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Abstract. The regional climate impacts of hypothetical future emissions scenarios can be estimated by com-
bining Earth system model simulations with a linear pattern scaling model such as MESMER (Modular Earth
System Model Emulator with spatially Resolved output), which uses estimated patterns of the local response
per degree of global temperature change. Here we use the mean trend component of MESMER to emulate the
regional pattern of the surface temperature response based on historical single-forcer and future Shared Socioe-
conomic Pathway (SSP) CMIP6 (Coupled Model Intercomparison Project Phase 6) simulations. Errors in the
emulations for selected target scenarios (SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) are decom-
posed into two components, namely (1) the differences in scaling patterns between scenarios as a consequence
of varying combinations of external forcings and (2) the intrinsic time series differences between the local and
global responses in the target scenario. The time series error is relatively small for high-emissions scenarios,
contributing around 20 % of the total error, but is similar in magnitude to the pattern error for lower-emissions
scenarios. This irreducible time series error limits the efficacy of linear pattern scaling for emulating strong mit-
igation pathways and reduces the dependence on the predictor pattern used. The results help guide the choice
of predictor scenarios for simple climate models and where to target for the introduction of other dependent
variables beyond global surface temperature into pattern scaling models.

1 Introduction

Anthropogenic climate change has already driven significant
impacts throughout the globe, and these will continue to be-
come more severe (IPCC, 2021). Estimates of the climatic
impacts of future emissions depend on several sources of un-
certainty – internal variability, model structural uncertainty,
and unknowns in the emissions themselves (Hawkins and
Sutton, 2009). The first two sources of uncertainty are of-
ten explored using multi-member ensembles of Earth sys-
tem models (ESMs). The emissions uncertainty can only be
explored by constructing multiple hypothetical future emis-
sions scenarios, and investigating their respective impacts
(Riahi et al., 2022).

The most recent generation of integrated assessment
model (IAM)-simulated scenarios are the Shared Socioeco-

nomic Pathways (SSPs; Gidden et al., 2019). These have
been used in ESMs to assess the future climate response in
the contribution of Working Group I (WGI) to the Sixth As-
sessment Report of the Intergovernmental Panel on Climate
Change (AR6 IPCC; Lee et al., 2021). ESMs are computa-
tionally expensive to run, so in general they can only simu-
late a handful of future emissions scenarios (O’Neill et al.,
2016; Tebaldi et al., 2021). The small number of scenarios
used for ESM simulations can mask uncertainties in future
pathways, as the full range of the parameter space for plausi-
ble emissions is not adequately sampled (Grubler et al., 2018;
Otero et al., 2020; Partanen et al., 2018). Accurate simplified
methods which allow a good understanding of the regional
impacts of novel emissions scenarios are therefore highly
motivated in order to explore a broader range of emissions
pathways than currently possible with comprehensive ESMs.
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Both the IPCC WGI and Working Group III (WGIII) AR6
reports used simplified physical climate model emulators
trained on more complex ESM simulations to assess pos-
sible future projections of global surface temperature (Lee
et al., 2021; Forster et al., 2021; Riahi et al., 2022; Kik-
stra et al., 2022). However, the assessment of regional cli-
mate projections relied largely on simulations from ESMs
and regional climate models (RCMs). Since the United Na-
tions Framework Convention on Climate Change (UNFCCC)
2015 Paris Agreement, which frames international climate
goals in terms of global temperature targets, there has been
growing emphasis on examining climate change impacts as
a function of the global warming level (IPCC, 2018). For ex-
ample, in IPCC AR6, future scenarios simulated by ESMs
were compared at different global mean temperature levels
(Lee et al., 2021; Seneviratne et al., 2021). The suitability
of this approach depends on the extent to which regional
changes scale with global temperature change, which in turn
depends on the variable of interest and the details of the
greenhouse gases (GHGs) and aerosols scenario. Regional
statistical emulation tools operate on a similar basis, using
techniques such as pattern scaling to translate simple large-
scale information such as global mean temperature into esti-
mates of the spatially resolved climate response for a broad
range of scenarios (James et al., 2017; Mitchell et al., 1999;
Osborn et al., 2018).

Pattern scaling approaches can be limited by systematic
response variations between and within scenarios. The ra-
diative forcing from long-lived species is independent of the
emissions location, but the impacts of short-lived species
such as aerosols strongly depend on the pattern of emissions,
with typically larger effects occurring locally (Liu et al.,
2018; Persad and Caldeira, 2018). The patterns of climate
change impacts also differ between transient and equilibrium
climate states; the transient temperature response is typically
larger over land than over ocean, due to the greater thermal
inertia of the latter (Herger et al., 2015; Huang et al., 2020;
King et al., 2020; Mitchell, 2003). These two factors – vari-
ations in the forcing pattern and the level of disequilibrium –
can be expected to break the linearity assumed within pattern
scaling if they differ between and within scenarios (Goodwin
et al., 2020; Herger et al., 2015; James et al., 2017; Mitchell,
2003; Osborn et al., 2018). Pattern scaling has been modi-
fied to partially address these issues by using patterns vary-
ing between forcers (Kravitz et al., 2017; Xu and Lin, 2017;
Schlesinger et al., 2000) and the response timescale (Zappa
et al., 2020).

Other non-linearities in climate response can occur, espe-
cially under higher-emissions scenarios (Lopez et al., 2014);
for example, the removal of sea ice in the Arctic will saturate
the sea ice–albedo feedback and reduce the local temperature
sensitivity (Huang et al., 2020; Lynch et al., 2017), though
higher sensitivity may initially occur due to sea ice thinning
(Ishizaki et al., 2012). Some responses of the climate system
to external forcing, such as sea ice retreat and intertropical

convergence zone shifts, move geographically and will there-
fore be poorly represented by pattern scaling (Herger et al.,
2015).

Despite the potential limitations of pattern scaling for cli-
mate emulation, the technique has been shown to work well
across a range of scenarios (Alexeeff et al., 2018; Beusch
et al., 2020; Mitchell et al., 1999). A linear approximation
has been found to be reasonable for regional temperature
changes within and between sets of scenarios (Seneviratne
et al., 2016; Seneviratne and Hauser, 2020), with similar re-
sponse patterns found within different emissions scenarios in
the near-term (Lee et al., 2021). The variation in response
patterns between scenarios is typically less than the varia-
tion between models, indicating that the errors arising from
pattern scaling are smaller than model uncertainty (Goodwin
et al., 2020; Herger et al., 2015; Osborn et al., 2016, 2018;
Tebaldi and Arblaster, 2014; Tebaldi and Knutti, 2018). Pat-
tern scaling errors are generally substantially larger when ex-
trapolating (projecting a scenario with higher forcing than
the data used to generate the pattern) than when interpolat-
ing (Herger et al., 2015; Mitchell, 2003; Tebaldi et al., 2020;
Beusch et al., 2022a), with smaller errors for more modest
forcing differences between the predictor and target scenar-
ios (Osborn et al., 2018).

Pattern scaling has been used to emulate regional changes
in temperature (Beusch et al., 2020; Link et al., 2019), to
forecast temperature and precipitation simultaneously (Sny-
der et al., 2019), and in order to study changes in extreme
precipitation (Thackeray et al., 2022). The application of pat-
tern scaling to precipitation is complicated relative to temper-
ature by the larger role of internal variability (Hawkins and
Sutton, 2011), the presence of strong non-linearities and lo-
cal factors (Liu et al., 2023), and the role of forcing-specific
adjustments (Myhre et al., 2018). However, extreme precip-
itation is more closely constrained by moisture availability
and may be more successfully emulated through pattern scal-
ing (Pendergrass et al., 2015; Sillmann et al., 2017). Pattern
scaling has also been incorporated with Earth system compo-
nents such as land surface models to make faster projections
(Zelazowski et al., 2018). It has been applied to estimate the
regional effects of single-country GHG emissions in order
to attribute their local temperature impacts (Beusch et al.,
2022b) and to estimate the country-level economic impacts
attributable to each other country’s CO2 emissions (Callahan
and Mankin, 2022). These exercises would require vast com-
puter resources and time if they were attempted with ESMs.

The scenarios to which pattern scaling has generally been
successfully applied typically have smaller inter-scenario
variation in aerosol emissions and warming rates than more
recent, and likely future, scenarios of interest. Many histor-
ical studies applied pattern scaling to the CMIP5-era Rep-
resentative Concentration Pathway (RCP) scenarios (Alexe-
eff et al., 2018; Goodwin et al., 2020; Herger et al., 2015;
Ishizaki et al., 2012; Kravitz et al., 2017; Lynch et al., 2017;
Osborn et al., 2018; Tebaldi et al., 2020; Tebaldi and Ar-
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blaster, 2014; Xu and Lin, 2017), which all exhibit similar
decreases in anthropogenic aerosol emissions into the future
(Gidden et al., 2019), resulting in a much narrower range than
projected among the newer SSP scenarios used in CMIP6.
This may make the SSP scenarios less amenable to pattern
scaling than prior scenarios (Goodwin et al., 2020). The
SSP scenarios include SSP1–1.19, approaching the 1.5 ◦C
level under the Paris Agreement (Meinshausen et al., 2020)
with stronger mitigation than the RCPs. Many low-emissions
Paris-agreement-consistent scenarios were assessed as part
of IPCC AR6 WGIII (IPCC, 2022), but relatively few have
been systematically studied in multi-ESM projects. Low-
emissions scenarios may also encounter issues due to con-
tamination by internal variability in the pattern-generation
regression, and stabilisation scenarios may be more suscepti-
ble to physical non-linearities (Osborn et al., 2018). Indeed,
many studies that find pattern scaling to be accurate with ear-
lier scenarios note that under stronger mitigation or wider
ranges in aerosol emissions, the technique would be less ef-
fective (Alexeeff et al., 2018; Mitchell et al., 1999; Tebaldi
and Arblaster, 2014).

While tools such as MESMER (Modular Earth System
Model Emulator with spatially Resolved output) have been
developed to implement pattern scaling using the SSP scenar-
ios (Beusch et al., 2020), particularly studying the reproduc-
tion of scenarios from their own pattern (self-emulation), a
systematic analysis of the range of errors associated with the
application of pattern scaling to temperature within the SSPs
remains to be done. Multi-model studies analysing pattern
scaling efficacy for low-emissions scenarios are also lack-
ing (Tebaldi and Knutti, 2018). The effect of the choice of
predictor data used to generate the pattern utilised in pattern
scaling has also not been fully explored. This paper takes
steps to address these gaps through a novel decomposition
of pattern scaling errors into their relation to pattern scaling
assumptions.

This paper studies the effects of the pattern scaling as-
sumptions on regional temperature projections, decomposing
the pattern scaling error into the following two components
relating to space and time (see Sect. 2.3):

i. The pattern assumption, in which pattern scaling as-
sumes that the pattern of change is constant between
all scenarios, regardless of the mix and level of forcers
within them.

ii. The time series assumption, in which pattern scaling as-
sumes that the time series response at each location fol-
lows the same shape as the global response and is sim-
ply modified by the local sensitivity (i.e. the pattern),
thus allowing the local change time series to be esti-
mated by scaling the global time series by a constant
local pattern coefficient. This can be thought of as as-
suming the pattern is constant in time within a given
scenario.

We explore how these errors vary when projecting differ-
ent emissions scenarios, and the effect of different choices of
(one or more) predictor scenario(s), to determine the impacts
of this decision on emulation accuracy. Inter-model variation
is investigated for all the impacts studied.

Section 2 sets out the ESM data utilised and the model
used to perform the pattern scaling analysis and shows how
to diagnose the error associated with each pattern scaling as-
sumption. Section 3 presents the key results, Sect. 4 explores
the implications for the application of pattern scaling, and
Sect. 5 provides discussion and conclusions.

2 Methods

2.1 Earth system model data

Two sets of emissions pathways are the focus of this pa-
per. To understand the effect of different forcers on the
warming pattern and pattern scaling errors, two historical
(1850–2020) scenarios from the Detection and Attribution
Model Intercomparison Project (DAMIP; Gillett et al., 2016)
project are used, namely hist–aer, which includes only an-
thropogenic aerosol emissions, and hist–GHG, which in-
cludes only greenhouse gas emissions. This allows for an
idealised comparison of the different patterns attributable to
historical levels of different forcers, although neither repre-
sents a realistic emissions pathway due to the co-emissions
of aerosols and GHGs in reality. To determine the difference
between warming patterns amongst coherent emissions path-
ways, the SSP scenarios are used, examining several SSPs
but focussing on SSP1–1.9 and SSP5–8.5, with data for both
taken from 2015–2100.

Data for all scenarios were taken for annual mean temper-
atures from the CMIP6ng database (Brunner et al., 2020),
which re-grids all data to a common 2.5◦× 2.5◦ latitude–
longitude grid to allow for inter-model comparison. For each
of the two sets of emissions pathways, all models with at
least one member of each experiment were used, including
10 ESMs for the 2 DAMIP scenarios and 8 ESMs for the 5
SSPs. The models and members for each scenario are given
in Table S1 in the Supplement. Inter-model results are aver-
aged first over each model ensemble, with this model average
then being compared to avoid weighting by the ensemble size
of each model.

2.2 Pattern scaling methodology

This study utilises the mean response component of the
MESMER model (Beusch et al., 2020), implementing pat-
tern scaling to emulate the spatial annual mean temperature
response in a scenario. While both pattern scaling and the
time shift method – which selects a window of data centred
around the year in which the global average reaches a desired
global warming level – generate accurate emulations and out-
of-sample mean emulations, pattern scaling has been found
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to perform slightly better in some metrics (Tebaldi et al.,
2020).

The pattern is derived from linear regression of the local
response time series on the global response at each grid cell.
The full time series is regressed for each pattern (i.e. 1850–
2020 for hist–aer and hist–GHG; 2015–2100 for SSP1–1.9
and SSP5–8.5), with anomalies calculated relative to the first
50 years of each experiment. This linear regression approach
to pattern scaling has been shown to provide more accurate
patterns than the alternative delta method, whereby the aver-
age climate towards the end of a scenario is subtracted from
that in the early period (Lynch et al., 2017; Mitchell, 2003).

In the default configuration of MESMER, the raw an-
nual grid-cell-level data are regressed against smoothed
global temperatures, but here this is modified to use the
same smoothing on both local and global temperatures. This
smoothing prior to regression is performed to ensure that the
global average scaling factor is very close to unity (1 K/K)
when applying the regression to an individual low-emissions
scenario such as SSP1–1.9. The weighted global average re-
gression parameter should be 1 by construction when us-
ing the global mean of a variable to target the local re-
sponse of the same variable (in this case temperature), since
the global mean is simply the weighted average of the lo-
cal values. When regressing unsmoothed local data against
smoothed global temperatures in a low-emissions scenario
that exhibits a peak and decline in temperatures, the regres-
sion parameter can be artificially enhanced due to a smooth-
ing of the peak. We therefore use the same smoothing on
local and global temperatures before applying the regres-
sion. The smoothing performed is locally weighted scatter-
plot smoothing (LOWESS), which takes the weighted aver-
age of the time series across a moving window. The weight-
ing is tricube, and the window fraction set to the default
MESMER value of 50 divided by the number of time steps
as in the default case. When using the annual mean SSP data
here, this is 50/85' 0.6.

MESMER’s default version only includes land grid points
in order to focus on land impacts, but here all grid points
were used to study the broader response. The intercept of
the linear regression is zero in theory, but while it is gen-
erally small, in practice it is non-zero and method depen-
dent (Beusch et al., 2020) and is added to the emulation in
MESMER. Many models produce multiple ensemble mem-
bers for a given scenario to reduce internal variability. These
members could be averaged over, thus creating a single av-
eraged member, before the regression is applied. Instead,
MESMER concatenates the multiple members, stitching the
data together into an array for which the total time length
is the number of members multiplied by the length of the
individual members. A single regression is then applied to
this concatenated dataset. Using an ensemble of members
reduces the internal variability; the different ensemble sizes
used here across models will lead to different levels of vari-
ability reduction. Most ensembles used contain greater than

three members, but for some model–scenario combinations,
only a single member was available (Tables S1 and S2). The
full MESMER emulator includes a representation of inter-
nal variability at global and local scales, but since this paper
focuses on the long-term response, only the pattern scaling
(local trends) component is used (Beusch et al., 2020).

A given emulation consists of two components, namely
the predictor pattern and the target scenario. The predictor
pattern can be derived from one scenario or many, with the
regression being applied across the full dataset. The target
is a single scenario in each case. The pattern is derived via
the linear regression of the local trend on global tempera-
ture anomalies, relative to the first 50 years of each predictor
scenario. This pattern is then multiplied by the global tem-
perature time series of the target scenario to generate the em-
ulation. The difference between this emulation and the actual
ESM pattern is defined as the pattern scaling error. The first
50 years of a given scenario are used as the baseline. The
pattern scaling error is zero in the global mean by design –
since the pattern (with average value 1) is simply scaled by
the global temperature in the ESM – but errors occur region-
ally, and the global average of the local absolute error will
therefore not be zero.

Throughout this paper, the pattern scaling methodology is
applied to each model separately. The pattern scaling error
is calculated for each model, by subtracting the ESM data
from its model-specific emulation. Multi-model means are
only taken for plotting, and uncertainties in patterns, emula-
tions, and emulation errors are taken as inter-model standard
deviations across the model-specific results.

2.3 Decomposing pattern scaling errors

As described in Sect. 1, the pattern scaling error can be
thought of as the deviations from two key assumptions,
namely the pattern and time series assumptions. Short-
term inter-annual variability is dampened via the LOWESS
smoothing, though decadal-scale variability will also be
present.

Figure 1 illustrates the decomposition of pattern scaling
errors into the pattern and time series errors. Pattern scaling
determines the local parameter from the regression of the lo-
cal on global predictor data and then scales the target global
temperature by this value. The pattern scaling error is then
the difference between this projection and the actual local
response in the target scenario.

Figure 1a–c shows a perfect emulation in which all four
of these time series are identical. The scaling parameter is
therefore equal between the scenarios (Fig. 1a), and the shape
of the emulated response is identical to the target dataset
(Fig. 1b), with zero error at all times (Fig. 1c).

The second row in Fig. 1 shows the effect of altering the
shape of the local time series but keeping the warming pa-
rameter (i.e. the pattern) the same. The scenarios are still
identical – the global response and the local response are
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Figure 1. Demonstrating the pattern scaling error decomposition for several idealised scenarios (see the text for details). An idealised
scenario is shown in which temperatures relative to preindustrial times rise from 1 K in 2015 to 2 K by 2070 and fall to nearly 1.5 K by 2100.
Each row represents a different relationship between the global and local temperature for an arbitrary location, with the left panel indicating
the regression of local onto global temperatures, the middle panel the actual and emulated local temperature trajectories, and the right panel
the emulation error at this location. (a, d, g, j) Local temperature time series against global. (b, e, h, k) Time series of the target scenario’s
local response and the emulated local projection. (c, f, i, l) Pattern scaling error time series (i.e. the difference between the emulation and the
target scenario in the middle column).

the same for both – but the shape of the local and global
responses within each scenario now differs. In this case, the
pattern is correct, and the error is conceptualised as the time
series error; that is, the error due to the differing local and
global time series response within the scenario. The time
mean is not zero, as the time series variability within the sce-
nario modifies the pattern, leading to a non-zero regression
intercept and overall emulation errors.

In Fig. 1g–i, the local and global responses are now identi-
cal within each time series, but the scenarios themselves are
different, as the local parameter of the predictor is larger than

in the target. Since the local and global time series in the tar-
get scenario follow the same shape, the error is purely due to
differences in the scaling parameter, i.e. the local value of the
pattern. This error is therefore the pattern error.

Finally, Fig. 1j–l apply both of these changes simultane-
ously; the local parameter differs between the scenarios, and
the local and global time series differ within each scenario,
as expected in the real world and ESM data due to non-
linearities within the climate system. The total error is com-
prised of both pattern and time series errors, but the split be-
tween them is not clear from the time series.
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Figure 2. Mean warming patterns across 10 ESMs derived from the historical GHG-only (hist–GHG; a) and aerosol-only (hist–aer; b) simu-
lations, the aerosol pattern minus that from GHGs (c), and this difference divided by the inter-model standard deviation in this difference (d).
Panel (d) shows stippling where the multi-model mean difference is greater than 1 inter-model standard deviation. The colour scheme in
panels (a) and (d) diverges around 1 (the global average value), with regions which experiences temperature changes weaker than the global
mean shown in blue, and areas with a stronger response in red.

Figure 1 illustrates that the general total error, from us-
ing one scenario to emulate another, can be decomposed into
pattern- and time-series-associated components. The time se-
ries error, in row two of Fig. 1, was generated by using the
same scenario as the predictor and the target and termed
self-emulation. The error is due to the internal dynamics of
the response; specifically, this is the difference between the
shape of the local and global temperature time series. This
error is therefore intrinsic to the target scenario. For a given
predictor–target pair, the time series error can be found by
calculating the target–target pattern scaling error, i.e. the er-
ror upon self-emulation of the target. This can then be sub-
tracted from the original predictor–target pattern scaling er-
ror to determine the pattern error. The contribution of each
error to the total error can then be studied; the error time se-
ries in the bottom row of Fig. 1 shows this decomposition
applied to the idealised scenarios.

3 Results

3.1 Effect of pattern error

In this section, the assumption that the pattern is independent
of the predictor scenario is investigated, first in the DAMIP
experiments and then in the SSP scenarios.

Figure 2a and b show the multi-model mean hist–aer and
hist–GHG response pattern based on regression across the
whole period (1850–2020). Note that while aerosols drive
a cooling, since the local response is regressed against the
global mean the sign cancels, with the pattern therefore giv-
ing the sensitivity under warming or cooling. The dominant
canonical pattern of the hist–GHG response is greater sen-
sitivity over land than ocean, which is expected due to the
lower heat capacity of the land surface and lower capacity
for evaporative cooling (Byrne and O’Gorman, 2018; Lee
et al., 2021). The Arctic exhibits a strong amplification (Hol-
land and Bitz, 2003). In hist–aer, the land–ocean distinction
is still clear, but the Northern Hemisphere land exhibits a par-
ticularly strong response relative to the global mean, due to
the historical concentration of aerosol emissions within this
region. The difference between the patterns (Fig. 2c) is over
0.5 K in the Northern Hemisphere mid-latitudes (NHMLs)
and 1 K over high-aerosol parts of Asia. Because the pattern
averages to 1 globally, the larger parameter in the NHMLs
in hist–aer leads to relatively weaker parameters more re-
motely, such as over the Southern Ocean and Antarctica. The
strongest differences are larger than those typical between
patterns found in prior work, which are usually around 0.4 K
or less (Huang et al., 2020; Ishizaki et al., 2012; Lynch et al.,
2017; Mitchell et al., 1999; Mitchell, 2003); this is to be ex-
pected due to the complete separation of forcers and their as-
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sociated patterns. There is substantial inter-model variability,
but broad areas still see a difference larger than 1 inter-model
standard deviation (Fig. 2d). There is inter-model agreement
on a larger response over parts of the NHMLs in hist–aer, in-
cluding the USA, Europe, and east Asia, with the mean pat-
tern difference being larger than the inter-model deviation.
There is also agreement on the consequently weaker South-
ern Hemisphere ocean response. Despite the Indian subcon-
tinent experiencing a large magnitude difference (i.e. more
sensitive to aerosols historically), the large variability in the
aerosol sensitivity (see Fig. S1 in the Supplement), poten-
tially due to the inter-model variation in the monsoon re-
sponse to aerosols, leads to no inter-model agreement on this.

Figure 3 applies the same analysis to SSP1–1.9 and SSP5–
8.5; the local temperatures are again regressed onto the
global response to generate the response pattern. The SSP5–
8.5-derived pattern shows greater sensitivity over land, con-
sistent with the higher warming rate maintained through the
century in this scenario, and a less sensitive Arctic, likely
due to a saturation of the Arctic sea ice feedback (Huang
et al., 2020; Lynch et al., 2017). Overall, the pattern dif-
ference is similar to the transient minus equilibrium pat-
terns found in previous studies (Herger et al., 2015; Huang
et al., 2020; King et al., 2020; Mitchell, 2003). This sug-
gests that the difference between spatial patterns of warming
in SSP1–1.9 and SSP5–8.5 may be driven primarily by the
differences in disequilibrium rather than aerosol emissions;
aerosols can be expected to play a relatively larger role in
the pattern difference between scenarios closer in radiative
forcing and/or with larger aerosol emissions differences. The
lower temperature sensitivity in East Asia under SSP5–8.5
may be linked to the weaker reduction in aerosols there than
in SSP1–1.9, resulting in less unmasking of the cooling ef-
fect. Some features of the SSP5–8.5–SSP1–1.9 pattern dif-
ference vary from the RCP8.5–RCP2.6 differences found by
Ishizaki et al. (2012), who found a more sensitive Arctic un-
der the higher-emissions scenario. This, they suggested, may
be attributable to stronger ice melt overall under RCP8.5, due
to thinning of the sea ice under warming. This highlights the
contingency of the local sensitivity on the baseline climatol-
ogy; further analysis of these background conditions in the
ESMs may aid in explaining the differences (Lynch et al.,
2017), but this is beyond the scope of this paper. Compared to
Fig. 2, the pattern differences are typically smaller than those
between hist–GHG and hist–aer, with most areas seeing dif-
ferences of less than 0.3 K, consistent with differences be-
tween scenario patterns in prior studies (Huang et al., 2020;
Ishizaki et al., 2012; Lynch et al., 2017; Mitchell et al., 1999;
Mitchell, 2003).

Compared to the DAMIP comparison, the SSP1–1.9 and
SSP5–8.5 pattern difference is not as robust between mod-
els (Fig. 3d compared to Fig. 2d), reflecting both a similarity
between the scenario patterns and the extent of inter-model
variation. This is expected, due to the narrower differences in
forcers between scenarios, and is consistent with prior work

on pattern differences between scenarios (Goodwin et al.,
2020; Herger et al., 2015; Osborn et al., 2016, 2018; Tebaldi
and Arblaster, 2014; Tebaldi and Knutti, 2018). Figure S2
shows the analysis for all the combinations of the five SSPs
analysed in this study; generally, differences between SSPs
closer in radiative forcing show fewer coherent differences
in their spatial patterns, which is in agreement with Osborn
et al. (2018).

Clear differences, which are larger over broad areas than
the inter-model standard deviation, are therefore found be-
tween the temperature response patterns attributable to dif-
ferent historical forcers and consistent with their different
spatial patterns. These differences are less systematic across
ESMs for the future scenarios analysed, which are likely rel-
atively more affected by their differing warming rates.

3.2 Total pattern scaling error

The total emulation error arising from the use of the two
DAMIP-derived patterns (hist–aer and hist–GHG, Fig. 2) to
separately emulate both DAMIP experiments are displayed
in Fig. 4.

Out-of-sample errors are generally substantially larger
than self-emulation ones (Osborn et al., 2018), since out-of-
sample emulations introduce pattern errors in addition to the
time series error. The out-of-sample emulations are too warm
over the NHMLs and too cool in the Southern Hemisphere,
in keeping with the pattern differences. In the hist–aer : hist–
GHG emulation (using the hist–aer pattern to emulate the
hist–GHG response; Fig. 4b), the warming in the NHMLs
is overestimated, since the aerosol pattern is stronger here
than the GHG response, and the Southern Ocean is con-
versely weaker, due to the historical spatial pattern of aerosol
forcing. In the hist–GHG : hist–aer emulation, although the
anomaly is positive over the NHMLs, this represents an un-
derestimation of the cooling (since both the emulation and
ESM data are negative). This is due to the relatively weaker
GHG response here.

Variation in the local and global time series shapes can
be due to spatial variations in the forcing or in the re-
sponse. Self-emulation hist–GHG errors are small, indicat-
ing that there is little internal time series variation in this
experiment. This is consistent with the well-mixed nature
of GHGs. There will still be physical non-linearities, in
both the concentration–forcing and forcing–response mecha-
nisms, and internal variability, which are reflected in the non-
zero self-emulation errors, but these are small in magnitude.
The largest feature is an oversensitivity in the Arctic, which
may be due to a saturation of the ice–albedo feedback.

In the hist–aer self-emulation, by comparison, while still
small compared to the out-of-sample errors, some coherent
errors occur. Negative anomalies (overestimated cooling) oc-
cur in the NHMLs, with positive ones (underestimated cool-
ing) over the tropics and south Asia. This indicates that the
sensitivity of the NHML temperature to the global change is
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Figure 3. Mean warming patterns across eight ESMs derived from SSP1–1.9 (a) and SSP5–8.5 (b) simulations, the SSP5–8.5 minus that
from SSP1–1.9 (c), and this difference divided by the inter-model standard deviation in this difference (d). Panel (d) shows stippling where
the multi-model mean difference is greater than 1 inter-model standard deviation.

Figure 4. The 1990–2020 pattern scaling errors (emulation minus ESM) averaged across 10 ESMs when predicting with historical GHGs
and aerosols separately and targeting the historical GHG and aerosol response separately; there are four combinations in total. The ESM and
emulation data are taken relative to the first 50 years of the scenarios (i.e. 1850–1900). The last 30 years are shown to indicate the errors that
arise once a substantial forcing has been applied and to study the self-emulation scaling error within the period, as self-emulation scaling
errors cancel over the whole period.
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lower in the period 1990–2020 than the average across the
full time series, since the local parameters calculated across
the entire time series are too strong at this time. This is con-
sistent with a shift in aerosol emissions from the NHMLs to
Asia over the last 3 decades and explains the positive anoma-
lies over Asia; the emulation is undersensitive here in this pe-
riod, since aerosol emissions are more concentrated in Asia
in 1990–2020 than on average through the period. This is val-
idated by Fig. S3, which shows the reverse effect in the mid-
20th century (as NHML aerosol emissions were historically
concentrated locally in this period) and the earlier peaking of
NHML temperatures than the global average in hist–aer.

Pattern scaling errors in a given period can therefore be
related to the differences in the average pattern between the
predictor and target scenarios and the internal dynamics of
the target scenario, particularly due to spatial variations in the
forcing. Note that the time series self-emulation scaling error
is also included in the total out-of-sample error, though the
relative size indicates the pattern error is the dominant factor.
These relative sizes are explored in more detail in Sect. 3.4.

The pattern scaling errors in Fig. 4 are typically less than
0.2 K for self-emulation and over 0.5 K for out-of-sample
projection in the NHMLs. This out-of-sample error is sub-
stantial compared to the simulated temperature change of
around 1.5 K /−0.5 K globally in hist–GHG / hist–aer and
2 K /−1 K in the NHMLs. As for the pattern differences,
these out-of-sample errors are larger than those typically
found under pattern scaling (Alexeeff et al., 2018; Herger
et al., 2015; Mitchell et al., 1999; Mitchell, 2003; Osborn
et al., 2018; Tebaldi and Knutti, 2018), especially consider-
ing the magnitude of global warming in the scenarios, due to
the starker differences between the forcing patterns in these
idealised experiments. Since the out-of-sample pattern error
scales with the pattern difference, Fig. 4b and c display very
similar patterns, with the same sign of error over essentially
all grid points (Fig. S4).

The errors in Fig. 4 divided by the inter-model standard de-
viation in the error are shown in Fig. S5. Errors are substan-
tial in the out-of-sample emulations over both the NHMLs
and the Southern Ocean, which is consistent with the large
pattern differences in Fig. 2. The hist–GHG self-emulation
shows no coherent errors, due to the lack of pattern error and
coherent time series variation, but the NHML errors in the
hist–aer self-emulation are consistent between the models,
indicating agreement on the time series error found here.

Similarly, Fig. 5 shows the 2070–2100 multi-model mean
pattern scaling errors under the four combinations of the
SSP1–1.9 and SSP5–8.5 scenarios (self-emulation and cross
emulation), and Fig. S6 shows these divided by the inter-
model standard deviation. The out-of-sample errors are again
larger than those attributable to self-emulation alone, indicat-
ing a substantial role of the pattern difference. They are con-
sistent with the pattern differences in Fig. 3. However, similar
to the pattern differences, the inter-model standard deviation
is generally larger than the magnitude, with errors greater

than the inter-model standard deviation generally only in ar-
eas with similarly large difference in the patterns themselves.
The time series (self-emulation) error is small in SSP5–8.5,
similar to hist–GHG, but SSP1–1.9 shows larger errors, with
a pattern consistent with the pattern differences. This time
series error, as with hist–aer, must be driven by the internal
characteristics of SSP1–1.9. The period 2070–2100 exhibits
weaker positive warming trends than the time series average,
with peak warming occurring in mid-century on average.
Thus, the parameters derived from the time series average
will be too sensitive over land and tropical oceans, as the cli-
mate is experiencing less positive forcing than average, sim-
ilar to the SSP5–8.5–SSP1–1.9 pattern difference. This leads
here to broad, coherent self-emulation scaling errors over
2070–2100, but as for the out-of-sample cases, there is little
inter-model agreement. Consistent results are found for each
pair of the five SSPs used here, as shown in Figs. S7 and S8;
extrapolation to project higher forcing scenarios using lower
forcing patterns is found to introduce substantial errors, with
interpolation to lower forcing scenarios generating smaller
errors, although still larger than self-emulation due to the ad-
ditional effect of pattern errors (Herger et al., 2015; Mitchell,
2003; Tebaldi et al., 2020). The errors are typically less than
0.3 K under self-emulation, remaining less than 0.5 K under
strong interpolation, but are over 0.5 K in broad areas under
strong interpolation. This compares to around 1.4 K (4.4 K)
warming relative to preindustrial times in SSP1–1.9 (SSP5–
8.5) over 2081–2100 (IPCC, 2021). These self-emulation and
interpolation errors are consistent with those found in prior
work (Alexeeff et al., 2018; Herger et al., 2015; Mitchell
et al., 1999; Mitchell, 2003; Osborn et al., 2018; Tebaldi and
Knutti, 2018), while the extrapolation errors are larger due to
the extreme case study presented in this section.

3.3 Relative importance of the pattern and time series
errors

As highlighted above, it is important to understand how the
magnitude and relative size of the two types of pattern scaling
error – pattern and time series – depend on the target and
predictor dataset.

Pairwise predictor–target emulations are performed for the
25 combinations of the five SSPs analysed here. Maps of
the time series and pattern errors are both calculated in each
year of each simulation. Pattern scaling errors are zero on
the global average by design, as the pattern is scaled by the
global mean response; so, to analyse the size of the errors,
the global average of the absolute error magnitude is taken
for each. The magnitude of the total error is also taken; this
is equal to the time series error for self-emulation, but for
out-of-sample emulations, local cancellations from opposite-
sign time series and pattern errors cause this total error to be
less than the sum of the two. This sum of the two – termed
the sum error – is also calculated to allow for comparisons
between the two magnitudes.
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Figure 5. The 2070–2100 pattern scaling errors (emulation minus ESM) averaged across eight ESMs when predicting with SSP1–1.9 and
SSP5–8.5 separately, and targeting the SSP1–1.9 and SSP5–8.5 responses separately; four combinations in total. The ESM and emulation
data are taken relative to the first 50 years of the scenarios (i.e. 2015–2065).

Figure 6. Time series of the size of the global average pattern scaling error attributed to pattern errors and time series errors. Each line gives
the multi-model mean, with shading indicating plus and minus 1 inter-model standard deviation. Note the varying vertical scales.

Figure 6 shows the 2015–2100 time series of the pattern
and time series errors for the four combinations of SSP1–1.9
and SSP5–8.5. Figure S9 gives the results for each of the 25
SSP combinations, with a fixed scale.

The time series error, dependent only on the target sce-
nario, varies relatively little between scenarios, while the pat-

tern error is substantially larger for extrapolation cases. Even
for adjacent extrapolation – e.g. using SSP1–2.6 to emulate
SSP2–4.5 – the pattern error becomes increasingly large by
2100.

The magnitude of the time-averaged pattern, time series,
and total errors in each pair is shown in Fig. 7 for the 25 sce-
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Figure 7. Pattern scaling errors averaged over the scenario time period for each predictor–target pair. Errors are calculated annually and
then the absolute value is taken and averaged across time and models. (a) The pattern error, (b) The time series error (with a smaller scale).
(c) The total error. Panel (d) gives the percentage of the absolute total error (the sum of pattern and time series) attributed to the pattern error.
Note the smaller scale on the time series error plot.

nario combinations, along with the percentage of the sum er-
ror (the sum of the magnitudes of each component) given by
the pattern error. The sum of the error magnitudes is used
for comparison, as opposing-sign errors will partially can-
cel out in the total. The magnitude of the time series error is
less than 0.1 K in all scenarios but the largest in SSP1–1.9, a
scenario in which this error can represent a substantial frac-
tion of the mean response. The pattern error, which is zero
for self-emulation by definition, is systematically greater for
extrapolation, likely strongly influenced by the scaling of the
pattern difference by the target scenario global mean time se-
ries. Global and time-averaged pattern error magnitudes can
reach almost 0.5 K under the highest extrapolation (SSP1–
1.9 :SSP5–8.5) but are still around 0.2 K for slighter extrapo-
lations and 0.1 K under interpolation. The total error is there-
fore the highest for extrapolation. There is less dependence
of the total error on the predictor scenario when targeting a
low-emissions scenario than targeting a high one, due to the
greater role of the time series error. Note the small variations
in the SSP1–1.9 column compared to the SSP5–8.5 one.

Pattern errors represent a different proportion of the sum
of errors under different pairs, accounting for over 80 % un-

der high extrapolation but only around half for projecting
SSP1–1.9. The intrinsic time series error, irreducible under
this methodology, accounts for a much larger fraction of the
error under low-emissions scenarios than the pattern error.
This larger role of the time series error is consistent with the
lower correlation between local and global temperatures un-
der low-emissions scenarios found by Lynch et al. (2017).

3.4 Effect of peak warming on time series error

The year of peak warming is increasingly used to classify
emissions scenarios (Riahi et al., 2022). One implication of
simple pattern scaling approaches tied to global warming
level is that if, in a low-emissions scenario, the global warm-
ing time series peaks in a particular year, then by construc-
tion the emulated temperature peaks in this same year in ev-
ery grid point. The spatial pattern of this peak warming year
is then homogeneous by design. Any spatial structure in the
peak warming pattern of the actual ESM target data will be
missed, leading to pattern scaling errors.

https://doi.org/10.5194/esd-14-817-2023 Earth Syst. Dynam., 14, 817–834, 2023



828 C. D. Wells et al.: Understanding pattern scaling errors across a range of emissions pathways

Figure 8. Time series of global and regional ESM annual temperature changes (relative to the first 50 years of a scenario), with both
annual and LOWESS values smoothed, and the projected regional emulation from fitting a linear regression to the local and global smoothed
temperatures for three region–model–scenarios, namely the Arctic (60 to 90◦ N) in EC-Earth3 under SSP1–1.9 and the North Atlantic (40 to
50◦ N, 40 to 20◦W) and Europe (35 to 70◦ N, 10◦W to 40◦ E) in MRI-ESM2-0 in SSP1–2.6. Perfect emulation would occur if the dashed
orange lines and dashed blue lines – the local ESM data and the local emulation – overlapped; deviations from this are the pattern scaling
error. The local and global peak warming years are indicated with short dashed and solid vertical black lines, respectively, which project
from the time axis. Also shown is the regression curve for the third example (d).

The effect of this can be tested by exploring the peak
warming simulated in ESM simulations of low-emissions
scenarios. Figure S10 shows the multi-model mean of the
deviation in the local year of peak warming from the global
average, along with the magnitude of this deviation minus
the inter-model standard deviation, for both SSP1–1.9 and
SSP1–2.6. The local year of peak warming is shown for
each model and the multi-model mean in Fig. S11. Gen-
erally, tropical land and oceans peak earlier than average,
and the Arctic and Southern Ocean later, which is consis-
tent with the inertia of the system (as seen in Fig. 3). The
patterns are similar between SSP1–1.9 and SSP1–2.6, in-
dicating some consistency between scenarios in this effect.
Few areas see inter-model agreement, however, with agree-
ment on earlier peaking over some tropical oceans and land
and later peaking over the east of the Southern Ocean. By
2100, higher forcing scenarios are typically still warming ev-
erywhere, except for some models that show a pronounced
North Atlantic warming hole (NAWH), which is the area
of the North Atlantic where the general warming has been

masked by circulation-change-induced local cooling histori-
cally (Huang et al., 2020) (not shown).

Figure 8 shows results from three region–model–scenario
combinations, which have been chosen to demonstrate the
different effects this can have on emulation errors. In the Arc-
tic in EC-Earth3 under SSP1–1.9 case (Fig. 8a), the ESM
global temperature peaks in the mid-century, but the Arctic
continues to warm to 2100. Since the pattern scaling projec-
tion is simply scaled by the global mean, however, the Arctic
emulation peaks with the global temperature, diverging from
the ESM to the end of the century and projecting the wrong
sign of trend from the mid-century onwards.

Figure 8b applies this to the NAWH in MRI-ESM2-0 un-
der SSP1–2.6. In the ESM, the NAWH cools throughout the
century, while global temperatures peak around 2070. The
pattern scaling parameter here is negative, as local cooling is
regressed onto overall global warming. The projected NAWH
response therefore reaches a minimum when the global mean
peaks and warms from there to 2100 as global temperatures
reduce.
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Figure 9. The 2070–2100 pattern scaling errors when projecting SSP1–1.9 (a–d) and SSP5–8.5 (e–h) for patterns using the following four
sets of predictors: envelope (a, e; SSP1–1.9 and SSP5–8.5), opposite (b, f; SSP5–8.5 for targeting SSP1–1.9 and vice versa), all others (c, g;
i.e. the four scenarios other than that being targeted), and nearest (d, h; SSP1–2.6 to target SSP1–1.9 and SSP3–7.0 to target SSP5–8.5 – the
nearest scenario to each target in radiative forcing terms). The patterns are calculated via the regression of local on global temperatures, as
described in Sect. 2.2, and the ESM and emulated data are also baselined to the first 50 years of the scenario (i.e. 2015–2065).

Finally, Fig. 8c applies this to Europe in MRI-ESM2-0 un-
der SSP1–2.6. In the ESM data, European and global tem-
peratures rise, stabilise, and fall, but as a land region near
the NAWH, Europe peaks in temperature several decades be-
fore the global mean. As shown in Fig. 8d, these different re-
gional and global shapes happen to produce a linear fit with
almost exactly zero gradient. Although Europe sees substan-
tial temperature change through the century, the sensitivity
averages to zero due to the differing global peak time. The
resultant emulation thus has essentially zero amplitude, de-
viating strongly from the substantial changes modelled over
Europe in the ESM.

4 Implications for the use of pattern scaling

In this section, the implications of the prior findings for the
application of pattern scaling are investigated. When emulat-
ing a given scenario, a choice must be made for the predictor
dataset, i.e. the scenario(s) used to generate the pattern. The
effect of this choice on pattern scaling errors is important;
it will not affect the time series error by definition but will
modify the pattern error and hence the overall emulation ef-
ficacy. Four options are studied here to target both SSP1–1.9
and SSP5–8.5 separately; some include the target scenario in
the predictor dataset, thus not being entirely out-of-sample,
but multiple predictor scenarios are used in these cases, thus
not being purely self-emulation. The “envelope” option uses
both SSP1–1.9 and SSP5–8.5 to construct a pattern using in-
formation from the extremes of the available dataset. The
“furthest” option uses the most different scenario – SSP5–

8.5 to emulate SSP1–1.9, and vice versa. This is an unlikely
choice but is a test that can give information about the ef-
fect of a wide range of choices. The “all others” category
utilises all of the available scenarios except the target one,
and “nearest” uses the closest scenario in nominal 2100 ra-
diative forcing. The 2070–2100 multi-model mean errors as-
sociated with these eight cases are shown in Fig. 9; the errors
divided by the inter-model standard deviation are shown in
Fig. S12.

The SSP1–1.9 error maps are remarkably insensitive to the
choice of predictor datasets; the time series error intrinsic
to SSP1–1.9, a substantial fraction of the error as shown in
Fig. 7, ensures a baseline error. Since the disequilibrium is
qualitatively similar between early–late SSP1–1.9 (responsi-
ble for the time series error) and other scenarios in SSP1–
1.9 (giving the pattern error), the distributions of the pattern
and time series errors are similar. When targeting SSP5–8.5,
however, a clear difference in the error magnitude is found
when using different predictor datasets. Low errors occur
with the envelope method, with similarities seen in the self-
emulation pattern, suggesting that SSP5–8.5 drives the pat-
tern generated from the combination. The furthest case gives
large errors as expected; all others and nearest give relatively
similar, and smaller, errors.

The patterns of comparison between the error magnitude
and the inter-model deviation (Fig. S12) are very similar,
with few areas of agreement between models. This is unsur-
prising for SSP1–1.9, given the similarity of the error, but
for SSP5–8.5, the substantially different error magnitudes
and patterns result in similar, and small, areas of agreement
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in the pattern scaling error. This is presumably because the
inter-model spread scales with the magnitude of the error, re-
flecting disagreement in the driving processes of the pattern
scaling errors. This is again consistent with prior findings
that inter-model variation is larger than pattern scaling er-
rors (Goodwin et al., 2020; Herger et al., 2015; Osborn et al.,
2016, 2018; Tebaldi and Arblaster, 2014; Tebaldi and Knutti,
2018).

5 Discussion and conclusions

This study presents a decomposition of pattern scaling er-
rors into two components, namely one due to differences in
the pattern between the predictor and target datasets (the pat-
tern error) and one due to internal non-linearities in the target
scenario (the time series error). The differences in warming
patterns between pairs of single-forcer experiments and plau-
sible future scenarios causing the pattern error were also in-
vestigated, along with case studies of the impact of the time
series error, and the total impact on the application of pattern
scaling to the SSPs was tested. In each case, pattern scaling
was applied to individual models, with the pattern scaling er-
ror for each model calculated as the difference between the
ESM data and the model-specific emulation.

Self-emulation uses the correct pattern – i.e. that of the
scenario being emulated – and is conceptualised to there-
fore have zero pattern error. Errors then occur due to differ-
ences in the temporal shape of the local and global temper-
ature. These differences are intrinsic to the scenario and are
irreducible under simple pattern scaling. Here, spatial differ-
ences in the peak warming year in low-emissions pathways
were found to manifest in substantial emulation errors across
regions and models.

When emulating out of sample, pattern errors are intro-
duced due to the pattern differences between the scenarios,
thereby combining with the time series error in the target sce-
nario. Robust differences were found between temperature
change patterns under historical GHG and aerosol forcings,
with the NHMLs more sensitive under aerosol forcing due to
the historical predominance of aerosol emissions there. Dif-
ferences between temperature change patterns under future
scenarios were less clear between models, as found in prior
work studying future emissions scenarios (Goodwin et al.,
2020; Herger et al., 2015; Osborn et al., 2016, 2018; Tebaldi
and Arblaster, 2014; Tebaldi and Knutti, 2018). However, the
difference resembled differences between transient and equi-
librium patterns in prior work (Herger et al., 2015; Huang
et al., 2020; King et al., 2020; Mitchell, 2003), with higher
sensitivity over tropical land and lower over high-latitude
oceans in SSP5–8.5, thus indicating that the different warm-
ing rates in the scenarios are an important cause of differ-
ence between these scenario patterns. Aerosol concentrations
are also substantially different between these scenarios, po-

tentially causing a less-sensitive East Asian response under
SSP5–8.5, though this was not robust between models.

The pattern error drives over 80 % of the overall pattern
scaling error when emulating a high-emissions scenario us-
ing a low-emissions pattern, causing pattern scaling errors to
be strongly dependent on the predictor dataset used. In con-
trast, the time series error contributes around half of the error
for emulating low-emissions scenarios, rendering the choice
of pattern less important, though choosing scenarios closer in
radiative forcing to the target still reduces the overall error.

Splitting the total error into these components allows for
an understanding of the relative importance of the limitations
of the assumptions which generate the errors. Understanding
which source drives the error for a given pattern scaling ap-
plication can guide efforts to reduce these uncertainties.

The errors associated with differing aerosol emissions and
differing levels of warming, including stabilisation and rel-
ative cooling, will presumably be more important for the
SSPs analysed here than the prior RCPs, which saw a nar-
rower range in aerosol emissions and levels of warming. The
tighter range in CO2 and non-CO2 forcings ensured that pat-
tern scaling worked well under the RCPs (Goodwin et al.,
2020), but variations in the aerosol pattern will lead to greater
pattern scaling errors (Xu and Lin, 2017). Projecting existing
and future Paris-Agreement-consistent scenarios, i.e. those
which stabilise temperatures below 2 ◦C and reach net-zero
GHG emissions by 2100 (Schleussner et al., 2022), such as
the C1 and C2 scenarios in IPCC AR6 WGIII (Kikstra et al.,
2022), will lead to issues related to equilibrium and transient
pattern differences (King et al., 2020).

The efficacy of pattern scaling is constrained by the
choices of patterns available, i.e. the dataset of scenarios sim-
ulated in multi-model ESM ensembles, which is itself de-
termined by the trajectories chosen under projects such as
ScenarioMIP. These might not cover the full relevant range
of scenario attributes (Guivarch et al., 2022); there is a lack
of stabilising and cooling scenarios in the extant datasets
(Tebaldi et al., 2022), with a recognised need for more equi-
librium experiments in the future (King et al., 2021). How-
ever, this work demonstrates that scenarios with these prop-
erties are less amenable to emulation via pattern scaling than
higher-emissions ones.

These results suggest that caution should be taken when
applying simple linear pattern scaling to emulate low-
emissions scenarios, as these are intrinsically less amenable
to emulation via pattern scaling. Large differences in the
forcing pattern and rate of warming between predictor and
target scenarios also lead to substantial emulation errors.

This paper focused on annual mean temperature, but it
would be useful to determine the relative roles of the pattern
and time series errors for other variables in order to deter-
mine the extent to which their emulation is limited by non-
linearities in the target scenario. The distribution of temper-
ature variability is also crucial for impact analysis, as it can
change under external forcing (Olonscheck and Notz, 2017;
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Pendergrass et al., 2017) and has been incorporated into em-
ulation tools such as MESMER (Beusch et al., 2020).

Only simple pattern scaling – using one predictor, global
temperature, to emulate the local temperature response using
a single pattern – was studied here. These errors may be mit-
igated to an extent by other methods, such as using patterns
dependent on a forcer (Xu and Lin, 2017; Kravitz et al., 2017;
Schlesinger et al., 2000) or response timescale (Zappa et al.,
2020). Improvements have also been found by adding extra
predictors in addition to global temperature, such as land–sea
contrast (Herger et al., 2015) and ocean heat uptake (Beusch
et al., 2020). The pattern generated across a given ensemble
may depend on the number of members, with greater internal
variability for smaller ensembles. Most ensembles used here
were larger than three, but several ensembles had only one
member (Tables S1 and S2). The extent to which this ensem-
ble size affects the pattern is uncertain and is an avenue for
future work.

Regional climate changes are key for understanding the
impacts of different policy choices, but the links between
global mean temperatures and their regional impacts have
not been fully explored within the IPCC framework (Kik-
stra et al., 2022). Emulation of regional impacts via tools
such as pattern scaling, in a consistent framework such as
MESMER (Beusch et al., 2020), provides a crucial means by
which to estimate the local impacts of new emissions scenar-
ios without the need to perform expensive, time-consuming
ESM simulations.

This paper furthers the understanding of pattern scaling
by decomposing the errors into those that are attributable to
different assumptions. Further research to reduce these errors
where possible will be crucial to enhance our understanding
of future climate change.
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