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Abstract. Most of the North Atlantic ocean has warmed over the last decades, except a region located over the
subpolar gyre, known as the North Atlantic “warming hole” (WH), where sea surface temperature (SST) has
in contrast decreased. Previous assessments have attributed part of this cooling to the anthropogenic forcings
(ANT) – aerosols (AER) and greenhouse gases (GHGs) – modulated by decadal internal variability. Here, I
use an innovative and proven statistical method which combines climate models and observations to confirm
the anthropogenic role in the cooling of the warming hole. The impact of the aerosols is an increase in SST
which is opposed to the effect of GHGs. The latter largely contribute to the cooling of the warming hole over
the historical period. Yet, large uncertainties remain in the quantification of the impact of each anthropogenic
forcing. The statistical method is able to reduce the model uncertainty in SST over the warming hole, both over
the historical and future periods with a decrease of 65 % in the short term and up to 50 % in the long term. A
model evaluation validates the reliability of the obtained projections. In particular, the projections associated
with a strong temperature increase over the warming hole are now excluded from the likely range obtained after
applying the method.

1 Introduction

The increase of global surface air temperature (GSAT) over
the 1850–2021 period is unequivocally attributed to human
activities (Lee et al., 2021). This increase is spatially het-
erogeneous, with some regions warming less rapidly than
others, or even cooling. Noticeably, sea surface tempera-
ture (SST) over the so-called North Atlantic “warming hole”
(hereafter WH) region, which is located over the subpolar
gyre, has decreased over the 1901–2021 period relative to
the 1870–1900 period (Gutiérrez et al., 2021). This long-
term decrease is often associated with modifications in the
meridional transport of oceanic heat content in the North
Atlantic (Gervais et al., 2018; Hu and Fedorov, 2020) and
with a slowing down of the Atlantic Meridional Overturning
Circulation (AMOC) (Rahmstorf et al., 2015; Caesar et al.,
2018). Melting of the Arctic sea ice and the Greenland ice
cap may have contributed to this cooling (Allan and Al-
lan, 2019; Gervais et al., 2018; Keil et al., 2020; Liu et al.,
2019), but atmospheric processes have also been proposed

(Li et al., 2022; Keil et al., 2020). Although internal vari-
ability strongly influences interannual to decadal variabil-
ity in the North Atlantic SST (Robson et al., 2016; Hod-
son et al., 2014; Moffa-Sánchez et al., 2019), several detec-
tion and attribution studies indicate a contribution of anthro-
pogenic greenhouse gases (GHGs) to explain the long-term
cooling of the WH over the historical period (Chemke et al.,
2020; Dagan et al., 2020). Concomitantly, natural and espe-
cially anthropogenic aerosols (AER) may have played a role
in shaping the temporal evolution of the SST over this re-
gion (Booth et al., 2012; Fiedler and Putrasahan, 2021) by
delaying the cooling of the WH through an acceleration of
the AMOC leading to a warming of the subpolar region (Da-
gan et al., 2020; Menary et al., 2020). Climate projections
from both the fifth and sixth Coupled Model Intercomparison
Projects (CMIP5 and CMIP6; Eyring et al., 2016) corrobo-
rate the contribution of GHGs, with some models projecting
an enhanced cooling of the WH (Dagan et al., 2020; Sigmond
et al., 2020; Marshall et al., 2015) but with large uncertainties
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in the spatiotemporal structure and intensity of the cooling
(Menary and Wood, 2018; Bellomo et al., 2021). Given the
potential impact of the North Atlantic SSTs on the North-
ern Hemisphere climate (Qasmi et al., 2021; Ren and Liu,
2021; Gervais et al., 2019, 2020; Karnauskas et al., 2021), it
is important to investigate the extent to which it is possible to
reduce the uncertainty in the SST projections over the WH.

So far, the impact of external forcings and internal vari-
ability on the observed WH over the historical period has
been qualitatively estimated by using dedicated sensitiv-
ity model experiments (Sigmond et al., 2020) or initial-
condition large ensembles (Dagan et al., 2020). Regardless of
the various mechanisms that have been suggested to explain
the WH, few studies have attempted to quantify in a strictly
statistical sense the anthropogenic contribution to changes
in SST over the historical period over this region. A recent
detection and attribution study based on a statistical method
derived from optimal fingerprinting provides a quantitative
statement regarding an anthropogenic signal in the SST time
series over the WH (Chemke et al., 2020) but without quan-
tifying the influence of each external forcing. In this paper,
I estimate (i) the contribution of each of the main external
forcings in the evolution of the observed WH over the his-
torical period, and (ii) the uncertainty on the evolution of
the SST response to external forcings (hereafter forced re-
sponse) over both the historical and future periods. These es-
timates come from the Kriging for Climate Change (KCC)
method, an innovative and proven statistical method, which
interpolates (hence the name kriging) observations and cli-
mate models. These different estimates are not based on any
mechanistic assumptions or physical processes but are based
solely on the SST averaged over the WH.

2 Data and methods

2.1 Observations

The SST observations from the HadSST4 (Hadley Centre’s
sea surface temperature, version 4) dataset (Kennedy et al.,
2019) are used. These observations have the advantage of
providing an estimate of the measurement uncertainty, which
encompasses the treatment of incomplete data coverage, ho-
mogenization uncertainty, etc. through an ensemble of 200
equiprobable realizations over the 1870–2021 period. Com-
pared to other datasets, this ensemble allows a more compre-
hensive estimation of the measurement error with the possi-
bility of calculating the temporal covariance of uncertainty
with the 200 members. Note that I do not consider other
datasets because they usually fall within the uncertainty of
HadSST4. The median of the 200-member ensemble will
be considered as the best estimate, while all realizations are
used to estimate the measurement uncertainty. Observations
of global surface air temperature (GSAT) used by the KCC
method are taken from the HadCRUT5 (Hadley Centre/Cli-

matic Research Unit global surface temperature anomalies,
version 5) ensemble of 200 members (Morice et al., 2021).

2.2 Climate models

Historical and Scenario Model Intercomparison Project (Sce-
narioMIP) simulations from the CMIP6 ensemble (Eyring
et al., 2016; O’Neill et al., 2016) are used to estimate the
forced response of temperature to all external forcings (ALL)
over the 1850–2100 period (the three scenarios – SSP1-2.6,
SSP2-4.5 and SSP5-8.5 – are used). The contribution of
each external forcing during the 1850–2020 period is esti-
mated from the Detection and Attribution Model Intercom-
parison Project (DAMIP) ensemble (Gillett et al., 2016), es-
pecially from the hist-GHG and hist-AER simulations, in
which GHGs and AER follow their historical concentrations,
respectively, while other forcings are kept constant. The list
of the models, the simulations used, and the number of mem-
bers is provided in Table A1 in the Appendix. A particular
feature of some of the CMIP6 models, on which the sixth as-
sessment report (AR6) from the IPCC is based, is their high
equilibrium climate sensitivities (ECS) (Lee et al., 2021).
In the AR6, ECS and GSAT projections from the CMIP6
ensemble have been assessed by using statistical methods
(including the one used in this study) and observations to
provide GSAT estimates consistent with the observational
record (Ribes et al., 2021). The statistical method used here
takes these likely estimates of the results of ECS and GSAT
future ranges into account, by including an observational
constraint based on both GSAT and SST over the WH region.

2.3 Statististical method

To assess past and future forced response of the WH, I use
the KCC observational constraint method that has been pre-
viously applied to global mean warming (Ribes et al., 2021)
and regional warming (Qasmi and Ribes, 2022; Ribes et al.,
2022). This technique works in three steps. First, the forced
response of each climate model is estimated over the histori-
cal period. In order to also get attribution statements, the re-
sponses to ALL (all external forcings), NAT (natural forcings
only) and anthropogenic GHG forcings are estimated sepa-
rately. Second, the sample (or the probability distribution) of
the forced responses from the CMIP6 models is used as a
prior of the real-world forced response. This is done assum-
ing that “models are statistically indistinguishable from the
truth”. Third, observations are used to derive a posterior dis-
tribution of the past and future forced response in a Bayesian
way. The procedure can be summarized using the following
equations:

y =Hx+ ε, (1)

where y is the time series of observations (a vector) over the
observed period, x is the time series of the forced response
(a vector) over the historical and projected periods, H is an
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observational operator (matrix), ε is the random noise associ-
ated with internal variability and measurement errors (a vec-
tor), and ε ∼N (0,6y), where N stands for the multivariate
Gaussian distribution. The observational operator H is a ma-
trix which extracts the components of x that are observed in
y, thus all H coefficients are equal to 0 or 1 (see Eq. B1 and
Appendix B). Climate models are used to construct a prior
on x :5(x)=N (µx,6x). Then the posterior distribution for
given observations y can be derived as p(x|y)=N (µp,6p).
In the following, I am interested in assessing the forced re-
sponse of annual mean SST over the WH (projections) as
well as the annual mean response to specific subsets of forc-
ings (attribution) over the historical period. These forced re-
sponses could be constrained by various observations. Here, I
consider constraints by both GSAT observations and regional
annual mean SST averaged over the WH – the rationale be-
hind this choice is discussed below. Therefore,

x = (T all
glo,T

all
reg,T

ghg
reg ,T

nat
reg), (2)

where each element is the annual forced response over the
1850–2100 period (except T ghg

reg which only covers 1850–
2020); T stands for temperature; “all”, “ghg” or “nat” are
the subsets of external forcings considered; “glo” and “reg”
refer to GSAT and regional SST, respectively. The length of
x is thus nx = 924. Similarly,

y = (T obs
glo ,T

obs
reg ), (3)

i.e., only observed time series are used in y. The length of
these time series varies: 1850–2021 for GSAT, 1870–2021
for the regional SST. As a result, y has a length of ny = 322.
All attribution or projection diagnoses presented below can
be derived from the posterior distribution p(x|y). Account-
ing for GSAT is important because various recent studies ar-
gued that the observational constraint on this variable is ro-
bust (e.g., to the choice of the statistical method), with the
high end of simulated GSAT model responses not consistent
with observed GSAT changes (Lee et al., 2021, and refer-
ences therein). As there is some dependence (between CMIP
models) between future GSAT changes and regional changes
over most regions including the WH, a reduced GSAT re-
sponse is expected to imply a reduced regional warming.
This is confirmed by Qasmi and Ribes (2022), who found
that accounting for the global constraint clearly improves the
accuracy of regional projections. Accounting for regional ob-
servations is also relevant, especially over regions where long
observational records are available and the climate change
signal has already emerged. Qasmi and Ribes (2022) also re-
port a significant added value in doing so. The data to be
included in the observational constraint represent a key ele-
ment of the proposed method which is further discussed.

Implementing this methodology requires the computation
of the values of µx , 6x and 6y . Following Qasmi and Ribes
(2022), µx and 6x are estimated as the sample mean and
covariance of the CMIP6 model forced responses. For each

CMIP6 model considered, the forced response of each ele-
ment of x is estimated (the forced response in GSAT, in SST
over the WH, and also the response to specific forcings, i.e.,
NAT-only or GHG-only; see Eq. (2) and Appendix C). All
available members are used to make this calculation. As a re-
sult, x is built from a sample ofNmod estimates – one for each
model (Nmod = 12 for the DAMIP ensemble, or Nmod = 27
for the full CMIP6 ensemble). Statistical modeling of in-
ternal variability and measurement uncertainty is required
for 6y . The HadSST4 and HadCRUT5 ensembles are used
to estimate measurement uncertainty. For internal variabil-
ity within the GSAT and regional SST time series, I follow
Qasmi and Ribes (2022) in using a mixture of autoregressive
(MAR) processes of order 1 (AR1). This model allows me to
capture interannual to decadal internal variations within the
observed time series. In order to assess internal variability,
a usual technique is to consider the residuals of the differ-
ence between the CMIP6 multimodel mean (the forced re-
sponse estimate) and the observation time series. However,
these residuals are likely biased at the regional scale as the
forced response estimated by the multimodel mean is not
necessarily consistent with the observations. Instead, in order
to obtain a robust estimate of the internal variability, an iter-
ative algorithm is applied so that internal variability before
and after the constraint remains consistent with the forced
response (see Eq. D3). In addition, the dependence between
global and regional internal variability is taken into account
by accounting for the covariance between the regional versus
global residuals in the MAR modeling. Further details and
discussion about the structure of H, the estimation of the in-
put parameters 6x and 6y , are provided in the Appendices.

3 Results and discussion

3.1 Attribution of the observed warming hole

Historical simulations and single-forcing experiments from
the DAMIP ensemble give a first characterization of the WH
and an estimate of the contribution of each external forcing.
Over the 1951–2014 period, anthropogenic aerosols have
contributed to warming the subpolar gyre, with a mean in-
crease of +0.5 ◦C (Fig. 1a) compared to the 1870–1900 pe-
riod. Concomitantly, the effect of the GHGs is a cooling over
the same region, with a mean decrease of about −0.2 ◦C
(Fig. 1b). Note that similar anomaly patterns are obtained
when using the preindustrial control (piControl) simulations
as a reference (Fig. S1 in the Supplement). These anoma-
lies support the conclusions of several studies (Chemke et al.,
2020; Marshall et al., 2015) and may reflect the signature of
a modification of the oceanic heat transport (Dagan et al.,
2020), rather than a direct radiative impact from the aerosols
(via a parasol effect) or from the GHGs (warming the sur-
face). The impact of the natural forcings on SST is weak in
the models, with a slight warming over the Labrador Sea
(Fig. 1c). Historical simulations from models which have
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contributed to the DAMIP ensemble show a partial compen-
sation of the effects induced by anthropogenic aerosols and
GHGs, resulting in a warming over the subpolar gyre and
a slight cooling over the Gulf Stream region (Fig. 1d). A
similar pattern is found when historical simulations from all
CMIP6 models are considered (Fig. S2). This result from the
historical simulations is not consistent with the observations,
which indicate a −0.4 ◦C cooling over a large area of the
subpolar gyre (Fig. 1e) and resembles the GHG multimodel
mean more closely. This difference between historical simu-
lations and observations could be explained by non-exclusive
factors: (i) biases in the simulation of the physical processes
driving the SST variability over the subpolar gyre, (ii) an
overestimated impact of aerosols in the models, as pointed
out by some studies, (iii) an underestimated impact of GHGs,
(iv) internal variability. In any case, the CMIP6 multimodel
mean does not reflect the diversity of the SST variability in
the North Atlantic since the location and the intensity of the
anomalies over the historical period varies considerably in
this ensemble (Fig. S3), a feature also existing in previous
generations of models (Ba et al., 2014; Menary and Wood,
2018).

The combination of CMIP6 models and observations via
the KCC statistical method provides estimates of the SST
forced responses to different external forcings with uncer-
tainties that are consistent with the available observations
and internal variability. Here, I apply the KCC method to the
DAMIP ensemble by using the observed SST annual time
series over the warming hole, defined as the spatial aver-
age over 48, 63◦ N and −50, −20◦W (see black domain in
Fig. 1e), over the 1870–2021 period. As a first step, this do-
main is common to all models.

Figure 2 shows the attribution results over the 1951–2020
period compared to the 1870–1900 period. The contribution
of all external (ALL) forcings is a cooling of the warming
hole, with a best estimate of −0.14± 0.12 ◦C, which is half
of the observed cooling (−0.3± 0.12 ◦C). The constrained
ALL response is opposite in sign to the unconstrained re-
sponse from the CMIP6 ensemble, which indicates an un-
derestimation of the cooling, consistent with Fig. 1d. The
uncertainty in the ALL response is reduced by about 70 %
compared to the unconstrained response. The contributions
from natural (NAT) and anthropogenic (ANT) forcings (con-
tributing to ALL) are examined. The response due to natu-
ral NAT forcings has a very small contribution, with a slight
warming of +0.06± 0.02 ◦C. Note that this estimate is con-
sistent with the hist-nat simulations. The major contribution
of the ALL-induced cooling comes from the ANT compo-
nent, with a cooling of −0.24± 0.12 ◦C and a reduction of
70 % in the uncertainty, which now excludes positive values.
This decrease in uncertainty is almost equally distributed be-
tween the GHG response and the response to other anthro-
pogenic (OA, which includes aerosols, ozone. . . ) forcings,
with a decrease in uncertainty of about 65 % in both compo-
nents. Note that the unconstrained OA response (estimated as

the ANT minus GHG difference) is consistent with the hist-
aer ensemble (Fig. S4). As the uncertainty in the constrained
GHG and OA terms is still sampling both positive and neg-
ative values, it is not possible to provide a clear contribution
of these forcings over the historical period.

The sensitivity of these attribution results to methodologi-
cal factors is quantified by considering several aspects. First,
to take into account the diversity of the CMIP6 models in the
spatial structure of the simulated WH, the SST spatial aver-
age is defined for each model over a specific domain, to en-
sure a consistent comparison with observations. As done by
Menary and Wood (2018), in each model, the WH is based on
a domain where a noticeable warming over the subpolar gyre
in the hist-AER simulations is colocated with a non-warming
(or cooling) area in the hist-GHG simulation over the 1951–
2021 period (see black boxes in Figs. S5–S6). Note that this
ad hoc selection is relevant since for all models, the anoma-
lies are co-located with the climatology estimated from the
piControl simulations for most models (Fig. S7). Figure S8
shows that the consideration of this adaptive definition of the
WH changes the best-estimate values of the GHG and OA
response compared to Fig. 2 with refined estimations. The
impact of the aerosols is an increase in SST which is op-
posed to the effect of GHGs. The latter largely contribute to
the cooling of the WH, with an uncertainty reduced by almost
half.

The second sensitivity test is to consider the full set of
CMIP6 models available to estimate the forced responses,
such that a sample of 27 models is considered instead of the
only 12 models that contributed to the DAMIP ensemble,
which may undersample internal variability and model un-
certainty. Using the KCC method, hist-GHG-like simulations
for the models that did not contribute to the DAMIP ensem-
ble are reconstructed through the 1 %–CO2 simulations (in
which the CO2 concentration increases by 1 % each year for
150 years), as done by Ribes et al. (2021) (see their Supple-
ment Sect. 1.4). The inclusion of all CMIP6 models slightly
affect the uncertainty ranges but does not change the main
conclusions about the attribution of the observed cooling of
the WH (Fig. S9).

3.2 Constraining projections

The KCC method is also used to constrain the SST projec-
tions associated with the CMIP6 SSPs simulations over the
WH. Since DAMIP simulations are not required to perform
the calculations based only on the ALL component, all avail-
able CMIP6 models are used to estimate the past and future
forced responses, using a fixed WH domain as in Fig. 2. Fig-
ure 3 shows that the uncertainty in the three selected scenar-
ios is reduced by 65 % for a mid-time period (2041–2060),
and by 50 % at the end of the 21st century compared to the
unconstrained projections. The lower bound of the projected
distributions is less affected than the upper bound. For ex-
ample, in 2100 for the SSP2-4.5 simulation, the constrained
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Figure 1. (a) Annual SST multimodel mean difference between the 1951–2014 and 1870–1900 periods for the CMIP6 hist-AER simulations.
(b) Same as (a) but for hist-GHG. (c) Same as (a) but hist-NAT. (d) Same as (a) but for historical. (e) HadSST4 SST annual anomalies over
the 1951–2014 period relative to the 1870–1900 period.

Figure 2. Changes induced by various subsets of external forcings
over the historical period (1951–2020 with respect to (w.r.t.) 1870–
1900) over the warming hole. Observed (Obs) changes (gray, left)
are deduced from HadSST4 observations; uncertainty only includes
observational uncertainty (i.e., measurement and processing; inter-
nal variability is ignored). For all other contributions, the bar and
gray confidence interval on the left-hand side describe the DAMIP
model range, assuming a Gaussian distribution. The bar and black
confidence interval on the right-hand side correspond to results con-
strained by observations. All ranges shown are 5 % to 95 % confi-
dence ranges. The SSP2-4.5 scenario is used to extend historical
simulations after 2014.

lower bound of −0.76 ◦C is revised upwards compared to
the unconstrained bound (−2.08 ◦C), while the upper bound
is revised downwards considerably (+2.34 and +4.59 ◦C for
the constrained and unconstrained values, respectively). Con-

sequently, trajectories associated with a very strong warming
of the WH are excluded from the posterior distribution (i.e.,
after the constraint). Note that this posterior distribution over
the projected period largely surrounds the 0 ◦C value. This
indicates that even if a considerable warming of the WH is
less likely in the future, projections remain uncertain about
the sign relative to the future SST changes.

In order to evaluate the confidence in these results, the
KCC method is applied within a perfect model framework,
following a leave-one-out cross-validation.

– For a given model, a single member is considered as
pseudo-observations y over the 1850–2021 period (the
historical simulation is extended by the SSP2-4.5 simu-
lation over the 2015–2021 period).

– The other 26 models are used to derive the prior distri-
bution 5(x)∼N (µx, 6x).

– As done with the real observations, internal variabil-
ity within the pseudo-observations is estimated from
the difference between the time series of pseudo-
observations and the forced temperature response esti-
mated by the ensemble mean of the 26 other models.
Then, 6y is derived from the MAR model fitted on the
obtained residuals, following the same iterative way de-
tailed in Eq. (D3).

– The KCC method is applied using the inputs y, 6y , µx
and 6x to calculate projected changes constrained by
the pseudo-observations, extracted from the SSP2-4.5
simulation.

– These four steps are repeated for each available member
of the considered model and for all available models.
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Figure 3. The observational constraint is applied to concatenated historical and SSP scenarios simulations (SSP1-2.6, SSP2-4.5, or SSP5-
8.5). Annually observed values of SST over the warming hole (black points) are compared to the unconstrained (pink) and constrained (red)
5 % to 95 % confidence ranges of forced response as estimated from 27 CMIP6 models. All temperatures are anomalies with respect to the
period 1870–1900.

I use the confusion matrix to estimate the reliability of the
method for the short- (2021–2040), mid- (2041–2060) and
long-term (2081–2100) periods (Table 1). This matrix aims
to quantify the coverage probabilities, derived from the num-
ber of cases for which the true value (from the pseudo-obs)

– is included in both the constrained range p(x|y) and the
unconstrained range 5(x) (true positive rate),

– not included in both the constrained and unconstrained
ranges (true negative rate),

– is included in the constrained range but not in the un-
constrained range (false positive rate),

– is included in the unconstrained range but not in the con-
strained range (false negative rate).

The constrained distributions contain the true values from
the pseudo-observations in 80 % up to 84 % of the cases,
which is close to the expected value of 90 %. The signifi-
cance of this result is assessed with a binomial test. Under
the null hypothesis that the probability of success is equal
to 90 %, the obtained coverage probabilities remain compat-
ible with 90 % (p value= 0.18 for a coverage probability of
80 %). Note that for this test, the number of degrees of free-
dom is the number of models rather than the total number of
members (where there is a dependency between the members
of a given model) to ensure the assumption of independence
of the trials. The rate of false prediction (i.e., when the con-
strained distribution does not contain the true value while the
unconstrained distribution does) remains very low, especially
over the 2021–2040 period. Note that in about 10 % of the
cases, the true value is not contained in both the constrained
and unconstrained distributions. This could be explained by
a high or low sensitivity of some models to external forcings

in the projections compared to what is predicted by the other
(unconstrained) models.

As a second performance criterion to assess the error on
the amplitude of the constrained SST projections, I use the
continuous ranked probability skill score (CRPSS), defined
as the relative error between the constrained distribution
p(x|y) and a given reference (Hersbach, 2000). Here, I quan-
tify the added value of the constraint by considering the un-
constrained projections as a benchmark. Figure 4 shows pos-
itive CRPSS values, associated with a reduction in error of
35 %, 30 % and 20 % on average for the constrained projec-
tions compared to the raw CMIP6 projections for the short-,
mid- and long-term period, respectively. The added value of
the method is stronger for the short-term than for the long-
term period, as observations are temporally closer for the for-
mer. Overall, these results demonstrate that the results from
the method are not overconfident and that the constrained un-
certainty ranges are reliable.

4 Conclusions

The temperature response to external forcings on the North
Atlantic warming hole (WH) over the past and future period
is estimated by the KCC statistical method based on krig-
ing techniques, which combines climate models and obser-
vations. Consistent with the observations, an anthropogenic
cooling is diagnosed by the method over the last decades
(1951–2021) compared to the preindustrial period. The im-
pact of the aerosols is an increase in SST which is opposed
to the effect of GHGs. The latter largely contribute to the
cooling of the WH over the historical period. Although the
anthropogenic response is clear, the respective contribution
of each anthropogenic forcing is associated with large uncer-
tainties, especially for the aerosols. The quantification is in
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Table 1. Confusion matrix relating the temperature projection constrained by the KCC method and the true value from pseudo-observations.
Rates (in %) are computed from 249 members (from 27 models) for the SSP2-4.5 simulation. Each rate is normalized by the number of
ensemble members for each model to avoid giving too much weight to models with a large ensemble.

Lead time 2021–2040 2041–2060 2081–2100

True value In p(x|y) Not in p(x|y) In p(x|y) Not in p(x|y) In p(x|y) Not in p(x|y)
In 5(x) 78 2 81 6 76 11
Not in 5(x) 4 16 3 10 4 10

Figure 4. CRPSS for the constrained SST projections over the WH
within the perfect model framework. The red, green and blue box-
plots indicate the CRPSS distributions for different lead times. Cal-
culation is made for all CMIP6 ensemble members (see Table A1).
The top (bottom) of the box represents the 25th (75th) percentile of
the distribution and the upper (lower) whisker represents the 95th
(5th) percentile. Values are normalized by the number of members
in each model. A CRPSS of 0 (dashed line) indicates the absence of
added values of the method.

line with previous studies (Dagan et al., 2020; Chemke et al.,
2020) that suggest that GHGs and aerosols have had com-
pensating effects on the evolution of the WH. In the present
study, the attribution of the temperature changes is based on
only 12 models. Although the CMIP6 ensemble shows quali-
tatively consistent results, this large uncertainty points to the
crucial need to increase the number of models running sin-
gle forcing experiments as done in DAMIP to better sample
the model uncertainty. The method is also applied to CMIP6
projections and is able to reduce the model uncertainty in the
anthropogenic response by a factor of 3 over the historical
period and by a factor of 2 in the long-term projections. In
particular, models projecting strong SST increase over the
WH are excluded from the likely range constrained by the
method.

This result has important implications for the estimation of
the future changes in terms of teleconnection processes be-
tween the North Atlantic and the continental climate, e.g.,
over Europe, North America or the Sahelian monsoon. It
would be interesting to re-evaluate the climate impacts of
the North Atlantic SST variability in light of the constrained
temperature ranges obtained in this study, e.g., in terms of
the occurrence of extreme events or changes in atmospheric
circulation.

A relevant perspective of these results is the potential con-
straint of the Atlantic Meridional Overturning Circulation
(AMOC). Using the same approach as in this paper and to di-
rectly constrain future AMOC changes is challenging due to
the limited number of observations monitored via the RAPID
program (Frajka-Williams et al., 2021). Instead, it is possible
to take advantage of the covariance between the AMOC and
proxies based on SST and salinity over the North Atlantic
(Zhang, 2017; Caesar et al., 2018) and to apply the kriging
method to these proxies. This approach will allow a better
estimation of the uncertainty in the forced response included
in these proxies, which could lead to revised estimates of the
AMOC forced response over the past and future periods.
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Appendix A: List of the CMIP6 models

Table A1. List of the available CMIP6 Models and the associated number of members in the simulations used to constrain the temperature
time series.

Model Historical Hist-NAT Hist-GHG Hist-AER SSP1-2.6 SSP2-4.5 SSP5-8.5

ACCESS-CM2 3 3 3 3 3 3 3
ACCESS-ESM1-5 20 3 3 19 9 9
BCC-CSM2-MR 1 3 3 3 1 1 1
CAMS-CSM1-0 2 2 2 2
CanESM5-CanOE 3 3 3 3
CanESM5 50 50 50 50 50 50 50
CESM2 6 3 3 2 5 6 5
CESM2-WACCM 3 1 3 3
CNRM-CM6-1 6 10 10 10 6 6 6
CNRM-CM6-1-HR 1 1 1 1
CNRM-ESM2-1 6 5 6 5
EC-Earth3 22 7 22 8
EC-Earth3-Veg 5 5 5 5
FGOALS-f3-L 3 3 1 3
FGOALS-g3 4 3 3 3 4 2 4
FIO-ESM-2-0 3 3 3 3
HadGEM3-GC31-LL 4 5 10 5 1 1 4
INM-CM4-8 1 1 1 1
IPSL-CM6A-LR 11 10 10 10 6 11 6
MIROC6 50 50 3 10 50 3 50
MIROC-ES2L 10 10 10 10
MPI-ESM1-2-HR 2 2 2 2
MPI-ESM1-2-LR 10 10 10 10
MRI-ESM2-0 5 5 5 5 5 1 2
NorESM2-LM 3 3 3 3 1 3 1
NorESM2-MM 2 1 2 1
UKESM1-0-LL 13 13 5 5
Total: 27 Models 249 148 106 107 218 172 203

Appendix B: Structure of the observation operator H

The observation operator H is a matrix of size ny × nx . The
constraint by both GSAT and regional observations com-
prises setting the submatrices Hreg = I 1870:2021 and Hglo =

I 1850:2021 and all other coefficients equal to zero (see block
matrices in Eq. B1). This structure allows the extraction of
the appropriate years from the vector x (see Eq. 2). As an ex-
ample, the vector of the GSAT forced response from 1850 to
2100 is of size nx,glo = 251, while the vector of the GSAT ob-
servations from 1850 to 2021 is of size ny,glo = 172. Hence,
the operator Hglo is of size ny,glo×nx,glo, which extracts the
part of the GSAT forced response that matches the GSAT
observations, i.e., the GSAT forced response from 1850 to
2021. The same is done for the SST over the warming hole
through the operator Hreg.

H=
[

Hglo 0 0 0 0 0
0 Hreg 0 0 0 0

]
(B1)

Appendix C: Modeling of 6x

The DAMIP (or CMIP6) multimodel ensemble is used to de-
rive a distribution of x, denoted as 5(x)∼N (µx, 6x); µx
is the concatenated forced responses to all and specific exter-
nal forcings mentioned in Eq. (2). From each model, I derive
the forced responses following Ribes et al. (2021), i.e., 12
(27) vectors, from the DAMIP (CMIP6) ensemble; 6x is a
variance–covariance matrix of size nx×nx that describes the
model spread. Using a sample covariance estimate has the
side effect of producing a highly degenerated estimate for
6x : while 6x is an nx × nx matrix, the rank of 6x is equal
to 26 (since 27 CMIP6 models are being considered). While
this choice could be debated, the KCC method can be run in
this way, as 6x does not need to be inverted to derive the
parameters µp and 6p of the posterior distribution.

In the Bayesian framework, 5(x) is a first (probabilistic)
estimate of x, which makes no use of observations, and is
only based on climate models. I update this estimate by in-
corporating the observational evidence provided by y. Fol-
lowing the Bayesian theory, the calculation of the posterior
distribution p(x|y) is required. A prerequisite is to define the
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observational uncertainty, i.e., the covariance matrix associ-
ated with y.

Appendix D: Modeling of 6y

The matrix 6y is estimated by using observed annual time
series of GSAT and SST temperature over the historical pe-
riod. First, I compute the global observational residuals by
subtracting the CMIP6 GSAT response (multimodel mean)
to all external forcings from the observations T obs

glo . Similarly,
I derive regional residuals over the WH by subtracting the
CMIP6 SST response from T obs

reg . These residuals constitute
a first estimate of global and regional internal variability, de-
noted as ε̂y,glo,1 and ε̂y,reg,1, respectively.

I define 6y as a matrix of size ny × ny of the following
form:

6y =

[
6y,reg 6y,dep
6′y,dep 6y,glo

]
, (D1)

where 6y,reg and 6y,glo are the covariance matrices model-
ing regional and global internal variability within T obs

reg and
T obs

glo , respectively; 6y,dep is the covariance matrix modeling
the dependence between regional and global internal vari-
ability, i.e., εy,reg and εy,glo.

To compute 6y , I take into account decadal internal vari-
ability that may exist in the global (Parsons et al., 2020) and
regional (Qasmi et al., 2017) observations by using a mixture
of two autoregressive processes of order 1 (AR1), hereafter
MAR, as done by Qasmi and Ribes (2022). The MAR formu-
lation includes fast (f) and a slow (s) components such that
global internal variability εy,glo within the GSAT residuals
writes at a time t :
εy,glo(t) = εy,f,glo(t)+ εy,s,glo(t),

εy,f,glo(t) = αf,gloεy,f,glo(t − 1)+Zf,glo(t),
εy,s,glo(t) = αs,gloεy,s,glo(t − 1)+Zs,glo(t),

(D2)

where the parameters αs,glo and αf,glo are the lag 1 coeffi-
cients of the AR1 processes and αs,glo ≥ αf,glo by convention;
Zs,glo(t)∼N (0,σ 2

s,glo) and Zf,glo(t)∼N (0,σ 2
f,glo) are white

noises associated with the two AR1. The slow component is
able to generate a dependence on timescales of typically one
decade, while the fast component accounts for interannual
variability. The covariance matrix 6y,glo is filled according
Sect. D2. The same assumptions are adopted to estimate the
regional parameters and to compute 6y,reg.

The initial estimate of 6y , denoted as 6̂y,1 is solely based
on the residuals ε̂y,reg,1 and ε̂y,glo,1 derived from the uncon-
strained forced response. This first estimate is likely flawed
as the real (and unknown) forced response is not necessar-
ily consistent with the unconstrained forced response esti-
mated by µx . In addition, as µx can by construction be dif-
ferent from the best estimate of the constrained forced re-
sponse µ̂x ,1 (the mean of the posterior distribution p(x|y)),

the residuals ε̂y,reg,1 and ε̂y,glo,1 before constraint are not al-
ways coherent with the residuals ε̂y,reg,2 and ε̂y,glo,2 com-
puted as the y− µ̂x ,1 difference.

Hence, in order to ensure an accurate estimation of internal
variability in the constraint procedure, an iterative algorithm
is applied to find the MAR parameters that fit the residuals
from the constrained forced response:

y−µ
residuals
−−−−→ ε̂y,1

constraint
−−−−−→ µ̂1, (D3)

y− µ̂1
residuals
−−−−→ ε̂y,2

constraint
−−−−−→ µ̂2,

. . .

y− µ̂n−1
residuals
−−−−→ ε̂y,n

constraint
−−−−−→ µ̂n,

where for each iteration n, µ̂n and ε̂y,n are estimates of the
forced response and internal variability, respectively. The ter-
mination criterion is based on the Frobenius norm ||.||F .
Hence, I consider that the algorithm converges at the itera-
tion n, i.e., that ε̂y,n→ εy , when the relative difference be-
tween ||6̂y,n||F and ||6̂y,n−1||F is inferior to 1 %, implying
that the MAR parameters values have converged. In practice,
only two iterations are necessary in this study.

Initial-condition large ensembles and long piControl sim-
ulations provide a nice sampling of internal variability and
could also be used to estimate this variability. However, I
choose to not rely on it directly because of the huge discrep-
ancies between models in terms of their simulated internal
variability (Parsons et al., 2020). Qasmi and Ribes (2022)
have illustrated this aspect with the piControl simulations
from the CMIP6 models, including those used to build large
ensembles. In all cases, the models do not converge to a con-
sistent estimate of internal variability over the WH.

Code and data availability. The datasets generated and ana-
lyzed during the current study are available at https://doi.
org/10.5281/zenodo.6952546 (Qasmi, 2022). The HadCRUT5
dataset is available at https://doi.org/10.1029/2019JD032361
(Morice et al., 2021). The HadSST4 dataset is available at
https://doi.org/10.1029/2018JD029867 (Kennedy et al., 2019). The
CMIP6 datasets are available at https://doi.org/10.5194/gmd-9-
1937-2016 (Eyring et al., 2016). All programs required to run the
statistical method are in the associated KCC R package, which
is available under a GNU General Public License, version 3
(GPLv3), at https://doi.org/10.5281/zenodo.5233947 (Qasmi and
Ribes, 2021).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-14-685-2023-supplement.

Competing interests. The contact author has declared that nei-
ther of the authors has any competing interests.

https://doi.org/10.5194/esd-14-685-2023 Earth Syst. Dynam., 14, 685–695, 2023

https://doi.org/10.5281/zenodo.6952546
https://doi.org/10.5281/zenodo.6952546
https://doi.org/10.1029/2019JD032361
https://doi.org/10.1029/2018JD029867
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5281/zenodo.5233947
https://doi.org/10.5194/esd-14-685-2023-supplement


694 S. Qasmi: Past and future response of the North Atlantic warming hole to anthropogenic forcing

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This work was supported by the European
Union’s Horizon 2020 Research and Innovation Programme in the
framework of the EUCP project (grant agreement 776613), the
CONSTRAIN project (grant agreement 820829) and Météo-France.
I thank Hervé Douville and Aurélien Ribes for fruitful discus-
sions about this work. I thank the climate modeling groups in-
volved in CMIP6 exercises for producing and making their sim-
ulations available. I thank the ETH Zurich for providing CMIP6
data through their CMIP6 next generation (CMIP6ng) interface
(https://doi.org/10.5281/zenodo.3734128). The analyses and figures
were produced with the R software (https://www.R-project.org/, last
access: 12 June 2023) and the NCAR Command Language Software
(https://doi.org/10.5065/D6WD3XH5).

Financial support. This research has been supported by the
H2020 Excellent Science (grant nos. 776613 and 820829).

Review statement. This paper was edited by Jonathan Donges
and reviewed by Jobst Heitzig and two anonymous referees.

References

Allan, D. and Allan, R. P.: Seasonal Changes in the North Atlantic
Cold Anomaly: The Influence of Cold Surface Waters From
Coastal Greenland and Warming Trends Associated With Vari-
ations in Subarctic Sea Ice Cover, J. Geophys. Res.-Oceans, 124,
9040–9052, https://doi.org/10.1029/2019JC015379, 2019.

Ba, J., Keenlyside, N. S., Latif, M., Park, W., Ding, H., Lohmann,
K., Mignot, J., Menary, M., Otterå, O. H., Wouters, B., Melia, D.
S. Y., Oka, A., Bellucci, A., and Volodin, E.: A multi-model com-
parison of Atlantic multidecadal variability, Clim. Dynam., 43,
2333–2348, https://doi.org/10.1007/s00382-014-2056-1, 2014.

Bellomo, K., Angeloni, M., Corti, S., and von Hardenberg, J.: Fu-
ture climate change shaped by inter-model differences in Atlantic
meridional overturning circulation response, Nat. Commun., 12,
3659, https://doi.org/10.1038/s41467-021-24015-w, 2021.

Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and
Bellouin, N.: Aerosols implicated as a prime driver of twentieth-
century North Atlantic climate variability, Nature, 484, 228–232,
https://doi.org/10.1038/nature10946, 2012.

Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and
Saba, V.: Observed fingerprint of a weakening Atlantic
Ocean overturning circulation, Nature, 556, 191–196,
https://doi.org/10.1038/s41586-018-0006-5, 2018.

Chemke, R., Zanna, L., and Polvani, L. M.: Identifying a human
signal in the North Atlantic warming hole, Nat. Commun., 11,
1540, https://doi.org/10.1038/s41467-020-15285-x, 2020.

Dagan, G., Stier, P., and Watson-Parris, D.: Aerosol Forcing Masks
and Delays the Formation of the North Atlantic Warming Hole
by Three Decades, Geophys. Res. Lett., 47, e2020GL090778,
https://doi.org/10.1029/2020GL090778, 2020.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Fiedler, S. and Putrasahan, D.: How Does the North At-
lantic SST Pattern Respond to Anthropogenic Aerosols in the
1970s and 2000s?, Geophys. Res. Lett., 48, e2020GL092142,
https://doi.org/10.1029/2020GL092142, 2021.

Frajka-Williams, E., Moat, B. I., Smeed, D., Rayner, D.,
Johns, W. E., Baringer, M. O., Volkov, D. L., and Collins,
J.: Atlantic meridional overturning circulation observed by
the RAPID-MOCHA-WBTS (RAPID-Meridional Overturn-
ing Circulation and Heatflux Array-Western Boundary Time
Series) array at 26◦ N from 2004 to 2020 (v2020.1),
[data set], https://doi.org/10.5285/CC1E34B3-3385-662B-E053-
6C86ABC03444, 2021.

Gervais, M., Shaman, J., and Kushnir, Y.: Mechanisms Governing
the Development of the North Atlantic Warming Hole in the
CESM-LE Future Climate Simulations, J. Climate, 31, 5927–
5946, https://doi.org/10.1175/JCLI-D-17-0635.1, 2018.

Gervais, M., Shaman, J., and Kushnir, Y.: Impacts of the North At-
lantic Warming Hole in Future Climate Projections: Mean At-
mospheric Circulation and the North Atlantic Jet, J. Climate, 32,
2673–2689, https://doi.org/10.1175/JCLI-D-18-0647.1, 2019.

Gervais, M., Shaman, J., and Kushnir, Y.: Impact of the North At-
lantic Warming Hole on Sensible Weather, J. Climate, 33, 4255–
4271, https://doi.org/10.1175/JCLI-D-19-0636.1, 2020.

Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R.,
Matthes, K., Santer, B. D., Stone, D., and Tebaldi, C.: The De-
tection and Attribution Model Intercomparison Project (DAMIP
v1.0) contribution to CMIP6, Geosci. Model Dev., 9, 3685–3697,
https://doi.org/10.5194/gmd-9-3685-2016, 2016.

Gutiérrez, J., Jones, R., Narisma, G., Alves, L., Amjad, M.,
Gorodetskaya, I., Grose, M., Klutse, N., Krakovska, S., Li,
J., Martínez-Castro, D., Mearns, L., Mernild, S., Ngo-Duc, T.,
van den Hurk, B., and Yoon, J.-H.: Atlas, in: Climate Change
2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmen-
tal Panel on Climate Change, edited by Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud,
N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., book section Atlas, Cambridge
University Press, Cambridge, United Kingdom and New York,
NY, USA, https://doi.org/10.1017/9781009157896.006, 2021.

Hodson, D. L. R., Robson, J. I., and Sutton, R. T.: An Anatomy of
the Cooling of the North Atlantic Ocean in the 1960s and 1970s,
J. Climate, 27, 8229–8243, https://doi.org/10.1175/JCLI-D-14-
00301.1, 2014.

Earth Syst. Dynam., 14, 685–695, 2023 https://doi.org/10.5194/esd-14-685-2023

https://doi.org/10.5281/zenodo.3734128
https://www.R-project.org/
https://doi.org/10.5065/D6WD3XH5
https://doi.org/10.1029/2019JC015379
https://doi.org/10.1007/s00382-014-2056-1
https://doi.org/10.1038/s41467-021-24015-w
https://doi.org/10.1038/nature10946
https://doi.org/10.1038/s41586-018-0006-5
https://doi.org/10.1038/s41467-020-15285-x
https://doi.org/10.1029/2020GL090778
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1029/2020GL092142
https://doi.org/10.5285/CC1E34B3-3385-662B-E053-6C86ABC03444
https://doi.org/10.5285/CC1E34B3-3385-662B-E053-6C86ABC03444
https://doi.org/10.1175/JCLI-D-17-0635.1
https://doi.org/10.1175/JCLI-D-18-0647.1
https://doi.org/10.1175/JCLI-D-19-0636.1
https://doi.org/10.5194/gmd-9-3685-2016
https://doi.org/10.1017/9781009157896.006
https://doi.org/10.1175/JCLI-D-14-00301.1
https://doi.org/10.1175/JCLI-D-14-00301.1


S. Qasmi: Past and future response of the North Atlantic warming hole to anthropogenic forcing 695

Hu, S. and Fedorov, A. V.: Indian Ocean warming as a driver
of the North Atlantic warming hole, Nat. Commun., 11, 4785,
https://doi.org/10.1038/s41467-020-18522-5, 2020.

Karnauskas, K. B., Zhang, L., and Amaya, D. J.: The At-
mospheric Response to North Atlantic SST Trends,
1870–2019, Geophys. Res. Lett., 48, e2020GL090677,
https://doi.org/10.1029/2020GL090677, 2021.

Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olon-
scheck, D., and Ghosh, R.: Multiple drivers of the North
Atlantic warming hole, Nat. Clim. Change, 10, 667–671,
https://doi.org/10.1038/s41558-020-0819-8, 2020.

Kennedy, J. J., Rayner, N. A., Atkinson, C. P., and Killick,
R. E.: An Ensemble Data Set of Sea Surface Tempera-
ture Change From 1850: The Met Office Hadley Centre
HadSST.4.0.0.0 Data Set, J. Geophys. Res.-Atmos., 124, 7719–
7763, https://doi.org/10.1029/2018JD029867, 2019.

Lee, J., Marotzke, J., Bala, G., Cao, L., and Corti, S.: Chap-
ter 4 - Future Global Climate: Scenario-Based Projections
and Near-Term Information, in: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, Cambridge,
https://doi.org/10.1017/9781009157896.006, 2021.

Li, L., Lozier, M. S., and Li, F.: Century-long cooling trend
in subpolar North Atlantic forced by atmosphere: an al-
ternative explanation, Climate Dynamics, 58, 2249–2267,
https://doi.org/10.1007/s00382-021-06003-4, 2022.

Liu, W., Fedorov, A., and Sévellec, F.: The Mechanisms of
the Atlantic Meridional Overturning Circulation Slowdown In-
duced by Arctic Sea Ice Decline, J. Climate, 32, 977–996,
https://doi.org/10.1175/JCLI-D-18-0231.1, 2019.

Marshall, J., Scott, J. R., Armour, K. C., Campin, J.-M., Kelley,
M., and Romanou, A.: The ocean’s role in the transient response
of climate to abrupt greenhouse gas forcing, Clim. Dynam., 44,
2287–2299, https://doi.org/10.1007/s00382-014-2308-0, 2015.

Menary, M. B. and Wood, R. A.: An anatomy of the projected North
Atlantic warming hole in CMIP5 models, Clim. Dynam., 50,
3063–3080, https://doi.org/10.1007/s00382-017-3793-8, 2018.

Menary, M. B., Robson, J., Allan, R. P., Booth, B. B. B.,
Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones,
C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L., and
Zhang, R.: Aerosol-Forced AMOC Changes in CMIP6 His-
torical Simulations, Geophys. Res. Lett., 47, e2020GL088166,
https://doi.org/10.1029/2020GL088166, 2020.

Moffa-Sánchez, P., Moreno-Chamarro, E., Reynolds, D. J., Or-
tega, P., Cunningham, L., Swingedouw, D., Amrhein, D. E.,
Halfar, J., Jonkers, L., Jungclaus, J. H., Perner, K., Wana-
maker, A., and Yeager, S.: Variability in the Northern North
Atlantic and Arctic Oceans Across the Last Two Millen-
nia: A Review, Paleoceanogr. Paleoclim., 34, 1399–1436,
https://doi.org/10.1029/2018PA003508, 2019.

Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P.,
Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J.,
Jones, P. D., and Simpson, I. R.: An Updated Assessment of
Near-Surface Temperature Change From 1850: The HadCRUT5
Data Set, J. Geophys. Res.-Atmos., 126, e2019JD032361,
https://doi.org/10.1029/2019JD032361, 2021.

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedling-
stein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F.,
Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sander-
son, B. M.: The Scenario Model Intercomparison Project (Sce-
narioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482,
https://doi.org/10.5194/gmd-9-3461-2016, 2016.

Parsons, L. A., Brennan, M. K., Wills, R. C. J., and Proistosescu,
C.: Magnitudes and Spatial Patterns of Interdecadal Temperature
Variability in CMIP6, Geophys. Res. Lett., 47, e2019GL086588,
https://doi.org/10.1029/2019GL086588, 2020.

Qasmi, S.: https://gitlab.com/saidqasmi/KCC_
WH_notebook, Zenodo [code] and [data set],
https://doi.org/10.5281/zenodo.6952546, (last access: 12
June 2023), 2022.

Qasmi, S. and Ribes, A.: https://gitlab.com/saidqasmi/KCC, Zen-
odo [code], https://doi.org/10.5281/zenodo.5233947, 2021.

Qasmi, S. and Ribes, A.: Reducing uncertainty in lo-
cal temperature projections, Sci. Adv., 8, eabo6872,
https://doi.org/10.1126/sciadv.abo6872, 2022.

Qasmi, S., Cassou, C., and Boé, J.: Teleconnection Between At-
lantic Multidecadal Variability and European Temperature: Di-
versity and Evaluation of the Coupled Model Intercomparison
Project Phase 5 Models, Geophys. Res. Lett., 44, 11140–11149,
https://doi.org/10.1002/2017GL074886, 2017.

Qasmi, S., Sanchez-Gomez, E., Ruprich-Robert, Y., Boé, J., and
Cassou, C.: Modulation of the Occurrence of Heatwaves over
the Euro-Mediterranean Region by the Intensity of the At-
lantic Multidecadal Variability, J. Climate, 34, 1099–1114,
https://doi.org/10.1175/JCLI-D-19-0982.1, 2021.

Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robin-
son, A., Rutherford, S., and Schaffernicht, E. J.: Ex-
ceptional twentieth-century slowdown in Atlantic Ocean
overturning circulation, Nat. Clim. Change, 5, 475–480,
https://doi.org/10.1038/nclimate2554, 2015.

Ren, X. and Liu, W.: The Role of a Weakened Atlantic Meridional
Overturning Circulation in Modulating Marine Heatwaves in a
Warming Climate, Geophys. Res. Lett., 48, e2021GL095941,
https://doi.org/10.1029/2021GL095941, 2021.

Ribes, A., Qasmi, S., and Gillett, N. P.: Making climate projections
conditional on historical observations, Sci. Adv., 7, eabc0671,
https://doi.org/10.1126/sciadv.abc0671, 2021.

Ribes, A., Boé, J., Qasmi, S., Dubuisson, B., Douville, H., and
Terray, L.: An updated assessment of past and future warm-
ing over France based on a regional observational constraint,
Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-
13-1397-2022, 2022.

Robson, J., Ortega, P., and Sutton, R.: A reversal of climatic trends
in the North Atlantic since 2005, Nat. Geosci., 9, 513–517,
https://doi.org/10.1038/ngeo2727, 2016.

Sigmond, M., Fyfe, J. C., Saenko, O. A., and Swart, N. C.: On-
going AMOC and related sea-level and temperature changes af-
ter achieving the Paris targets, Nat. Clim. Change, 10, 672–677,
https://doi.org/10.1038/s41558-020-0786-0, 2020.

Zhang, R.: On the persistence and coherence of subpolar sea sur-
face temperature and salinity anomalies associated with the At-
lantic multidecadal variability, Geophys. Res. Lett., 44, 7865–
7875, https://doi.org/10.1002/2017GL074342, 2017.

https://doi.org/10.5194/esd-14-685-2023 Earth Syst. Dynam., 14, 685–695, 2023

https://doi.org/10.1038/s41467-020-18522-5
https://doi.org/10.1029/2020GL090677
https://doi.org/10.1038/s41558-020-0819-8
https://doi.org/10.1029/2018JD029867
https://doi.org/10.1017/9781009157896.006
https://doi.org/10.1007/s00382-021-06003-4
https://doi.org/10.1175/JCLI-D-18-0231.1
https://doi.org/10.1007/s00382-014-2308-0
https://doi.org/10.1007/s00382-017-3793-8
https://doi.org/10.1029/2020GL088166
https://doi.org/10.1029/2018PA003508
https://doi.org/10.1029/2019JD032361
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1029/2019GL086588
https://gitlab.com/saidqasmi/KCC_WH_notebook
https://gitlab.com/saidqasmi/KCC_WH_notebook
https://gitlab.com/saidqasmi/KCC
https://doi.org/10.1126/sciadv.abo6872
https://doi.org/10.1002/2017GL074886
https://doi.org/10.1175/JCLI-D-19-0982.1
https://doi.org/10.1038/nclimate2554
https://doi.org/10.1029/2021GL095941
https://doi.org/10.1126/sciadv.abc0671
https://doi.org/10.5194/esd-13-1397-2022
https://doi.org/10.5194/esd-13-1397-2022
https://doi.org/10.1038/ngeo2727
https://doi.org/10.1038/s41558-020-0786-0
https://doi.org/10.1002/2017GL074342

	Abstract
	Introduction
	Data and methods
	Observations
	Climate models
	Statististical method

	Results and discussion
	Attribution of the observed warming hole
	Constraining projections

	Conclusions
	Appendix A: List of the CMIP6 models
	Appendix B: Structure of the observation operator H
	Appendix C: Modeling of    x 
	Appendix D: Modeling of    y 
	Code and data availability
	Supplement
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

