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Abstract. Over the last 2 decades, tipping points in open systems subject to changing external conditions have
become a topic of a heated scientific debate due to the devastating consequences that they may have on natural
and human systems. Tipping points are generally believed to be associated with a system bifurcation at some
critical level of external conditions. When changing external conditions across a critical level, the system un-
dergoes an abrupt transition to an alternative, and often less desirable, state. The main message of this paper
is that the rate of change in external conditions is arguably of even greater relevance in the human-dominated
Anthropocene but is rarely examined as a potential sole mechanism for tipping points. Thus, we address the
related phenomenon of rate-induced tipping: an instability that occurs when external conditions vary faster, or
sometimes slower, than some critical rate, usually without crossing any critical levels (bifurcations). First, we
explain when to expect rate-induced tipping. Then, we use three illustrative and distinctive examples of differing
complexity to highlight the universal and generic properties of rate-induced tipping in a range of natural and
human systems.

1 Introduction

In this paper, we consider tipping instabilities in nonlin-
ear open systems (Ashwin et al., 2012). By open, we mean
systems that are influenced by changing external conditions
which we refer to as external forcings. In a mathematical dy-
namic model of an open system, such external forcings are
represented by time-varying input parameters.

Large and abrupt changes in the state of an open sys-
tem may occur when the external forcing exceeds some
critical level (Scheffer, 2010; Lenton, 2011; Kuehn, 2011).
The points in time, or in the level of forcing, at which
such changes occur are commonly referred to as bifurcation-
induced tipping points (Ashwin et al., 2012). They have been
identified in many domains, including ecosystems (Schef-
fer et al., 1993, 2001, 2009; Siteur et al., 2014; Dakos
et al., 2019; Pierini and Ghil, 2021) and the human brain
(Rinzel and Ermentrout, 1998; Moehlis, 2008; Screen and

Simmonds, 2010; Mitry et al., 2013; Maturana et al., 2020),
and are of particular concern under anthropogenic climate
change (Lenton et al., 2008; Ashwin and von der Heydt,
2020; Arias et al., 2021; Ritchie et al., 2021; Boers and
Rypdal, 2021; Boulton et al., 2022). Furthermore, it has re-
cently been recognised that critical levels can be exceeded
temporarily without causing tipping (van der Bolt et al.,
2018; Ritchie et al., 2019; Alkhayuon et al., 2019; O’Keeffe
and Wieczorek, 2020). This occurs when the time of ex-
ceedance is short compared to the inherent timescale of the
system (O’Keeffe and Wieczorek, 2020; Ritchie et al., 2021;
Alkhayuon et al., 2023).

However, there is another, less obvious potential conse-
quence of changes in external forcing. When an external
forcing changes faster than some critical rate rather than
necessarily by a large amount, this can lead to rate-induced
tipping points (Stocker and Schmittner, 1997; Luke and
Cox, 2011; Wieczorek et al., 2011; Ashwin et al., 2012;
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Figure 1. Schematic illustration of threshold instability. (a) The stability landscape of the system at an initial level of forcing. The well
represents the base state, the hill top defines the threshold (indicated by the vertical dashed red line), and the (blue) ball indicates the current
state of the system. To the left of the hill top (threshold), the ball rolls into the well, meaning the system converges to the base state. To the
right of the hill top, the ball runs away, indicating tipping to an alternative state. (b) The stability landscape at a new forcing level. Note that
the initial base state is on the other side of the new hill top (threshold). Therefore, if the system is at the initial base state and the forcing
switches sufficiently fast to the new level, the ball will run away, meaning the system will tip to an alternative state.

Ritchie and Sieber, 2016; Siteur et al., 2016; Suchithra et al.,
2020; Arumugam et al., 2020; Pierini and Ghil, 2021; Wiec-
zorek et al., 2023; Longo et al., 2021; Kuehn and Longo,
2022; Kaur and Sharathi Dutta, 2022; Hill et al., 2022;
Arnscheidt and Rothman, 2022). In contrast to bifurcation-
induced tipping, rate-induced tipping occurs due to fast-
enough changes in external forcing and usually does not ex-
ceed any critical levels as a result of external forcing. Such
tipping points are much less widely known and yet are ar-
guably even more relevant to contemporary issues such as
climate change (Lohmann and Ditlevsen, 2021; Clarke et al.,
2021; O’Sullivan et al., 2022), ecosystem collapse (Scheffer
et al., 2008; Vanselow et al., 2019; van der Bolt and van Nes,
2021; Neijnens et al., 2021; Vanselow et al., 2022), and the
resilience of human systems (Witthaut et al., 2021).

This paper combines a review writing style with new re-
sults to make the concept of rate-induced tipping points ac-
cessible to a wide scientific audience. Even though the phe-
nomenon is rarely discussed by scientists and policy makers,
we argue that it is ubiquitous and likely to be prevalent in
many open systems. The rationale is that the current human-
dominated era of Earth history, which has been called the
Anthropocene (Crutzen, 2002; Crutzen and Stoermer, 2021),
is characterised by systems (e.g. climate, ecosystems, in-
frastructures, and economy) that are subject to fast-changing
external conditions, and are thus kept far from the chang-
ing equilibrium as a result of human activity. These circum-
stances of rapidly changing external forcing are precisely
the conditions that can lead to rate-induced tipping. Rate-
induced tipping is therefore especially relevant to the con-
temporary period, even though the phenomenon is not widely
known or understood. By contrast, bifurcation-induced tip-
ping in a system that is forced slowly towards a threshold
and that thus stays close to or tracks the changing equilib-
rium (Ashwin et al., 2012) is much more widely understood

but is less relevant in a rapidly forced system (Ritchie et al.,
2021). We demonstrate this through an analysis of the fol-
lowing three distinct dynamic models of natural and human
systems of differing complexity: a predator–prey ecosystem,
the large-scale ocean circulation, and an electrical power grid
network.

Rate-induced tipping occurs when the system deviates too
much from the changing stable equilibrium and crosses some
threshold. Here, we focus on examples of what Wieczorek
et al. (2023) call a regular threshold. Easily verifiable criteria
for the occurrence of rate-induced tipping, such as threshold
or basin instability, are identified in all of these examples.
Furthermore, we uncover universal features of rate-induced
tipping. These include multiple critical rates of change due to
the interaction of different timescales of the external forcing
with the inherent timescales of the system. Finally, we high-
light important phenomena, such as return tipping, that are
non-obvious and can be easily overlooked. For further read-
ing on different threshold types, see O’Sullivan et al. (2022)
for an example of an elusive quasithreshold and Lohmann
and Ditlevsen (2021) for an example of what appears to be a
fractal-like irregular threshold.

2 When to expect rate-induced tipping

A system is known to be susceptible to rate-induced tipping
if the state the system currently resides in is threshold unsta-
ble (O’Keeffe and Wieczorek, 2020; Wieczorek et al., 2023).
Suppose that, for a given initial level of external forcing, the
system resides in a stable equilibrium (although, in general,
it can be a stable limit cycle or an even more complicated at-
tractor). This equilibrium will be referred to as the base state.
One way of depicting threshold instability is with a moving-
stability landscape, as illustrated by Fig. 1, where the base
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state is represented by the blue ball in the well in Fig. 1a1.
The hill top defines the position of the threshold (indicated
by the vertical dashed red line). If the ball is to the left of the
hill top (threshold), it will roll into the well, and the system
will converge to the base state, whereas if the ball is to the
right of the hill top, it will roll in the opposite direction, and
the system will tip to some alternative state. The alternative
state may be a different stable state for a multi-stable sys-
tem (Scheffer et al., 2008; O’Keeffe and Wieczorek, 2020;
Halekotte and Feudel, 2020; Lohmann et al., 2021; Slyman
and Jones, 2023) or a transient state for an excitable (possi-
bly mono-stable) system (Wieczorek et al., 2011; Vanselow
et al., 2019; O’Sullivan et al., 2022).

In contrast to bifurcation-induced tipping, the change in
the forcing usually does not cause any qualitative change in
the stability landscape but instead shifts its position. If the
threshold moves past the initial position of the base state for
a new forcing level, as shown in Fig. 1b, the base state is
said to be threshold unstable in terms of varying the forcing
(Wieczorek et al., 2023). In the case when the threshold is a
basin boundary of two attractors in a multi-stable system, the
system is said to be basin unstable (O’Keeffe and Wieczorek,
2020). The threshold or basin instability condition gives the
forcing shift magnitude that enables rate-induced tipping. In
general, one can prove that threshold or basin instability is
sufficient for the occurrence of rate-induced tipping: there
is an external forcing that gives rate-induced tipping if the
system is threshold or basin unstable (Kiers and Jones, 2020;
Wieczorek et al., 2023). In many examples, including those
considered here, we find that threshold instability appears to
be both necessary and sufficient for the occurrence of rate-
induced tipping: there is an external forcing that gives rate-
induced tipping if and only if the system is threshold or basin
unstable.

The rigorous result can be understood intuitively as fol-
lows. Consider a change in the level of the forcing that gives
threshold or basin instability as depicted in Fig. 1. If the forc-
ing changes from the initial level to the new level at a suffi-
ciently slow rate, the ball remains in the well, and the system
is said to track the moving base state. If the forcing switches
at a sufficiently fast rate, the initial ball finds itself on the
other side of the hill top (threshold) and tips to an alternative
state. Thus, there will be at least one intermediate critical
rate of change at which there is a transition between tracking
and tipping. Once it is known that a system is threshold or
basin unstable and thus susceptible to rate-induced tipping,
the goal is to find the critical rate, or even multiple critical
rates, for a given profile (shape) of external forcing. In the

1We note that this example is for illustrative purposes. In gen-
eral, the base state can be non-stationary, the system may reside near
rather than in the base state, and not all dynamical systems can be
characterised by a stability landscape; see for example Zhou et al.
(2012).

next section, we give a more precise description of critical
rates.

3 Defining critical rates

Let us denote the time-varying external forcing with λ. The
level of the forcing at a time t is simply the value of λ at this
time t . However, defining critical rates of change in external
forcing is more subtle. On the one hand, different external
forcings will have different physical units and be different,
often nonlinear, functions of time. On the other hand, we
would like to quantify critical rates of change in a uniform
way that is independent of the physical units and the temporal
profile of the forcing. Therefore, we introduce a rate parame-
ter r in units per inverse second (or day, year, etc.); we write
the external forcing as λ(rt), where u= rt is dimensionless;
and we work with r as the main input parameter. Most im-
portantly, we define a critical rate as a special value of r at
which rate-induced tipping occurs, while the shift magnitude
of λ(rt) remains fixed.

To avoid confusion between the rate parameter r and the
rate of change of external forcing dλ/dt , we note that

dλ
dt
=

dλ
du

du
dt
= r

dλ(u)
du

has units of λ per second, depends on r and on the profile
of λ(u), and may itself be a function of time. In other words,
the rate parameter r quantifies the rate of change of exter-
nal forcing with a given profile. Furthermore, if the forc-
ing λ itself is a physical rate of some sort (e.g. freshwater
flux into the North Atlantic, measured in Sverdrups (millions
of m3 s−1) or population growth rate, measured in individ-
uals per unit area per year, as per the examples in Sect. 5),
λ(rt) will be the level of this rate at time t , referred to as the
level of the forcing, and r will quantify the rate of change of
this rate, referred to as the rate of change of the forcing.

4 Rate-induced tipping in a simple model

In natural and human systems, tipping points are often asso-
ciated with crossing a critical level of the forcing, defined by
a dangerous (e.g. fold) bifurcation for the frozen system with
fixed-in-time forcing, causing a catastrophic, abrupt, and ir-
reversible change to the state of the system (Thompson et al.,
1994; Thompson and Sieber, 2011). This type of tipping is
commonly referred to as bifurcation-induced tipping (or B-
tipping) and is illustrated by Fig. 2a and d (Ashwin et al.,
2012). Suppose the system starts from the base state on the
upper branch of stable equilibria for the frozen system, as in-
dicated by the grey dot in Fig. 2d. Initially, as external forcing
changes slowly (Fig. 2a), the state of the system (the red tra-
jectory in Fig. 2d) tracks the moving base state (the branch of
stable equilibria). However, once external forcing reaches the
fold that defines the critical level of the forcing, the base state
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Figure 2. Illustration of bifurcation-induced, rate-induced, and return tipping. (a–c) Time profiles of ramp external forcing and (d–f) cor-
responding system response to these forcing profiles. (a, d) Bifurcation-induced tipping – a slow change in external forcing past a critical
level (fold bifurcation) causes tipping. The tipping occurs for any rate of change of the forcing past the fold. (b, e) Rate-induced tipping – the
system fails to adapt to a too-fast change in external forcing (red) even though the forcing never crosses the critical level. For a slow-enough
change of the forcing, the system tracks the moving base state and avoids tipping (green). (c, f) Return tipping – avoiding bifurcation-induced
tipping by reversing the trend in the external forcing too quickly can lead to rate-induced tipping on a decrease of the forcing. Branches
of stable equilibria are denoted by solid black curves, and branches of unstable equilibria are denoted by dashed black curves. Stable and
unstable branches meet at a fold bifurcation (black dot). The system starting from the grey dot is basin unstable for forcing shift magnitudes
that end in the grey region of basin instability.

disappears (the branch of stable equilibria terminates), and
the system subsequently undergoes a catastrophic transition
to the alternative stable state. Crucially, the tipping occurs for
any rate of change of the forcing past the fold. The alterna-
tive state is often a less desired state, such as an extinction
state in an ecosystem (O’Keeffe and Wieczorek, 2020), col-
lapse of an ocean circulation (Alkhayuon et al., 2019), or a
blackout on a power grid network (Budd and Wilson, 2002).
However, it could also be a more desired state, such as a well-
being state for developing countries (Mirza et al., 2019).

Figure 2 introduces a subtle but crucial difference to previ-
ous examples that have considered B-tipping (Lenton et al.,
2008; Scheffer et al., 2009; Ritchie et al., 2021), and that is to
apply a tilt2 to the bifurcation structure (O’Keeffe and Wiec-
zorek, 2020, Sect. 7); see the methods section in Appendix
A for further details. This important distinction introduces
the possibility of a different form of tipping known as rate-
induced tipping (or R-tipping). Unlike B-tipping in Fig. 2a
and d, where crossing a critical level of the external forcing

2Many conceptual models of bifurcation-induced tipping use the
one-dimensional normal form of a fold (saddle-node) bifurcation
to illustrate and study the phenomenon. While all systems that ex-
hibit a fold bifurcation are topologically equivalent to its normal
form sufficiently close to the bifurcation point, the behaviour of the
branches of equilibria will typically be different away from the bi-
furcation point. Our tilted branches incorporate simple deviations
from the normal-form behaviour expected in higher-dimensional
systems away from the bifurcation point.

causes a catastrophic transition, R-tipping occurs when the
system fails to adapt to a too-rapidly-changing external forc-
ing, usually without crossing any critical levels. Figure 2b
and e consider two scenarios where the change in the level
of external forcing is the same but occurs at different rates.
Most importantly, the forcing stops in the (grey) region of
basin instability and never crosses the critical level defined
by the fold bifurcation point. For a slow rate of change in
external forcing (green trajectory), the system is able to con-
tinually adapt to the moving base state and tracks the stable
branch of equilibria without tipping. However, for a slightly
faster rate of change in external forcing (red trajectory), the
system is unable to adapt to the moving base state and under-
goes R-tipping to the alternative stable state.

If a system is thought to be approaching a B-tipping event,
then a natural option would be to reverse the external forc-
ing to avoid crossing a largely unknown critical level. How-
ever, fast reversals in the forcing could introduce a new prob-
lem that has been largely overlooked, namely return tipping
(O’Keeffe and Wieczorek, 2020). Figure 2c and f illustrate
such a scenario for a fold bifurcation structure tilted down.
Suppose that external forcing has caused a system to ap-
proach close to the fold bifurcation. Reversing the forcing
slowly will allow the system to closely track the moving base
state (the branch of stable equilibria) as shown by the green
trajectory. However, a too-fast reversal may give rise to R-
tipping on return if the system is basin unstable on reversal
of the forcing. Then, the end result is opposite to what was
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intended. Although B-tipping is avoided, the system, rather
surprisingly, R-tips to the alternative stable state (red tra-
jectory). Therefore, in general, reversing external forcing as
quickly as possible does not guarantee avoiding tipping.

Figure 3 provides a more in-depth analysis of the tilted
saddle-node model considered in Fig. 2d and e. Let us as-
sume initially that the external forcing has the profile of a
nonlinear shift ramp; see the methods section in Appendix
A for details. Three sample time series of shift forcing pro-
files between the same levels but at different rates are given
by a concatenation of the left half of a colour curve and the
dashed black curve in Fig. 3a; these are similar to external
forcings used in Fig. 2a and b. The corresponding response
of the system is depicted in Fig. 3b. For the slowest change
in external forcing (the dashed blue trajectory), the system is
able to adapt to and track the changing base state. However,
if the rate of change in external forcing becomes too fast (the
dashed orange and purple trajectories), then the system fails
to adapt to the changing base state and R-tips to the alterna-
tive state.

The critical rate, which determines the onset of R-tipping,
will depend on how much the external forcing is changed by.
The dashed black curve in Fig. 3c shows the critical boundary
for the ramp external forcing, separating regions of tipping
(coloured) from no tipping (white), in the plane of the rate
parameter against the change in the forcing level, referred
to as the peak change. B-tipping occurs if the external forc-
ing crosses the fold bifurcation without returning. Indeed, for
very small rate parameters (slow rates), the critical boundary
asymptotes to the distance required to reach the fold (indi-
cated by the thin black line). However, for larger rate pa-
rameters (faster rates), tipping can occur before the fold is
transgressed because of R-tipping. The three coloured dots
correspond to the external forcing parameters used in Fig. 3a
and b. Notice that the blue dot is in the white region, sig-
nifying tracking, whereas the other two dots are within the
coloured regions, denoting tipping for the ramp forcing. For
very large rate parameters, the critical boundary asymptotes
to the basin instability boundary – the smallest change in the
level of external forcing that gives basin instability, as de-
scribed in Fig. 1. In summary, the ramp forcing with a peak
change past the basin instability boundary and below the fold
level gives rise to R-tipping with a single critical rate. This
critical rate decreases with the peak change.

The dynamics become more interesting when the exter-
nal forcing is reversed back to its initial level after reach-
ing its peak level. To illustrate how, we will now consider
external forcing that has a profile of a symmetric impulse,
referred to as a return forcing profile3; see the methods sec-
tion in Appendix A for further details. Three sample time
series of return forcing profiles with the same peak change

3As a generalisation of a symmetric impulse, one could consider
a pulse where the increase towards the peak level and the decrease
back to the initial level occur at different rates.

but different rates are given by the colour curves in Fig. 3a.
The critical boundary for the return external forcing is given
by the solid black curve in Fig. 3c, which separates regions
of tracking (green and white) from tipping (red) and is very
different from the dashed curve for the ramp external forc-
ing. To be more specific, the green (points of return) region
corresponds to scenarios where tipping is prevented by re-
versing the external forcing. The red (points of no return) re-
gion corresponds to scenarios where tipping still occurs de-
spite reversing the external forcing. Previously, it has been
shown for B-tipping that safely overshooting a critical level
by a given distance can be achieved, provided the reversal
in external forcing is faster than some critical rate. However,
the added possibility of R-tipping owing to the tilted bifur-
cation structure, combined with the symmetric return forcing
(see the methods in Appendix A section for further details),
means that multiple critical rates can arise for a fixed peak
change in the return forcing profiles; this is illustrated by the
S-shaped solid black curve in Fig. 3c. In a symmetric return
forcing, multiple critical rates emerge because there is com-
petition between the sufficiently slow approach towards the
fold required to avoid R-tipping and the sufficiently fast re-
versal required for safe overshoots of the fold.

In the green region to the left of the vertical fold line, re-
versing the forcing prevents the system from an impending
R-tipping that would occur if the forcing were not to be re-
versed. An example is given by the solid orange curve in
Fig. 3b. Interestingly, there is also a small red region to the
left of the vertical fold line. This region gives rise to two
critical rates for a fixed peak change, which bound a (red)
sub-interval of the rate parameter where R-tipping is not pre-
vented by return forcing. An example is given by the solid
purple curve in Fig. 3b.

For small overshoots of the fold, even greater complexity
is possible with the potential of three critical rates and two
(red) tipping sub-intervals for a fixed peak change of return
forcing. For very small rate parameters (the red region to the
right of the lower part of the vertical fold line), B-tipping oc-
curs and cannot be prevented by reversing the forcing. How-
ever, for the same peak change and larger rate parameters
(the slightly wider green region to the right of the lower part
of the vertical fold line), it becomes possible to prevent B-
tipping and avoid R-tipping upon return. Keeping the peak
change fixed and increasing the rate parameter even more
(the red region to the right of the middle part of the vertical
fold line) prevents B-tipping but triggers R-tipping, meaning
that the system tips again despite reversing the forcing. Then,
for the same peak change and very large rate parameters (the
green region to the right of the upper part of the vertical fold
line), both B-tipping and R-tipping upon return can be pre-
vented again but for a different reason – the system processes
are too slow to react to a fast forcing impulse.
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Figure 3. Tipping for a nonlinear shift ramp and return profiles in the tilted-fold example. (a) Time profiles of ramp and return (impulse)
external forcings and (b) system response to these forcing profiles. Forcing profiles vary between the same minimum and maximum levels
but at different rates: slow (blue), medium (orange), and fast (purple). Ramp forcing profiles in (a) are given by a concatenation of the left
half of a colour curve and the dashed black curve. The corresponding system responses in (b) are given by a concatenation of the left half
of the solid curve and the dashed curve of the same colour. Return forcing profiles in (a) and the corresponding system responses in (b) are
given by the solid colour curves. (c) Tipping diagram for ramp and return profiles; note the logarithmic scale for the rate parameter. Critical
boundaries separate regions of tracking from tipping for the ramp forcing profile (black dashed curve) and for the return forcing profile (solid
black curve). White region – tracking for ramp and return profiles; green region – tipping for ramp profile, tracking for return profile; red
region – tipping for ramp and return profiles.

5 Rate-induced tipping in ecology and climate

We now consider an example from ecology, namely that of
a predator–prey system, which models the time evolution
of plant and herbivore biomass densities (Scheffer et al.,
2008). The model has been proposed to conceptually study
tipping points in bistable ecosystems with a non-monotone
functional response. Examples of such systems can be the
dominance shift between submerged macrophytes and phy-
toplankton (Scheffer et al., 1993) and between coral reefs
and macro-algae (Hughes, 1994) or the transition of kelp
forests into sea urchin barrens that are dominated by crus-
tose coralline algae (Steneck et al., 2002).

In this example, changes in environmental conditions af-
fect the plant growth rate and herbivore mortality rate simul-
taneously and play the role of external forcing. Such a sce-
nario can be considered to be possible under climate change,
where plants benefit from the fertilisation effect due to in-
creasing levels of CO2 (Reich et al., 2014) but where the re-
sulting increased temperatures are detrimental to herbivores
(Lacetera, 2019). The plant growth rate and herbivore mor-
tality rate vary within a range where the ecosystem has two
stable equilibria. The stable coexistence equilibrium is the
base state. The stable plant-only equilibrium with no herbi-
vores is the alternative stable state.

We consider three sample time profiles of a nonlinear
shift ramp external forcing, shown in Fig. 4a, with the same
change in the level of environmental conditions but at dif-
ferent rates. The resulting impacts on the herbivore biomass

are shown in Fig. 4b. For the slowest (green) change in envi-
ronmental conditions, the ecosystem tracks the moving base
state. Herbivores increase slightly, which represents the con-
tinued presence of coexisting plants and herbivores. Contrast
this to the fastest (red) change in environmental conditions,
which causes R-tipping to the alternative stable state. In this
scenario, the herbivore population declines to zero, and the
ecosystem becomes entirely dominated by plants.

Figure 4c illustrates the underlying dynamics in the phase
plane of the plant and herbivore biomass. For the initial level
of environmental conditions, the base state is indicated by the
grey dot. The shift in the level of environmental conditions
changes the position of the base state, and this change is in-
dicated by the dotted black line. The black dot at the other
end of the dotted line indicates the base state for the final
level of environmental conditions. Further ramifications of
the shift in environmental conditions include changes in the
basin of attraction of the base state. The basin of attraction
shifts (from the dotted curve to the solid grey curve) such
that the initial base state (the grey dot) is not contained in the
basin of attraction of the final base state (the region above the
solid grey curve). A consequence of basin instability is that
the behaviour of solutions starting near the initial base state
depends on the rate of change of environmental conditions.
For slow rates, the system is able to continually adapt and re-
main within the changing basin of attraction of the base state
so that solutions converge to the final base state (the green
trajectory). However, for a sufficiently fast rate, the ecosys-
tem fails to track the fast moving base state and R-tips to the
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Figure 4. Rate-induced tipping in the plant–herbivore (a–c) and AMOC (d–f) models. Time series of the external ramp forcing profiles –
(a) dimensionless environmental conditions and (d) freshwater hosing; see the methods section in Appendix A for further details. Time series
of the system responses to the changing (b) environmental conditions and (e) freshwater hosing for three different rates of change (different
colours). The system responses to external ramp forcing profiles in the phase plane of (c) the plant and herbivore biomass and (f) the North
and Tropical Atlantic salinities. See supplementary videos “PH_Rtipping_full.mp4” and “AMOC_Rtipping_full.mp4” (Ritchie et al., 2023)
for animated versions of (a–c) and (d–f), respectively.

final alternative stable state indicated by the second black dot
(the red trajectory). This rate-sensitive behaviour is expected
due to basin instability. What may be surprising is that, at a
critical rate of change in environmental conditions, the corre-
sponding solution converges to an unstable edge state (black
circle) (Wieczorek et al., 2023) on the basin boundary of the
final base state (the blue trajectory).

Next, we consider an example from climate, specifically
the possible collapse of the Atlantic meridional overturn-
ing circulation (AMOC) under global warming. The AMOC
forms part of the global thermohaline circulation, which is
a large-scale ocean circulation current driven by temperature
and salinity gradients. The AMOC contributes to the rela-
tively mild climate in western Europe by transporting heat
from the tropics to the North Atlantic. Once the warm salty
waters reach the North Atlantic, they cool down and become
denser. The higher density of these waters causes sinking
(or overturning), followed by a return to the tropics along
the bottom of the ocean. However, the AMOC can be easily
disturbed by contemporary climate change. The amount of
freshwater added to the North Atlantic (referred to as fresh-
water hosing) may increase under climate change, for exam-

ple due to the melting of the Greenland Ice Sheet, changes
in precipitation patterns, or both. Specifically, Stocker and
Schmittner (1997) and Lohmann and Ditlevsen (2021) show
in coupled climate models that the AMOC can collapse un-
der sufficiently fast rates of change in either CO2 emissions
or freshwater hosing. Additionally, R-tipping of the AMOC
has been observed in a global oceanic box model (Alkhayuon
et al., 2019).

Here, we work with the global oceanic box model for the
AMOC (Wood et al., 2019), in which changing freshwater
hosing plays the role of external forcing. The forcing varies
within a range where the AMOC model has two stable equi-
libria. The stable AMOC-On equilibrium is the base state.
The stable AMOC-Off equilibrium is the alternative stable
state.

Figure 4d shows three sample time profiles of ramp forc-
ing that increase the freshwater hosing from zero to the same
non-zero level but each at a different rate. The response of
the AMOC to these freshwater-forcing scenarios is shown in
Fig. 4e. For the slowest (green) change in freshwater hos-
ing, there is tracking of the moving base state. The AMOC
strength suffers a slight drop but ultimately remains in the
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Figure 5. Tipping diagrams for (a) the plant–herbivore and (b) AMOC models. Critical boundaries separate regions of tracking from tipping
for the ramp forcing profile (dashed black curve) and for the return forcing profile (solid black curve). White region – tracking for ramp and
return forcing profiles; green region – tipping for ramp forcing profile, tracking for return forcing profile; red region – tipping for ramp and
return forcing profiles.

AMOC-On state. However, for the fast (red) change in fresh-
water hosing, there is R-tipping to the alternative stable state.
The AMOC strength declines to a point of complete collapse.

The phase portrait in the plane of the salinities in the North
and Tropical Atlantic boxes in Fig. 4f illustrates the underly-
ing dynamics. The grey dot shows the base state for the initial
level of freshwater hosing. Increasing the freshwater hosing
shifts the base state as indicated by the dotted black line. The
black dot at the other end of the dotted line indicates the base
state at the final level of freshwater hosing. Notice that the
basin of attraction of the final base state (the region enclosed
by the blue periodic orbit) does not contain the initial base
state (the grey dot). Therefore, the initial base state is basin
unstable, and R-tipping from the base state to the alterna-
tive stable state (lower black dot) will occur for sufficiently
fast shifts in the level of freshwater hosing. For slow rates of
increase in freshwater hosing, the system continually adapts
and remains within the changing basin of attraction of the
base state so that solutions converge to the final base state
(the green trajectory). On the other hand, for sufficiently fast
rates of increase in freshwater hosing, the system is unable to
adapt and falls outside the changing basin of attraction of the
base state, causing solutions to converge to the final alterna-
tive state (the red trajectory). At the critical rate of increase in
freshwater hosing, surprising behaviour is again observed as
the corresponding solution converges to a repelling periodic
orbit that defines the basin boundary of the final base state
(the blue trajectory).

To validate our choice of the simple tilted saddle-node
model in Sect. 4, we plot in Fig. 5 the tipping diagrams for
the plant–herbivore and AMOC models, showing regions of
tracking (white), points of return (green), and points of no
return (red). The tipping diagrams for the plant–herbivore

model in Fig. 5a and the AMOC model in Fig. 5b are very
similar to the tipping diagram for the simple model in Fig. 3b,
although there are some differences. In both examples, there
is a region of basin instability that gives rise to R-tipping for
shift forcing profiles with a peak change that does not cross
any critical levels. This means that the simple model with a
tilted bifurcation structure indeed captures non-obvious tip-
ping phenomena found in higher-dimensional systems. In
Fig. 5a, the (red) region of points of no return extends to the
left of the critical level (the vertical black fold line), but there
are only up to two critical rates for the return forcing profile
with a fixed peak change, and the (green) region of points of
return vanishes for small rate parameters. In Fig. 5b, there
are up to three critical rates for the return forcing profile with
a fixed peak change, but the (red) region of points of no re-
turn does not extend to the left of the critical level (the ver-
tical black Hopf line). Additionally the (black) boundary has
small smooth wiggles that appear as non-smooth corners. A
similar wiggling effect near a Hopf bifurcation has been ob-
served in O’Keeffe and Wieczorek (2020).

6 Rate-induced tipping in power grid networks

R-tipping instabilities are not confined to natural systems but
can occur in any system, including human systems. One ex-
ample is the energy sector and power grid networks (Su-
chithra et al., 2020). Crucially, electricity needs to be used
as soon as it is produced, since it cannot be stored easily
(Mokrian and Stephen, 2006). Therefore, providing a near-
constant voltage of electricity to millions of homes while
power demand varies seasonally and daily and may spike
during major events is a technological challenge (Mahmud
and Zahedi, 2016). Some noticeable examples of power
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Figure 6. Tipping for ramp and return forcing profiles in the power grid model. (a) Time profiles of ramp and return (impulse) power
demand and (b) the resulting voltage response for these power demand (forcing) profiles. Power demand profiles vary between the same
minimum and maximum levels but at different rates: slow (blue), medium (orange), and fast (purple). Ramp forcing profiles are given by a
concatenation of the left half of a colour curve and the dashed black curve. (b) The corresponding system responses given by a concatenation
of the left half of the solid curve and the dashed curve of the same colour. Return forcing profiles in (a) and the corresponding system
responses in (b) are given by the solid colour curves. (c) Tipping diagram of ramp and return forcing profiles. Critical boundaries separate
regions of tracking from tipping (blackout) for both the ramp profile (dashed black curve) and the return profile (solid black curve). For return
forcing profiles, reversible tipping is also possible through a phase slip. White region – tracking for ramp and return profiles; green region
– irreversible tipping to blackout for ramp profiles, tracking for return profiles; light-red region – irreversible tipping to blackout for ramp
profiles, reversible tipping to phase slips for return profiles; dark-red region – irreversible tipping to blackout for ramp and return profiles.

blackouts or near misses are the northeastern USA blackout
in 2003, caused by a series of faults in local control systems
(Hu et al., 2016), and the near-miss blackout in England fol-
lowing the conclusion of the Euro 1990 semi-final (Swarup,
2007).

The latter example in particular was arguably the result of
R-tipping effects. The power demand on the network, fol-
lowing the conclusion of the football match, was expected
to be high. Hence, the national grid took measures to en-
sure that the network would be able to cope with the high
power demand. However, the national grid failed to envis-
age the match going to extra time and penalties. Thus, the
rapid increase in power demand, following the eventual con-
clusion of the match, gave controllers insufficient time to re-
act. Therefore, in this case, the limiting factor was not the
peak in demand but instead the rate at which the demand on
the network rose.

Here, we use a conceptual model of a power grid network
(Dobson et al., 1988; Dobson and Chiang, 1989; Budd and
Wilson, 2002), where changing power demand plays the role
of external forcing. The situation with stable states in this
model is more complicated than in the previous examples.
The power demand changes within a range where there are
infinitely many stable equilibria with the same fixed voltage
magnitude and a 2π difference in the phase angle. Since each
of these stable equilibria has the same voltage magnitude,
they can be thought of as a single base state of the system.
Furthermore, there are two alternative states. An alternative

transient state is a temporary drop in the voltage magnitude
accompanied by a 2π shift in the phase angle, caused by the
coupling within the system. This state corresponds to a tran-
sition between two neighbouring stable equilibria within the
base state. An alternative stable state is at zero voltage mag-
nitude and corresponds to an electrical blackout4.

We now demonstrate that a rapid increase in the level of
power demand can lead to R-tipping in the form of different
disruptions in power supply. First, we note that, for slow-
enough increases in the level of power demand, the power
grid network always tracks the moving base state (not shown
here). Then, in Fig. 6, we show the response of the power
grid network to ramp and return forcing profiles with higher
rates of change.

We start with three ramp shifts that vary between the same
levels of power demand without crossing any critical levels
but at different rates. These are given by a concatenation of
the left half of a colour curve and the dashed black curve in
Fig. 6a. Owing to the higher rates of change, all three ramp
shifts cause R-tipping to the alternative stable state, resulting
in blackout; see the dashed curves in Fig. 6b. However, re-
versing the power demand (see solid colour pulses in Fig. 6a)
can avoid blackout and restore the power grid network to the
base state if the reversal is fast enough (see the corresponding
solid colour responses in Fig. 6b). The slowest (blue) reversal
is too slow to avoid irreversible R-tipping to blackout. The

4In the model, the voltage drops to negative infinity, but we re-
strict it to physically relevant non-negative voltage magnitudes.
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medium-rate (orange) reversal avoids blackout but involves
reversible R-tipping to the alternative transient state – a tem-
porary voltage drop followed by a long recovery towards the
base state. The fastest (purple) reversal avoids both types of
R-tipping and does not cause any noticeable disruptions to
power supply.

The tipping diagram for ramp and return forcing profiles in
Fig. 6c has, in addition to multiple critical rates already ob-
served in the previous examples, an important new feature.
Owing to the existence of two alternative states, there are
two different red regions corresponding to different types of
R-tipping for a return forcing profile: irreversible R-tipping
to blackout (dark-red region), where the voltage magnitude
drops to zero permanently, and reversible R-tipping (light-
red region) involving a temporary drop in the voltage mag-
nitude accompanied by a 2π phase slip. The three scenarios
illustrated in Fig. 6a and b correspond to the three coloured
dots in the tipping diagram in Fig. 6c. Note that all three dots
are located past the basin instability boundary and below the
critical level of power demand (the vertical black fold line),
meaning that these transitions are purely rate induced.

7 Conclusions

We have shown that many natural and human systems can
experience rate-induced tipping (R-tipping). Such instabili-
ties usually occur for sufficiently fast increases in external
forcing despite never crossing any critical levels of external
forcing. In other words, systems are able to continually adapt
to a moving base state and therefore avoid tipping when ex-
ternal forcing changes sufficiently slowly but fail to adapt to
or track a moving base state when external forcing changes
faster than some critical rate. Reversing the external forcing
can prevent a system from suffering R-tipping, but the rates
required for this add an additional layer of complexity in the
presence of bifurcation-induced tipping (B-tipping). Previ-
ously, it has been shown that safe overshoots of critical lev-
els for B-tipping require fast rates of change (Ritchie et al.,
2021). However, faster rates of change make a system more
susceptible to R-tipping. To make the concept of R-tipping
accessible to a wide scientific audience, we

– described an easily verifiable criterion of threshold or
basin instability for R-tipping to occur

– demonstrated basin instability and ensuing R-tipping in
conceptual models of natural and human systems, in-
cluding irreversible and reversible R-tipping

– highlighted interesting phenomena, such as multiple
critical rates and return tipping, that can arise from
an interplay between R-tipping and B-tipping for non-
monotone forcing profiles.

The dynamic models used in this study for representing
a predator–prey ecosystem, the Atlantic overturning circula-

tion, and an electrical power grid network are relatively sim-
ple. Since our forcing profiles are very idealised by design,
we focus on the qualitative behaviour that can arise for dif-
ferent rates of forcing rather than on quantitative predictions.
For quantitative predictions, further research on R-tipping
is required in more-realistic higher-complexity models, such
as state-of-the-art global circulation models, and with more-
realistic forcing profiles. The base state in such models may
not necessarily be a steady state (an equilibrium) but, for
example, could take the form of a periodic orbit or even a
chaotic state. This could lead to more complex tipping be-
haviour, such as phase tipping (P-tipping) (Alkhayuon and
Ashwin, 2018; Kaszás et al., 2019; Alkhayuon et al., 2021;
Ashwin and Newman, 2021; Alkhayuon et al., 2023).

R-tipping is likely to be prevalent in many systems given
contemporary rates of change such as unprecedented anthro-
pogenic climate change. This paper highlights the impor-
tance of considering how fast external forcing is changing
as opposed to solely focusing on levels of change. Conse-
quently, the actions taken to control the rate of change in
forcing are equally as important as the actions taken to con-
trol the level at which forcing is halted.

Appendix A: Methods

A1 Forcing profiles

In our analysis, we consider two types of dimensionless non-
linear external forcing profiles, denoted a(rt). The first is a
ramp forcing profile that starts close to 0 and subsequently
increases continuously until reaching a peak level of 1 at
time T . This forcing profile subsequently remains at 1.

a(rt)=

{
sech(r(t − T )), 0≤ t ≤ T ,

1, t > T .
(A1)

For R-tipping scenarios with a fixed peak change, the rate
of change in the forcing, quantified by the rate parameter r ,
determines if tipping occurs.

The second forcing profile we consider is a return (im-
pulse) forcing, primarily used to examine the possibility of
avoiding tipping. Equation (A1) is modified by removing the
piecewise element of the forcing for t > T , such that the forc-
ing returns to its initial level (at a mirrored rate of the ap-
proach) after reaching the peak level of 1 at time T :

a(rt)= sech(r(t − T )). (A2)

One example of a return forcing profile, given by Eq. (A2),
is an idealised scenario to reverse the impact of anthro-
pogenic climate change back to initial levels, i.e. via the de-
velopment of technologies to remove CO2 from the atmo-
sphere (Huntingford et al., 2017).
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A2 Conceptual model

We use a conceptual model to illustrate some of the univer-
sal features associated with R-tipping alone and with an in-
terplay between R-tipping and B-tipping. Using a modified
(tilted) version of the normal form for a saddle-node bifur-
cation, a state variable x is modelled by the following single
ordinary differential equation:

dx
dt
=−x

[
(x−A− sλ(rt))2

+ λ(rt)
]
, (A3)

where s is a tilt parameter, A provides the distance between
the fold point and the alternative state, and the external forc-
ing is given by

λ(rt)= λ−+1λa(rt),

where a(rt) takes the form of a ramp or a return profile de-
fined above. Figure 2a and d are obtained using the parame-
ter values T = 500, s = 4,A= 3.2, λ− =−0.5,1λ = 0.505,
and r = 0.05 and the initial condition at the location of the
base state for λ= λ−. Figure 2b and e are obtained using
the parameter values T = 500, s = 4, A= 3.2, λ− =−0.5,
1λ = 0.4, r = 1 (green trajectory), and r = 3 (red trajectory)
and the initial condition at the location of the base state for
λ= λ−. Figure 2c and f are obtained using the parameter
values T = 500, s =−4, A= 1.5 λ− =−0.1, 1λ =−0.4,
r = 1 (green trajectory), and r = 3 (red trajectory) and the
initial condition at the location of the base state for λ= λ−.
Figure 3 was obtained using a value of T where a(0) is
no larger than 10−4; other parameter values, namely s = 4,
A= 3.2, λ− =−0.5, r = 0.5 (blue trajectory), r = 0.9 (or-
ange trajectory), and r = 1.7 (purple trajectory); and the ini-
tial condition at the location of the base state for λ= λ−.

A3 Plant–herbivore model

The time evolution of plant P and herbivoreH biomass den-
sities [gm−2] can be modelled as the following two cou-
pled ordinary differential equations (Scheffer et al., 2008;
O’Keeffe and Wieczorek, 2020):

dP
dt
= ρ(rt)P −CP 2

−Hg(P ), (A4)

dH
dt
=H (Ee−bP g(P )−m(rt)), (A5)

with a non-monotone functional response,

g(P )= cmax
P 2

P 2+ a2 e
−bcP . (A6)

Following the approach of O’Keeffe and Wieczorek
(2020), we fix six of the eight parameters (see Table 2.1,
O’Keeffe and Wieczorek, 2020) and allow the plant growth
rate ρ(rt) [1 d−1] and herbivore mortality rate m(rt) [1 d−1]

to vary over time, subject to environmental conditions. In this
system, the external forcing is given by

λ(rt)=
(
ρ(rt)
m(rt)

)
=

(
ρ−+1ρa(rt)
m−+1ma(rt)

)
, (A7)

where a(rt) takes the form of a ramp or a return profile, and
ρ(rt) and m(rt) are varied proportionally to each other ac-
cording to

m(rt)= g(ρ(rt)− ρ−)+m−, (A8)

where g = 1/30. The forcing profile of the environmental
conditions e(rt), corresponding to a normalised shift in ρ
and m, is given by

e(rt)=1ea(rt). (A9)

The peak change in environmental conditions, used in
Fig. 5a, is given by

1e =
1ρ

1ρ,Fold
=

1m

1m,Fold
, (A10)

where 1ρ,Fold = 0.1966, and 1m,Fold = 0.00655.
Figure 4a–c are obtained using the parameter values T =

200, ρ− = 0.5, m− = 0.125, 1ρ = 0.1, 1m = 0.0033 (1e =
0.51), r = 0.03 (green trajectory), r ≈ 0.0453 (blue trajec-
tory), and r = 0.1 (red trajectory) and the initial condition at
the location of the base state for ρ = ρ− and m=m−.

Figure 5a is obtained using a value of T where a(0) is no
larger than 10−5 and the initial condition at the location of
the base state for ρ = ρ− and m=m− where it is equal to 1
at the fold bifurcation.

A4 AMOC model

Wood et al. (2019) proposed a five-box model to model the
global oceanic current. The model is driven by salinity fluxes
[psu] Si in the main ocean waters: the North Atlantic (N ),
Tropical Atlantic (T ), Indo-Pacific (IP), Southern Ocean (S),
and Bottom waters (B). The flow strength q [Sv] of the At-
lantic meridional overturning circulation (AMOC) is subse-
quently determined by a (fixed) temperature gradient1T and
variable salinity gradient 1S = SN− SS between the North
Atlantic and Southern Ocean boxes as follows:

q =
λ(α1T +β1S)

1+ λαµ
. (A11)

Alkhayuon et al. (2019) empirically highlighted that the
salinities of the Southern Ocean and Bottom waters vary
much slower than the other boxes. Therefore, assuming these
salinities are fixed and the salinity in the Indo-Pacific SIP can
be determined from a conservation of salinity, the original
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model reduces to the following two-dimensional model:

VN
dSN

dt
= q(ST− SN)+KN(ST− SN)−FN(rt)S0, (A12)

VT
dST

dt
= q[γ SS+ (1− γ )SIP− ST] +KS(SS− ST)

+KN(SN− ST)−FT(rt)S0, (A13)

for q ≥ 0 and

VN
dSN

dt
= |q|(SB− SN)+KN(ST− SN)−FN(rt)S0, (A14)

VT
dST

dt
= |q|(SN− ST)+KS(SS− ST)

+KN(SN− ST)−FT(rt)S0, (A15)

for q < 0. For more details about the parameters and their
values, we refer the reader to Tables 3 and 4 in Alkhayuon
et al. (2019).

In this study, we are interested in the surface freshwa-
ter fluxes Fi [Sv] and i in {N,T , IP,S} as input parameters
for the system. Following the approach of Alkhayuon et al.
(2019) and Wood et al. (2019), these fluxes are defined as
linear functions of a hosing parameter H [Sv], such that the
total flux is 0 for all H and H = 0 corresponds to the base-
line values of Fi (Table 3, Alkhayuon et al., 2019). In this
system, the external forcing is given by

λ(rt)=

FN(rt)
FT(rt)
FIP(rt)
FS(rt)

=
 0.486+ 0.1311H (rt)
−0.997+ 0.6961H (rt)
−0.754− 0.5646H (rt)
1.265− 0.2626H (rt)

 , (A16)

where

H (rt)=1Ha(rt),

and a(rt) takes the form of a ramp or a return pro-
file. Figure 4d–f are obtained using the parameter values
T = 1000, 1H = 0.365, r = 0.005 (green trajectory), r ≈
0.01645 (blue trajectory), and r = 0.017 (red trajectory) and
the initial condition at the location of the base state (the
AMOC-On state) for H = 0. Figure 5b was obtained using
a value of T where a(0) is no larger than 10−5 and the initial
condition at the location of the base state for H = 0.

A5 The power grid model

We use a three-bus power system model from Dobson et al.
(1988) and Dobson and Chiang (1989) to represent the dy-
namics that can be observed on a power grid. Two genera-
tors supply power to a P–Q load in parallel with a capacitor
and induction motor (Revel et al., 2006). The model consists
of the following four differential equations for the generator
phase angle δm, the angular velocity ωm, the phase angle δ,
and the magnitude V of the load voltage (Ajjarapu and Lee,

1992):

δ̇m = ωm,

ω̇m =
1
M

(−dmωm+Pm−Pe),

δ̇ =
1
Kqω

(
−KqvV −Kqv2V

2
+Ql−Q0−Q1(rt)

)
,

V̇ =
1

TKqωKpv

(
KpωKqv2V

2
+ (KpωKqv −KqωKpv)V

+Kpω(Q0+Q1(rt)−Ql)−Kqω(P0+P1−Pl)
)
. (A17)

where Pe,Pl, and Ql are given by

Pl =−V0V T0 sin(δ+ θ0)−VmV Ym sin(δ− δm+ θm)

+ (Y0 sin(θ0)+Ymsin(θm))V 2,

Ql = V0V Y0 cos(δ+ θ0)+VmV Ym cos(δ− δm+ θm)

− (Y0 cos(θ0)+Ym cos(θm))V 2),
Pe =−VmV Ym sin(δ− δmθm)−V 2

mYm sin(θm). (A18)

In this system, the external forcing is in the form of the
reactive power demand (referred to as power demand in the
main text) of the load Q1(rt) and is given by

λ(rt)=Q1(rt)=Q1− +1Q1a(rt), (A19)

where a(rt) takes the form of a ramp or a return profile. Fig-
ure 6a and b are obtained using the parameter values T =
0.15, Q1− = 5, 1Q= 5, r = 50 (blue trajectory), r = 130
(orange trajectory), and r = 400 (purple trajectory) and the
initial condition at the location of the base state atQ1 =Q1− .
Figure 6c is obtained using a value of T where a(0) is no
larger than 10−2, the parameter value Q1− = 5, and the ini-
tial condition at the location of the base state at Q1 =Q1−

For a full description of the other parameters and the val-
ues used in this study, we refer the reader to Budd and Wilson
(2002). However, we choose to set P1 = 5, the real power de-
mand of the load, such that when Q1(rt) is varied according
to Eq. (A19), the system can only cross a fold bifurcation
and does not encounter a Hopf bifurcation, as observed for
P1 = 0 (Wang et al., 1994).

Code and data availability. The data and codes used to conduct
the simulations and generate the figures are provided in the repos-
itory (http://github.com/hassanalkhayuon/rtippingreview, last ac-
cess: 7 June 2023; https://doi.org/10.5281/zenodo.7920243, Ritchie
et al., 2023).

Video supplement. Supplementary videos are provided in a
repository (https://doi.org/10.5281/zenodo.7920243, Ritchie et al.,
2023).
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