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Abstract. Land surface processes, crucial for exchanging carbon, nitrogen, water, and energy between the atmo-
sphere and terrestrial Earth, significantly impact the climate system. Many of these processes vary considerably
at small spatial and temporal scales, in particular in mountainous terrain and complex topography. To examine
the impact of spatial resolution and representativeness of input data on modelled land surface processes, we con-
ducted simulations using the Community Land Model 5 (CLM5) at different resolutions and based on a range
of input datasets over the spatial extent of Switzerland. Using high-resolution meteorological forcing and land
use data, we found that increased resolution substantially improved the representation of snow cover in CLM5
(up to 52 % enhancement), allowing CLM5 to closely match performance of a dedicated snow model. However,
a simple lapse-rate-based temperature downscaling provided large positive effects on model performance, even
if simulations were based on coarse-resolution forcing datasets only. Results demonstrate the need for resolu-
tions higher than 0.25° for accurate snow simulations in topographically complex terrain. These findings have
profound implications for climate impact studies. As improvements were observed across the cascade of depen-
dencies in the land surface model, high spatial resolution and high-quality forcing data become necessary for
accurately capturing the effects of a declining snow cover and consequent shifts in the vegetation period, partic-
ularly in mountainous regions. This study further highlights the utility of multi-resolution modelling experiments
when aiming to improve representation of variables in land surface models. By embracing high-resolution mod-
elling, we can enhance our understanding of the land surface and its response to climate change.

1 Introduction

The Earth’s changing climate is causing profound alterations
in ecosystems globally, with large impacts on ecological, hy-
drological, and climatological processes (IPCC, 2014, 2023).
In the context of the climate system, land surface processes
control the exchange of carbon, nitrogen, water, and energy
between the atmosphere and terrestrial ecosystems, hence
profoundly influencing contemporary and future climate dy-
namics (Ferguson et al., 2012; Dirmeyer et al., 2006; Senevi-
ratne et al., 2006). Seasonal snow cover greatly impacts this

complex interplay, as it plays a vital role in the Earth’s en-
ergy balance and hydrological cycle (Flanner and Zender,
2005; Barnett et al., 2005). More specifically, snow’s char-
acteristic high reflectivity (Flanner et al., 2011) substantially
modulates land surface albedo and energy balance, while its
low thermal conductivity (Zhang, 2005) allows snow to act
as an insulating blanket for soil and organisms. More gener-
ally, agricultural irrigation often heavily relies on snowmelt
for food production (Qin et al., 2020), while more than one-
sixth of the world’s population is dependent on water from
glaciers or snowmelt (Barnett et al., 2005), highlighting the
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importance of glaciers and snow for human water demand
(Mankin et al., 2015; Pritchard, 2019).

Within the integrated Earth system, important interactions
and feedback mechanisms exist between energy, water, and
nutrient cycles. In seasonally snow-covered areas, the snow-
pack creates numerous such interactions: it influences the en-
ergy balance by modulating the exchange of heat and mois-
ture between the land surface and the atmosphere (Thack-
eray et al., 2019). It influences the partitioning of energy
fluxes, affecting the magnitudes of both sensible and latent
heat fluxes (Male and Granger, 1981), which, in turn, reg-
ulate the transfer of energy and water vapour, shaping the
local and regional climate patterns (Ban-Weiss et al., 2011).
Moreover, the duration and extent of snow cover has direct
implications for vegetation periods, which has the potential
to impact gross primary production (GPP), a measure of veg-
etation’s ability to convert solar energy into chemical energy
(and carbon dioxide to organic matter) through photosynthe-
sis (Slatyer et al., 2022). Therefore, the presence or absence
of snow cover directly influences the availability of water and
sunlight for plants, influencing the productivity and carbon
cycling within terrestrial ecosystems and resulting in direct
links between melt-out date and biomass production (Jonas
et al., 2008).

The Global Climate Observing System (GCOS, https://
gcos.wmo.int/, last access: 12 August 2024) has identified
snow cover extent as an essential climate variable, which fur-
ther underlines the importance of snow for monitoring cli-
mate change and the critical role it has in regulating the en-
ergy balance of the planet. In physically based models, the
representation of seasonal snow and its evolution are usually
based on mass and energy balance calculations. Represen-
tations of snowpack structure range from simple, one-layer
approaches (Douville et al., 1995) to complex schemes that
resolve up to 50 snowpack layers and track the evolution of
their microstructural properties (Vionnet et al., 2012; Bartelt
and Lehning, 2002). For model applications at large scales
and coarse resolutions, snowpack representations with few
(3 to ca. 10) layers (Essery et al., 2013; Niu et al., 2011)
have been found to be an adequate compromise between
model complexity and accuracy (Dutra et al., 2012; Magnus-
son et al., 2015).

Land surface models (LSMs) specifically target global-
scale applications, as they were initially developed to rep-
resent the lower atmospheric boundary condition of global
circulation models. Land surface modelling has seen remark-
able progress in recent years, evolving from simple biophys-
ical parameterizations to complex frameworks that incorpo-
rate key processes such as soil moisture dynamics, land sur-
face heterogeneity, and plant and soil carbon cycling (Fisher
and Koven, 2020; Lawrence et al., 2019). Today’s LSMs are
thus principally suitable for, and even intended to, study pro-
cess interactions and feedbacks within the Earth’s systems
(e.g. Lawrence et al., 2019). However, large challenges in
land surface modelling today remain due to uncertainties

in process representation, unresolved sub-grid heterogeneity,
and the projection of spatial and temporal dynamics of model
parameters (Beven and Cloke, 2012; Fisher and Koven, 2020;
Fisher et al., 2019; Blyth et al., 2021). It is these limitations
that make it difficult to reconcile site-scale experimental data
and LSM simulations, hampering their evaluation and further
development. Multi-resolution modelling setups (including
the point and site scale) overcome this very limitation (e.g.
Singh et al., 2015; Meissner et al., 2009), as they allow eval-
uating a spatially distributed LSM simulation over a large
spatial extent, while at the same time certain aspects of the
model (i.e. snow depth or snow cover duration) can be val-
idated at the point scale using in situ observations. This is
especially of value if meteorological forcing data (e.g. sta-
tion data), land use information, and model evaluation data
are available for a specific point-location.

Today, a strong push is evident towards higher-resolution
modelling, such as 1 km simulations (Schär et al., 2020).
While achieving this level of resolution globally over ex-
tended periods remains a challenge due to computational lim-
itations, higher resolution allows for a more precise repre-
sentation of land surface heterogeneity, which directly in-
fluences the representation of various key parameters and
their associated processes (e.g. Ma and Wang, 2022; Rimal
et al., 2019; Zhang et al., 2017). Because depth, duration,
and variability of seasonal snow cover is strongly affected
by topography and thus highly variable in space (e.g. Clark
et al., 2011), higher resolution enables a more detailed char-
acterization of snow distribution, depth, and duration, cap-
turing the spatial variability of snow cover across diverse
landscapes (Lei et al., 2022; Magnusson et al., 2019; Essery,
2003). Improved representation of snow cover dynamics has
the potential to enhance simulation of surface albedo, which
affects the amount of solar radiation reflected back into the
atmosphere, and thus influences the overall simulated surface
energy balance (Thackeray and Fletcher, 2016; Flanner et al.,
2011). An improved representation of snow melt-out date can
further directly affect simulations of land surface phenology
(Xie et al., 2020).

In this study, we explore how model resolution and the
quality of meteorological and land surface datasets affect the
representation of seasonal snow cover dynamics in the Com-
munity Land Model 5 (CLM5), a state-of-the-art LSM. More
specifically and based on the ideas highlighted above, we hy-
pothesize that with increasing spatial resolution and quality
of meteorological and land surface input datasets, the rep-
resentation of snow cover dynamics and its associated vari-
ables in CLM5 can achieve an accuracy comparable to that
of a dedicated snow model.

To test this hypothesis, we implement a multi-resolution
modelling framework using CLM5. This framework bridges
the gap between the point and site scale and spatially dis-
tributed land surface modelling, thus allowing us to compare
model accuracy across a hierarchy of spatial scales and using
diverse evaluation data, while preserving model architecture.
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As a result, confounding effects due to differences in process
parameterizations are eliminated, isolating and clarifying the
effects of model resolution and input data and allowing us to
assess the importance of an accurate representation of sub-
grid variability within coarser-resolution models.

We apply our framework to the spatial extent of Switzer-
land, including relevant watersheds of neighbouring coun-
tries. This region provides an ideal setting due to its diverse
topography, encompassing both the Swiss Alps and the Swiss
plateau. Through a set of modelling experiments, we assess
the relative impact of detailed meteorological and land cover
information on snow simulations with CLM5 across topo-
graphically complex landscapes. Our findings can inform
the optimal design of further offline applications of LSMs,
for instance (1) to extrapolate local-scale experimental find-
ings; (2) to address the limitations of global-scale, coarse-
resolution simulations; and (3) to support the interpretation
of snow cover information contained in Earth system simu-
lations.

2 Methodology

2.1 Land surface modelling

To investigate the effects of spatial resolution and input
datasets in LSMs, we use the land component of the Com-
munity Earth System Model (CLM5), an open-source, state-
of-the-art, and widely used LSM that simulates carbon, ni-
trogen, water, and energy exchange between the atmosphere
and the land surface (Lawrence et al., 2019, 2018). It offers
two operational modes: prognostic biogeochemistry (BGC)
mode and prescribed satellite phenology (SP) mode. For this
study, we focused on running CLM5 in SP mode, where re-
mote sensing-based datasets are used to prescribe spatial ex-
tents of plant functional types (PFTs), crop functional types
(CFTs), and the PFT-specific monthly plant area index (PAI,
sum of leaf area index and stem area index), hence reducing
the degrees of freedom compared to prognostic calculations.
See Sect. 2.3.2 for more information.

It is important to note that in SP mode, carbon–nitrogen
cycling is not considered, and certain processes such as leaf
nutrient limitation and respiration terms are omitted. GPP
for the context of this study was approximated by photosyn-
thetic activity, with photosynthesis being limited by carboxy-
lation, light, and export limitations for different plant func-
tional types (Thornton and Zimmermann, 2007; Farquhar
et al., 1980). The photosynthesis module in CLM5 is de-
scribed in detail by Thornton and Zimmermann (2007), Bo-
nan et al. (2011), and Oleson et al. (2010). Simulations were
performed with the Leaf Use of Nitrogen for Assimilation
(LUNA) routine turned on (Ali et al., 2016). Evapotranspi-
ration in CLM5 is calculated as the sum of transpiration,
evaporation (considering soil and snow evaporation, ice and
snow sublimation, and dew), and canopy evaporation follow-
ing Lawrence et al. (2007).

Spatial resolution influences the representation of spatial
heterogeneity in CLM5, which is represented by a sub-grid
hierarchical system. Each grid cell is split into different land
units (vegetation, glacier, lake, urban, crop). On the second
sub-grid level (column level), potential variability in the soil
and snow state variables within the same land unit is ac-
counted for. However, the vegetation and lake land unit only
allow for a single column. Each vegetated column can be
further divided up into up to 15 PFTs or bare ground (this
is the third sub-grid level in CLM5, often referred to as the
patch level). Vegetation structure for each PFT is described
by monthly varying leaf area index (LAI), stem area index
(SAI), and canopy top and bottom heights. All of these val-
ues are prescribed in our model setup (satellite phenology
mode).

Here, we applied CLM5 to both the regional scale and the
point scale, for which CLM5 features a dedicated point mode
(PTCLM). It is worth noting that what we refer to as point-
scale simulations incorporate fractional state variables (e.g.
fractional snow cover), as the gridded modelling algorithms
(i.e. exactly the same as used for large-scale gridded simu-
lations) are directly applied to a single point. From a snow
cover modelling perspective such an approach would be re-
ferred to as site-scale simulation, but in order to be consistent
with LSM conventions we refer to them as point-scale sim-
ulations. As there is no lateral exchange in our model setup
(river routing is off), there is no difference in running a ded-
icated point simulation and taking out individual grid cells
from a regional simulation, apart from the fact that we have
additional information at these station locations (e.g. mete-
orological station data for forcing, exact GPS location for
downscaling temperature). We elaborate on our experiment
setup for point-scale and gridded simulations in Sect. 2.2.

2.1.1 Snow and fractional snow cover schemes in CLM5

Snow cover provides a convenient means of observing and
validating the internal energy turnover of LSMs, and it is the
duration of snow cover that influences vegetation periods,
ecophysiological processes, and carbon cycles. The snow
scheme in CLM5 classifies as a multi-layer snow model with
detailed internal snow process schemes (Boone and Etchev-
ers, 2001). General snow parameterizations are based on An-
derson (1976), Jordan (1991), and Dai and Zeng (1997), with
fractional snow cover calculations being based on the method
of Swenson and Lawrence (2012). In recent years there have
been several updates to the snow-related parameterizations,
most notably an inclusion of wind and temperature effects
on fresh snow density and an increase in maximum snow
layers from 5 to 12 (Lawrence et al., 2019). A detailed de-
scription of snow related calculations in CLM5 can be found
in Lawrence et al. (2018), but for convenience we also give
a brief summary of snow-related parameterizations used in
CLM5 here. In CLM5, a snowpack can be made up of up to
12 layers, with the lowest being at the snow–soil interface
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and the uppermost at the snow–atmosphere interface. Each
layer is described by mass of water, mass of ice, layer thick-
ness, and temperature. Any snowpack smaller than 10 cm is
treated as a single layer and only described by mass of snow.

Upon falling of solid precipitation on a column, either a
new snow layer is initialized (if > 10 cm) or the snow is
added to the present one, whereby combination and subdi-
vision of snow layers is based on Jordan (1991). Mass of ice
in each snow layer is calculated based on the rate of solid pre-
cipitation reaching the ground, taking into account gains due
to frost, losses due to sublimation, and change in ice due to
phase change (melting). Bulk density of newly fallen snow
is calculated dependent on air temperature and further in-
creased if wind speeds exceed 0.1 m s−1 due to wind com-
paction, following van Kampenhout et al. (2017). CLM5 in-
cludes four processes leading to overall snow compaction:
(1) destructive metamorphism of new snow, (2) snow load,
(3) melting, and (4) drifting snow. Mass of water in each
layer is dependent on liquid water flow in and out of the layer
and change in liquid water due to phase change (melting).
For the top snow layer this includes rate of liquid precipita-
tion falling, evaporation, and liquid dew. Any water flowing
out of the lowest snow layer contributes to surface runoff and
infiltration calculations in different CLM5 subroutines.

An essential variable for the energy balance due to its
effects on surface albedo is fractional snow-covered area
(FSno). FSno is further of importance as CLM5 calculates
surface energy fluxes separately for snow-free and snow-
covered land unit fractions. FSno in CLM5 is calculated fol-
lowing Swenson and Lawrence (2012), which uses separate
parameterizations for the snow accumulation and depletion
phase. During accumulation, FSno is calculated as follows:

FSnon+1
= 1− ((1− tanh(0.1qsno1t))(1−FSnon)), (1)

where qsno1t quantifies the amount of new snow. FSnon and
FSnon+1 denote FSno at the previous and current time step,
respectively. During snowmelt, the following parameteriza-
tion is used:

FSnon+1
= 1−

[
1
π

acos
(

2
W

Wmax
− 1

)]nmelt

. (2)

W is the simulated snow water equivalent (SWE) at the cur-
rent time step, and Wmax is the maximum accumulated SWE
of the snow season. nmelt is the snow-covered area shape
function, which is determined from σtopo, the standard de-
viation of topography within a grid cell, by

nmelt =
200

max(10,σtopo)
. (3)

2.1.2 Rain–snow partitioning in CLM5

CLM5 partitions total precipitation into rain and snow ac-
cording to a linear temperature ramp, resulting in all snow

below 0 °C, all rain above 2 °C, and a mix of rain and snow
for intermediate temperatures. More specifically, the fraction
of total precipitation P falling as rain (qrain) and snow (qsnow)
at each time step is calculated as follows:

qrain = P (fp), (4)
qsnow = P (1− fp), (5)
fp = 0< 0.5(Tatm− Tf )< 1, (6)

where Tf is set to 0 °C.

2.2 Model experiments with CLM5

Figure 1 provides a general overview of the experimental
setup, which includes three aspects. Firstly, we varied the
spatial resolution, ranging from 0.5° (10× 6 grid cells) to
0.25° (19× 11 grid cells) to 1 km (365× 272 grid cells)
over the study domain. As the 0.5 and 0.25° grids were
chosen to closely match the extent of the pre-determined
1 km grid, grid anchoring might slightly vary between res-
olutions. Secondly, we used different meteorological forc-
ing datasets, including a globally available coarse-resolution
dataset (ClimCRU), the same global dataset with lapse-rate-
corrected temperature (ClimCRU∗ ), and a high-resolution re-
gional dataset (ClimOSHD). Lastly, we considered two op-
tions for land use information: a global dataset (LUGl) and
a high-resolution dataset (LUHR). This approach is intended
to cover the multiple facets of resolution: on the one hand,
the spatial resolution of the CLM5 simulations themselves
and, on the other hand, the “native” resolution (or level of
detail) of the input datasets, with higher resolution implying
better quality of the datasets. Different CLM5 configurations
were set up to cover the variations in spatial resolution, me-
teorological forcing, and land use information.

At the 1 km scale, CLM5 was run with six different config-
urations, each using different combinations of meteorologi-
cal forcing and land use information. At the 0.5 and 0.25°
resolutions, CLM5 was run with three configurations cor-
responding to the respective meteorological forcing datasets
and using the global land use dataset. These regional CLM5
simulations across the spatial extent of Switzerland and adja-
cent watersheds of neighbouring countries, covering an area
of 44 050 km2, were set up in an identical way as global sim-
ulations.

Additionally, point-scale simulations were conducted at 36
snow-monitoring station locations within the model domain.
At the snow monitoring stations, we focus on the impact of
meteorological forcing and land surface input on CLM5 sim-
ulations by first running the same six configurations as for
the 1 km gridded experiment. While exactly the same mod-
elling framework was used for these point-scale simulations
as for the gridded simulations, meteorological forcing was
station specific (e.g. not just the extracted meteorological
forcing from the closest 1 km grid cell; see Sect. 2.3.1 for ad-
ditional information). Knowing that all 36 snow-monitoring
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Figure 1. Schematic overview specifying the three facets of the experimental setup: variation of (i) spatial resolution, (ii) meteorological
forcing data, and (iii) land use information. Panel (i) shows the different grids used, including the locations of the snow stations. Panel (ii)
shows monthly mean temperature (May 2018) from the different data sources: a globally available coarse-scale dataset (ClimCRU), the same
but with a lapse-rate-corrected temperature (ClimCRU∗ ), and a high-resolution regional dataset (ClimOSHD). Note that ClimCRU data are
provided at 0.5° (top-left most panel in ii) and bilinearly regridded to 0.25° and 1 km. ClimCRU1 km is then downscaled via a lapse rate cor-
rection to obtain ClimCRU∗1 km, before being upscaled to obtain ClimCRU∗0.25° and ClimCRU∗0.5°. Apart from temperature, meteorological
forcing data are identical for ClimCRU1 km and ClimCRU∗1 km simulations. ClimOSHD data are provided at 1 km and upscaled to 0.25 and
0.5°. Panel (iii) shows differences in land use information considered in this study using the example of percentage vegetation cover (sum of
vegetation PFTs and crop CFTs).

https://doi.org/10.5194/esd-15-1073-2024 Earth Syst. Dynam., 15, 1073–1115, 2024



1078 J. T. Malle et al.: Impacts of input data on CLM5 snow cover

stations are located on non-forested land, we set up three ad-
ditional simulations enabling direct comparison of observa-
tions with respective simulations. For each meteorological
forcing dataset (ClimCRU, ClimCRU∗ , ClimOSHD), we set up a
simulation where the land unit was set to be 100 % vegetated
with PFT 0 (bare ground) rather than using the composite
grid cell from the LUHR and LUGl dataset, respectively. This
additional land use dataset is further referred to as LUnofor.
Model performance evaluation was carried out based on in
situ observations at these stations (see Sect. 2.4.1 and 2.5.1
for more information).

The performance of all gridded CLM5 configurations in
simulating seasonal snow cover was assessed against simula-
tions obtained with a dedicated snow model (see Sect. 2.4.2
and 2.5.2 for more information). Outcomes from the snow
cover analyses were complemented by a relative comparison
of the different gridded CLM5 configurations for the eco-
physiological variables gross primary production and evapo-
transpiration.

2.3 Input datasets

Each CLM5 model configuration requires the following me-
teorological driving data: incident short- and long-wave ra-
diation, air temperature, relative humidity, wind speed, pres-
sure, and precipitation. Additionally, a land surface informa-
tion file is required.

CLM5 simulations were set up to run between Jan-
uary 2016 and December 2019, in order to maximize the
temporal overlap between the various meteorological forcing
datasets and available data for model benchmarking. We fur-
ther performed 10 years of spin-up by recycling through the
available input data. A spin-up was necessary to ensure soil
moisture and soil temperature were in approximate equilib-
rium and not affecting temporal dynamics and physical prop-
erties, e.g. of the simulated snow cover evolution.

2.3.1 Meteorological forcing

To assess the impact of meteorological input data quality,
we considered three meteorological forcing datasets with in-
creasing level of detail. As an example of a standard global
dataset, we used the recent state-of-the-art dataset CRU-
JRA (University of East Anglia Climatic Research Unit;
University of East Anglia Climatic Research Unit and Har-
ris, 2019), which provides near-global (excluding Antarc-
tica) 6-hourly meteorological data on a 0.5°× 0.5° latitude–
longitude grid. CRU-JRA is a merged product of the monthly
Climate Research Unit (CRU) gridded climatology (Harris
et al., 2014) with the Japanese Reanalysis product (JRA,
Kobayashi et al., 2015). We selected CRU-JRA due to its
large time span (1901–2020), which includes recent years
and hence ensures sufficient overlap with our high-resolution
forcing dataset (see below), as well as due to its applica-
tion in the annual Global Carbon Budget assessments (e.g.

TRENDY, Friedlingstein et al., 2020) and in the Land Sur-
face, Snow and Soil Moisture Model Intercomparison Project
(LS3MIP, van den Hurk et al., 2016). The original 0.5° CRU-
JRA dataset was first projected to our model domain using
nearest-neighbour techniques (ClimCRU0.5°), before regrid-
ding it to 0.25°, 1 km, and all point locations using bilin-
ear interpolation to obtain ClimCRU0.25°, ClimCRU1 km, and
ClimCRUpt , respectively.

As a dataset representing an intermediate level of detail,
we upgraded the ClimCRU1 km and ClimCRUpt datasets by
downscaling temperature data using a temperature lapse rate
of−6.5 K every 1000 m, which resulted in the ClimCRU∗ and
the ClimCRU∗pt datasets. This approach was intended to ac-
count for variations in air temperature within the complex
topography of the Swiss Alps and subsequent refinement of
the partitioning of precipitation into snow and rain. We use
a global DEM at 0.5° to first bring temperature to sea level
temperatures by applying negative lapse rates, before using a
high-resolution DEM of Switzerland to relapse temperature
(see Fig. C1 in Appendix C for both DEMs). For the snow
station locations we used the actual GPS measurement of
each station, resulting in ClimCRU∗pt . The updated 1 km fields
were upscaled back to 0.25 and 0.5° to also inherit this cor-
rection in the coarser-resolution simulations. This resulted in
the ClimCRU∗ dataset. All other forcing variables were left
identical for the ClimCRU1 km, ClimCRU∗1 km, ClimCRUpt , and
ClimCRU∗pt simulations.

As the input datasets with the highest level of detail, we
used meteorological forcing generated according to meth-
ods developed by the Operational Snow Hydrological Ser-
vice (OSHD) at 1 km spatial and 1 h temporal resolution and
all point locations at 1 h temporal resolution. Necessary me-
teorological input variables were all provided by MeteoSwiss
(COSMO1 and COSMOE product), and specific downscal-
ing routines were applied, e.g. to incoming solar radiation
and wind velocity to optimally capture the influence of com-
plex topography. Of particular relevance to this study is the
correction of snowfall input fields by assimilation of station
data according to Magnusson et al. (2014). In the context of
this study, this dataset can be considered a meteorological
input specifically optimized for accurate gridded snow cover
simulations. The 1 km forcing data were then upscaled to the
desired target resolution (0.25 and 0.5°) with no smoothing
applied. We refer to Mott et al. (2023) for further details with
regard to the ClimOSHD product. The OSHD downscaling al-
gorithms were also applied for each specific snow station lo-
cation, resulting in the ClimOSHDpt dataset for the point-scale
simulations.

2.3.2 Land use information

Global-scale land use information

Input datasets for the land surface are based on the global-
scale input dataset commonly used in CLM5, where extents
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of each land unit and percent plant functional type for each
grid cell are derived from MODIS satellite data (Lawrence
and Chase, 2007), as are monthly LAI and SAI values. In a
first step, which was performed separately for each target res-
olution (including all point locations), we used the standard
CLM tools (including the Earth System Modelling Frame-
work (ESMF) regridding tools), to obtain our “global info”
land surface dataset (LUGl; see Fig. 1). This represents a land
surface dataset equivalent to that which would be used in
a typical large-scale LSM or general circulation model ap-
plication. Note that the resolution of the underlying global
datasets varied (0.05° for urban, lake, or glacier datasets and
0.25° for vegetated, PFT fraction, LAI, and SAI datasets),
since we used the most commonly applied CLM5 datasets.
This step resulted in the LUGl0.5°, LUGl0.25°, and LUGl1 km
datasets (see Fig. 1). In Appendix B we show obtained land
unit distributions per grid cell for all three target resolutions
(Figs. B2, B3, and B4 for LUGl1 km, LUGl0.25°, and LUGl0.5°,
respectively) and patch-level PFT distributions (Figs. B6, B7,
B8) and monthly PAI for temperate needle-leaf evergreen
trees (Figs. B10, B11, B12) and boreal broadleaf deciduous
trees (Figs. B14, B15, B16).

High-resolution land use information

To obtain an alternative land use input dataset (LUHR1 km)
with a higher level of detail and based on a more up-to-date
land use dataset, the LUGl1 km dataset was updated based on
a combination of high-resolution data sources: (1) Coper-
nicus Global Land Service PROBA-V data (2) Copernicus
Sentinel-3/OLCI data, and (3) high-resolution national for-
est mixing ratios derived specifically for Switzerland (100 m
resolution, Swiss-Federal-Statistical-Office, 2013). In a first
step, land unit distributions per grid cell (first sub-grid level
in CLM5) were computed using the Copernicus PROBA-V
100 m 2019 land cover datasets, which have been shown to be
of high spatiotemporal quality (e.g. 79.9 % accuracy over Eu-
rope for the discrete classification dataset, Tsendbazar et al.,
2021). The native 100 m fractional cover datasets were repro-
jected and regridded to our domain using ESMF tools (with
a bilinear interpolation algorithm). We used the Copernicus
built-up cover fraction to obtain the spatial extent of the ur-
ban land unit (assumed to be all at medium density), the crop
cover fraction for the crop land unit (assumed to all be rain-
fed, non-irrigated land), and the level 1 discrete classifica-
tion dataset for lake and glacier land units. The vegetated
land unit was derived by adding Copernicus PROBA-V grass
cover fraction, tree cover fraction, shrub cover fraction, and
bare cover fraction together. Minor adjustments were nec-
essary due to regridding artefacts to ensure (i) no pixel ex-
ceeded 100 % (e.g. around edges of lakes) and (ii) each pixel
added up exactly to 100 % (any non-classified pixels were
classified as non-vegetated). Figure B1 shows the extent of
the LUHR1 km dataset for each CLM5 land unit.

For the third sub-grid level (patch level) of the vegetated
land unit, we merged the 100 m Copernicus forest type layer
and the 100 m Copernicus shrub and grass cover fraction
with the Swiss national 100 m forest mixing ratio data. The
Copernicus forest type layer distinguishes between six forest
classes (needle-leaf and broadleaf evergreen forests, needle-
leaf and broadleaf deciduous forests, mixed forests, and un-
classified areas) which were translated to CLM5 PFTs in
the following manner: evergreen trees (both deciduous and
broadleaf) were classified as needle-leaf evergreen temper-
ate trees (PFT2), deciduous needle-leaf trees were classified
as needle-leaf deciduous boreal trees (PFT4), and deciduous
broadleaf trees were classified as broadleaf deciduous tem-
perate trees (PFT8). All shrubs from Copernicus shrub cover
were assumed to be broadleaf deciduous shrubs (PFT12), and
all grass and sparsely vegetated cells were classified as C3
grass. Mixed and unknown pixels were then updated based
on the Switzerland-wide dataset. If the Swiss dataset classi-
fied it as needle-leaf forest, it was set to PFT2, whereas if
it was a deciduous forest, it was PFT 8. Needle-mixed and
deciduous-mixed forest were set to PFT 4, while no wood
was classified as C3 grass (PFT 13). Figure B5 shows the
percentage PFT fractions of the LUHR1 km dataset.

In order to obtain an updated LAI dataset, Copernicus
Sentinel-3/OLCI/PROBA-V data at 333 m spatial resolution
were used, which have a temporal resolution of three time
steps per month. We used data for the year 2020, and aver-
aged the 3-monthly time steps to obtain one layer of LAI data
per month. For evergreen PFTs, August LAI was used year-
round, whereas for deciduous PFTs the respective monthly
values were used. LAI of pixels where satellite data were not
available (snow, clouds) was set to 1. LAIs of crops, shrubs,
and grasses remained unchanged in the LUHR1 km dataset.
Figures B9 and B13 show monthly PAI for temperate needle-
leaf evergreen trees (PFT2) and boreal broadleaf deciduous
tree (PFT 4).

2.4 Test datasets

We used two datasets to assess model performance. The first,
consisting of daily snow depth observations from 36 snow
stations, allowed us to evaluate the performance of CLM5
point-scale configurations in simulating seasonal snow cover
against ground truth data. For an evaluation of the gridded
CLM5 simulations, we employed the Flexible Snow Model
(FSM2) as a reference snow model for validation.

2.4.1 Snow stations

The 36 snow stations considered cover an elevational gradi-
ent, are spread throughout Switzerland (see Fig. 1), and were
selected from an exceptionally dense and accurate network
of snow observations. Table A1 in Appendix A specifies the
locations and characteristics of each of these sites. Observa-
tions at the station locations consist of daily monitored snow
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depth (HS), which are collected as part of the snow mon-
itoring networks of either the WSL Institute for Snow and
Avalanche Research (SLF) or the Federal Office for Mete-
orology and Climatology (MeteoSwiss). HS measurements
were extracted at a daily time step and cleaned from obvious
outliers (assessed against neighbouring stations at similar el-
evations), which can occur, e.g. due to measurement errors
(see Mott et al., 2023, for more details).

2.4.2 Snow cover simulations with FSM2

The Flexible Snow Model (FSM2, Mazzotti et al., 2020), a
recent upgrade of the Factorial Snow Model (FSM, Essery,
2015), is an open-source, physics-based snow model of in-
termediate complexity. As in CLM5, FSM2 represents the
snowpack with few layers only (up to three in the version
used here), where each layer is characterized in terms of mass
of water, mass of ice, layer thickness, and temperature. Snow
cover processes in FSM2 include heat conduction through
the snowpack, transport (and refreezing) of liquid water in
the snowpack, the evolution of snow density by compaction,
and surface albedo. For further detail on the parameteriza-
tions of snow properties and processes, we refer to Essery
(2015) and Mott et al. (2023). Contrary to CLM5, FSM2
does not include a precipitation partitioning scheme but ac-
cepts separate inputs of solid and liquid components. Precip-
itation partitioning is performed offline following a sigmoid
function centred around 1.04 °C and based on the 10 m air
temperature (Ta10 m, in °C):

snowfall
preciptot

=
1

1+ exp( Ta10 m−1.04
0.15 )

. (7)

Simulations at 250 m resolution and point simulations at
snow station locations have been specifically set up and cal-
ibrated by SLF to run over the extent of Switzerland for
the purpose of operational snow water resources monitoring
(Griessinger et al., 2019; Mott et al., 2023). At the 250 m
resolution, model grid cells are subdivided into forest, open,
and glacier fractions, with forest cover descriptors derived
from a 1 m resolution, lidar-based canopy height model avail-
able for Switzerland (Mott et al., 2023; Waser et al., 2017).
Snow cover fraction parameterizations differ for each tile;
for details we refer readers to Sect. 2.1.2 in Mott et al.
(2023). In the absence of high-quality, spatially distributed
snow depth observations over the entire extent of Switzer-
land, these FSM2 simulations served as ground truth for this
study. For comparison with CLM5 output, 250 m resolution
FSM2 output results were upscaled to 1 km without smooth-
ing (e.g. conservative regridding).

2.5 Evaluation of model experiments

2.5.1 Comparing point-scale CLM5 model simulations
to station observations of snow depth

Observations at the snow monitoring stations (Fig. 1 and Ta-
ble A1) provide an exceptional opportunity to allow proper
assessment of regional model performance. Sub-sampled
from a dense, high-quality network of snow observations,
these measurements of snow height were used to assess the
ability of each station-specific point-scale CLM5 configura-
tion to simulate seasonal snowpack in Switzerland and were
additionally compared to FSM2 simulations. The evaluation
of FSM2 runs allowed us to assess whether FSM2 is a suit-
able model to be used as a reference for the gridded simula-
tions.

The stations were binned into three elevational bands
(< 1000, 1000–2000, > 2000 m a.s.l.) resulting in 10, 12,
and 14 stations for the low-, mid- and high-elevation
band, respectively. For each station location, the various
CLM5 point-scale simulations (ClimCRU1 km+LUGl/HR 1 km,
ClimCRU∗1 km+LUGl/HR 1 km, ClimOSHD1 km+LUGl/HR 1 km)
and the FSM2 simulation were compared to observations of
snow depth (HS) by computing relative and absolute differ-
ences and root-mean-square errors (RMSE) and Mean abso-
lute errors (MAE) for the time frame between October and
July across all four simulated snow seasons.

Additionally, we use wiggle plots to show the seasonal
evolution of model errors for all the point-scale simulations
across the 2017/18 season.

2.5.2 Comparing gridded CLM5 model simulations to
FSM2 simulations of snow depth

Given that the point-scale evaluation against station data
offers an incomplete picture of CLM5 performance in its
“typical” setting (coarse resolution, gridded) as it is lim-
ited to point locations with a narrow range of topographic
and vegetation characteristics, we provide a complementary
evaluation of all gridded CLM5 simulations against FSM2.
This model evaluation was performed at 0.25° resolution,
which is a fair target given the complexity of the topogra-
phy across our modelling domain and its relatively small
size and considering today’s ever-increasing computational
resources. FSM2 and 1 km CLM5 simulation results were
hence upscaled to 0.25° using a conservative upscaling ap-
proach, which preserves areal averages. For this purpose, we
had to decrease our evaluation domain slightly, as we per-
formed the 1 km simulations with a mask running exactly
along the edges of our modelling domain, making it impos-
sible to upscale these areas to 0.25° without crude assump-
tions. The 0.5° simulations were downscaled to 0.25°, and all
simulations were evaluated across the same domain.

For the evaluation and quantification of snow-related
CLM5 model experiment performance we used a Taylor dia-
gram (Taylor, 2001), with FSM2 simulations of snow depth
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at 0.25° as our reference. A Taylor diagram combines cen-
tred RMSE, correlation coefficients, the spatial and temporal
standard deviation, and hence it describes overestimation or
underestimation of the models relative to a benchmark.

Additionally, in order to better understand patterns in
model discrepancy as they relate to topography and land
cover, we compared simulated snow depth (HS) as a func-
tion of elevation for three dates during the 2018/19 winter
season (early winter 1 December, mid winter 1 February, late
winter 1 April). This comparison was performed at 1 km and
only included the six 1 km CLM5 simulations and FSM2,
hence no up- or down-sampling was necessary, and the ef-
fect of elevation could be assessed over a larger distribution.
We further compared changes in land use information and
simulated snow cover for non-forested vs. forest-dominated
grid cells, allowing an assessment of whether the sensitivity
to the chosen dataset depends on the land cover type.

3 Results

3.1 Evaluation of snow simulations at point locations

We begin by focusing on simulated snow depth at
point locations. We observed distinct differences in per-
formance using different meteorological forcing datasets
in our CLM5 experiments (see Fig. 2). The point-scale
CLM5 model using global meteorological forcing data
(ClimCRUpt +LUGl/HR/nofor) showed poor performance in
modelling seasonal snow development across all snow sta-
tion locations. RMSEs were close to 1 m for mid-elevation
stations and only marginally better for high- and low-
elevation stations. This demonstrates that these runs fail to
accurately represent elevational gradients in temperature and
snow amounts, making the error dependent on how closely
the characteristics of the station happen to match the char-
acteristics of the coarse-resolution grid cells of the ClimCRU
forcing dataset.

When the lapse-rate-based downscaled temperature input
was used (ClimCRU*pt +LUGl/HR/nofor) instead, the model’s
performance improved significantly, particularly at low ele-
vations. At mid and high elevations the positive impact of
a better temperature representation is masked by the over-
estimated precipitation input when compared to the OSHD
dataset (see Figs. C2 and C4 for a comparison of precip-
itation forcing between the CRU and the OSHD forcing
dataset). The overestimation of snow at mid and high ele-
vations of the ClimCRU* dataset is hence a direct result of
overestimated precipitation along the Alps.

The CLM5 model forced with OSHD data
(ClimOSHDpt +LUGl/HR/nofor) demonstrated the best perfor-
mance across all three elevation bands, with only minor
errors in low- and mid-elevation locations (e.g. RMSE and
MAE of 0.22 and 0.11 m, respectively, for mid-elevation
ClimOSHDpt +LUHR simulations). These simulations over-
come the “too much solid precipitation problem” outlined

above as the OSHD precipitation forcing dataset is opti-
mized by data assimilation. The underestimation at high
elevations is likely due to snow process representation in the
model (combination of snow settling too fast and melting
too efficiently; see Fig. 3f). Generally, these results indicate
that the CLM5 model forced with OSHD data approach the
accuracy of a dedicated snow model (FSM2), at least when
assessed at point locations.

Figure 3 further illustrates these results, as it features wig-
gle plots and seasonal snow development for selected snow
station location throughout the 2017/18 winter season. It is
apparent across all elevation bands that FSM2 simulations
match observations the closest (discussed in more detail in
Sect. 3.2) and that CLM5 forced with OSHD data is the
next best. CLM5 with global meteorological forcing data
(ClimCRUpt ) performs poorly with maximal errors of over
3 m. These biases are persistent throughout the snow season,
whereas snow depth is mostly overestimated and underesti-
mated below and above 2000 m, respectively.

Regarding the effects of the land use information dataset,
we observed that the choice of land use information only
had a small impact on simulated snow depth (Fig. 2). We in-
clude simulations using the global, the high-resolution, and
the non-forested land use dataset (LUGl, LUHR, LUnofor, re-
spectively). While a slight improvement was seen when us-
ing the high-resolution land use information dataset (LUHR)
at high elevations for all three sets of meteorological forc-
ing data (reducing RMSE by −0.06 m/−0.02 m/−0.11 m
for ClimCRUpt/ClimCRU∗pt/ClimOSHDpt simulations, respec-
tively), no substantial differences or marginal decreases in
model performance were observed for the lower two eleva-
tion bands. This is further underlined by Fig. 3d–f. Simu-
lating open, non-forested sites (LUnofor) only had marginal
effects on model performance. For low and mid elevations a
slight decrease in model performance is apparent for all three
meteorological forcing datasets, whereas at high elevations
differences are virtually non-existent. This can be explained
by the larger variety in land unit distributions at lower ele-
vations, while at high elevations differences between the two
datasets remained small. Ultimately, it can be seen that at
coarse model resolution the effect of meteorological forcing
data is substantially larger in comparison to differences aris-
ing from the choice of land surface information.

3.2 Accuracy of FSM2 point-scale simulations

Across all elevation bands, the FSM2 simulations closely
matched the observations, with only minor errors at low and
mid elevations during the 2017/18 season (Fig. 2). At high
elevations, the FSM2 model slightly underestimated snow
depths, which can be assessed in more detail in Fig. 3. Fig-
ure 3 visualizes the superior performance of FSM2 in com-
parison to all CLM5 model experiments, further justifying
using FSM2 model simulations as our ground truth for the
gridded simulation comparisons in Sect. 3.3.
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Figure 2. Comparisons of point-scale model simulations to observations of snow depth (HS) across all simulated snow seasons (October–
July) for combined (a) low-elevation, (b) mid-elevation and (c) high-elevation snow station locations. Negative values depict underestima-
tions of the simulations. Mean values are shown by the white dots.

3.3 Evaluation of gridded snow simulations

The comparison of gridded simulations with CLM5 to FSM2
reference simulations allows us to investigate all three facets
of this study: effects of resolution, effects of meteorological
forcing data, and effects of land use information data. To this
end, we consider gridded simulations of snow depth from all
12 different CLM5 configurations (see Fig. 1ii and iii) and
compare them to FSM2 simulations (Fig. 4). Our analysis
is performed across all four snow seasons and at 0.25°. Ad-
ditionally we investigate how the accuracy of CLM5 varies
as a function of elevation by comparing all 1 km simula-
tions against FSM2 (Fig. 5) for the 2018/19 season. For both
analyses we differentiate between early accumulation period

(1 December), mid-accumulation period (1 February), and
ablation period (1 April).

Increasing the level of detail in meteorological forcing
data has the largest effect on accuracy of simulated sea-
sonal snow cover, especially when simulating at 1 km. CLM5
runs with OSHD-based input data outperform all CRU- and
CRU∗-based simulations at all three points in time during
winter (e.g. RMSE ClimOSHD1 km+LUGl1 km of 0.07, 0.14,
and 0.18 m; RMSE ClimCRU∗1 km+LUGl1 km of 0.12, 0.29,
0.37 m; and RMSE ClimCRU1 km+LUGl1 km of 0.15, 0.41,
and 0.53 m for early, mid, and late winter, respectively;
Fig. 4)) as compared to FSM2 simulations. The positive ef-
fects of lapse-rate-corrected temperatures on model perfor-
mance (ClimCRU1 km vs. ClimCRU∗1 km) are pronounced dur-
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Figure 3. Wiggle plots comparing point-scale model simulations to observations of snow depth (HS) throughout the 2017/18 season for
low-elevation (a), mid-elevation (b) and high-elevation (c) point locations, where blue denotes too much snow and red too little snow in
the models when compared to observations. (d–f) Absolute difference from observations and seasonal snow depth development for three
example point locations.

Figure 4. Taylor plots (Taylor, 2001) for comparisons of simulated snow depth (HS) between all 12 different CLM5 configurations and
the reference snow simulation (FSM2, dark grey) during the (a) early accumulation season (1 December), (b) mid-accumulation period
(1 February), and (c) ablation period (1 April) throughout four winter seasons (2015/16, 2016/17, 2017/18, 2018/19). The plotted statistical
metrics allow for evaluation and quantification of CLM5 model experiments performance based on centred RMSE (directly proportional to
the distance away from the reference (=FSM2)), correlation coefficients (azimuthal position), and the spatial and temporal standard deviation
(radial position from the origin) that determines overestimation or underestimation of the models.
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ing the mid-accumulation and ablation period, where perfor-
mance is substantially enhanced, while during the early ac-
cumulation only correlation and standard deviation are im-
proved when moving from ClimCRU1 km to ClimCRU∗1 km.
The reason behind this is that during the early season snow
height tends to be small anyway, but once snow amounts
become substantial the effect of a lapse rate correction in
the context of partitioning precipitation into rain and snow-
fall becomes more evident, and simulation results diverge. A
simple lapse rate correction that accounts for high-resolution
topography thus already provides many benefits relative to a
coarse-resolution dataset.

Figure 5 further illustrates these findings. Focusing in on
only one representative season (2018/19) and looking at sim-
ulated snow depth as a function of elevation, elevational
behaviour of FSM2 is matched closest by CLM5 simula-
tions using OSHD-based forcing data, with most discrepan-
cies occurring during the ablation period at high elevation.
Downscaling temperature has a substantial effect on perfor-
mance, allowing ClimCRU∗1 km to closely match performance
of ClimOSHD1 km.

However, the benefits of a higher level of detail in the me-
teorological forcing are negated when model resolution itself
is decreased. Comparing results of CLM5 configurations that
differed in resolution only, a large decrease in accuracy is
evident for the OSHD- and CRU∗-based runs when moving
from 1 km to 0.25°, while further coarsening to 0.5° only has
a marginal effect. This is because the evolution of snow cover
is shaped by non-linear process interactions (e.g. temperature
fields affect both snowpack energetics and its mass balance
by dictating precipitation phase) that are “lost” when meteo-
rological input is averaged spatially. Our simulations suggest
that a model resolution higher than 0.25° is essential to cap-
ture the spatial heterogeneity of snow cover evolution pro-
cesses in the complex terrain present in our study domain. In
accordance with this finding, resolution did not have much
impact on the performance of the CRU-based runs, since
simple regridding without additional consideration of topo-
graphic effects on the meteorological drivers does not bring
any added value in capturing the non-linear processes shap-
ing snow cover dynamics in complex terrain.

Ultimately, substantial differences in simulated snow
cover between the various CLM5 configurations are evi-
dent throughout the 4 modelled years and averaged over the
model domain (Fig. 4). In a similar manner to the point-
scale CLM5 simulations, results revealed considerable im-
provements in simulated snow cover accuracy when using
high-confidence forcing data (Figs. 2, 4), with CLM5 in
our best-effort scenario (ClimOSHD1 km+LUHR1 km simula-
tion) almost reaching the level of a dedicated snow model
also in a gridded application. This becomes especially ap-
parent when looking at the high correlation coefficient of
the ClimOSHD1 km+LUHR1 km simulation in Fig. 4. How-
ever, degraded model performance between the 1 km and the
0.25° configurations suggests that in order to actually benefit

from the added value of high-quality forcing data, a suffi-
ciently high model resolution remains necessary when ap-
plying CLM5 in topographically complex regions.

In order to better understand why the effect of land use
data in our results was minimal, we further investigated the
link between changes in land use information and simulated
snow cover for non-forested vs. forest-dominated grid cells.
Figure 6 compares differences in PAI (averaged across all
PFTs, averaged between January–March) across the model
domain between LUHR1 km and the LUGl1 km with simulated
snow height for 1 February 2018. We show that the major-
ity of snow-dominated pixels correspond to pixels with lit-
tle change in PAI between the high-resolution and the global
land use datasets (e.g. non-forested areas). Pixels with large
changes in PAI on the contrary tend to be located in the low-
lands, with little snow throughout the season. This demon-
strates that the impact of land use data is masked by the many
pixels with much snow but little change in PAI. The low sen-
sitivity we find with regards to land use forcing is hence
mostly a symptom of the limited overlap between snow-
dominated and forested areas in our model domain.

3.4 Simulation of ecophysiological variables

While the previous sections focused on the representation
of snow cover, an asset of LSMs relative to dedicated snow
models such as FSM2 is that they include a more compre-
hensive description of land surface processes and state vari-
ables, allowing the interaction between these to be inves-
tigated. In this final part of our analysis, we thus extend
our focus to ecophysiological parameters to showcase ef-
fects of spatial resolution, meteorological forcing, and land
use information beyond snow cover. Due to the lack of a
reference model for evaluation, we present a relative com-
parison between spatially distributed (a) simulated mean to-
tal GPP for 2016–2019 and (b) total ET during 2017 in
Fig. 7. To single out the impact of each facet of our study,
in each plot ClimOSHD1 km+LUGl1 km is compared with the
ClimOSHD1 km+LUHR1 km simulation (effect of land use in-
formation), with the ClimCRU1 km+LUGl1 km (effect of me-
teorological forcing), and with the ClimOSHD0.5°+LUGl0.5°
simulation (effect of spatial resolution).

For GPP, sensitivity of land use information outweighed
sensitivity of meteorological forcing. The higher level of de-
tail in the land use data caused both increases and decreases
in GPP across the model domain, while improved meteoro-
logical input had a more systematic effect.

The choice of land surface information datasets, on the
other hand, only showed marginal effects on simulated ET,
but the effect of meteorological forcing results in substan-
tial differences in simulated ET (up to 26 % when averaged
over the entire model domain). This effect is especially pro-
nounced along the Swiss Alps, where complex terrain leads
to differences in precipitation patterns captured by the two
forcings (see Figs. C2, C4, and C3 for comparison of precip-
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Figure 5. Simulated snow depth (HS) as a function of elevation during the (a) early accumulation season (1 December), (b) mid-accumulation
period (1 February), and (c) ablation period (1 April) for the 2018/19 winter season. We contrast the elevational dependency of FSM2 (dark
grey) with all six 1 km CLM5 configurations. The dashed dark blue line represents hypsometry across the model domain (Switzerland+).

Figure 6. Links between change in land use and simulated snow
cover: (a) PAI difference between the LUHR1 km and LUGl1 km
dataset, whereby PAI (LAI+SAI) is averaged across all PFTs
and between January and March. (b) Snow depth on 1 Febru-
ary 2018 as simulated by CLM5 ClimOSHD1 km+LUHR1 km.
(c) Comparison of snow height distributions on 1 February 2018
for ClimOSHD1 km+LUHR1 km and ClimOSHD1 km+LUGl1 km,
showing data for pixels with a large change in overall PAI (> 0.25)
and a small change in overall PAI (< 0.25).

itation patterns in the forcing datasets). Temperature differ-
ences between the two forcing datasets further contributed to
the differences, as it is precisely along the Swiss Alps where
ClimCRU1 km does not capture topographic effects on temper-
ature.

For both GPP and ET, model resolution in isolation
strongly affects the spatial patterns due to non-resolved sur-
face heterogeneity at coarse resolution. Discrepancies be-
tween the simulations are less directional and hence difficult
to quantify.

4 Discussion

This study used CLM5 to offer a multi-scale assessment of
the representation of seasonal snow in complex topographic
terrain by evaluating simulated snow depth against a wealth
of station data, as well as gridded FSM2 simulations. The
multi-resolution setup and a suite of model experiments al-
lowed assessment of several aspects (impact of resolution
and input datasets) in a spatially and temporally resolved
manner, while leveraging diverse reference datasets.

Evaluation against station data showed that CLM5 it-
self is capable of achieving performance similar to a dedi-
cated snow model when applied in point mode and with the
best available input data (land use info and meteorological
forcing; ClimOSHD1 km+LUHR1 km). Differences from sta-
tion data are largest at high elevation, where CLM5 under-
estimates snow cover. As this bias persists throughout the
season, it is likely due to a combination of accumulation and
internal snowpack properties (e.g. the settling parameteriza-
tion) and melt processes. Tracking down the exact mecha-
nism would require a process-level comparison beyond the
scope of this study, but it should be noted that in FSM2 (as
set up by OSHD) parameters such as the effective roughness
length and fresh snow albedo vary spatially (e.g. with ele-
vation); future studies could assess whether such spatially
variable parameters could benefit CLM5 snow simulations
as well.

Rather than point-mode applications, however, CLM is
intended for gridded applications over large areas. This is
where our modelling experiments provided interesting in-
sights into the performance of different CLM5 configura-
tions. We found that the most accurate snow cover sim-
ulations for Switzerland, with results comparable to those
of the operational snow-hydrological model (FSM2), were
achieved using high-resolution meteorological forcing data
(OSHD) and a 1 km resolution that fully resolved landscape
heterogeneity. This confirmed our hypothesis, which stated
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Figure 7. Spatial comparison of CLM5-simulated (a) yearly GPP (mean 2016–2019) and (b) evapotranspiration for four different CLM5
configurations of this study, showing absolute values and relative differences to investigate the effect of land use information, the effect of
climatological forcing, and the effect of spatial resolution.

that with increasing spatial resolution and quality of meteo-
rological and land surface input datasets, the representation
of snow cover dynamics and its associated variables in CLM5
can achieve an accuracy comparable to that of a dedicated
snow model. These findings align with previous studies (e.g.
Lüthi et al., 2019).

Performance of snow cover simulations is thus constrained
by the capability of the meteorological input to capture to-
pographic effects (e.g. improved estimation of precipitation
phase due to the high-resolution temperature fields) and pre-
cipitation patterns, which is a function of both input type (e.g.
ClimOSHD vs. ClimCRU) and model resolution. Indeed, the
fact that aggregating OSHD-based forcing data for coarser-
resolution simulations drastically reduced simulation accu-
racy evidenced the need for resolutions higher than 0.25° for
snow simulations in topographically complex terrain.

The lapse-rate-corrected results (ClimCRU∗ ) suggest that in
the absence of native high-resolution input data, increasing
model resolution through interpolation of input fields with a
simple lapse-rate correction of temperature fields can already
account for an important topographic effect and thus pos-
itively impact model results. This approach, however, can-

not provide the high-quality precipitation data achieved with
data-assimilation-based techniques (as used in the OSHD
forcing). Model errors are thus inherently linked to uncer-
tainty in precipitation input, which can cause both overes-
timations and underestimations of snow (in the case of the
evaluation at the stations, errors in precipitation (overesti-
mation) overcompensated the underestimation seen in the
ClimOSHD simulations for the highest elevation band).

Where model simulations at high resolution are unfeasi-
ble (e.g. limited by computational constraints), results from
our study suggest that developing a sub-grid parameteriza-
tion that accounts for the impact of topography on precipi-
tation partitioning and temperature could be a promising ap-
proach.

Snow simulations were not sensitive to land use data, but
this is likely due to the distribution of land units within our
model domain, as most snow-dominated grid cells only saw
small changes when moving from the global (LUGl1 km) to
the high-resolution land use dataset (LUHR1 km). Previous
multi-resolution studies with FSM2 have shown that land
use data does indeed affect simulated snow dynamics (Maz-
zotti et al., 2021). However, for other ecophysiological vari-
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ables (GPP in this case) we showed a large effect of land use
data. Today, a plenitude of new detailed land cover datasets
are emerging thanks to advances in satellite remote sensing
datasets, which should be exploited for land surface mod-
elling.

To gain a more comprehensive understanding of this topic,
it would be beneficial to repeat such a model experiment in
an arctic environment rather than just an alpine one, as high
latitudes are critical components of the rapidly changing cli-
mate system. Changes in land use datasets are likely to have
a greater effect in such environments, as larger extents of
forested areas overlap with seasonally snow-covered areas.

Additionally, it is important to note that all simulations in
this work were conducted in satellite phenology mode. Direct
assessments of linkages between simulated snow cover and
ecophysiological parameters were hence not possible. Future
studies should compare CLM5 simulations with prognostic
vegetation and biogeochemistry modes turned on to enable a
more detailed analysis of the terrestrial carbon and nitrogen
cycles, as well as evapotranspiration fluxes.

Uncertainty remains in climate change impact assessments
using LSM projections (e.g. Shrestha et al., 2022; Yuan et al.,
2021, 2022), with two major sources of uncertainty being
the effects of resolution and the quality of meteorological in-
put data (especially precipitation, Peters-Lidard et al., 2008)
on LSM simulation outputs. Quantifying such uncertainties
is imperative to further increase the predictive power of cli-
mate impact models. Furthermore, given the complexity of
state-of-the art LSMs, an understanding of the ways different
parts and modules of LSMs interact with each other is more
important than ever, as climate change impacts are not iso-
lated but are highly interconnected processes (Zscheischler
et al., 2018; Ridder et al., 2021). It is therefore of great im-
portance to investigate how exchanges and interactions be-
tween model components are represented, rather than assess-
ing process representation for each model component sepa-
rately (Blyth et al., 2021), which ultimately requires multi-
disciplinary community efforts (Ciscar et al., 2019). Multi-
resolution modelling frameworks as used for this study have
large potential to help with such endeavours and provide
critical insights into ecosystem responses to environmental
change. More specifically, it can help identify both the key
processes for which high-spatial-resolution and high-fidelity
input data are necessary, as well as quantify the minimum
resolution needed to resolve these processes accurately. Such
modelling experiments should be prioritized in the future,
ideally in combination with experimental manipulations (e.g.
increase the availability of nitrogen or carbon dioxide in the
system), as suggested by Wieder et al. (2019).

5 Conclusions

Using multi-resolution modelling experiments to quantify
and potentially constrain uncertainties in land surface mod-
elling, we highlight the importance of input data quality and
spatial resolution in accurately representing seasonal snow
cover across scales. We found that CLM5 is capable of
achieving performance similar to a dedicated snow model
when using high-resolution meteorological forcing data and
a 1 km resolution that represented landscape heterogeneity
well. Results further showed that a simple lapse-rate correc-
tion of temperature fields can already account for an impor-
tant topographic effect on precipitation partitioning and has
large positive impacts on model performance. Aggregating
high-resolution forcing data for coarser-resolution simula-
tions drastically reduced simulation accuracy, further under-
lining the need for resolutions higher than 0.25° for snow
simulations in topographically complex terrain. Snow simu-
lations were less sensitive to land use data compared to me-
teorological data, but eco-physiological variables (GPP) are
strongly affected by the choice of land use forcing. The re-
sults clearly demonstrate the utility of high spatial resolu-
tion and regionally detailed forcings in land surface models
to better quantify and constrain the uncertainties in the rep-
resented processes, with profound implications for climate
impact studies. More generally, this study highlights the util-
ity of multi-resolution modelling experiments that bridge the
gap between point-scale and spatially distributed land surface
modelling.
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Appendix A: Point-scale CLM5 model simulations at
snow stations

Table A1. Name, location, and elevation of all snow station locations used in this study. The last column additionally shows maximum
measured snow depth at each station during the 2017/18 winter season.

Site Name Latitude (CH1903) Longitude (CH1903) Elevation (m a.s.l.) HSmax 2017/18 (m)

BSG Brissago 108 390 698 200 280 0.15
FRI Frick 262 700 643 353 345 0.05
ALT Altdorf 191 700 690 960 449 0.21
CBS Chaebles 186 320 552 495 589 0.22
ABG Labergement 178 770 527 540 645 0.25
MAS Marsens 167 220 571 440 718 0.2
7BR Brusio 126 780 807 070 800 0.17
DEH Degersheim 247 600 732 600 830 0.41
SON Sonogno 134 050 703 640 925 0.75
WHA Wildhaus 229 570 746 130 1000 0.8
APT Alpthal 212 930 696 860 1031 0.75
AIR Airolo 153 400 688 910 1139 1.45
1LC La Comballaz 136 580 572 640 1360 1.26
4MS Muenster 148 900 663 420 1410 2.25
7ZN Zernez 175 259 802 751 1475 1.22
5DF Davos Fluelastr. 187 400 783 800 1560 1.75
6SB San Bernardino 147 290 734 110 1640 1.58
YBR2 Ybrig 210 311 705 399 1701 2.36
7ZU Zuoz 164 590 793 350 1710 1.2
7SD Samedan 156 400 786 210 1750 1.07
ARO Arosa 183 320 770 730 1840 1.79
LAU2 Lauenen Truettlisbergpass 141 633 595 482 1970 2.06
VLS2 Vals Alp Calasa 170 764 735 166 2064 1.72
OBM2 Obere Meiel 141 183 582 760 2097 3.96
FRA2 Efra 132 853 708 906 2100 2.64
VAL2 Vallascia 155 980 690 126 2268 2.99
CMA2 Crap Masegn 189 875 733 050 2330 2.81
OFE2 Ofenpass Murtaroel 168 460 818 233 2359 2.34
JUL2 Julier Vairana 149 949 773 049 2426 2.12
DAV3 Davos Hanengretji 184 616 778 292 2455 2.94
TRU2 Trubelboden 135 519 611 306 2459 4.11
5WJ Weissfluhjoch 189 230 780 845 2540 3.13
DAV2 Davos Baerentaelli 174 726 782 062 2558 2.68
ZNZ2 Zernez Puelschezza 175 078 797 312 2677 2.72
LAG2 Piz Lagrev 147 050 777 150 2730 2.31
GOR2 Gornergrat 92 900 626 700 2950 3.3
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Appendix B: Land use information datasets

Figure B1. Land unit distribution per grid cell for the high-resolution 1 km land use dataset (LUHR1 km) as used in this study. The five CLM5
land units sum up to exactly 100 %.

Figure B2. Land unit distribution per grid cell for the global 1 km land use dataset (LUGl1 km) as used in this study. The five CLM5 land
units sum up to exactly 100 %.
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Figure B3. Land unit distribution per grid cell for the global 0.25° land use dataset (LUGl0.25°) as used in this study. The five CLM5 land
units sum up to exactly 100 %.

Figure B4. Land unit distribution per grid cell for the global 0.5° land use dataset (LUGl0.5°) as used in this study. The five CLM5 land units
sum up to exactly 100 %.
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Figure B5. Patch-level plant functional type (PFT) distributions for the high-resolution 1 km land use dataset (LUHR1 km) as used in this
study.
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Figure B6. Patch-level plant functional type (PFT) distributions for the global 1 km land use dataset (LUGl1 km) as used in this study.
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Figure B7. Patch-level plant functional type (PFT) distributions for the global 0.25° land use dataset (LUGl0.25°) as used in this study.
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Figure B8. Patch-level plant functional type (PFT) distributions for the global 0.5° land use dataset (LUGl0.5°) as used in this study.

Earth Syst. Dynam., 15, 1073–1115, 2024 https://doi.org/10.5194/esd-15-1073-2024



J. T. Malle et al.: Impacts of input data on CLM5 snow cover 1095

Figure B9. Monthly plant area index (PAI) for temperate needle-leaf evergreen trees for the high-resolution 1 km land use dataset
(LUHR1 km) as used in this study.
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Figure B10. Monthly plant area index (PAI) for temperate needle-leaf evergreen trees for the global 1 km land use dataset (LUGl1 km) as
used in this study.
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Figure B11. Monthly plant area index (PAI) for temperate needle-leaf evergreen trees for the global 0.25° land use dataset (LUGl0.25°) as
used in this study.
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Figure B12. Monthly plant area index (PAI) for temperate needle-leaf evergreen trees for the global 0.5° land use dataset (LUGl0.5°) as used
in this study.
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Figure B13. Monthly plant area index (PAI) for boreal broadleaf deciduous trees for the high-resolution 1 km land use dataset (LUHR1 km)
as used in this study.
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Figure B14. Monthly plant area index (PAI) for boreal broadleaf deciduous trees for the global 1 km land use dataset (LUGl1 km) as used in
this study.
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Figure B15. Monthly plant area index (PAI) for boreal broadleaf deciduous trees for the global 0.25° land use dataset (LUGl0.25°) as used
in this study.
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Figure B16. Monthly plant area index (PAI) for boreal broadleaf deciduous trees for the global 0.5° land use dataset (LUGl0.5°) as used in
this study.
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Appendix C: Meteorological forcing data

This section shows supporting information regarding the me-
teorological forcing data presented in the main part of the pa-
per. First, we show the two DEMs used for lapse rate calcula-
tion in this study. We further show differences in yearly and
monthly precipitation for the OSHD-based and CRU-based
dataset, as well as differences in monthly temperatures be-
tween the OSHD-based, the CRU-based, and the ClimCRU∗

dataset.

Figure C1. Comparison of digital elevation model (DEM) at (a) 1 km and (b) 0.5° as used for lapse rate correction in this study.

Figure C2. Total yearly precipitation input for the year 2017: OSHD-based dataset, CRU-JRA-based dataset, and a differential plot.

https://doi.org/10.5194/esd-15-1073-2024 Earth Syst. Dynam., 15, 1073–1115, 2024



1104 J. T. Malle et al.: Impacts of input data on CLM5 snow cover

Figure C3. Total monthly precipitation input as averaged between 2014 and 2019 for the ClimOSHD forcing dataset.
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Figure C4. Differences in total monthly precipitation input between the ClimOSHD and the ClimCRU forcing dataset.
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Figure C5. Mean monthly temperatures for the ClimOSHD forcing dataset.
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Figure C6. Differences in mean monthly temperatures between the ClimOSHD and the ClimCRU forcing dataset.
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Figure C7. Differences in mean monthly temperatures between the ClimOSHD and the lapse-rate-corrected ClimCRU∗ forcing dataset.
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Appendix D: Spatially distributed CLM5 model
simulations

This section shows supporting analyses for the spatially dis-
tributed CLM5 model simulations presented in the main part
of the paper.

Figure D1. Spatial comparison of the number of days with more than 2 cm snow on the ground between January and June 2017. The reference
case (ClimOSHD1 km+LUHR1 km) is compared with simulations of all other CLM5 configurations used in this study. For the residual plots,
blue indicates underestimation and red overestimation in comparison to the reference case.
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Figure D2. Spatial comparison of melt-out date (day of year) during 2017. The reference case (ClimOSHD1 km+LUHR1 km) is compared
with simulations of all other CLM5 configurations used in this study. For the residual plots, blue indicates underestimation and red overesti-
mation in comparison to the reference case.
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Figure D3. Violin plots showing comparison of all 12 CLM5 model configurations for the year 2017 across the entire model domain:
(a) number of days with > 2 cm of snow between January and June 2017, (b) cumulative SWE (total positive SWE increments; “how much
water is stored in total”) during the hydrological year 2017 (1 October 2016–30 September 2017), (c) monthly averaged GPP during May
and June 2017, and (d) total evapotranspiration during the 2017 hydrological year. In addition to information obtained from a box plot
(25th+ 75th percentiles and median), the violin plots show a kernel density estimate of the data.

Code and data availability. All scripts used for simulation setup
and analysis can be found at https://doi.org/10.5281/zenodo.
13305963 (Malle, 2024). All CLM5 simulation results and land
surface forcing datasets presented in this study are available from
the WSL data repository EnviDat at https://www.envidat.ch/dataset/
clm5-snow-gpp-evapo-switzerland (last access: 12 August 2024;
https://doi.org/10.16904/envidat.525, Malle et al., 2024). FSM2
snow simulation results can be downloaded from https://www.
envidat.ch/dataset/seasonal-snow-data-wy-2016-2022 (last access:
12 August 2024; https://doi.org/10.16904/envidat.404, Mott, 2023).
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