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Abstract. Detection and attribution (D&A) of forced precipitation change are challenging due to internal vari-
ability, limited spatial, and temporal coverage of observational records and model uncertainty. These factors
result in a low signal-to-noise ratio of potential regional and even global trends. Here, we use a statistical method
– ridge regression – to create physically interpretable fingerprints for the detection of forced changes in mean and
extreme precipitation with a high signal-to-noise ratio. The fingerprints are constructed using Coupled Model
Intercomparison Project phase 6 (CMIP6) multi-model output masked to match coverage of three gridded precip-
itation observational datasets – GHCNDEX, HadEX3, and GPCC – and are then applied to these observational
datasets to assess the degree of forced change detectable in the real-world climate in the period 1951–2020.

We show that the signature of forced change is detected in all three observational datasets for global metrics
of mean and extreme precipitation. Forced changes are still detectable from changes in the spatial patterns of
precipitation even if the global mean trend is removed from the data. This shows the detection of forced change
in mean and extreme precipitation beyond a global mean trend is robust and increases confidence in the detection
method’s power as well as in climate models’ ability to capture the relevant processes that contribute to large-
scale patterns of change.

We also find, however, that detectability depends on the observational dataset used. Not only coverage differ-
ences but also observational uncertainty contribute to dataset disagreement, exemplified by the times of emer-
gence of forced change from internal variability ranging from 1998 to 2004 among datasets. Furthermore, differ-
ent choices for the period over which the forced trend is computed result in different levels of agreement between
observations and model projections. These sensitivities may explain apparent contradictions in recent studies on
whether models under- or overestimate the observed forced increase in mean and extreme precipitation. Lastly,
the detection fingerprints are found to rely primarily on the signal in the extratropical Northern Hemisphere,
which is at least partly due to observational coverage but potentially also due to the presence of a more robust
signal in the Northern Hemisphere in general.
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1 Introduction

Precipitation changes may be among the most important con-
sequences of anthropogenic climate change. Yet, robust de-
tection and attribution (D&A) of forced change in the water
cycle are impaired by low signal-to-noise ratios. The concept
of detection and attribution is to use climate model simula-
tions in which the applied forcings are known and internal
variability can be reduced by averaging multiple realisations,
to estimate a so-called fingerprint that represents the effect of
the applied forcings on climate variables of interest. Subse-
quently, the degree to which this fingerprint can be detected
in observations is assessed; if the fingerprint signal is signif-
icant and in agreement with the models, the forcing signal is
said to be detected and attributed to the applied forcings. The
low signal-to-noise ratios of precipitation D&A result from
many factors (Balan Sarojini et al., 2016). First, internal vari-
ability of precipitation and related processes is high (Deser
et al., 2012; Hoerling et al., 2010; Balan Sarojini et al., 2012).
Second, models show relatively large disagreement in water
cycle simulations due to, for example, structural uncertain-
ties such as parameterised convection and differing climate
and hydrological sensitivities (Pendergrass, 2020). There can
also be discrepancies between model representations of the
water cycle and observations (Mehran et al., 2014; Wehner
et al., 2020). Lastly, signal robustness suffers from limited
spatial and temporal coverage of observations, and biases can
be introduced by changing coverage and station density over
time as well as gridding procedures (Balan Sarojini et al.,
2012; Dunn et al., 2020). Here we present a detection method
based on regularised linear regression – ridge regression –
that is suitable to detect forced changes in global metrics of
mean and extreme precipitation with a high signal-to-noise
ratio, despite the challenges listed.

Models and observations roughly agree on a rate of spe-
cific humidity increase with global mean temperature of
≈ 7 % K−1, following theoretical relationships (Held and
Soden, 2006; Dai, 2006). Extreme precipitation scales ap-
proximately with this rate of increased precipitable water and
increases over most of the global land, although atmospheric
dynamics modulate the increase in some regions (O’Gorman
and Schneider, 2009; Fischer and Knutti, 2016; Pfahl et al.,
2017). Changes in global mean precipitation are associated
with the atmospheric energy balance, resulting in a smaller
increase of ≈ 1 % K−1–3 % K−1, with an underlying spatial
pattern of hydrological cycle intensification (Allen and In-
gram, 2002; Allan et al., 2014; Pendergrass and Hartmann,
2014; Douville et al., 2021). Changes in mean precipitation
over land are not well described by this pattern intensifica-
tion, though, and are expected to be lower and more complex
due to the effects of water availability and relatively higher
warming rates over land compared to oceans (Douville et al.,
2021; Byrne and O’Gorman, 2015; Roderick et al., 2014).
Besides local climatology, changes in factors such as large-
scale atmospheric circulation, water availability, and the ver-

tical structure of the atmosphere play a role in the local pre-
cipitation response to forcing (Byrne and O’Gorman, 2015;
O’Gorman and Schneider, 2009; Pfahl et al., 2017).

For mean precipitation, anthropogenically forced changes
have been detected and attributed on a global land level and
for regions defined by latitude bands (Fischer and Knutti,
2014; Knutson and Zeng, 2018; Noake et al., 2012; Pol-
son et al., 2013; Marvel and Bonfils, 2013). Anthropogenic
aerosols and greenhouse gases (GHGs) have opposing influ-
ences on the hydrological cycle (Wu et al., 2013; Bonfils
et al., 2020; Salzmann, 2016), implying that continued in-
crease in GHGs and decrease in aerosol emissions will lead
to stronger GHG signatures in mean precipitation. Although
studies agree on the presence of a signal in observations,
they disagree on the strength. Models have been suggested
to overestimate (Fischer and Knutti, 2014) as well as under-
estimate (Noake et al., 2012; Wu et al., 2013; Polson et al.,
2013; Knutson and Zeng, 2018) observed trends.

For extreme precipitation, optimal fingerprinting meth-
ods and spatial aggregation approaches have led to the de-
tection and attribution of anthropogenically forced changes
over global land and for distinct Northern Hemispheric re-
gions (e.g. Min et al., 2011; Zhang et al., 2013; Fischer
and Knutti, 2014; Paik et al., 2020; Kirchmeier-Young and
Zhang, 2020; Sun et al., 2022; Fischer and Knutti, 2016).
However, for extreme precipitation there is also disagree-
ment regarding the strength of the forced signal in observa-
tions. A subset of studies finds Coupled Model Intercompar-
ison Project (CMIP) multi-model ensembles generally un-
derestimate changes compared to observations (Min et al.,
2011; Fischer and Knutti, 2014, 2016; Borodina et al., 2017),
whereas others find the opposite (Zhang et al., 2013; Paik
et al., 2020; Sun et al., 2022).

Hence, the degree to which model simulations accurately
represent the responses of precipitation-relevant processes to
forcing and thus accurately simulate past and future changes
in precipitation remains up for debate. Knowledge of the
severity of current climate change effects on the water cycle
as well as the congruence of modelled and observed histori-
cal forced changes in the water cycle is important for adap-
tation policies and improvement of future projections.

Recent studies using data-science methods of varying
complexity for the purpose of reducing the signal-obscuring
effects of uncertainties and internal variability have detected
forced signals in temperature as well as mean and extreme
precipitation (Sippel et al., 2020; Barnes et al., 2019, 2020;
Madakumbura et al., 2021). Here, we show that regularised
linear regression can alleviate some of the difficulties in pre-
cipitation D&A by reducing the influence of internal vari-
ability and structural model error on detection results. We use
regularised linear regression to construct high signal-to-noise
ratio fingerprints for the detection of the forced response
in mean and extreme precipitation based on observational
coverage and apply these to several station-based observa-
tional datasets to assess whether significant forced changes
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are detected and have emerged from internal variability. The
simultaneous assessment of multiple observational datasets
provides an overview of how modelled and observed forced
changes compare and sheds light on the aforementioned con-
tradictory findings. We analyse forced signals in annual pre-
cipitation anomalies and also in anomalies from which the
global mean trend is removed, relying on spatial pattern in-
formation alone. The latter approach highlights relative re-
gional responses to forcing and tests whether spatial pattern
changes in models are in accordance with observations.

2 Methodology

In our detection procedure ridge regression (RR) models are
trained on simulated spatial patterns of precipitation with
known forcings to determine fingerprints of the modelled
forced response of annual mean total precipitation (PRCP-
TOT) and annual extreme precipitation (Rx1d: precipitation
accumulation on the day with most precipitation each year).
The fingerprints are such that they predict the global forced
response from the spatial locations where observational data
are available. The RR fingerprints are applied to observations
to isolate an estimate of the real-world forced response from
internal variability. Several data processing and regression
steps are needed to achieve this. We describe the general pro-
cedures here; Sect. S1 in the Supplement contains additional
details, and Sippel et al. (2020) describe the method used
here in detail.

Our method bears similarity to (non-)optimal fingerprint-
ing methods for D&A which have been developed over
the past decades. From Klaus Hasselmann’s seminal paper
on the signal-to-noise problem in detecting forced climate
responses (Hasselmann, 1979), optimal fingerprinting (e.g.
Hegerl et al., 1996; Allen and Stott, 2003; Ribes et al., 2013;
Ribes and Terray, 2013) and detection methods based on pat-
tern similarity (e.g. Santer et al., 1995, 2013; Marvel and
Bonfils, 2013) have evolved. In optimal fingerprinting, ob-
servations are regressed on a “guess pattern” of the forced
response derived from models, using an estimate of internal
variability, resulting in scalars (“scaling factors”) represent-
ing the strength of the guess patterns in observations. Our
ridge-regression-based detection method differs from this ap-
proach in that we do not regress observational data on sim-
ulated estimates of the forced response but determine a de-
tection model based on model data only. It is more closely
related to pattern similarity methods, where an EOF (empiri-
cal orthogonal function)-based signal pattern is referred to as
the fingerprint, and the projection of spatiotemporal obser-
vations onto this pattern yields a one-dimensional (temporal)
estimate of the forced response in observations. Our method
builds on this in a straightforward way by adding a step to
optimise the signal-to-noise ratio. In our method, we project
observations not onto the signal pattern directly but onto a
regression coefficient pattern that “optimally” (linearly, op-

timised by regularisation) projects simulated spatiotemporal
Rx1d or PRCPTOT patterns onto a one-dimensional detec-
tion space based on the signal pattern (see Sect. 2.2 and 2.3
for details). Regularisation optimises the regression coeffi-
cient pattern for a high signal-to-noise ratio across models
and thus improves generalisability. The detection metric is
then applied to map spatiotemporal observations onto the
one-dimensional detection space, thus extracting the forced
response signature in the real-world climate.

We believe the advantages of our method lie in (1) its rel-
ative simplicity and close links to pattern-similarity-based
D&A methods, while going beyond comparisons to the
signal pattern (e.g. Santer et al., 2013; Marvel and Bon-
fils, 2013; Bonfils et al., 2020) or spatial aggregation tech-
niques (e.g. Fischer and Knutti, 2014; Borodina et al., 2017),
(2) the interpretable and intuitive fingerprint (spatial coef-
ficient map) that reflects regions exhibiting high signal-to-
noise ratio climate change signals, (3) the fact that the esti-
mate of the observed forced response is a time series, allow-
ing for analysis of trends, and (4) the possibility of straight-
forwardly introducing additional constraints to, for instance,
increase robustness of detection with respect to specific cli-
mate uncertainties, such as decadal-scale internal variabil-
ity (Sippel et al., 2021). This method fits in recent develop-
ments in D&A that move towards mapping multidimensional
data onto a one-dimensional detection space. Studies based
on neural networks and deep learning for D&A (e.g. Barnes
et al., 2019, 2020; Labe and Barnes, 2021; Madakumbura
et al., 2021) employ non-linear methods but use a very simi-
lar framework with similar goals. We do not argue that ridge
regression is fundamentally better than any of the mentioned
methods, but we are convinced that the intuitive, physical
outputs combined with a high signal-to-noise ratio can be
valuable for trend detection and attribution.

2.1 Model simulations and observational data

We use model simulations from 13 CMIP phase 6 (CMIP6)
models with at least three members with historical and
SSP245 data (Eyring et al., 2016). For models that have more
than three of such members, the first three are selected. We
include a large number of models and multiple members per
model to cover as large a range of the physically plausi-
ble climate responses as possible. Including multiple mem-
bers per model accounts for within-model internal variabil-
ity, and including multiple models accounts additionally for
across-model variability and uncertainty. Furthermore, the
high number of models used ensures that one single model
with, for example, a deviating high or low climate sensitiv-
ity, does not have a strong effect on the combined result. As
unforced control data, 450-year piControl simulations for 10
out of the 13 models are available and used, i.e. 4500 years of
unforced data. Long piControl simulations are used to sam-
ple a representative distribution of unforced trends, increas-
ing confidence in the assessment of whether forced trends lie
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outside the likely range of unforced trends. See Table S1 in
the Supplement for an overview of CMIP6 data used.

In an effort to address observational uncertainty, three ob-
servational datasets are used: for Rx1d, data from the Hadley
Centre global indices of extremes v3 (HadEX3) (Dunn et al.,
2020) (1.875◦× 1.25◦, 1951–2018), and Global Historical
Climatology Network Daily EXtremes (GHCNDEX) (Do-
nat et al., 2013) (2.5◦× 2.5◦, 1951–2020) are used. For
PRCPTOT, data from HadEX3, GHCNDEX, and the Global
Precipitation Climatology Centre (GPCC) (Schneider et al.,
2017) (2.5◦× 2.5◦, 1951–2019) are used. GPCC does not
provide extreme indices and is therefore only used for PRCP-
TOT. All three observational datasets are gridded data de-
rived from station observations (Dunn et al., 2020; Donat
et al., 2013; Schneider et al., 2017). HadEX3 and GHCN-
DEX only provide values for grid cells where three stations
are available within the decorrelation length scale of the grid-
ding procedure, leading to spatially incomplete maps. GPCC,
on the other hand, interpolates to all land grid cells. In or-
der to create a reliable GPCC record comparable to the other
datasets, we mask this data to include only grid cells in which
data from three stations were available, as per the station den-
sity data provided in GPCC as well.

Coverage differs for each time step within each dataset.
In order to generate time-independent fingerprints, we create
one single coverage mask for each dataset representative of
1951–present. Grid cells for which a maximum of three time
steps (years) is missing are included, the missing time steps
are set to the time mean of the grid cell in question. This
implies that the total fraction of filled-in data points (grid
cells× time steps) ranges from 0.4 %–0.9 %.

We note that the nature of model data and observational
gridded data differs, as model precipitation values are spa-
tial grid cell averages, whereas methods to grid station-based
point observations onto a regular grid result in values rep-
resentative of grid cell centres (Dunn et al., 2020). This is
mainly a result of station observations being too sparse to
allow for reliable estimation of gridded area mean values. In
addition, gridded observational data for Rx1d are constructed
by first extracting station maxima and then gridding these,
creating an aggregated area maximum value (Dunn et al.,
2020; Donat et al., 2013). In contrast, Rx1d determined from
model data reflects the maximum of the grid cell average
precipitation. These structural differences affect precipitation
indices, extreme indices in particular, and reduce the direct
comparability of model and observational absolute precip-
itation values. This observation–model discrepancy can be
overcome by using daily, gridded observational data such as
Rainfall Estimates on a Gridded Network (REGEN) (Con-
tractor et al., 2020), but reliable datasets with long records of
this kind are not numerous. Trend biases due to these struc-
tural differences have been shown to be negligible, however,
justifying the comparison between models and observations
made in this study (Dunn et al., 2020; Avila et al., 2015).

2.2 Data processing

Rx1d is determined as the maximum daily amount of pre-
cipitation per year for each location on the original grid. We
regrid modelled PRCPTOT and Rx1d fields onto the grids of
HadEX3 and GHCNDEX. This order of operations – first ex-
tract maxima, then regrid – is used to avoid that Rx1d values
acquire additional bias due to the spatial averaging involved
in regridding; the approach used is closest to how observa-
tional Rx1d indices are computed, as described above. A dis-
advantage of this order of operations is that annual Rx1d val-
ues may occur on different days in neighbouring grid cells,
meaning that the regridded values strictly no longer represent
the most extreme day per grid cell but rather a representative
local extreme level. This is however also the case for obser-
vations.

As the GPCC grid is nearly identical to the GHCN-
DEX grid, we regrid GPCC to the GHCNDEX grid so that
the GHCNDEX-regridded CMIP6 simulations can be used.
PRCPTOT and Rx1d annual anomalies with respect to the
1951–2014 reference period are determined per grid cell on
the observational grids. For CMIP6 data, anomalies of in-
dividual members are computed with respect to the annual
mean of the ensemble mean of the model in question. For
these ensemble means, all available model members are used
to reduce noise where possible, even though only three mem-
bers are used in the RR model training. This removes poten-
tial systematic model biases in absolute precipitation levels,
which is required for meaningful prediction of forced trends.

These fields of single-model ensemble member anoma-
lies, masked to observational coverage, serve as predictors
to train the RR model, with the goal of predicting the forced
response, and are used as RR inputs to obtain model forced
response estimates. The observational anomalies serve as in-
put to the trained RR model to determine the observed forced
response estimate. In a second application of the method, we
subtract the masked, area-weighted spatial mean from the
predictors and observational data for each time step. These
detrended predictors thus only contain the relative pattern
changes in precipitation.

The RR model’s purpose is to predict the forced response
from the predictors (anomaly maps); hence the RR model
is trained with a forced response proxy as target variable
(predictand). Different RR models are trained for PRCPTOT
and Rx1d – each has their own forced response proxy as
target variable. In order to include the pattern of change,
the main forced response metric used in this study is based
on empirical orthogonal function (EOF) analysis of the un-
masked multi-model mean anomaly maps, conceptually sim-
ilar to a traditional way of extracting forced responses (e.g.
Santer et al., 1995; Hegerl et al., 1996). Multi-model mean
anomalies are determined by taking the mean of the single-
model ensemble means and centring this on the 1951–2014
reference period. By first computing single-model ensem-
ble means, all models contribute equally to the multi-model
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mean regardless of ensemble size. The first EOF of the data
represents the spatial pattern that explains most of the vari-
ance in the data, and its corresponding first principal compo-
nent is a time series reflecting the strength of that pattern in
the data. We perform the EOF analysis over the entire length
(1850–2100) of the multi-model mean record. The first prin-
cipal component correlates highly with the area-weighted
global mean change; the average Pearson correlation coef-
ficient is 0.9 for PRCPTOT and 0.99 for Rx1d (see Fig. S3
in the Supplement), and the first EOF pattern is very similar
to the linear multi-model mean trend pattern (see Fig. 2 in
Sect. 3.1). Given that model mean trends reflect the response
to external forcing due to the averaging out of internal vari-
ability, this correspondence between the (multi-)model mean
trend pattern and global mean trends on the one hand and the
first EOF and principal component on the other hand implies
that the first EOF can be assumed to reflect externally caused
variance. The first principal component is therefore set to be
the multi-model forced response best estimate. Each model’s
ensemble mean data is projected onto the first EOF of the
multi-model mean to obtain model-specific forced responses,
which form the targets for RR training.

Despite the high correlation between model global mean
changes and EOF projections, we prefer to use the EOF-
based target as a default, since the first EOF captures the
forced pattern of change, and its corresponding principal
component time series captures the strength of that pattern.
The first principal component is thus a reflection of the forced
pattern strength (e.g. Marvel and Bonfils, 2013), meaning the
forced response in all regions is somewhat reflected in this
time series and not averaged out as in the global mean. Yet,
Fig. S10 shows that using model ensemble global mean as
forced response target for detection does not lead to qualita-
tively different conclusions.

The procedure described above is visualised in a flowchart
in Fig. S1, and the EOF patterns and model-specific targets
are shown in Fig. S2. The EOF-derived targets are relatively
noisy; however, smoothing the forced response targets with
a 21-year LOWESS filter before RR model training yields
virtually identical results, indicating that the low-frequency
components of the targets govern the RR model configura-
tions.

2.3 Ridge regression

The detection fingerprint is generated by regressing the
forced response targets onto the spatiotemporal predictors
using ridge regression, referred to as training. The result-
ing fingerprint is a spatial map of coefficients reflecting
the relationship between predictors and forced response tar-
gets in model simulations. For the RR training procedure,
we store the predictors in a 2D matrix X of size n×p
(rows× columns), where each column corresponds to a grid
cell in the coverage mask (with one extra column for the in-
tercept) and the concatenated time series of three members

per model make up the rows. The target variable is a vector y
of length n consisting of a concatenation of the targets match-
ing the predictors; i.e. the model member predictors predict
their “own” model ensemble mean forced response target, to
retain within-model physical consistency. The output of the
RR training procedure is a coefficient vector β of length p
such that

y = Xβ + ε. (1)

Effectively, β – the fingerprint – consists of coefficients
for each grid cell in the coverage mask. Applying β to model
output (Xmod) or observational data (Xobs) then gives

ŷmod = Xmodβ, (2)
ŷobs = Xobsβ, (3)

in which ŷmod and ŷobs are statistical predictions of the mod-
elled and observed forced response, referred to as forced re-
sponse estimates. In order to assess whether the external forc-
ing has an effect that is distinct from internal variability, the
fingerprint is applied to piControl model simulations to gen-
erate an unforced control forced response estimate: ŷmod,pi.
All piControl data (4500 years) are input into the RR model
to have a control distribution that is as large as possible.
β is obtained numerically in R using the package glmnet

for k-fold cross-validated ridge regression (Friedman et al.,
2010; Simon et al., 2011). To determine β, the residual sum
of squares plus the sum of squared coefficients (L2 norm)
times a parameter λ – the objective function – is minimised;
see Eq. (4) for the minimisation problem. The regularisa-
tion parameter λ can be tuned: the higher λ, the stronger the
regularisation. This regularisation is the key characteristic of
ridge regression.

argminβ (y−Xβ)T(y−Xβ)︸ ︷︷ ︸
Residual sum of squares

+ λ βTβ︸︷︷︸
L2-norm

(4)

The RR cost function is minimised for a set of λs
through k-fold cross-validation, in which each fold contains
data from one model. The simultaneous training and cross-
validation on all models ensures that the resulting RR finger-
print generalises well across models, reflecting where they
agree and avoiding overfitting to any particular model. Train-
ing on many climate realisations ensures that the resulting
RR fingerprint leads to forced response estimates that are ro-
bust to internal variability. This means higher coefficients are
given to grid cells where internal variability is smaller rela-
tive to the long-term trend, reflecting where signal-to-noise
ratios and thus predictive value for the forced response esti-
mates are higher. Figure 1 shows a visualisation of the ridge
regression procedure, to intuitively clarify the relative roles
of simulated data and observations in this approach. For a
more detailed description of RR with glmnet, see Friedman
et al. (2010), Simon et al. (2011), and Sippel et al. (2020).
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Figure 1. Flowchart of ridge regression model training procedure as well as application of detection model to observations.

Regularisation is used since the high number of predictors
and their spatial dependence may otherwise lead to overfit-
ting and unphysical coefficient fingerprints in which, for ex-
ample, high positive coefficients are offset by adjacent neg-
ative coefficients. Regularisation acts to reduce overfitting
and results in a more homogeneous and smoother fingerprint,
which more closely resembles the spatial scales of precipita-
tion change patterns. It also increases generalisability of the
fingerprint and thus improves performance when applied to
data that have not been seen in the training, such as observa-
tions.

There is no objective best approach to select the regulari-
sation parameter λ. Smaller λs reduce bias but increase vari-
ance (overfitting), whereas larger λs do the opposite (Fried-
man et al., 2010; Simon et al., 2011). There are several com-
mon options for λ selection: as a default we use λsel, of
which the definition and selection procedure are described
in Sect. S1.3. We reason that the most regularised RR model
with good performance is a good choice for the detection
model, since model performance is very similar within the
range of common λs, whereas fingerprint interpretability de-
creases for λs at the low end of the range. Sensitivities to λ
selection are addressed in Sect. 3.4.

Note that all the model simulations we use serve as input
for RR training – i.e. the model forced response estimates
shown in Sect. 3 are not out-of-sample application. Since the
purpose of the RR model is to estimate the observed forced

response from observational data that was not used in train-
ing, no independent model data sample for model forced re-
sponse estimation is needed. Figure S4 shows that pre-cross-
validation results of the RR model applied to out-of-fold
data are nearly identical to results of the final cross-validated
model.

2.4 Forced trends and signal time of emergence

To assess the strength of the observed forced response es-
timates, we compare linear trends in ŷobs for the different
observational datasets to linear trends in the multi-model
forced response best-estimate y as well as to the range of
unforced trends given by the piControl forced response es-
timates ŷpi. In this study, we consider forced change to be
detected if ŷobs trend magnitudes lie outside the 95 % range
of trends from control simulations (ŷpi). The magnitude of
the observed forced response estimate ŷobs trends relative to
the multi-model forced response best-estimate y trends in-
dicates whether CMIP6 models over- or underestimate the
real-world forced signals in PRCPTOT and Rx1d.

Besides linear trends, we also assess the signal-to-noise
ratio (SNR) of the observed forced response estimates. We
define SNR based on Hawkins et al. (2020), but we note that
the signals here are global, as opposed to local signals in
Hawkins et al. (2020). In order to separate the signal from
the noise in forced response estimates, they are related to
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a smoothed, long-term forcing proxy as a covariate. Since
global precipitation change scales with global temperature
change, as described in the introduction, the long-term trend
in precipitation forced response estimates can be isolated us-
ing the long-term trend in global temperature (see Fig. S5).
Hence, the signal S is defined as the observed forced re-
sponse estimate regressed onto smoothed global mean sur-
face temperature from Cowtan and Way (2014). Global mean
surface temperature is smoothed with a 21-year LOWESS fil-
ter to remove interannual variability while keeping the long-
term trend (Hawkins et al., 2020). The noise N is defined
as the standard deviation (σ ) of the residuals of this linear
fit, i.e. σ (ŷobs− S). The SNR (S/N ) thus relates the ob-
served forced response estimate signal to observed forced
response estimate noise, providing a measure of signal emer-
gence. The mean signal is centred to zero in the 21-year pe-
riod 1951–1971, as we see minimal measurable forcing ef-
fects in precipitation metrics up to then. Between the 1951–
1971 period and the present, the signal and thus the SNR
increases. This allows us to determine the time of emergence
of a forced climate signal in mean and extreme precipitation,
defined as the year after which the SNR consistently remains
higher than 2.

3 Results and discussion

3.1 Precipitation change in model simulations and
observations

In order to put the detection results in context, we first assess
the general characteristics of historical precipitation trends
in models and observations. Figure 2 shows maps of annual
linear trends for PRCPTOT and Rx1d from the CMIP6 his-
torical multi-model mean and the observational datasets over
the 1951–2014 period.

For PRCPTOT the model trend map (Fig. 2a) shows the
well-established mean precipitation forced change spatial
pattern, including a net global increase and an intensifica-
tion of the global water cycle pattern (Douville et al., 2021).
All observational datasets (Fig. 2c, e and g) contain features
that resemble the multi-model mean forced patterns such as
wetting at high latitudes. There are also some regions, such
as Southeast Asia and western Africa, where observed and
simulated trends have opposite signs. Uncertainties in the
net precipitation response to the opposing forcing effects of
greenhouse gases and aerosols in the second half of the 20th
century, as well as internal variability, likely play a role in
these discrepancies (Bonfils et al., 2020). The different ob-
servational datasets generally agree with one another, but a
stronger trend over western North America in GHCNDEX
(Fig. 2e) stands out. For HadEX3, GHCNDEX, and GPCC,
models and observations agree on the sign of the PRCPTOT
trend for 74 %, 85 %, and 68 % of grid cells. For Rx1d model
trends (Fig. 2b) also reflect well-known changes, which are
predominantly positive, especially over land. Observational

records (Fig. 2d and f) agree in that they also feature mostly
positive trends. For HadEX3 and GHCNDEX, models and
observations agree on the sign of the Rx1d trend for 71 % and
75 % of grid cells. The fact that simulated trend patterns ap-
pear smoother and smaller in magnitude than observational
trend patterns is primarily due to multi-model mean averag-
ing.

The first EOFs underlying the RR targets look virtually
identical to the simulated trend patterns – spatial correlation
coefficients exceed 0.99 – which implies that the first EOFs
capture the forced trend signals (see Fig. S2).

3.2 Detection fingerprints and observed forced
response estimates

Figure 3 shows the detection fingerprints, forced response
estimates, and forced trends for models and observations ob-
tained with RR.

Figure 3a and b show the regression coefficient finger-
prints that best predict the forced response while minimising
variance due to internal variability and model disagreement,
as described in Sect. 2. Only the fingerprint on the HadEX3
mask is shown here, GHCNDEX-masked and GPCC-masked
fingerprints feature similar patterns where coverage overlaps,
as shown in Fig. S6, increasing confidence in the generated
RR fingerprints and the method.

For both PRCPTOT (Fig. 3a) and Rx1d (Fig. 3b), large co-
efficients indicate changes with a high SNR and a time evolu-
tion that corresponds to the global forced response time evo-
lution. Positive coefficients indicate changes with the same
sign as the global forced response, whereas negative coef-
ficients indicate changes with opposite sign. RR tends to
rely on regions with smaller but more robust changes for
forced response prediction, whereas some regions with larger
changes such as the tropics contribute less to the prediction,
due to their high internal variability and uncertainty (Kent
et al., 2015). Regions with very small coefficients coincide
with where CMIP6 models have been shown to disagree
strongly on the sign of change, for example the location of
the transition from negative (south) to positive (north) coef-
ficients in Europe for PRCPTOT and central America and
the whole of Australia for both PRCPTOT and Rx1d (Dou-
ville et al., 2021; Giorgi et al., 2014; Westra et al., 2013; Sun
et al., 2022; Kotz et al., 2022; Kent et al., 2015). For many
of these regions, the disagreement among models about pre-
cipitation change can be traced back to the influence of cir-
culation changes on precipitation changes, which are partic-
ularly uncertain, for example, the expansion of subtropical
dry zones.

Several specific features that reflect the forced response
pattern of PRCPTOT and Rx1d can be distinguished in the
fingerprints. The PRCPTOT fingerprint features negative co-
efficients in southern Europe and northern Africa as well as
southern Africa and Australia, which reflect the drying pat-
tern corresponding to expected forced change in the hydro-
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Figure 2. Mean total precipitation (PRCPTOT, a, c, e, g) and extreme precipitation (Rx1d, b, d, f) 1951–2014 annual linear trends in the
CMIP6 multi-model mean (a, b), in HadEX3 observational data (c, d), in GHCNDEX observational data (e, f), and in GPCC observational
data (g).

logical cycle (Douville et al., 2021). Additionally, the cli-
matologically wet Pacific Northwest exhibits positive coef-
ficients as the air that rains out due to orographic lift by the
Cascade, Coastal, and Olympic mountain ranges becomes in-
creasingly moist with climate change. The rain shadow on
the lee side features negative coefficients. The Rx1d finger-
print looks more homogeneously positive than for PRCP-
TOT, reflecting the expectation of a positive trend in Rx1d

over almost all land regions, as seen in Fig. 2 (Pfahl et al.,
2017). The strong positive coefficients in northern Europe
and the North American western coast can likely be ex-
plained by the systematic nature of extreme precipitation
in these regions – wet ocean westerlies making landfall –
which results in a consistent response to increased atmo-
spheric moisture and thus high predictive value for the global
forced response (Pfahl and Wernli, 2012). The smaller posi-
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Figure 3. Annual mean total precipitation (PRCPTOT) and extreme precipitation (Rx1d) ridge regression detection fingerprints for HadEX3
coverage (a, b), corresponding forced response estimates (FREs) (c, d) and linear forced response estimate trends as a function of trend
period (e, f). In (c) and (d), black lines represent the multi-model forced response (FR) best estimate, coloured shading the full range of
model forced response estimates, coloured lines the observed forced response estimate, grey dashed lines the unforced internal variability
of the forced response pattern (piControl forced response estimate 95 % range (2.5 % to 97.5 % quantile range)). In (e) and (f), black lines
represent the multi-model forced response best-estimate trend, coloured shading the 95 % range of model forced response estimate trends,
coloured lines the observed forced response estimate trends, grey shading the piControl trends, black boxplots the model ensemble mean
target trends. Trends are computed from a variable start year until the end year of the observational time series (2018 for HadEX3, 2019 for
GPCC, 2020 for GHCNDEX, 2018 for multi-model forced response best estimate and model ensemble mean trend). Start years vary between
1951 and 1991 with increments of 5 years. piControl trends are computed over periods equally long as the corresponding forced trends. All
linear trends are normalised with respect to the multi-model forced response best-estimate 1951–2018 trend, i.e. the leftmost point on the
black line.

tive or even negative coefficients in the tips of South Amer-
ica and southern Africa correspond to regions where dynam-
ical changes are known to mask thermodynamic increases in
Rx1d (Pfahl et al., 2017; Kotz et al., 2022; Li et al., 2021).

The similarities in the maps for PRCPTOT and Rx1d indi-
cate that the signs of change in PRCPTOT and Rx1d corre-
spond in most regions, pointing towards a precipitation dis-
tribution shift to higher mean and extreme precipitation lev-
els. As mentioned, however, the magnitude of the increase is

larger for Rx1d than for PRCPTOT, and regions where neg-
ative changes in PRCPTOT exist in combination with pos-
itive changes in Rx1d are also found. This corresponds to
widening of the precipitation distribution and complies to
the expected forced increase in precipitation variability (Zit-
tis et al., 2021; Pendergrass et al., 2017). From an impact
perspective, this could imply that the background climate in
some regions dries while wet extremes become more intense,
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which can increase both drought and flood risks (Tramblay
et al., 2019).

Figure 3c and d show the forced response estimates for
PRCPTOT (Fig. 3c) and Rx1d (Fig. 3d), which are the re-
sult of applying the RR fingerprints to model simulations and
observational data. The green/blue shading shows the range
of forced response estimates from CMIP6 individual mem-
ber data for all observational masks. The consistency of the
trend in the model forced response estimate envelopes and
the multi-model forced response best estimate (black line)
confirms that the RR fingerprints are indeed suited to cap-
ture the global climate change signal in PRCPTOT and Rx1d
from spatially incomplete model data. The model forced re-
sponse estimates show a slight high bias in early years where
the target is at the low end of its range and a slight low bias
in late years where the target is at the high end of its range.
This effect is expected since the regularisation “trades” some
goodness of fit for generalisability and makes the forced re-
sponse estimates more conservative.

The coloured lines show forced response estimates from
observations. The observed forced response estimates lie
well within the model forced response estimate range, exhibit
similar variance, and follow the trend of the multi-model
forced response best estimate. These trends in the observed
PRCPTOT and Rx1d forced response estimates indicate that
the strength of the forcing pattern does indeed increase in
observations and generally agrees with model projections.

The grey dashed lines show the 95 % range of the forced
response estimate from unforced piControl data, and the pi-
Control forced response estimate distribution is also shown
as a point cloud to the right of the time series, reflecting the
internal variability range of the detection pattern. Over the
historical period, observed forced response estimates have
moved from the middle towards the upper bound of the pi-
Control range, and the multi-model forced response best es-
timate and model forced response estimates leave the piCon-
trol range still in the first half of the 21st century. All of the
above points to the unambiguous detection of forced climate
change in annual PRCPTOT and Rx1d in all observational
datasets used.

We note that the GHCNDEX forced response estimate for
PRCPTOT shows a distinct uptick towards the end of the
record, which likely is related to the coverage of GHCN-
DEX being almost exclusively in the higher northern lati-
tudes (more so than for the other datasets), which contribute
disproportionately in these particular years. However, based
on the analysis here, we cannot differentiate whether this is
an artefact, internal variability, or indicative of an increasing
forced rate of change in PRCPTOT.

Besides visual inspection of forced response estimate time
series, quantitative detection statements can be made based
on the trends in these time series. For lack of evidence for
a particular forced response polynomial, the high amount of
noise in observed forced response estimates, and ease of in-
terpretation, linear trends are assumed. The trends in PRCP-

TOT and Rx1d, however, are not constant with time in the pe-
riod of interest, so we also include the dependence of forced
trend estimates on the length and start year of the trend pe-
riod. Figure 3e and f show a quantitative overview of the lin-
ear trends of targets and forced response estimates as a func-
tion of start year and trend length. Findings are normalised
with respect to the 1951–2018 multi-model forced response
best-estimate trend.

Since forced trends in both PRCPTOT and Rx1d only be-
gin to appear around 1975, the multi-model forced response
best-estimate trends are larger in more recent trend peri-
ods that omit earlier years (toward the right side of the x
axis). The model forced response estimate trend 95 % ranges
(green/blue shading) are reasonably symmetric around the
multi-model forced response best estimate and include the
majority of the ensemble mean target trends (black box-
plots). This agreement of model forced response estimate
trends with forced response target trends shows that the RR
model does well in estimating the forced trend magnitudes.
Part of the intermodel spread in both forced response tar-
gets (boxplots) and model forced response estimates is ex-
plained by the different climatological levels of precipitation
among models and their different climate sensitivities and
in part by model uncertainties in temperature-independent
precipitation adjustments (Fläschner et al., 2016). Despite
the large spread, there is only little overlap of the model
forced response estimate trend range and the piControl trend
range (grey shading), implying that almost the entire range of
model forced response estimate trends lies outside the range
of trends possible in an unforced climate. This confirms once
again that there is a robust forced signal in mean and extreme
precipitation.

The observed forced response estimate trends for both
PRCPTOT and Rx1d (coloured lines) exceed zero and lie
within the model forced response estimate trend range and
outside the piControl range for all trend lengths (apart from
GPCC trends over the most recent 40 years or shorter), con-
firming detection of forced change in observations. Although
forced change is unambiguously detected in all datasets, the
degree of observed change depends on the observational
dataset considered.

GHCNDEX yields higher observed forced response es-
timate trends than the multi-model forced response best-
estimate trend for PRCPTOT, whereas HadEX3 and GPCC
yield lower observed forced trends. Hence, GHCNDEX sug-
gests that CMIP6 models underestimate the forced change
in PRCPTOT, whereas HadEX3 and GPCC suggest CMIP6
models overestimate it. The higher trends in GHCNDEX
PRCPTOT are partly caused by the few high outliers towards
the end of the GHCNDEX time series mentioned earlier but
also persist when these are removed from the time series.

For Rx1d, GHCNDEX and HadEX3 forced response esti-
mates show more similar trends, although GHCNDEX trends
again exceed HadEX3 trends for trends that include years
before 1975. For more recent periods, GHCNDEX shows
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smaller trends than HadEX3. In general, forced response
estimate trend increases in both observational datasets flat-
ten out for periods from 1975 to the present, where trends
smaller than the multi-model forced response best estimate
are found. By contrast, periods including years prior to 1975
suggest observed trends larger than in the multi-model forced
response best estimate.

Whereas the magnitudes of the observed forced response
estimate trends differ considerably among the observational
datasets in some cases, as highlighted above, the relative
trend fluctuations over time resemble each other in all
datasets. This consistency of results increases confidence in
the robustness of the method and suggests that differences
in spatial coverage and data operations among observational
datasets are the main sources of uncertainty in observed
forced trend estimation.

Although these results are sufficient to conclude that the
detection of forced change in global mean and extreme pre-
cipitation is unequivocal, internal variability and short record
length preclude our ability to conclude whether the observed
change is weaker or stronger than models suggest. The use of
multiple observational datasets and the time-dependent view
of the forced trends in observations shows that the magni-
tude of forced change detected in precipitation observations
is sensitive to choices on the specifics of the analysis. In pre-
vious studies, opposing conclusions have been drawn as to
the magnitude of forced precipitation change in observations
relative to model simulations, as noted in the introduction.
Our results show that both conclusions can be true, depend-
ing on the observational dataset and the forced trend metric
used.

Confidence in these results is strengthened by the con-
sistency of the variability in the model forced response es-
timates and observed forced response estimates. The resid-
uals of the linear fit to the observed and modelled forced
response estimates have comparable distributions, shown in
Fig. S7. This residual variance consistency justifies the use
of the model-derived RR fingerprint on observations, and de-
creases the likelihood of spurious detection. Confidence in
the method is also enhanced by its robustness to target met-
ric; the results above also hold when the global mean is used
as a forced response target, as shown in Fig. S10. In addi-
tion, the main finding that the magnitude of detected forced
changes in precipitation observations relative to simulated
forced changes depends on the dataset holds also when rela-
tive precipitation metrics such as percentage change or per-
centage change per temperature change are assessed, shown
in Sect. S2.3.

3.3 Detection based on relative spatial patterns of
precipitation alone

It is not surprising that forced change in mean and extreme
precipitation can be detected on a global scale, given the con-
sensus on global mean increases in PRCPTOT and Rx1d with

increasing global temperatures. A more powerful detection
statement can potentially be made, however, if forced change
can be detected in the spatial pattern of precipitation obser-
vations alone, excluding the global mean trend. Therefore
we attempt to construct RR models based on training data
from which the global mean trend is removed (detrended)
by subtracting the coverage-masked, area-weighted spatial
mean for each time step. The resulting fingerprints are then
applied to observations which are detrended in the same way.

Figure 4a and b show the RR fingerprints for detrended
predictors on the HadEX3 mask for mean and extreme pre-
cipitation (GHCNDEX and GPCC masked fingerprints look
similar where coverage overlaps; see Fig. S8). In these finger-
prints, negative coefficients indicate a change that is in phase
with the forced response but of opposite sign (inversely cor-
related), which can point to a decrease but also to an increase
with a smaller slope than the (coverage-masked) global mean
increase. The latter is the case when coefficients flip sign
from positive in Fig. 3, where the trend is included, to neg-
ative in Fig. 4. Positive coefficients in Fig. 4, on the other
hand, indicate increases with slopes larger than the global
mean increase. As for the fingerprints in Fig. 3, large coeffi-
cient magnitudes in Fig. 4 signify high SNR but not neces-
sarily large changes in an absolute sense.

Inspection of the detrended fingerprints leads to several
interesting insights. Both for PRCPTOT and Rx1d we see
that some regions with large regression coefficients flip sign.
As stated above, this reflects high-SNR changes in the same
sign but with a smaller rate of change than the global mean.
This again shows that RR relies to a large degree on regions
with small but consistent changes, for example the Tibetan
plateau for PRCPTOT. This effect is even more strongly vis-
ible in the Rx1d fingerprint, since continental Europe and
western North America – the regions with strong positive co-
efficients in the fingerprint with global mean included – flip
sign. Rx1d increases in these regions are thus smaller than
global mean yet are strong indicators of forced change in the
context of internal variability and uncertainty among models.
Rx1d increases are likely dominated by large tropical rain-
fall increases, as indicated by persistent positive coefficients
in tropical regions and the North American and Asian east
coasts.

For both PRCPTOT and Rx1d, the regions of primary im-
portance largely remain the same between the two fingerprint
types. This implies that the fingerprint with the global mean
trend included picks up on high SNR forced signals beyond
the large-scale mean increase.

The observed forced response estimates for detrended
PRCPTOT and Rx1d (coloured lines) in Fig. 4c and d show a
clear positive trend that is in agreement with the multi-model
forced response best estimate (black line). Recall that the
forced response estimates in Fig. 4c and d are derived from
observations from which the global mean is removed, mean-
ing that the relative spatial patterns of PRCPTOT and Rx1d
alone exhibit a clearly detectable forced long-term trend.
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Figure 4. As Fig. 3 but for detrended predictors. Detrending implies removing the masked, area-weighted spatial mean from the model
member data and observational data for each time step.

However, the larger spread in the observed forced response
estimates compared to Fig. 3c and d shows that detrending of
the predictors – i.e. removing part of the signal – results in
larger variability of the observed forced response estimates,
which reduces the SNR of the trends.

The model forced response estimates also exhibit larger
variability, which causes the forced and piControl trend
ranges (green/blue and beige/grey) to overlap more (Fig. 4e
and f), indicating a lower detectability of forced change in
detrended model data. Particularly for GHCNDEX-masked
Rx1d data (green shading in Fig. 4f), the low coverage in
combination with detrending removes so much information
that forced response estimation from model data is substan-
tially impaired. With weaker regularisation the forced trend
still cannot be estimated from detrended GHCNDEX data.

Despite the reduced information given to the RR model
in the detrended case, Fig. 4e and f show that forced change
is still detected using the spatial pattern alone. The observed

forced trends lie outside the piControl range and are in rea-
sonable agreement with the multi-model forced response
best-estimate trends for longer trend lengths. For shorter
trend lengths, the higher variability in the forced response
estimates leads to higher trend variability as well. Consis-
tent with Fig. 3e and f, we see that HadEX3 and GPCC
show smaller PRCPTOT trends than the multi-model forced
response best estimate, whereas GHCNDEX shows larger
trends. We note that very high GHCNDEX PRCPTOT forced
response estimate trends seen here are untrustworthy given
that GHCNDEX residual consistency in the detrended setup
is insufficient (see Fig. S9). HadEX3 Rx1d trends agree
very well with the multi-model forced response best-estimate
trends.

A possible interpretation of the forced change detection in
HadEX3 Rx1d but lack thereof in GHCNDEX Rx1d is that
the forced response in Rx1d can be detected in absence of
the global mean but that sufficient coverage is necessary. The
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seemingly higher sensitivity of Rx1d to detrending is likely
because the Rx1d forced response is more spatially homoge-
neous, which implies that global mean detrending removes
much more of the signal than for the spatially heterogeneous
PRCPTOT forced response. Taken together, the above shows,
first, detection of forced change in mean and extreme precip-
itation beyond a global mean trend and, second, the power of
RR for signal extraction from high-dimensional noisy data.
Finally, the fact that the relationship between relative spa-
tial precipitation patterns and the forced precipitation trend
derived from climate model simulations (the ridge model)
holds in observations suggests accuracy of the CMIP6 cli-
mate models in simulating the processes relevant to the spa-
tial pattern of forced change in mean and extreme precipita-
tion.

3.4 Time of emergence

The forced response estimates and trends in Figs. 3 and 4
provide evidence that the observed forced trends are larger
than the unforced piControl trend distribution, both with and
without global mean signal. Figure 5 provides the SNR as a
quantitative assessment of the observed forced response esti-
mate signal strength relative to the observed forced response
estimate variability, as defined in Sect. 2.4. Besides the de-
fault case (solid lines, corresponding to the forced response
estimates in Fig. 3c and d), the detrended SNR (dotted, cor-
responding to the forced response estimates in Fig. 4c and
d) as well as the SNR for less regularised RR models with
minimal cross-validated mean squared error (λmin) (dashed)
are shown (Friedman et al., 2010; Simon et al., 2011). Sec-
tion S2.4 shows the sensitivity of time of emergence to addi-
tional method choices.

Time of emergence – the time after which the SNR con-
sistently lies above 2 – is indicated by the vertical lines. We
consider the above definition of time of emergence a consis-
tent measure of effective SNR in the real climate, since both
signal and noise are derived from observations. To assess the
effects of possible autocorrelation within observational resid-
uals as well as possible biases due to the relatively small sam-
ple size, we also compute SNRs with respect to a noise mea-
sure derived from forced response estimates of control sim-
ulations, as in Hawkins and Sutton (2012). This definition of
SNR results in similar outcomes (not shown).

Overall, Fig. 5a and b show emergence of forced change
within 4 years of 2000 in both PRCPTOT and Rx1d in GHC-
NDEX and HadEX3 for the default setup (solid lines). The
nearly identical time of emergence for PRCPTOT and Rx1d
obtained using our method of forced response estimation is
noteworthy, given earlier suggestions of a later emergence of
PRCPTOT due to higher uncertainties and internal variabil-
ity (Fischer et al., 2014; Fischer and Knutti, 2014). The ex-
act time of emergence differs between datasets, as expected
given the different trends seen in Fig. 3, and GPCC PRCP-
TOT does not show emergence at all due to its weaker trend

combined with high variability. We note that GPCC is con-
structed using a different gridding procedure than HadEX3
and GHCNDEX, and also our handling of GPCC is different
due to the need to specify a coverage mask based on sta-
tion density, whereas HadEX3 and GHCNDEX provide their
own coverage masks. Interestingly, Rx1d time of emergence
is earlier in HadEX3, despite larger long-term linear trends
in GHCNDEX. This reflects the higher efficiency of RR in
reducing variance while capturing the signal for the higher
spatial coverage of HadEX3.

The benefit of regularisation becomes evident when com-
paring the default case to the λmin setup, where regularisation
is such that the training cross-validation error is smallest (see
Sect. S1.3 for a more extensive definition). For λmin forced
response estimates, SNR is lower and time of emergence is
later (despite slightly larger forced response estimate trends),
due to the increased variance in the λmin forced response es-
timates caused by overfitting on the training data. For GPCC
this effect is not seen, since the regularisation for GPCC in
the default case is weak; i.e. λsel and λmin are not far apart
and variance in the forced response estimate hardly increases
for λmin.

Lastly, the effect of removing the global mean from the
data (detrended), discussed in the previous section, is shown
in the dotted lines. Due to the increased variance in the forced
response estimates, SNRs decrease and times of emergence
increase. Yet, signals have emerged or are close to emergence
in all detrended cases except for GHCNDEX Rx1d, once
again confirming the detection of forced climate change in
spatial patterns of PRCPTOT and Rx1d.

All of the above points to detection and emergence of a
forced response in observations of mean and extreme pre-
cipitation, robustness of the detection method, and represen-
tation accuracy of forced and internal variability patterns of
precipitation in climate models.

4 Conclusions and outlook

We demonstrated the detection and emergence of forced
change in mean and extreme precipitation beyond inter-
nal variability using a recently introduced detection method
based on regularised linear regression. We generate regres-
sion models for the detection of forced change based on cli-
mate simulations, consisting of physically interpretable fin-
gerprints that optimise the signal-to-noise ratio. We detect
forced trends in both mean and extreme precipitation that lie
outside the piControl range of unforced variability in three
different observational datasets. The unequivocalness of the
detection of forced change is further demonstrated by the
sustained detection from the spatial pattern of precipitation
alone, after subtracting the global mean trend from the data.
A similar result was shown earlier for mean precipitation
(Barnes et al., 2019) and is extended here to extreme pre-
cipitation. This finding also reinforces confidence in the abil-
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Figure 5. SNRs of mean total precipitation (PRCPTOT) (a) and extreme precipitation (Rx1d) (b) forced response estimates in GHCNDEX,
HadEX3 and GPCC, including sensitivities to regularisation parameter (dashed) and global mean detrending (dotted). Exceedance of an
SNR of 2 implies emergence. Signal is defined as forced response estimate regressed onto 21-year LOWESS filtered global mean surface
temperature, noise as residuals of this fit.

ity of CMIP6 models to represent processes that govern the
(large-scale) spatial distribution of precipitation. Simultane-
ous emergence of the forced signal from internal variability
in both PRCPTOT and Rx1d demonstrates the value of RR-
based fingerprint construction for a high signal-to-noise ratio
estimation of forced responses.

Despite the robustness of the results, the relative magni-
tude of forced trends in observations and models depends on
the period over which trends are calculated as well as on the
observational dataset. We show in Sect. S2.3 that the depen-
dency of trend magnitudes on trend period and dataset re-
mains when we use different metrics of precipitation, such as
percentage change per degree of warming. These sensitivities
emphasise the difficulty associated with quantitative assess-
ment of observed changes in precipitation, as demonstrated
by apparent contradictions in recent studies on whether mod-
els under- or overestimate the observed changes. Figure S14
contains an overview of D&A studies on mean and extreme
precipitation, showing the lack of consensus on observed
forced trend strength across studies. This overview reveals
that, in line with our study, model and observational uncer-
tainties, changing observation station densities, internal vari-
ability, and structural differences between model simulations
and observational data lead to different results, even when
similar time periods and precipitation metrics are considered.
Against the backdrop of such uncertainty, further develop-
ment of methods such as ours that optimise for high SNR
and support intuitive physical interpretation of results can be
of great value.

It is important to note that the influence of Northern Hemi-
sphere (NH) precipitation is disproportionately strong in this
analysis. Part of this larger NH contribution may be due to
stronger or earlier emergence of a forced response, which has
been found in other studies (King et al., 2015). However, the
uneven distribution of measurement stations over the global

land plays a large role as well. Therefore, the global detec-
tion found in this study may not be representative of smaller
sub-regions, especially outside of the NH. Furthermore, pre-
liminary results suggest that detection is sensitive to seasonal
process specifics – we find that forced change is not detected
in June–July–August (NH summer), on both global and NH-
specific scales (see Fig. S21). This is potentially related to the
convective nature of precipitation in NH summer. We pro-
vide a preliminary application of the method to regional and
seasonal scales in Sect. S3. Extending the approach to D&A
of precipitation changes on regional and seasonal spatiotem-
poral timescales is of great importance to increase practical
relevance of the results for risk assessment and adaptation.

In this study we do not explicitly separate the effects of dif-
ferent forcings (GHG, aerosols, natural). We assume, how-
ever, that the analysis primarily pertains to GHG forcing
since the RR fingerprint is based on historical-SSP245 pro-
jections through 2100, when GHG forcing dominates (Chen
et al., 2021). Nonetheless, an extension of the present study
explicitly separating different forcings would be insightful to
further characterise the effects of different forcing agents in
the real climate and potentially identify sources of disagree-
ment between models and observations. This is important as
Wu et al. (2013) shows that different models may agree on
the simulated response to all forcings combined, while they
differ greatly on separate responses to GHG and aerosol forc-
ings alone. Correct simulation of the relative effects of dif-
ferent forcing agents is important for scenario development
and climate action targets, meaning further investigation of
these model discrepancies is imperative. RR-based analyses
may enable the establishment of observational constraints on
the precipitation response to different drivers, which can help
constrain projections of near-term changes in mean and ex-
treme precipitation.
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Code and data availability. All original CMIP6 data used in this
study are publicly available at https://esgf-node.llnl.gov/projects/
cmip6/ (last access: December 2019). The datasets used are

– https://doi.org/10.22033/ESGF/CMIP6.2242
(Byun et al., 2019a);

– https://doi.org/10.22033/ESGF/CMIP6.604
(Seland et al., 2019a);

– https://doi.org/10.22033/ESGF/CMIP6.793
(Wieners et al., 2019a);

– https://doi.org/10.22033/ESGF/CMIP6.1567
(Good et al., 2019);

– https://doi.org/10.22033/ESGF/CMIP6.898
(Shiogama et al., 2019);

– https://doi.org/10.22033/ESGF/CMIP6.936
(Tachiiri et al., 2019);

– https://doi.org/10.22033/ESGF/CMIP6.1532
(Boucher et al., 2019a);

– https://doi.org/10.22033/ESGF/CMIP6.251
(EC-Earth Consortium, 2019a);

– https://doi.org/10.22033/ESGF/CMIP6.727
(EC-Earth Consortium, 2019b);

– https://doi.org/10.22033/ESGF/CMIP6.2285
(Dix et al., 2019a);

– https://doi.org/10.22033/ESGF/CMIP6.1317
(Swart et al., 2019a);

– https://doi.org/10.22033/ESGF/CMIP6.2056
(Li, 2019);

– https://doi.org/10.22033/ESGF/CMIP6.2291
(Ziehn et al., 2019a);

– https://doi.org/10.22033/ESGF/CMIP6.3673
(Swart et al., 2019b);

– https://doi.org/10.22033/ESGF/CMIP6.4311
(Dix et al., 2019b);

– https://doi.org/10.22033/ESGF/CMIP6.5251
(Boucher et al., 2019b);

– https://doi.org/10.22033/ESGF/CMIP6.4312
(Ziehn et al., 2019b);

– https://doi.org/10.22033/ESGF/CMIP6.5710
(Hajima et al., 2019);

– https://doi.org/10.22033/ESGF/CMIP6.5711
(Tatebe and Watanabe, 2019);

– https://doi.org/10.22033/ESGF/CMIP6.6298
(Tang et al., 2019);

– https://doi.org/10.22033/ESGF/CMIP6.6675
(Wieners et al., 2019b);

– https://doi.org/10.22033/ESGF/CMIP6.8217
(Seland et al., 2019b);

– https://doi.org/10.22033/ESGF/CMIP6.8425
(Byun et al., 2019b).

HadEX3 and GHCNDEX data are publicly available at https://
www.climdex.org/access/ (Dunn et al., 2020; Donat et al., 2013).
GPCC data are publicly available at https://doi.org/10.5676/DWD_
GPCC/CLIM_M_V2020_250 (Rustemeier et al., 2020; Schneider
et al., 2017). Preprocessed data and the code to train the ridge re-
gression model and produce the figures in this paper for Rx1d are
available at https://doi.org/10.3929/ethz-b-000589377 (de Vries,
2023); additional code is available upon request.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-14-81-2023-supplement.
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Fischer, E. M., Sedláček, J., Hawkins, E., and Knutti, R.: Mod-
els agree on forced response pattern of precipitation and
temperature extremes, Geophys. Res. Lett., 41, 8554–8562,
https://doi.org/10.1002/2014GL062018, 2014.

Fläschner, D., Mauritsen, T., and Stevens, B.: Understanding the In-
termodel Spread in Global-Mean Hydrological Sensitivity, J. Cli-
mate, 29, 801–817, https://doi.org/10.1175/JCLI-D-15-0351.1,
2016.

Friedman, J. H., Hastie, T., and Tibshirani, R.: Regularization Paths
for Generalized Linear Models via Coordinate Descent, J. Stat.
Softw., 33, 1–22, https://doi.org/10.18637/jss.v033.i01, 2010.

Giorgi, F., Coppola, E., and Raffaele, F.: A consistent picture of the
hydroclimatic response to global warming from multiple indices:
Models and observations, J. Geophys. Res.-Atmos., 119, 11695–
11708, https://doi.org/10.1002/2014JD022238, 2014.

Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R.,
Kelley, D., Kuhlbrodt, T., and Walton, J.: MOHC
UKESM1.0-LL model output prepared for CMIP6 Sce-
narioMIP, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.1567, 2019.

Hajima, T., Abe, M., Arakawa, O., Suzuki, T., Komuro, Y.,
Ogura, T., Ogochi, K., Watanabe, M., Yamamoto, A., Tatebe,
H., Noguchi, M. A., Ohgaito, R., Ito, A., Yamazaki, D., Ito,
A., Takata, K., Watanabe, S., Kawamiya, M., and Tachiiri,
K.: MIROC MIROC-ES2L model output prepared for CMIP6
CMIP piControl, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.5710, 2019.

Hasselmann, K.: On the signal-to-noise problem in atmospheric
response studies, in: Meteorology over the tropical oceans,
edited by: Shaw, D. B., 251–259, Royal Meteorological Society,
https://hdl.handle.net/21.11116/0000-0003-12C1-E (last access:
23 January 2023), 1979.

Hawkins, E. and Sutton, R.: Time of emergence of
climate signals, Geophys. Res. Lett., 39, L01702,
https://doi.org/10.1029/2011GL050087, 2012.

Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas,
M., and Sutton, R.: Observed Emergence of the Climate Change
Signal: From the Familiar to the Unknown, Geophys. Res. Lett.,
47, e2019GL086259, https://doi.org/10.1029/2019GL086259,
2020.

https://doi.org/10.5194/esd-14-81-2023 Earth Syst. Dynam., 14, 81–100, 2023

https://doi.org/10.22033/ESGF/CMIP6.2285
https://doi.org/10.22033/ESGF/CMIP6.4311
https://doi.org/10.1175/BAMS-D-12-00109.1
https://www.climdex.org/access/
https://doi.org/10.1029/2019JD032263
https://www.climdex.org/access/
https://doi.org/10.22033/ESGF/CMIP6.251
https://doi.org/10.22033/ESGF/CMIP6.727
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1002/2013GL058499
https://doi.org/10.1038/nclimate3110
https://doi.org/10.1002/2014GL062018
https://doi.org/10.1175/JCLI-D-15-0351.1
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1002/2014JD022238
https://doi.org/10.22033/ESGF/CMIP6.1567
https://doi.org/10.22033/ESGF/CMIP6.5710
https://hdl.handle.net/21.11116/0000-0003-12C1-E
https://doi.org/10.1029/2011GL050087
https://doi.org/10.1029/2019GL086259


98 I. E. de Vries et al.: Robust global detection of forced changes in mean and extreme precipitation

Hegerl, G. C., von Storch, H., Hasselmann, K., Santer, B. D.,
Cubasch, U., and Jones, P. D.: Detecting Greenhouse-
Gas-Induced Climate Change with an Optimal Fingerprint
Method, J. Climate, 9, 2281–2306, https://doi.org/10.1175/1520-
0442(1996)009<2281:DGGICC>2.0.CO;2, 1996.

Held, I. M. and Soden, B. J.: Robust Responses of the Hydro-
logical Cycle to Global Warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/JCLI3990.1, 2006.

Hoerling, M., Eischeid, J., and Perlwitz, J.: Regional Pre-
cipitation Trends: Distinguishing Natural Variability
from Anthropogenic Forcing, J. Climate, 23, 2131–2145,
https://doi.org/10.1175/2009JCLI3420.1, 2010.

Kent, C., Chadwick, R., and Rowell, D. P.: Understanding Uncer-
tainties in Future Projections of Seasonal Tropical Precipitation,
J. Climate, 28, 4390–4413, https://doi.org/10.1175/JCLI-D-14-
00613.1, 2015.

King, A. D., Donat, M. G., Fischer, E. M., Hawkins, E., Alexan-
der, L. V., Karoly, D. J., Dittus, A. J., Lewis, S. C., and
Perkins, S. E.: The timing of anthropogenic emergence in
simulated climate extremes, Environ. Res. Lett., 10, 094015,
https://doi.org/10.1088/1748-9326/10/9/094015, 2015.

Kirchmeier-Young, M. C. and Zhang, X.: Human in-
fluence has intensified extreme precipitation in North
America, P. Natl. Acad. Sci. USA, 117, 13308–13313,
https://doi.org/10.1073/pnas.1921628117, 2020.

Knutson, T. R. and Zeng, F.: Model Assessment of Observed Pre-
cipitation Trends over Land Regions: Detectable Human Influ-
ences and Possible Low Bias in Model Trends, J. Climate, 31,
4617–4637, https://doi.org/10.1175/JCLI-D-17-0672.1, 2018.

Kotz, M., Wenz, L., Lange, S., and Levermann, A.: Changes in
mean and extreme precipitation scale universally with global
mean temperature across and within climate models, EarthArXiv
[preprint], https://doi.org/10.31223/X5C631, 2022.

Labe, Z. M. and Barnes, E. A.: Detecting Climate Sig-
nals Using Explainable AI With Single-Forcing Large En-
sembles, J. Adv. Model. Earth Sy., 13, e2021MS002464,
https://doi.org/10.1029/2021MS002464, 2021.

Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., and Wehner,
M.: Changes in Annual Extremes of Daily Temperature and
Precipitation in CMIP6 Models, J. Climate, 34, 3441–3460,
https://doi.org/10.1175/JCLI-D-19-1013.1, 2021.

Li, L.: CAS FGOALS-g3 model output prepared for CMIP6
ScenarioMIP, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.2056, 2019.

Madakumbura, G. D., Thackeray, C. W., Norris, J., Goldenson, N.,
and Hall, A.: Anthropogenic influence on extreme precipitation
over global land areas seen in multiple observational datasets,
Nat. Commun., 12, 3944, https://doi.org/10.1038/s41467-021-
24262-x, 2021.

Marvel, K. and Bonfils, C.: Identifying external influences on
global precipitation, P. Natl. Acad. Sci. USA, 110, 19301–19306,
https://doi.org/10.1073/pnas.1314382110, 2013.

Mehran, A., AghaKouchak, A., and Phillips, T. J.: Evaluation of
CMIP5 continental precipitation simulations relative to satellite-
based gauge-adjusted observations, J. Geophys. Res.-Atmos.,
119, 1695–1707, https://doi.org/10.1002/2013JD021152, 2014.

Min, S.-K., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human
contribution to more-intense precipitation extremes, Nature, 470,
378–381, https://doi.org/10.1038/nature09763, 2011.

Noake, K., Polson, D., Hegerl, G., and Zhang, X.:
Changes in seasonal land precipitation during the lat-
ter twentieth-century, Geophys. Res. Lett., 39, L03706,
https://doi.org/10.1029/2011GL050405, 2012.

O’Gorman, P. A. and Schneider, T.: The physical basis for in-
creases in precipitation extremes in simulations of 21st-century
climate change, P. Natl. Acad. Sci. USA, 106, 14773–14777,
https://doi.org/10.1073/pnas.0907610106, 2009.

Paik, S., Min, S.-K., Zhang, X., Donat, M. G., King, A. D.,
and Sun, Q.: Determining the Anthropogenic Greenhouse
Gas Contribution to the Observed Intensification of Ex-
treme Precipitation, Geophys. Res. Lett., 47, e2019GL086875,
https://doi.org/10.1029/2019GL086875, 2020.

Pendergrass, A. G.: The Global-Mean Precipitation Response to
CO2-Induced Warming in CMIP6 Models, Geophys. Res. Lett.,
47, e2020GL089964, https://doi.org/10.1029/2020GL089964,
2020.

Pendergrass, A. G. and Hartmann, D. L.: The atmospheric energy
constraint on global-mean precipitation change, J. Climate, 27,
757–768, https://doi.org/10.1175/JCLI-D-13-00163.1, 2014.

Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sander-
son, B. M.: Precipitation variability increases in a warmer cli-
mate, Sci. Rep.-UK, 7, 1–9, https://doi.org/10.1038/s41598-017-
17966-y, 2017.

Pfahl, S. and Wernli, H.: Quantifying the Relevance of Cy-
clones for Precipitation Extremes, J. Climate, 25, 6770–6780,
https://doi.org/10.1175/JCLI-D-11-00705.1, 2012.

Pfahl, S., O’Gorman, P. A., and Fischer, E. M.: Under-
standing the regional pattern of projected future changes
in extreme precipitation, Nat. Clim. Change, 7, 423–427,
https://doi.org/10.1038/nclimate3287, 2017.

Polson, D., Hegerl, G. C., Zhang, X., and Osborn, T. J.: Causes
of Robust Seasonal Land Precipitation Changes, J. Climate, 26,
6679–6697, https://doi.org/10.1175/JCLI-D-12-00474.1, 2013.

Ribes, A. and Terray, L.: Application of regularised optimal finger-
printing to attribution. Part II: application to global near-surface
temperature, Clim. Dynam., 41, 2837–2853, 2013.

Ribes, A., Planton, S., and Terray, L.: Application of regularised
optimal fingerprinting to attribution. Part I: method, properties
and idealised analysis, Clim. Dynam., 41, 2817–2836, 2013.

Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general
framework for understanding the response of the water cycle to
global warming over land and ocean, Hydrol. Earth Syst. Sci., 18,
1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.

Rustemeier, E., Becker, A., Finger, P., Schneider, U., and
Ziese, M.: GPCC Climatology Version 2020 at 2.5◦:
Monthly Land-Surface Precipitation Climatology for Ev-
ery Month and the Total Year from Rain-Gauges built
on GTS-based and Historical Data, DWD [data set],
https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2020_250,
2020.

Salzmann, M.: Global warming without global mean
precipitation increase?, Sci. Adv., 2, e1501572,
https://doi.org/10.1126/sciadv.1501572, 2016.

Santer, B. D., Taylor, K. E., Wigley, T. M., Penner, J. E., Jones,
P. D., and Cubasch, U.: Towards the detection and attribution of
an anthropogenic effect on climate, Clim. Dynam., 12, 77–100,
https://doi.org/10.1007/BF00223722, 1995.

Earth Syst. Dynam., 14, 81–100, 2023 https://doi.org/10.5194/esd-14-81-2023

https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.1175/2009JCLI3420.1
https://doi.org/10.1175/JCLI-D-14-00613.1
https://doi.org/10.1175/JCLI-D-14-00613.1
https://doi.org/10.1088/1748-9326/10/9/094015
https://doi.org/10.1073/pnas.1921628117
https://doi.org/10.1175/JCLI-D-17-0672.1
https://doi.org/10.31223/X5C631
https://doi.org/10.1029/2021MS002464
https://doi.org/10.1175/JCLI-D-19-1013.1
https://doi.org/10.22033/ESGF/CMIP6.2056
https://doi.org/10.1038/s41467-021-24262-x
https://doi.org/10.1038/s41467-021-24262-x
https://doi.org/10.1073/pnas.1314382110
https://doi.org/10.1002/2013JD021152
https://doi.org/10.1038/nature09763
https://doi.org/10.1029/2011GL050405
https://doi.org/10.1073/pnas.0907610106
https://doi.org/10.1029/2019GL086875
https://doi.org/10.1029/2020GL089964
https://doi.org/10.1175/JCLI-D-13-00163.1
https://doi.org/10.1038/s41598-017-17966-y
https://doi.org/10.1038/s41598-017-17966-y
https://doi.org/10.1175/JCLI-D-11-00705.1
https://doi.org/10.1038/nclimate3287
https://doi.org/10.1175/JCLI-D-12-00474.1
https://doi.org/10.5194/hess-18-1575-2014
https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2020_250
https://doi.org/10.1126/sciadv.1501572
https://doi.org/10.1007/BF00223722


I. E. de Vries et al.: Robust global detection of forced changes in mean and extreme precipitation 99

Santer, B. D., Painter, J. F., Bonfils, C., Mears, C. A., Solomon,
S., Wigley, T. M. L., Gleckler, P. J., Schmidt, G. A., Doutriaux,
C., Gillett, N. P., Taylor, K. E., Thorne, P. W., and Wentz, F. J.:
Human and natural influences on the changing thermal structure
of the atmosphere, P. Natl. Acad. Sci. USA, 110, 17235–17240,
https://doi.org/10.1073/pnas.1305332110, 2013.

Schneider, U., Finger, P., Meyer-Christoffer, A., Rustemeier, E.,
Ziese, M., and Becker, A.: Evaluating the Hydrological Cycle
over Land Using the Newly-Corrected Precipitation Climatology
from the Global Precipitation Climatology Centre (GPCC), At-
mosphere, 8, 52, https://doi.org/10.3390/atmos8030052, 2017.

Seland, O., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermund-
sen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.,
Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I.,
Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I.
H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin,
A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T.,
and Schulz, M.: NCC NorESM2-LM model output prepared for
CMIP6 ScenarioMIP, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.604, 2019a.

Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermund-
sen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.,
Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I.,
Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I.
H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin,
A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen,
T., and Schulz, M.: NCC NorESM2-LM model output prepared
for CMIP6 CMIP piControl, Earth System Grid Federation [data
set], https://doi.org/10.22033/ESGF/CMIP6.8217, 2019b.

Shiogama, H., Abe, M., and Tatebe, H.: MIROC
MIROC6 model output prepared for CMIP6 Sce-
narioMIP, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.898, 2019.

Simon, N., Friedman, J. H., Hastie, T., and Tibshirani, R.:
Regularization Paths for Cox’s Proportional Hazards
Model via Coordinate Descent, J. Stat. Softw., 39, 1–13,
https://doi.org/10.18637/jss.v039.i05, 2011.

Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E., and
Knutti, R.: Climate change now detectable from any single
day of weather at global scale, Nat. Clim. Change, 10, 35–41,
https://doi.org/10.1038/s41558-019-0666-7, 2020.

Sippel, S., Meinshausen, N., Székely, E., Fischer, E., Pendergrass,
A. G., Lehner, F., and Knutti, R.: Robust detection of forced
warming in the presence of potentially large climate variability,
Sci. Adv., 7, eabh4429, https://doi.org/10.1126/sciadv.abh4429,
2021.

Sun, Q., Zwiers, F., Zhang, X., and Yan, J.: Quantifying the Human
Influence on the Intensity of Extreme 1- and 5-Day Precipitation
Amounts at Global, Continental, and Regional Scales, J. Climate,
35, 195–210, https://doi.org/10.1175/JCLI-D-21-0028.1, 2022.

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca,
J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao,
Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen,
C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B.,
and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 ScenarioMIP, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.1317, 2019a.

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca,
J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao,

Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen,
C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter,
B., and Sigmond, M.: CCCma CanESM5 model output prepared
for CMIP6 CMIP piControl, Earth System Grid Federation [data
set], https://doi.org/10.22033/ESGF/CMIP6.3673, 2019b.

Tachiiri, K., Abe, M., Hajima, T., Arakawa, O., Suzuki,
T., Komuro, Y., Ogochi, K., Watanabe, M., Yamamoto,
A., Tatebe, H., Noguchi, M. A., Ohgaito, R., Ito, A.,
Yamazaki, D., Ito, A., Takata, K., Watanabe, S., and
Kawamiya, M.: MIROC MIROC-ES2L model output prepared
for CMIP6 ScenarioMIP, Earth System Grid Federation [data
set], https://doi.org/10.22033/ESGF/CMIP6.936, 2019.

Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A.,
Walton, J., and Jones, C.: MOHC UKESM1.0-LL model output
prepared for CMIP6 CMIP piControl, Earth System Grid Fed-
eration [data set], https://doi.org/10.22033/ESGF/CMIP6.6298,
2019.

Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output pre-
pared for CMIP6 CMIP piControl, Earth System Grid Federation
[data set], https://doi.org/10.22033/ESGF/CMIP6.5711, 2019.

Tramblay, Y., Mimeau, L., Neppel, L., Vinet, F., and Sauquet,
E.: Detection and attribution of flood trends in Mediter-
ranean basins, Hydrol. Earth Syst. Sci., 23, 4419–4431,
https://doi.org/10.5194/hess-23-4419-2019, 2019.

Wehner, M., Gleckler, P., and Lee, J.: Characterization of
long period return values of extreme daily temperature
and precipitation in the CMIP6 models: Part 1, model
evaluation, Weather and Climate Extremes, 30, 100283,
https://doi.org/10.1016/j.wace.2020.100283, 2020.

Westra, S., Alexander, L. V., and Zwiers, F. W.: Global Increasing
Trends in Annual Maximum Daily Precipitation, J. Climate, 26,
3904–3918, https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.

Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M.,
Bittner, M., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mau-
ritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen,
M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hoheneg-
ger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh,
L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U.,
Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen,
K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt,
H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A.,
and Roeckner, E.: MPI-M MPIESM1.2-LR model output pre-
pared for CMIP6 ScenarioMIP, Earth System Grid Federation
[data set], https://doi.org/10.22033/ESGF/CMIP6.793, 2019a.

Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M.,
Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler,
V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von
Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger,
T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T.,
Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J.,
Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller,
W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,
Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R.,
Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeck-
ner, E.: MPI-M MPI-ESM1.2-LR model output prepared for
CMIP6 CMIP piControl, Earth System Grid Federation [data
set], https://doi.org/10.22033/ESGF/CMIP6.6675, 2019b.

https://doi.org/10.5194/esd-14-81-2023 Earth Syst. Dynam., 14, 81–100, 2023

https://doi.org/10.1073/pnas.1305332110
https://doi.org/10.3390/atmos8030052
https://doi.org/10.22033/ESGF/CMIP6.604
https://doi.org/10.22033/ESGF/CMIP6.8217
https://doi.org/10.22033/ESGF/CMIP6.898
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1038/s41558-019-0666-7
https://doi.org/10.1126/sciadv.abh4429
https://doi.org/10.1175/JCLI-D-21-0028.1
https://doi.org/10.22033/ESGF/CMIP6.1317
https://doi.org/10.22033/ESGF/CMIP6.3673
https://doi.org/10.22033/ESGF/CMIP6.936
https://doi.org/10.22033/ESGF/CMIP6.6298
https://doi.org/10.22033/ESGF/CMIP6.5711
https://doi.org/10.5194/hess-23-4419-2019
https://doi.org/10.1016/j.wace.2020.100283
https://doi.org/10.1175/JCLI-D-12-00502.1
https://doi.org/10.22033/ESGF/CMIP6.793
https://doi.org/10.22033/ESGF/CMIP6.6675


100 I. E. de Vries et al.: Robust global detection of forced changes in mean and extreme precipitation

Wu, P., Christidis, N., and Stott, P.: Anthropogenic impact on
Earth’s hydrological cycle, Nat. Clim. Change, 3, 807–810,
https://doi.org/10.1038/nclimate1932, 2013.

Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C., and Min,
S.-K.: Attributing intensification of precipitation extremes
to human influence, Geophys. Res. Lett., 40, 5252–5257,
https://doi.org/10.1002/grl.51010, 2013.

Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R.,
Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens,
L., Vohralik, P., Mackallah, C., Sullivan, A., O’Farrell, S., and
Druken, K.: CSIRO ACCESS-ESM1.5 model output prepared
for CMIP6 ScenarioMIP, Earth System Grid Federation [data
set], https://doi.org/10.22033/ESGF/CMIP6.2291, 2019a.

Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R.,
Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens,
L., Vohralik, P., Mackallah, C., Sullivan, A., O’Farrell, S., and
Druken, K.: CSIRO ACCESS-ESM1.5 model output prepared
for CMIP6 CMIP piControl, Earth System Grid Federation [data
set], https://doi.org/10.22033/ESGF/CMIP6.4312, 2019b.

Zittis, G., Bruggeman, A., and Lelieveld, J.: Revisit-
ing future extreme precipitation trends in the Mediter-
ranean, Weather and Climate Extremes, 34, 100380,
https://doi.org/10.1016/j.wace.2021.100380, 2021.

Earth Syst. Dynam., 14, 81–100, 2023 https://doi.org/10.5194/esd-14-81-2023

https://doi.org/10.1038/nclimate1932
https://doi.org/10.1002/grl.51010
https://doi.org/10.22033/ESGF/CMIP6.2291
https://doi.org/10.22033/ESGF/CMIP6.4312
https://doi.org/10.1016/j.wace.2021.100380

	Abstract
	Introduction
	Methodology
	Model simulations and observational data
	Data processing
	Ridge regression
	Forced trends and signal time of emergence

	Results and discussion
	Precipitation change in model simulations and observations
	Detection fingerprints and observed forced response estimates
	Detection based on relative spatial patterns of precipitation alone
	Time of emergence

	Conclusions and outlook
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

