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Abstract. Given the role of the ocean in mitigating climate change through CO2 absorption, it is important to
improve our ability to quantify the historical ocean CO2 uptake, including its natural variability, for carbon bud-
geting purposes. In this study we present an exhaustive intercomparison between two ocean modeling practices
that can be used to reconstruct the historical ocean CO2 uptake. By comparing the simulations to a wide array of
ocean physical and biogeochemical observational datasets, we show how constraining the ocean physics towards
observed temperature and salinity results in a better representation of global biogeochemistry. We identify the
main driver of this improvement to be a more vigorous large-scale meridional overturning circulation together
with improvements in mixed-layer depth and sea surface temperature. Nevertheless, surface chlorophyll was
rather insensitive to these changes, and in some regions its representation worsened. We identified the causes of
this response to be a combination of a lack of robust parameter optimization and limited changes in environmen-
tal conditions for phytoplankton. We conclude that although the direct validation of CO2 fluxes is challenging,
the pervasive improvement observed in most aspects of biogeochemistry when applying data assimilation of ob-
served temperature and salinity is encouraging; therefore, data assimilation should be included in multi-method
international efforts aimed at reconstructing the ocean CO2 uptake.

1 Introduction

The ocean is responsible for absorbing approximately 25 %
of CO2 emissions derived from human activities (Gruber
et al., 2023). However, a growing body of evidence high-
lights the need to better understand the links between natural
climate variability and ocean carbon cycle dynamics, point-
ing to the ocean carbon sink being more variable than pre-
viously assumed (DeVries et al., 2023; Gruber et al., 2019;
McKinley et al., 2017). Understanding the mechanisms be-
hind this variability can lead to better estimates of the ocean
carbon sink. In a context of declining CO2 emissions, the rel-
ative importance of variability in air–sea CO2 fluxes (driven
by natural climate variability) increases with respect to the
net uptake of the anthropogenic fraction of CO2. This means
that being able to quantify the natural variability becomes
paramount for the detection and attribution of a changing
trend in ocean CO2 uptake, which can have significant impli-

cations for stocktaking activities. For this reason, the global
carbon cycle scientific community has devoted increasing ef-
forts over the past few decades to refine our model-based
estimates of past ocean carbon uptake. These estimates are
hindered by the scarcity of year-round observations in vast
global ocean regions and by natural variability in air–sea
CO2 fluxes. The natural variability is superimposed on a
long-term trend driven by the increase in atmospheric CO2
concentration. Moreover, since climate change is affecting
the ocean’s physical state, it is reasonable to expect that
this will, in turn, also affect the ocean’s ability to absorb
carbon. However, since the observational record spans only
3 decades, detecting trends in air–sea CO2 fluxes that are
driven by climate change is challenging. As an example,
large variability in the Southern Ocean was in the past inter-
preted to possibly be an effect of climate change (Le Quéré
et al., 2007; Lovenduski et al., 2007), while a decade later
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these variations are being explained as a result of natural
variability in regional atmospheric circulation (Landschützer
et al., 2015; Keppler and Landschützer, 2019).

Coordinated international efforts, like the Global Carbon
Project (Friedlingstein et al., 2022), try to quantify and pos-
sibly predict the global carbon budget (GCB) by estimat-
ing the amount of CO2 emitted each year and the fractions
being absorbed by the ocean and land vegetation. Because
of the scarcity of observations, these efforts rely heavily on
modeling work. For the oceans, traditionally the evolution
of the air–sea CO2 flux has been estimated using ocean bio-
geochemical general circulation models (OBGCMs). These
are forced with atmospheric reanalysis (based on observa-
tions of physical atmospheric variables) for a given period,
usually spanning around 60 years. In these simulations the
ocean physics and biogeochemistry are left free to evolve in
response to the atmospheric forcing and the prescribed atmo-
spheric CO2 concentrations.

In parallel, over the last 2 decades climate models have
been increasingly used to predict climatic conditions from a
few months up to a decade ahead (Merryfield et al., 2020;
Bilbao et al., 2021), with experiments commonly referred to
as decadal climate predictions. This field of research lies in
between weather forecasts and climate projections because
it relies on available observations to initialize the models
and leverages the predictability from both internal variability
sources and future emissions, prescribed as boundary condi-
tions, to faithfully capture the expected human-driven trends.
Moreover, even more recently, decadal climate prediction has
been extended to global biogeochemical properties, includ-
ing the ocean carbon cycle (Séférian et al., 2018; Li et al.,
2019; Lovenduski et al., 2019). In climate predictions, avail-
able observations are assimilated in both the atmosphere and
the ocean to drive the model to an initial state consistent with
the observed climate. This is done for the historical period
up to present to also provide initial conditions for predictions
of the past, known as retrospective predictions, which are
needed to verify the skill of the predictions, and to diagnose
the forecast drift, which is needed to correct the future pre-
dictions. These climate simulations of the historical period
in which available observations are assimilated are known as
reconstructions.

When reconstructions are performed with Earth system
models (ESMs), the ocean biogeochemistry is also expected
to evolve according to the observed variability. In this pa-
per, we use the EC-Earth3 Earth system model (Döscher
et al., 2021) to explore whether and how the methodology
used to perform reconstructions impacts the simulated rep-
resentation of ocean biogeochemistry. In particular, we ex-
plore the differences between the standard GCB approach,
which exclusively relies on prescribing boundary conditions
from atmospheric reanalyses, and the additional assimilation
of observed ocean physical variables. Recent work has al-
ready highlighted the advantage of using climate reconstruc-
tions to complement the GCB (Li et al., 2023). Moreover,

past work has investigated the impact of assimilating bio-
geochemical observations to ocean simulations with uncer-
tain results, mostly due to the scarcity of such observations
(Valsala and Maksyutov, 2010; While et al., 2012). However,
little effort has been focused on investigating the impact on
biogeochemistry of assimilating only physical variables, for
which we have a far more complete dataset than for biogeo-
chemical variables (Visinelli et al., 2016; Raghukumar et al.,
2015). Here, we provide a detailed evaluation of the improve-
ment in the representation of biogeochemical variables when
observations of temperature and salinity are assimilated. We
make use of several observation-based products that encom-
pass surface pCO2 air–sea CO2 fluxes, nutrients, and surface
chlorophyll to quantify the improvement of the biogeochem-
istry simulated by the model when observed physical fields
are assimilated.

2 Methodology

We used the ocean component of the EC-Earth3-CC Earth
system model (Döscher et al., 2021). This is composed of
the NEMO ocean general circulation model v3.6 (Madec
et al., 2017), coupled with the ocean biogeochemical model
PISCESv2 (Aumont et al., 2015). We designed two types
of simulations in which we apply atmospheric forcing from
reanalysis products. In the first type, in line with the usual
GCB practice, we apply the OMIP protocol (Griffies et al.,
2016), where only sea surface salinity (SSS) restoring to-
wards observed climatological values is applied besides the
atmospheric forcing (hereafter, OMIP). The second type is
a reconstruction, where we also apply surface restoring of
sea surface temperature (SST) and three-dimensional nudg-
ing of temperature and salinity towards time-varying obser-
vations (hereafter, data assimilation or DA). This two-tiered
approach is then duplicated using two different combinations
of atmospheric reanalysis to assess the impact of observa-
tional uncertainty. Details of the simulations and references
for the data products used are given in Table 1.

All simulations were first equilibrated by repeating the his-
torical period, encompassed by the respective atmospheric
forcing, four times. This procedure allows the equilibration
of the thermohaline circulation for the two OMIP simula-
tions (Tsujino et al., 2020). In the case of the data assimila-
tion (DA) reconstructions, a steady state of the circulation
is already achieved at the first cycle due to the 3D nudg-
ing of temperature and salinity towards observations. For all
simulations, the ocean biogeochemistry is left free to evolve
responding to the ocean physics evolution. Ocean physi-
cal fields (temperature and salinity) were initialized from
EN4.2.2 (Good et al., 2013) in all cases, while dissolved in-
organic carbon (DIC) and total alkalinity (TALK) were ini-
tialized from GLODAPv2 (Olsen et al., 2016; Lauvset et al.,
2016); macronutrients (nitrate, phosphate, silicate) and oxy-
gen were initialized from the World Ocean Atlas 2013 (Gar-
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Table 1. Re-analysis- and observation-based products used in the two kinds of simulations performed here: OMIP-like (OMIP) and data
assimilation (DA).

Simulation SST restoring Temperature and salinity SSS restoring Atmospheric forcing Period
3D nudging

JRA55-OMIP None None JRA55-do-v1.5 JRA55-do-v1.5
1958–2021

JRA55-DA COBE-SST EN4.2.2 (Tsujino et al., 2018) (Tsujino et al., 2018)
(Ishii et al., 2005) (Good et al., 2013)

ERA5-OMIP None None ORAS5 ERA5
1959–2021

ERA5-DA ORAS5 EN4.2.2 (Zuo et al., 2019) (Hersbach et al., 2020)
(Zuo et al., 2019) (Good et al., 2013)

cia et al., 2013). Moreover, dissolved organic carbon (DOC)
was initialized from the fields provided by an adjoint model
(Hansell et al., 2009), while dissolved iron (Fe) was initial-
ized using the median model results from the Iron Model In-
tercomparison Project (Tagliabue et al., 2016). The rest of
biogeochemical tracers were initialized using low uniform
values.

Since this first spinup period was not enough to fully equi-
librate the ocean biogeochemical fields, an extension of the
spinup was performed by cyclically repeating the physics
of the fourth cycle but letting the ocean biogeochemical
fields evolve freely. The total spinup time was 525 years for
JRA55 simulations and 513 years for the ERA5 simulations.
To be consistent with the simulation protocol designed for
the Global Carbon Budget 2022 (GCB2022) (Friedlingstein
et al., 2022), during the spinup phase atmospheric CO2 con-
centration was held constant at 278 ppm, corresponding to
the value in the year 1777. The spinup phase was enough to
bring the air–sea CO2 flux drift in all simulations to within
0.1 PgC yr−1 on a long-term average (Jones et al., 2016). At
the end of the spinup, the historical period (1778–2021) was
simulated by repeating the atmospheric forcing and by pre-
scribing the observed atmospheric CO2 time series used in
the GCB2022.

In DA simulations, the procedure includes restoring of
SST and SSS and 3D temperature and salinity Newtonian
dumping below the mixed layer. We modified the restoring
timescale distribution of Sanchez-Gomez et al. (2016) be-
low the mixed layer to provide a smooth vertical variation
between 10 d (above 800 m) and 360 d (below 800 m). This
relaxation is applied everywhere except for the equatorial
band between 15° S–15° N (where we leave a nudging that
is 10 times weaker) due to the highly dynamical nature of
this region that makes nudging problematic, resulting in spu-
rious vertical velocities that introduce unrealistic injections
of nutrients into the surface layers (Sanchez-Gomez et al.,
2016; Park et al., 2018). At the surface, SST is restored us-
ing a feedback coefficient between flux and temperature of
−200 W m−2 K−1, while the feedback parameter for fresh-
water fluxes is set at −750 mm d−1.

In all model simulations, river nutrient input was pre-
scribed as a climatology based on the GLOBAL-NEWS2
dataset (Mayorga et al., 2010), while DIC and alkalinity river
input are based on the output of the Global Erosion Model
(Ludwig et al., 1996). We note here that this procedure is
in contrast with the GCB protocol, which recommends river
fluxes of nutrients and carbon to be switched off. However,
in agreement with the GCB procedure (Hauck et al., 2020),
for every simulation we also performed a control simulation,
where atmospheric CO2 concentration was kept constant at
the preindustrial value. When calculating global air–sea CO2
fluxes, we fit a linear trend to the global air–sea CO2 flux
time series of the control simulation and then subtract this
linear trend from the respective historical simulation. With
this approach, we do not remove the interannual variability
of the historical uptake, but we remove the drift (assuming
it’s the same in the control and historical data), any long-
term trend in the natural carbon flux due to climate variability
and change, and the outflux caused by the imbalance between
river flux of carbon and sediment burial. The latter is slightly
higher in the two OMIP simulations (0.26–0.28 Pg C yr−1)
than in the two DA simulations (0.21–0.23 Pg C yr−1).

The control simulations were also used to estimate the dis-
tribution of anthropogenic DIC (DICant) by taking the differ-
ence in DIC distribution between each of the four simulations
and their respective control.

We use several observational datasets to evaluate the per-
formance of our simulations. Details of the datasets used are
given in Table 2. For SOCAT and GLODAP variables we
used the point values (i.e., not interpolated) and matched the
model’s output in space and time to calculate evaluation met-
rics. For DICant we used the estimate that was distributed
with the first release of GLODAPv2.2016, which is repre-
sentative of accumulated DICant in 2002. GCB2022 provides
a central estimate of the global ocean CO2 flux which is an
average of 7 observation-based products and 10 OBGCM es-
timates. The latter are produced with a suite of ocean biogeo-
chemical models and using OMIP-like simulations (i.e., no
data assimilation). For NOAA ERSST, IAPv4, EN4.2.2, and
SEANOE-MLD climatology, we used the gridded versions
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Table 2. Observation products used for the validation of simulation results

Dataset Version Variables Period and frequency Reference

SOCAT v3-v2022 surface pCO2 1970–2021 (grouped by month) Bakker et al. (2016)
1959–2021 (models)

GCB2022 v2022 CO2 flux 1990–2021 (obs. based) Friedlingstein et al. (2022)
Yearly global integral

GLODAP v2.2022 NO3, PO4, DIC, 1972–2021 (grouped by month) Lauvset et al. (2016)
TAlk, Si(OH)4, O2

GLODAP v2.2016 DICant 2002 (cumulated) Lauvset et al. (2016)

NOAA-ERSST v5.2023 SST 1960–2021 (monthly) Huang et al. (2017)

IAP v4.2024 SST 1960–2021 (monthly) Cheng et al. (2024)

EN4 v2.2 SST 1960–2021 (monthly) Good et al. (2013)

SEANOE-MLD v2023 MLD 1970–2021 (monthly climatology) de Boyer Montégut et al. (2004)

RAPID AMOC v2022.1 Transport at 26.5° N 2004–2021 (yearly average) Moat et al. (2022)

OC-CCI v6.0 Surface chlorophyll 1997–2021 (monthly) Sathyendranath et al. (2019)

to calculate evaluation metrics. For OC-CCIv6.0 we used the
level-3 gridded monthly data and the subsampled model’s
output to match only valid points in the satellite images be-
fore calculating differences. Finally, we used the most recent
RAPID-MOCHA-WBTS (RAPID–Meridional Overturning
Circulation and Heatflux Array–West Boundary time series;
this is hereafter referred to as RAPID array) monitoring time
series and compared it with our modeled vertically integrated
transport at 26° N. References for these datasets are reported
in Table 2.

To better characterize the differences in large-scale global
circulation between OMIP and DA simulations, we also con-
sider the meridional volume streamfunction as a representa-
tion of the meridional overturning circulation (MOC) for the
Atlantic, Pacific, and Southern oceans. Moreover, we use the
idealized age tracer to describe differences in ocean venti-
lation patterns across simulations. This tracer represents the
time passed since a given parcel of water was last in contact
with the atmosphere, and it is particularly useful to highlight
changes in the rate and position of water mass formation.

3 Results

We compare the total carbon uptake in our simulations with
the estimate from the GCB2022 (Table 3). The average up-
take per decade is in general lower in our simulations than
for the GCB2022 estimate; however, when comparing the
OMIP simulations with their respective DA counterparts, the
uptake is generally increased in the latter, bringing it closer
to the GCB estimate. This is confirmed by the time series
of yearly integrated ocean uptake, which shows that data as-
similation moves both the JRA55 and the ERA5 estimates

upward, closer to the GCB2022 estimate (Fig. 1). In partic-
ular, it is worth noting that the OMIP simulations are very
close to the multi-model mean of the GCB2022, whereas
the DA simulations separate from this value, moving up-
ward and getting closer to the GCB2022 estimate that also
includes observation-based products. To further compare our
simulations with the GCB2022, we provide a correlation ma-
trix where all of our simulations and all of the individual
GCB2022 models are correlated with the GCB2022 central
estimate and the observation-based products that contributed
to it. We have ranked the models from high to low depend-
ing on their correlation with the central GCB2022 estimate,
and we notice that our simulations are overall comparable
with the rest of models, but more importantly we see that
the DA simulations have a higher correlation with GCB2022
than the OMIP simulations (Fig. 2). These results indicate
that data assimilation is beneficial to improving the trajectory
of the yearly globally integrated time series when assuming
as benchmark the central GCB2022 estimate. However, this
estimate is also dependent on models that share similar char-
acteristics to our model and thus likely the same biases.

To provide an independent evaluation of the effect data as-
similation has on the representation of the ocean carbon cy-
cle, we turn to the most comprehensive observational dataset
of surface partial pressure (pCO2). We sample the model’s
output in time and space to match available observations in
SOCAT. These are averaged globally and then in time to give
annual average values (Hauck et al., 2020). From these time
series we calculate the root-mean-square error (RMSE) and
correlation coefficients between each simulation and SOCAT
(Fig. 3). The differences among the model time series are
small and barely discernible. Nevertheless, everywhere ex-
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Table 3. Global carbon uptake (Pg C yr−1) averaged over each decade from the 1960s to 2021 for the four simulations and the estimate of
the GCB2022.

1960s 1970s 1980s 1990s 2000s 2012–2021 2021

GCB2022 1.1 ± 0.4 1.4 ± 0.4 1.8 ± 0.4 2.1 ± 0.4 2.3 ± 0.4 2.9 ± 0.4 2.9 ± 0.4
ERA5-OMIP 1.0 1.1 1.5 1.8 2.1 2.7 2.6
ERA5-DA 1.1 1.2 1.6 1.9 2.3 2.9 2.8
JRA55-OMIP 0.9 1.1 1.7 1.9 2.1 2.6 2.4
JRA55-DA 1.0 1.2 1.7 2.1 2.3 2.8 2.6

Figure 1. Globally integrated ocean CO2 flux estimates for OMIP (orange and light blue) and DA (brown and dark blue) simulations,
together with the central estimate of the GCB2022 (black) and the average estimate of both models (green) and observation-based products
(purple) from the GCB2022. For the last two, individual estimates are also shown along the average estimates (faint lines using same color
code).

cept in the tropics we see an increase in the correlation co-
efficient and a decrease in the RMSE when moving from the
OMIP to the DA simulations, confirming the beneficial ef-
fect of data assimilation on the representation of the carbon
cycle.

In a similar effort, we compared our simulations to other
available observations besides surface pCO2. We used the
GLODAPv2 database and repeated the same method we used
for SOCAT to calculate the RMSE between each simula-
tion and the observations for six biogeochemical variables.
In Fig. 4 we show the relative reduction in RMSE for ev-
ery variable when moving from OMIP to DA. Depending on
the variable, the reduction in RMSE ranges from approxi-
mately 40 % for DIC to close to 10 % for nitrate, phosphate,
and oxygen. Despite this variability, the representation of all
variables is systematically improved when using DA with
respect to OMIP. Such a pervasive and consistent improve-
ment is likely related to a better representation of the three-
dimensional large-scale circulation. Although the 500 years
biogeochemical spinup of our simulations (see Sect. 2) may
not be enough to equilibrate ocean biogeochemical tracers
completely, we consider it sufficient for the ocean dynamic

to influence their large-scale distribution. As a further con-
firmation, we separate the ocean volume into two layers, the
upper layer (0–1000 m) and the deep layer (1000 m–bottom)
and repeat the same procedure to again calculate the RMSE
between the available observations and the model output (Ta-
ble 4). Even when considering the two portions of the ocean’s
volume separately, the error reduction is generalized to all
variables and has similar values to those observed for the
global assessment done in Fig. 4.

To verify that large-scale circulation is indeed improved
when using data assimilation, we compare the maximum
transport at 26° N in the Atlantic Ocean with the measure-
ments taken by the RAPID array as a proxy for the strength
of the Atlantic meridional overturning circulation (AMOC;
Fig. 5). Again, we observe how data assimilation is associ-
ated with a reduced distance with respect to the observational
reference. The OMIP simulations are characterized by low
AMOC values that are strengthened when using data assimi-
lation. This is confirmed by looking at the meridional volume
streamfunction for different ocean sectors (Figs. 6 and 7).
We see an increased and deeper transport in the Atlantic
Ocean in both simulations when applying data assimilation.
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Figure 2. Correlation matrix between the GCB2022 model estimates of global CO2 flux and observation-based estimates from the same
exercise. Models are ranked from high to low based on their correlation with the central GCB2022 estimate (last column). Both DA and
OMIP simulations are also ranked among the GCB models.

Table 4. RMSE calculated between each simulation and GLODAP. For each variable the RMSE is calculated for the upper 1000 m (upper
row of each variable) and below (lower row of each variable). The fourth and seventh columns show the relative change in RMSE between
OMIP and DA, where a negative percentage value means a reduction in the error in DA with respect to OMIP.

ERA5-OMIP ERA5-DA Rel. change (%) JRA55-OMIP JRA55-DA Rel. change (%)

TAlk 50.87 38.10 −25.11% 54.15 39.12 −27.76%
50.77 38.01 −25.12% 53.81 38.92 −27.68%

DIC 62.93 43.69 −30.58% 66.29 43.71 −34.06%
62.95 43.45 −30.98% 65.44 43.30 −33.84%

O2 41.80 33.67 −19.47% 34.55 30.89 −10.58%
42.27 33.69 −20.31% 33.81 30.51 −9.77%

NO3 04.08 3.77 −7.01% 4.54 3.68 −19.00%
04.06 3.79 −6.68% 4.50 3.65 −18.82%

PO4 0.36 0.31 −14.21% 0.38 0.30 −19.45%
0.35 0.31 −12.61% 0.37 0.30 −17.78%

Si(OH)4 21.98 14.58 −33.67% 20.10 14.40 −28.34%
22.67 14.49 −36.05% 19.90 14.27 −28.31%

In addition, in the Southern Ocean transport is increased
along the pathway of mode and intermediate-water forma-
tions between 50–45° S, pointing to an increased ventilation
up to 1000 m depth. In the northern Pacific, intermediate-
depth ventilation also seems to increase with a peak at around

40° N. In the deep ocean below 2000 m depth, the lower limb
of the meridional overturning circulation is also strengthened
in the Southern Ocean, in the whole Pacific Ocean, and (al-
beit less markedly) in the Atlantic Ocean.
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Figure 3. Yearly averages of surface pCO2 values from the SOCATv3 database, compared to the four model’s estimates of spCO2 sampled
to match the SOCATv3 values in space and time. The global ocean has been divided into three regions with boundaries at 20° N and 20° S.

Figure 4. Relative change in RMSE when applying DA with respect to OMIP. For every variable, the available GLODAP observations were
matched in time and space with the corresponding model’s estimates to calculate RMSE.
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Figure 5. Maximum transport at 26.5° N from model output compared to the observations from the RAPID array.

Figure 6. Meridional volume streamfunction for the Atlantic, Pacific, and Southern oceans for ERA5 simulations. The third column shows
the differences between DA and OMIP.
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Figure 7. The same as Fig. 6 but for JRA55.

As a result of these changes in global circulation, the ideal
age tracer also shows consistent changes, where younger wa-
ter penetrates deeper in the northern Atlantic Ocean, South-
ern Ocean, and northern Pacific Ocean (Fig. 8). At the same
time, water age increases in the upper 1500 m of the subtrop-
ical gyres, while there is a general increased ventilation in the
deep ocean below 2000 m, particularly in the Pacific Ocean.
Important differences can be observed in the Atlantic Ocean
between ERA5 and JRA55, as the penetration of younger wa-
ters in ERA5 is restricted to mainly between 1000–2000 m
depth, while for JRA55 the increased ventilation seems to
extend deeper to below 3000 m depth.

We also evaluated the effect data assimilation has on
mixed-layer depth (MLD), an important metric for mass and
energy exchanges between the atmosphere and the ocean. In
this case, we use the climatology from de Boyer Montégut
et al. (2004) as a reference. In Fig. 9 we can see how the bias
is reduced in DA simulations with respect to the OMIP ones.
This is particularly true in regions that are important hotspots
of CO2 exchange between the ocean and the atmosphere. For

example, a deep bias is reduced in the northern Atlantic for
ERA5, while for JRA55 the bias reduction goes in the oppo-
site direction, i.e., towards correcting a shallow bias. In the
Southern Ocean a shallow bias is clearly reduced in the Pa-
cific and Atlantic sectors for ERA5, while the changes for
JRA55 are less evident.

To better understand the reasons for the differences in CO2
uptake between OMIP and DA simulations, we have looked
at the distribution of DICant and the respective differences in
the accumulation within the ocean interior (Fig. 10). Over-
all, when applying DA, we can see how DICant decreases in
the shallow water of the subtropical gyres, whereas there is a
generalized increase in DICant at high latitudes, even in shal-
low waters. In particular, the regions that show the largest
increases in DICant are the northern Atlantic Ocean and the
Southern Ocean, where the increase is also visible at 2000 m
depth. In the meridional sections in Fig. 11, we can observe
the increase in DICant in the formation region of interme-
diate and mode waters in the Southern Ocean, particularly
in the Pacific and Atlantic sectors, and the increase in the
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Figure 8. Zonal averages of the idealized age tracer for the Atlantic, Pacific, and Indian oceans. The panels shows the differences in the last
20-year average between DA and OMIP simulations for ERA5 (a, c, e, g) and JRA55 (b, d, f, h).

deep northern Atlantic associated with an increase in AMOC.
Here, consistent with the behavior of the age tracer, there is
an important difference between ERA5 and JRA55, with the
former showing a decrease in DICant located below 2500 m
depth and the latter a marked increase.

We have also compared the distribution of DICant with the
estimate from GLODAP (Figs. 12 and 13). Here we can see
how the negative bias with respect to the observation-based

reference is reduced when applying data assimilation in both
ERA5 and JRA55. This is particularly true for the Southern
Ocean, where increased ventilation allows for a deeper pene-
tration of DICant. Overall, there is a reduction in RMSE when
applying data assimilation (−10.2% for ERA5 and −7% for
JRA55).

For completeness, we have evaluated the impact of
data assimilation on sea surface temperature (SST) using
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Figure 9. Yearly climatological (1970–2021) mean of mixed-layer depth. The four maps show the difference between each simulation and
the observation-based gridded product from de Boyer Montégut et al. (2004). Annual and seasonal average RMSE values are reported above
and below each map, respectively.

observation-based products different from those used for the
data assimilation itself (see Table 2). Although we note that
all SST products must share the majority of the observations
on which they are based and therefore cannot be considered
completely independent of one other, we use this exercise
to once more assess whether the data assimilation is push-
ing the model’s solution towards the observed state in a con-
sistent way between the two different atmospheric forcings.
Here we consider three products, and in all cases data assimi-
lation is closer to these estimates than the OMIP simulations,
particularly after 1990 (Fig. 14).

To complete our evaluation, we also compared surface
chlorophyll produced by our simulations with the OC-
CCIv6.0 dataset (Fig. 15). Similar to what was done for
mixed-layer depth, we show the difference between the mod-
els and observations using a yearly climatology. In this case,
we can observe how the effect of data assimilation is negli-
gible overall, except in a narrow band between 30–40° N in
both the northern Atlantic and the northern Pacific where the
bias is actually slightly increased.

4 Discussion

We have compared two pairs of simulations performed with
different atmospheric forcing reanalysis to evaluate the im-
pact of assimilating observations of temperature and salin-
ity on the overall representation of ocean biogeochemistry.
The evaluation of CO2 fluxes is problematic because there is
no accepted observation-based product to be used as a sin-
gle benchmark. All of the existing estimates begin from the
same surface pCO2 dataset, and each uses its own method to
fill the blanks. We have shown that data assimilation con-
sistently produces estimates of CO2 fluxes that are better
aligned with the central estimate of the Global Carbon Bud-
get 2022 than their OMIP counterpart. However, the estimate
of the GCB2022 is a combination of observation-based prod-
ucts and OMIP-type simulations performed with a suite of
ocean biogeochemical models. This means that only atmo-
spheric forcing is provided as a surface boundary condition
to the ocean model and that no data assimilation is done.
For this reason, showing that our estimates produced with
data assimilation correlate better with the GCB22 estimate
is informative but not enough to determine with confidence
whether one practice (DA) is better than the other (OMIP).
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Figure 10. Differences between DA and OMIP simulations for DICant in the year 2021 for ERA5 (a, c, e, g) and JRA55 (b, d, f, h) at 500 m
depth (a, b) and 2000 m depth (g, h).

For the above reasons, we decided to evaluate the per-
formance of our simulations using the most comprehensive
observational datasets available for several biogeochemical
variables. When evaluating our simulations directly against
the in situ observations of pCO2, we observed a consistent
improvement when applying data assimilation. Similarly, for
other biogeochemical variables the evaluation gives consis-
tent results going in the same direction. It is important to re-
member that no direct data assimilation is provided for these
variables, and the degree to which they are impacted by the
representation of the physical state of the ocean varies de-
pending on the variable.

The distribution of macronutrients (nitrate, phosphate, and
silicate) is controlled by large-scale three-dimensional circu-
lation (e.g., MOC), vertical mixing (e.g., MLD), and primary
productivity at the surface (e.g., chlorophyll here is used as a
proxy for phytoplankton biomass). The same considerations
apply to surface pCO2 and related CO2 fluxes because these
are impacted by the large-scale distribution of both DIC and
Alk, by vertical mixing, and in some regions by primary pro-
ductivity. The same is true for oxygen as intermediate- and
deep-water ventilation, together with vertical mixing, repre-
sent the main input of this gas into the interior of the ocean.
However, the solubility of both O2 and CO2 is strongly de-
pendent on temperature, and thus the data assimilation of this

variable is likely to have a positive direct impact in their rep-
resentation.

Based on these considerations, it is reasonable to assume
that an improvement in the representation of the large-scale
circulation is the main reason for an improved distribution
between the upper and lower layers of all the tracers con-
sidered here. We have shown how data assimilation led to
AMOC values that are closer to observations with respect
to the OMIP simulations. This result is in line with Kar-
speck et al. (2017), who also found that subsurface con-
straints resulted in a greater AMOC mean strength and en-
hanced variance with respect to reference simulations with
no data assimilation. The changes observed in the meridional
volume streamfunction in the Southern Ocean, northern At-
lantic Ocean, and northern Pacific Ocean, together with the
changes observed in the distribution of the ideal age tracer,
all point to a more ventilated ocean, which in turn has direct
consequences in the distribution of biogeochemical tracers
like oxygen and nutrients.

The improvement observed in the representation of the
MLD is due to the ameliorated density profile obtained with
data assimilation because the wind stress does not change
between OMIP and DA simulations. The MLD can have a
significant impact on the flux of CO2, especially in those re-
gions where we observed a bias reduction in the MLD itself.
This impact becomes evident in the northern Atlantic, where
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Figure 11. Differences between DA and OMIP simulations for DICant in the year 2021 for ERA5 (a, c, e, g) and JRA55 (b, d, f, h). The
panels show zonal averages for the Atlantic, Pacific, and Indian oceans.

we observe marked changes in the penetration of DICant
when applying data assimilation. Since the target observa-
tion dataset used for assimilating temperature and salinity in
the ocean interior is the same between ERA5 and JRA55 (see
Table 1), the resulting AMOC is rather similar in the two DA
simulations due to the dominance of the resulting thermoha-
line structure (see Figs. 6 and 7, upper row) over other factors
(e.g., atmospheric forcing). However, the changes in DICant
distribution caused by DA are different between ERA5 and

JRA55 (see Fig. 11). This is due to a different response of
the MLD over this region, where data assimilation causes
MLD to deepen in the case of JRA55 and to shoal in the
case of ERA5. This difference results in a deeper penetration
of DICant for JRA55-DA than for ERA5-DA with respect to
their OMIP counterparts. However, it is important to note that
the resulting DICant distribution in this region is rather sim-
ilar between ERA5-DA and JRA55-DA because these sim-
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Figure 12. Differences between ERA5 simulations and GLODAP estimate for DICant in the year 2002. Zonal averages are shown for the
Atlantic, Pacific, and Indian oceans.

ulations share a very similar AMOC and a MLD that gets
closer to observations from opposite ends.

We acknowledge that the global thermohaline structure re-
sulting from assimilating temperature and salinity in the inte-
rior of the ocean strongly depends on the observation-based
product used. Each product comes with its own problems
and advantages. The product used here, EN4.2.2, displays

a higher error variance than climatology for some regions,
while at depth there is evidence that the climatological er-
ror variance is underestimated (Good et al., 2013). The deci-
sion to use this specific product was the result of a thorough
analysis, trial-and-error attempts, and testing other products
to obtain a robust reconstruction that could provide initial
conditions for near-term climate predictions (Bilbao et al.,
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Figure 13. Differences between JRA55 simulations and GLODAP estimate for DICant in the year 2002. Zonal averages are shown for the
Atlantic, Pacific, and Indian oceans.

2021). The same reasoning applies to our choices of dataset
for surface restoring of temperature and salinity, which were
guided by the necessity of making sure that both SST and
SSS fields were physically consistent with each other and
with the atmospheric forcing applied. This exercise is re-
peated periodically with the objective of continuously im-
proving the seasonal-to-decadal predictive system, and thus

in the future using a different or improved dataset could lead
to further improvement in the representation of ocean bio-
geochemistry.

Overall, data assimilation results in a more ventilated
ocean and consequently a deeper penetration of DICant in the
interior of the ocean below the thermocline. Considering the
comparison with the estimate of DICant based on observa-
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Figure 14. Globally averaged SST from the four simulations compared with NOAA-ERSST_v5, IAPv4, and EN4.2.2.

Figure 15. Yearly climatological (1998–2021) mean of surface chlorophyll. The four maps show the difference between each simulation
and the OC-CCIv6.0 product. Annual and seasonal average RMSE values are reported above and below each map, respectively.

tions, this increase in DICant in the deep ocean seems to be
a change in the right direction. However, similar to what oc-
curs for CO2 fluxes, estimates of DICant suffer from great un-
certainty because the concentration of DICant cannot be mea-
sured directly and must be derived using a variety of methods

(Khatiwala et al., 2013). Still, for all variables considered so
far there is a strong indication of a general improvement in
their representation when applying data assimilation of tem-
perature and salinity.
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Certainly more difficult to explain is the limited response
of surface chlorophyll despite an overall better representa-
tion of nutrients distribution and MLD. In fact, both nutri-
ent availability and MLD have a direct impact on primary
production and therefore on surface chlorophyll concentra-
tion. It is often the case that the default parameter set in an
ocean biogeochemical model is chosen to reasonably repro-
duce both the large-scale distribution of nutrients and that of
surface chlorophyll. In this study, the default configuration of
PISCESv2 (Aumont et al., 2015) was used without any fur-
ther adjustment of parameters. Because of the improvement
in the large-scale distribution of nutrients and in their input
into the productive layer, related to more realistic MLD, the
model is presented with a different nutrient availability when
applying data assimilation with respect to the OMIP simu-
lations. Similarly, the average light exposure of phytoplank-
ton changes with changes in MLD. In some regions, the bias
in the chlorophyll surface fields is actually increased with
data assimilation. This is the case for the northern Atlantic
and northern Pacific regions, where a shallower MLD seems
to coincide with an increase in surface chlorophyll between
30–40° N. In these regions, the model responds by increas-
ing the distance with respect to the reference chlorophyll
observations because the parameter set used was somehow
selected to reproduce the same chlorophyll fields under dif-
ferent nutrient and light availability conditions. In the rest of
the ocean, the chlorophyll field seems rather insensitive to
the changes brought by data assimilation. For some regions,
this is likely due to upper oligotrophic waters experiencing
changes in nutrient input that are too little to significantly
impact primary production. For regions with higher surface
chlorophyll, like the equatorial Pacific Ocean and the South-
ern Ocean, the weak response is probably due to the avail-
ability of iron not changing significantly with the changes in
circulation and MLD. In fact, a significant part of iron input
in these regions is from atmospheric deposition that is left
unchanged in all simulations.

5 Conclusions

We conclude that the assimilation of observations for temper-
ature and salinity has a beneficial effect in the representation
of large-scale circulation and mixed-layer depth, and this in
turn translates into an improved representation of most of the
ocean biogeochemical variables evaluated. Additionally, in
the case of CO2 and O2, the improvements are most likely
also driven by the direct beneficial effect that an ameliorated
temperature field has on the solubility of these gases. In gen-
eral, data assimilation drives a more vigorous overturning cir-
culation, resulting in a more ventilated deep ocean. Ventila-
tion increases in regions that are important hotspots for CO2
fluxes like the Southern Ocean, the northern Atlantic Ocean,
and the northern Pacific Ocean. The higher CO2 uptake with
data assimilation determines an increase in DICant in the in-

terior of the ocean below the thermocline and a decrease in
shallow waters, particularly in the subtropical gyres. This
deeper distribution of DICant with respect to OMIP simula-
tions is in better agreement with an observation-based prod-
uct for DICant. Because of this overall beneficial effect on the
representation of ocean biogeochemistry, we conclude that
CO2 fluxes are most likely improved as well, although their
direct validation is not straightforward. We have shown how
not all aspects of biogeochemistry are improved as the sur-
face chlorophyll field’s representation is actually rather in-
sensitive or even degraded when using data assimilation. We
attribute this result to the choice of parameters for the biogeo-
chemical model that was also based on a realistic representa-
tion of surface chlorophyll as a reference. Because of this, we
suggest that ocean biogeochemical models be fine-tuned us-
ing simulations that include some degree of data assimilation
of the physical fields whenever possible. Finally, since sim-
ple data assimilation practices, like the one presented here,
can be included in simulations at negligible computational
cost, we recommend that efforts like the Global Carbon Bud-
get take into account this type of simulation in the future.

Code and data availability. The data used in this
study have been made publicly available on Zenodo:
https://doi.org/10.5281/zenodo.10233501 (Sicardi and Bernardello,
2023). Further information on the data or extra files will be
available upon request. All the simulations have been run
with EC-Eeath3-CC (https://ec-earth.org/; Döscher et al.,
2021) using the workflow management Autosubmit (https:
//autosubmit.readthedocs.io/en/master/introduction/index.html,
Manubens-Gil et al., 2016; Uruchi et al., 2021). The codes
used for the analysis and plots, including Jupyter notebooks,
will be available upon request to the corresponding author.
All the scripts will be available upon request to the au-
thors. All of the analyses and plots have been realized with
open-source code: Octave (https://octave.org/, last access:
17 August 2024), Python3 (https://python.org/, last access:
17 August 2024), Xarray (https://xarray.dev, last access: 17 Au-
gust 2024), CDO (https://code.mpimet.mpg.de/projects/cdo,
last access: 17 August 2024), and the Earthdiagnos-
tics in-house tool for EC-EARTH model postprocessing
(https://earthdiagnostics.readthedocs.io/en/latest/, last access:
17 August 2024). All of the observational data are pub-
licly available on their corresponding websites. EN.4.2.2 data
were obtained from https://www.metoffice.gov.uk/hadobs/en4/
(last access: 17 August 2024) are © British Crown Copy-
right, Met Office, 2013, provided under a Non-Commercial
Government Licence http://www.nationalarchives.gov.uk/doc/
non-commercial-government-licence/version/2/ (last access:
17 August 2024, Good et al., 2013).
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