Supplement of Earth Syst. Dynam., 14, 609–627, 2023
https://doi.org/10.5194/esd-14-609-2023-supplement
© Author(s) 2023. CC BY 4.0 License.

Supplement of

Continental heat storage: contributions from the ground, inland waters, and permafrost thawing

Francisco José Cuesta-Valero et al.

Correspondence to: Francisco José Cuesta-Valero (francisco-jose.cuesta-valero@ufz.de)

The copyright of individual parts of the supplement might differ from the article licence.
S1 Introduction

This file contains supplementary figures accompanying the manuscript “Continental heat storage: Contributions from ground, inland waters, and permafrost thawing”.

S2 Supplementary figures

Figure S1: Annual heat uptake by natural lakes for the four global lake models (CLM45; a-d, SIMSTRAT-UoG; e-h, ALBM; i-l, GOTM (m-p) and ESM forcings (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5; columns) calculated compared to the period 1900-1929. For all forcings, the years 2006-2012 of ALBM are excluded due to model spin up. Additionally, the years 1996-1997 for the ALBM MIROC-5, and 1941-1950 for GOTM MIROC-5 are excluded. Note the different y-axis scales.
Figure S2: Sensitivity of natural lake heat uptake estimates to the global mean lake morphometry parameter V_d, here shown for the SIMSTRAT-UoG GFDL-ESM2M simulation. The V_d range of 0.3 to 1.3 is based on observations (Johansson et al., 2007). Cylindrical refers to the cylindrical bathymetry assumption employed in Vanderkelen et al (2020).
References
