenvectors, N , responsible for
majority of variance

N = 5 eigenvectors N = 5 eigenvectors

5 Create candidate subsets of models based
on heuristic filters of interest

Model subset size = 5;
heuristic filter is that each
subset must preserve the IPCC
distribution of equilibrium
climate sensitivity

Model subset size = 5;
heuristic filter is that each
subset must preserve the IPCC
distribution of equilibrium
climate sensitivity

6 Calculate the summary metric for each
subset and select the subset with the
smallest value

Minimize distance from out-of-
subset model to a subset model
across the N = 5 dimensions

Minimize distance from out-of-
subset model to a subset model
across the N = 5 dimensions

7 Calculate the Hawkins and Sutton
partitions for the full set of data and
selected subset and use as independent,
qualitative evaluation data

Full data = 22 models
Subset = ACCESS-CM2,
ACCESS-ESM1-5,
BCC-CSM2-MR,
MRI-ESM2-0, and
MIROC6

Full data = 16 models
Subset = IPSL-CM6A-LR,
ACCESS-ESM1-5,
MRI-ESM2-0,
MPI-ESM1-2-0,
and MIROC6

∗ Independent as defined in this work; many definitions exist.

CMIP6 model–scenario combination has some contribution
from this pattern described by its projection coefficient, ci1.
This projection can be done over all eigenvectors or, as is
common with PCA, a small subset of the eigenvectors that
explain the majority of variance.

To demonstrate the flexibility of this approach to charac-
terizing data, we perform the same analysis in two different
experiments:

– Experiment 1 assumes all 22 models listed in Table 2
make up the full data.

– Experiment 2 assumes the full data are made up of
only 16 of the models in Table 2, with ACCESS-
CM2, CESM2-WACCM, CMCC-CM2-SR5, FGOALS-
f3-L, INM-CM4-8, and MPI-ESM1-2-HR being re-
moved from consideration as they share clear model de-
pendencies with other models in the full data. When de-

ciding which of two related models to keep, we chose
based on keeping the model with greater number of re-
alizations as this is valuable for downstream uses. Other
criteria could be used to define model dependency and
make selections, as determining model independence is
itself a rich field of study (Abramowitz et al., 2019;
Brands, 2022; Merrifield et al., 2023).

Figure 1 is a plot of the fraction of variance explained by
each of the first 15 eigenvectors in each experiment. Based
on this figure, we restrict ourselves to the first five eigenvec-
tors for projections (just after the “elbow”), explaining more
than 70 % of total variance for each experiment. The num-
ber of eigenvectors considered is another area of flexibility
of this method. There is no reason this method could not
be applied to more or even all of the eigenvectors. However,
the more eigenvectors that are considered, the higher dimen-
sional the space that model selection must take place in. This
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Table 2. Models and scenarios making up the full set of data, as well as their equilibrium climate sensitivity (ECS) values (sourced from
Meehl et al., 2020, Lovato et al., 2022, and Zelinka et al., 2020). Note that even the Earth system models in CMIP6 run these experiments in
concentration-driven mode rather than emissions-driven mode.

ESM ECS SSP126 SSP245 SSP370 SSP585
ensemble size ensemble size ensemble size ensemble size

ACCESS-CM2 4.7 5 5 5 5
ACCESS-ESM1-5 3.9 40 10 30 40
BCC-CSM2-MR 3.0 1 1 1 1
CAMS-CSM1-0 2.3 2 2 2 2
CESM2 5.2 3 3 3 3
CESM2-WACCM 4.8 1 3 1 3
CMCC-CM2-SR5 3.52 1 1 1 1
CMCC-ESM2 3.57 1 1 1 1
CanESM5 5.6 25 25 25 25
EC-Earth3-Veg-LR 4.2 3 3 3 3
FGOALS-f3-L 3.0 1 1 1 1
FGOALS-g3 2.87 4 4 4 4
GFDL-ESM4 2.6 1 3 1 1
INM-CM4-8 1.8 1 1 1 1
INM-CM5-0 1.9 1 1 5 1
IPSL-CM6A-LR 4.6 6 11 11 6
MIROC6 2.6 50 33 3 50
MPI-ESM1-2-HR 3.0 2 2 10 2
MPI-ESM1-2-LR 3.0 10 10 10 10
MRI-ESM2-0 3.2 5 5 5 5
NorESM2-MM 2.5 1 2 1 1
UKESM1-0-LL 5.3 13 14 13 5

slows down the calculations for selecting a subset consider-
ably, at the benefit of explaining only a few extra percent of
total variance with each vector added.

Figure 2 is a visual representation of these five eigenvec-
tors for each experiment. Each row is a map of all indices
for each eigenvector. While it is tempting to interpret dif-
ferences in sign as meaningful, note that these are centered
and scaled variables. Interpretation of the eigenvectors is also
less meaningful than the fact that they represent an orthog-
onal coordinate system that maximizes total variance. For
both experiments PC1 is dominated by temperature and, to
a lesser extent, high-latitude precipitation, highlighting that
these features are responsible for 38.7 % of the total vari-
ance of our full set of data (from Fig. 1). This is not the only
contribution to total variance of temperature, of course, but
it is a good sanity check that temperature anomalies are the
most dominant feature in the dimension explaining the high-
est fraction of total variance. PC2 is dominated by temper-
ature interannual variability and high-latitude precipitation
interannual variability. PC3 to PC5 feature a mix of the in-
dices, with strong emphasis on precipitation-related behav-
iors. Note that because we treated temperature and precip-
itation indices together in one matrix, the eigenvectors in-
clude joint temperature-precipitation behaviors that may be
missed if the variables were treated separately. When com-
paring each map between the two experiments, it is worth

noting that the spatial patterns are very similar between Ex-
periment 1 and Experiment 2. Specifically, it is primarily in
the southern latitudes in PC5 (explaining only∼ 5 % of total
variance in the full data in either experiment) that clear dif-
ferences between the two experiments begin to emerge. This
suggests that the patterns of total variance in this data set are
dominated by differences beyond those that might be cap-
tured in our definition of model dependence. For example,
maybe different representations of ocean physics are playing
a large role. Testing of this hypothesis is outside the scope
of this method description work but highlights the poten-
tial value of characterizing an archive of CMIP data in this
way. In Figs. 1 and 3, we also see that the fraction of total
variance explained by each eigenvector is similar across the
two experiments. Overall, this similarity when accounting for
model dependence versus not is not entirely surprising. The
full data set in Experiment 1, with all of the model dependen-
cies it includes, does include over-representation of whatever
physics (for example) that are used in the most ESMs/GCMs.
However, because PCA is focused on maximizing total vari-
ance, this over-representation does get mitigated to an extent.

By treating the span of these five eigenvectors as the rep-
resentative space of full data, we can project all data into
this space and visualize their behavior by two-dimensional
plots of all five principal component (PC) combinations. Fig-
ure 3 shows these 2-D slices of the projection coefficients for
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Figure 1. Fraction of variance explained by each eigenvector of the principal component analysis on scaled data for Experiment 1 (a) and
Experiment 2 (b) for the first 15 eigenvectors.

each ESM/GCM and scenario into this space for each exper-
iment. These points in space are the cij values in the prin-
cipal component decomposition ai =6j cijPCj , where ai

contains the indices in all regions for a single climate model-
scenario. Because eigenvectors are orthogonal in PCA, to-
gether these panels are a complete visual representation of
our ESM/GCM index data characterized in each ai , truncated
to the first five projection dimensions (since they account for
more than 70 % of total variance in the full data in each ex-
periment). If an impact modeler wished, they could run every
model-scenario combination here for all available ensemble
members. In practice, however, this may not be computation-
ally tractable to either run or analyze. This view also moti-
vates our approach for selecting our subset of climate models
that preserve the uncertainty characteristics defined by this
space. Because we want to represent the same characteris-
tics of variance with fewer ESMs/GCMs, our selection of a
subset of ESMs/GCMs is seeking to essentially sample this
cloud at its extremes, middle, and throughout as subset size
allows.

2.2 Selection criteria of subset of CMIP6 models

Once the full set of data has been projected into the new
basis identified to maximize total variance by PCA (as in
Fig. 3), selecting a representative subset of climate mod-
els across that space is relatively straightforward, and so is
adding additional selection criteria, like constraining the dis-
tribution of ECS values. The subset of climate models that
minimizes distance to all other climate models across this
five-dimensional space is the subset selected. In more detail,
first, subsets of candidate models are formed (in this work,
five models per subset, but the approach can be applied to
any target subset size). While it would be possible to con-
sider any combination of five models from the full set of 22,

in this work we add a pre-filtering step. From all 22 choose
5 potential subsets, we only consider as candidate subsets
the 150 subsets that roughly preserve the IPCC distribution
of equilibrium climate sensitivity values and for which we
could identify ECS values in the literature (Core Writing
Team et al., 2023; Lovato et al., 2022; Meehl et al., 2020;
Zelinka et al., 2020). Then for each subset, we step through
each non-candidate model and calculate the minimum Eu-
clidean distance to any of the subset’s climate model’s coef-
ficients. The summary metric for each subset of candidates is
then the average over all non-candidate model minimum dis-
tances, and the subset of candidate models with the smallest
summary metric is the selected subset. Unlike many metrics
(e.g., Nash and Sutcliffe, 1970; Tebaldi et al., 2020), there is
unfortunately not a clear threshold for “good enough” perfor-
mance based on this metric and so in the so in the next sec-
tion, we provide a qualitative evaluation framework that as-
sesses whether the selected subset is successful at preserving
the major characteristics of the full ensemble’s uncertainty
characteristics.

2.3 Method for subset evaluation

The Hawkins and Sutton breakdown of total variance into
relative sources of uncertainty inspired our choices of re-
gional indices, both anomalies and interannual standard de-
viations. However, our subset selection is made in the space
of the climate models’ absolute positions, without formally
considering the relative breakdowns into fraction of total
variance explained by model uncertainty, scenario uncer-
tainty, and internal variability. Therefore, the partitioning of
relative uncertainty calculated in the style of Hawkins and
Sutton (Hawkins and Sutton, 2009, 2011) is a useful indepen-
dent framework to evaluate the extent to which our climate
model subset preserves the characteristics of the full ensem-
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Figure 2. Maps of the first five eigenvectors of our full data. Each row is a single eigenvector, with maps presented for each of the indices.
Note that the color bar scales are all standardized. A larger, landscape-oriented version of this figure is included in Appendix A (Fig. A1) for
easier inspection.

ble. We do not expect perfect agreement in the Hawkins and
Sutton (HS) fractions between our climate model subset and
the full data because we do change the distribution of ECS
values in the subset we select. However, even qualitative dis-
crepancies in the HS fractions between the full ensemble and
the chosen subset can be useful to understand whether de-
cisions such as constraining the distribution of ECS values
are moving the relative contribution of each source of uncer-
tainty in an explainable way.

The calculations of HS fractions are as follows. Consider
a set of trajectories for a given climate variable produced by

various model ESMs and scenarios. For example, this could
be the annual average temperature or precipitation in a given
world region. At each time step, t , there will be variation in
the estimates from each observation in the set. The goal for a
given set is to attribute a proportion of the variation or uncer-
tainty at each time step to one of the three sources: interan-
nual variation, model uncertainty, and scenario uncertainty.
In our application, we want to do this for a “full” model set
and compare the distribution of assigned variance to the same
analysis on a selected subset of models.

https://doi.org/10.5194/esd-15-1301-2024 Earth Syst. Dynam., 15, 1301–1318, 2024
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Figure 3. 2-D slices of the projection coefficients for each ESM-/GCM-scenario combination into the space spanned by the first five eigen-
vectors.

The crux of this method for separating uncertainty is to
write the raw predictions for each observation as Xm,s,t =

xm,s,t + im,s + εm,s,t , where Xm,s,t is the raw prediction for

model m scenario s at time t , xm,s,t is a smoothed fit
of the variable anomaly with reference period 1995–2014,
im,s is the average variable value over the reference period,

Earth Syst. Dynam., 15, 1301–1318, 2024 https://doi.org/10.5194/esd-15-1301-2024
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and εm,s,t is the residual, representing interannual variation
(IAV). Note that while the internal variability is itself a con-
stant value for each climate model scenario, the fraction of
total variance that internal variability explains can change
over time as the model and scenario components change.
Similarly, while we do not want to select subsets of scenar-
ios, understanding the relative contribution of scenario uncer-
tainty is critical to appreciate the variability across the differ-
ent models.

We can then essentially calculate the interannual vari-
ation component as the variance of all ε, the model un-
certainty component at each time step as the variation in
x over the different models, and the scenario uncertainty
at each time step as the variation in x over the different
scenarios. The variance calculations can have a weighting
component, although in this work we treat all models in-
cluded in each experiment-specific full ensemble as uni-
formly weighted. The interannual variability component is
computed as V =

∑
mvars,t (εm,s,t ). The model uncertainty

component is M(t)= 1
Ns

∑
svarm(xm,s,t ) for the number of

scenarios used Ns (four in this study). The scenario uncer-
tainty component is S(t)= vars

(∑
mxm,s,t

)
.

Note that each of these components may, for example, be
weighted based on each climate model’s closeness to some
observational set, but in this work we weight them uniformly,
as we are not concerned with model validation. Furthermore,
we follow the assertion by Hawkins and Sutton (2009), who
assert that final fractions of total variability are not strongly
affected when using different weights.

3 Results and discussion

The selected subset of ESMs/GCMs and their respective ECS
values are provided in Table 3 for each experiment. Figure 4
presents an identical plot to Fig. 3 but with the selected ESM-
s/GCMs highlighted by black box-shaped outlines to empha-
size the extent to which the subset covers the full ensemble.
We also perform a validation exercise based on the work of
Hawkins and Sutton (2009, 2011), using the whole time se-
ries data rather than the six metrics that guided our subset
selection to provide an additional perspective on the ability
of the method to preserve the characteristics of variability in
the whole ensemble.

Subset evaluation

As noted in Sect. 2.3, the partitioning of total variance into
the relative contribution of different sources calculated by
Hawkins and Sutton (2009, 2011) is a useful independent
framework to evaluate the extent to which our climate model
subset preserves the characteristics of the full ensemble. As
we did not calculate the specific time series of Hawkins and
Sutton (HS) fractions for internal variability (there, as here,
quantified as interannual variability after detrending the an-
nual mean time series), scenario uncertainty, and model un-

Table 3. Selected model subset and ECS values for each experi-
ment. Models selected in both experiments are shown in bold.

Experiment 1 model Experiment 2 model
(ECS value) (ECS value)

ACCESS-CM2 (4.70) IPSL-CM6A-LR (4.6)
ACCESS-ESM1-5 (3.9) ACCESS-ESM1-5 (3.9)
MRI-ESM2-0 (3.2) MRI-ESM2-0 (3.2)
BCC-CSM2-MR (3.0) MPI-ESM1-2-0 (3.0)
MIROC6 (2.6) MIROC6 (2.6)

certainty to form any part of our selection procedure, we can
use these HS fractions as an independent evaluation criteria.
We calculate the time series of HS fractions for temperature
and precipitation separately in each region for the full set of
data and over just our selected subset of data, i.e., for each ex-
periment, over the selection of CMIP6 models making up the
full data set in that experiment, and only using the subset of
five ESMs/GCMs that our method identified. Details of these
calculations are provided in Sect. 2.3. To manage the inspec-
tion of three time series for each of the 86 region–variable
combinations, we use the root mean square error (RMSE) to
compare the full data time series and the subset data time se-
ries from 2040 onward (as that is the focus of our indices)
for each uncertainty partition and for each variable in each
region.

Because of the large number of regions we wish to ex-
amine for two variables over time in each of two separate
experiments, we seek some criteria to narrow this down. To
identify specific region–variable combinations that are due
for closer inspection, we set a threshold on the RMSE values
for each uncertainty partition for each region–variable com-
bination. As we note in Sect. 2.3, a discrepancy between the
HS fractions for the subset and the full data is not a sign of
poor selection. Rather, it merely means it is a region to in-
spect more closely and then consider whether the discrepan-
cies follow from our constraint of ECS values as part of our
selection procedure. If any of the three uncertainty partitions
have RMSE > 0.1, we flag that region–variable combination
for closer inspection. While thresholds like this are often ar-
bitrary to set, each uncertainty partition for the subset data
explaining the fraction of total variance within 10 % of the
full data’s partition seems a good place to start. We show in
Appendix A the results of a less stringent choice, namely if
we relax this to 20 %, then far fewer regions and variables
get flagged for inspection in each experiment. Lowering this
inspection threshold will of course flag more region–variable
combinations, but as we point out below, a portion of the
combinations flagged with a threshold of 0.1 still actually
perform reasonably when plotted over time. Figure 5 pro-
vides a color-coded map of regions where temperature, pre-
cipitation, both, or neither have RMSE 5 0.1 for all three un-

https://doi.org/10.5194/esd-15-1301-2024 Earth Syst. Dynam., 15, 1301–1318, 2024



1310 A. Snyder et al.: Uncertainty-informed selection of CMIP6 Earth system model subsets

Figure 4. Same as Fig. 3 but with the selected ESMs/GCMs highlighted by black box-shaped outlines in Experiment 1 (a) and Experi-
ment 2 (b).

certainty partitions to give a sense of the spatial extent of
performance.

The time series of HS fractions for the remaining region–
variable combinations for which RMSE > 0.1 are plotted in
Fig. 6 (temperature) and Fig. 7 (precipitation). For temper-
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Figure 5. A color-coded map of regions where temperature, precipitation, both, or neither have RMSE 5 0.1 for all three uncertainty
partitions.

ature in both experiments, we see that the interannual vari-
ability is often performing well, with increasingly better per-
formance over time. The partitioning of model and scenario
uncertainty is where the subset’s behavior begins to depart
from the full data, although this too tends to have smaller
discrepancies as time goes on. This is not surprising: in the
full set of data, a good portion of the model uncertainty is
driven by different ECS values. As provided in Table 2, the
values across ESMs/GCMs that participated in Tier 1 Sce-
narioMIP experiments do not match the IPCC’s very likely
distribution. By contrast, we are only selecting subsets of
ESMs/GCMs that match this distribution; overall, this re-
sults in a cooler collection of climate models compared to
the full data. This accounts for much of the discrepancy with
respect to the balance between the scenario and model uncer-
tainty contributions being different between our full and our
subset data. Enforcing a different distribution of ECS values
in the selected subset relative to the full data will also ex-
plain many of the discrepancies for precipitation, given the
known strong correlation between temperature and precip-

itation changes. For precipitation, overall we see the total
uncertainty in the subset having a greater fraction explained
by interannual variability and a smaller fraction explained by
model uncertainty across time. For both temperature and pre-
cipitation, the direction of these discrepancies is not surpris-
ing, given our choice to reshape the distribution of ECS to
an overall cooler collection than the full data. What we want
to see in all panels of Figs. 6 and 7 is a qualitative agree-
ment with the relevance of the three sources of uncertainty in
the full ensemble. We note that even in the regions we have
flagged for closer inspection in Figs. 6 and 7, model uncer-
tainty is evolving in the subset in much the same way as it
evolves in the full set, albeit with a shift. According to this
criterion, most of the regions flagged by the application of
the 0.1 threshold remain consistent with the full ensemble
representation of the three uncertainty sources for both vari-
ables and across both experiments. A small portion of the
regions inspected in Fig. 6 and 7 do ultimately simply differ
more dramatically in the representations in the full set versus
subset, such as TIB in Experiment 1 in Fig. 6. This is often
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Figure 6. Regions flagged for a closer inspection of their HS fraction time series for temperature. The color-blocked time series are the HS
fractions from the full set of data, and the overlaid white curves are the respective boundaries for the uncertainty partitions of the subset data.

unavoidable in a few regions when seeking to represent the
entire globe with a subset of ESMs/GCMs; again, we note
that an even more substantial quality discrepancy such as this
is not a sign of the failure of the method due to the constraints
on ECS distributions.

4 Conclusions

This work outlines and documents the success of a method
for selecting a subset of climate models from CMIP6 that
overall preserve the uncertainty characteristics of the full
CMIP ensemble, particularly for use with multisectoral dy-
namics models that require global coverage and consistency
across regions. The methodology is not focused on advo-
cating for the idea that a particular set of models is supe-

rior; instead, it focuses on managing the uncertainty. Our
methodology relies on pre-identifying regional indices of be-
havior for ESM/GCM output variables, as well as other fil-
ters (such as preserving the IPCC distribution of ECS values)
judged to be critical for the robustness of impact and multi-
sectoral modeling. With these assumptions, far fewer climate
inputs are needed to span the range of uncertainties seen in
CMIP6, resulting in fewer impact model runs needing to be
performed and analyzed. There are likely many situations in
which a modeler could adapt the details of the method (out-
lined in Table 1) and code for their purposes, re-run the code
to identify a subset of climate models, and validate that new
subset in much less time and with a great deal fewer com-
puting resources needed than simply running impact mod-
els with all scenarios and ensemble members available for
the 22 ESMs/GCMs documented in Table 2. For multisec-

Earth Syst. Dynam., 15, 1301–1318, 2024 https://doi.org/10.5194/esd-15-1301-2024



A. Snyder et al.: Uncertainty-informed selection of CMIP6 Earth system model subsets 1313

Figure 7. Same as Fig. 6 but for precipitation.

toral modelers integrating multiple different impacts, or run-
ning large-ensemble experiments, the time saved only grows,
even when accounting for the method adjustment and the re-
validation of results. For researchers focused on emulators,
there may be opportunities to identify fewer climate mod-
els that would benefit from generating more initial-condition
ensemble members, focusing efforts. Finally, Earth system
modelers can gain new insights into their individual climate
models by adding the approach to uncertainty characteriza-
tion outlined in this work to their existing analyses.

The methodology outlined in this paper is an adaptable
approach to retain the major uncertainty characteristics of a
large collection of global-coverage climate model data and to
make changes (as we did to the full-ensemble ECS distribu-
tion). While there are resulting regions for both temperature
and precipitation where the uncertainty partitions of the sub-
set of ESMs/GCMs differ from the full set of CMIP6 models,
these differences are primarily expected, based on the differ-
ent ECS distribution represented by our subset ESMs/GCMs
compared to the full data. For those interested in using our
chosen subset, we hope that by providing detailed informa-
tion about where the subset differs in Figs. 5–7, impact mod-
elers may be able to infer how the results would change if

the full set of data were used – and with a far lower compu-
tational burden than running all available data. Furthermore,
because the method is adaptable, an impact modeler partic-
ularly interested in a specific region could weight the out-
comes in that region more heavily for the selection of the
subset.

As noted, this work is primarily coming from the perspec-
tive of a multisectoral dynamics modeler requiring the global
coverage of a range of climate model output variables at dif-
ferent timescales, and naturally, other perspectives will come
with their own caveats. Impacts can be estimated and worked
with at a range of spatial scales; impact modelers concerned
with finer-scale or local impacts, or modelers focused on a
single region rather than global coverage, may very well be
served by prioritizing other factors like skill in their climate
model subselection. Bias correction and downscaling are also
tools heavily used to get to these finer spatial scales, and
these processes introduce their own sources of uncertainty,
particularly for very local phenomenon and over complex
terrain (Kendon et al., 2010; Mearns et al., 2013; Barsugli et
al., 2013; Lafferty and Sriver, 2023). Generally, the method
outlined in this work is more appropriate for working with
raw CMIP6 data in the native resolutions or an ensemble
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of bias-adjusted and downscaled climate data that has been
processed using a consistent bias-adjustment and downscal-
ing method. On a final note, regarding adaptations of this
method, we focused on temperature and precipitation be-
cause many variables used in impact modeling are correlated
to or derived from these variables. This is especially true in
agriculture (e.g., Sinha et al., 2023a, b; Peterson and Abat-
zoglou, 2014; Allstadt et al., 2015; Gerst et al., 2020), al-
though it holds true in other sectors as well. One area for the
potential expansion of this method that would have a more
direct relevance for those derived variables would be to in-
corporate a time dimension more explicitly.

Appendix A: Additional figures

Figure A1. A color-coded map of regions where temperature, precipitation, both, or neither have RMSE 5 0.2 for all three uncertainty
partitions.
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Figure A2. Same as Fig. 6 but for RMSE > 0.2 rather than 0.1.

Figure A3. Same as Fig. 7 but for RMSE > 0.2 rather than 0.1.
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