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Abstract. Exchanges of mass, momentum and energy between the ocean and atmosphere are of large impor-
tance in regulating the climate system. Here, we apply for the first time a relatively novel approach, the rate
of information transfer, to quantify interactions between the ocean surface and the lower atmosphere over the
period 1988–2017 at a monthly timescale. More specifically, we investigate dynamical dependencies between
sea surface temperature (SST), SST tendency and turbulent heat flux in satellite observations. We find a strong
two-way influence between SST and/or SST tendency and turbulent heat flux in many regions of the world, with
the largest values in the eastern tropical Pacific and Atlantic oceans, as well as in western boundary currents.
The total number of regions with a significant influence by turbulent heat flux on SST and on SST tendency is
reduced when considering the three variables (this case should be privileged, as it provides additional sources of
information), while it remains large for the information transfer from SST and SST tendency to turbulent heat
flux, suggesting an overall stronger ocean influence compared to the atmosphere. We also find a relatively strong
influence by turbulent heat flux taken 1 month before on SST. Additionally, an increase in the magnitude of the
rate of information transfer and in the number of regions with significant influence is observed when looking at
interannual and decadal timescales compared to monthly timescales.

1 Introduction

The climate on Earth is strongly affected by exchanges of
mass, momentum and energy between the ocean and atmo-
sphere. The ocean absorbs a large amount of solar energy
and releases part of this energy to the atmosphere. In turn,
the atmosphere modifies the ocean state through changes
in wind, humidity and temperature. The classical view is
that the slowly changing upper ocean is modulated by the
high-frequency atmospheric variability (Hasselmann, 1976;
Frankignoul and Hasselmann, 1977). While this paradigm
has been successful in explaining the variability in sea sur-
face temperature (SST) and surface heat flux over large parts
of the ocean, it has been challenged over ocean regions
characterized by intense mesoscale activity, such as west-
ern boundary currents and the Antarctic Circumpolar Cur-
rent (Chelton et al., 2004; Brachet et al., 2012; Kirtman et al.,

2012; Bishop et al., 2017; Roberts et al., 2017; Small et al.,
2020; Bellucci et al., 2021).

Chelton et al. (2004) used 25 km resolution satellite radar
scatterometer measurements over 1999–2003 and revealed
the existence of persistent small-scale features in wind stress.
According to Chelton et al. (2004), much of that mesoscale
variability is attributable to SST modification. In particular,
they found that surface wind speed is locally higher over
warm water and lower over cool water, i.e., a positive cor-
relation that is opposite to the one found at a large scale.
Bishop et al. (2017) found that monthly scale lead–lag cor-
relations between SST, SST tendency and turbulent heat flux
(THF, positive upwards) allow one to discriminate between
atmospheric-driven variability and ocean-led variability us-
ing results from a stochastic energy balance model (Wu et al.,
2006) designed to represent ocean–atmosphere interactions,
as well as satellite observations over 1985–2013. In their
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analysis, when the SST variability is dominated by atmo-
spheric weather, SST tendency is negatively correlated with
THF anomalies; on the other hand, when the SST fluctua-
tions are driven by intrinsic ocean processes (ocean weather),
the correlation between SST and THF is positive. Follow-
ing this approach, they showed that eddy-rich regions associ-
ated with pronounced SST gradients, such as western bound-
ary currents, are characterized by ocean-driven SST variabil-
ity, while less dynamically active open-ocean regions, char-
acterized by weaker SST gradients, exhibit an atmosphere-
driven SST variability. These two regimes are reproduced by
both eddy-parameterized (∼1◦ spatial resolution) and eddy-
permitting (∼0.25◦) coupled global climate models (Bellucci
et al., 2021), with an increased ocean resolution leading to a
substantially improved representation of SST and THF cross-
covariance patterns.

According to a commonly accepted interpretation, the pos-
itive SST–THF zero-lag correlation (identifying an ocean-
driven regime) indicates a damping role of THF on the SST
anomalies generated by ocean dynamics, while the negative
SST-tendency–THF correlation (identifying an atmosphere-
driven regime) is attributed to the ocean surface cooling de-
termined by the release of heat from the ocean to the at-
mosphere. However, the presence of such correlations does
not firmly demonstrate causal influences between these vari-
ables, as correlation does not mean causation. Thus, the use
of a dedicated causal method is of crucial importance to cor-
roborate these findings. Several causal inference frameworks
have been developed in the past years to identify such causal
links (Granger, 1969; Liang and Kleeman, 2005; Sugihara
et al., 2012; Krakovská et al., 2018; Paluš et al., 2018; Runge
et al., 2019).

The Liang–Kleeman information flow method allows one
to identify the direction and magnitude of the cause–effect
relationships between variables (Liang and Kleeman, 2005).
It is based on the rate of information transfer in dynam-
ical systems and is rigorously derived from the propaga-
tion of information entropy between variables (Liang, 2016).
It was initially developed for two-variable systems (Liang,
2014) and has recently been extended to multivariate systems
(Liang, 2021). Compared to other causal inference frame-
works, the rate of information transfer is a relatively sim-
ple index to compute one-way and/or two-way dependencies
between variables. This novel method has been successfully
applied to several climate studies, e.g., causal influences be-
tween greenhouse gases and global mean surface tempera-
ture (Stips et al., 2016; Jiang et al., 2019; Hagan et al., 2022),
dynamical dependencies between a set of observables and
the Antarctic surface mass balance (Vannitsem et al., 2019),
soil moisture and air temperature interactions in China (Ha-
gan et al., 2019), prediction of El Niño Modoki (Liang et al.,
2021), causal links between climate indices in the North Pa-
cific and Atlantic regions (Vannitsem and Liang, 2022), and
identification of potential drivers of Arctic sea-ice changes
(Docquier et al., 2022).

In our study, we analyze upper-ocean–lower-atmosphere
interactions using the rate of information transfer developed
by Liang (2021). More specifically, we check the two-way
influences between SST and/or SST tendency and THF at the
air–sea interface in satellite observations. Thus, our study al-
lows one to go one step further than previous studies (Bishop
et al., 2017; Bellucci et al., 2021), which have mainly fo-
cused on lead–lag correlation analyses, by identifying causal
links between these variables. Section 2 presents the data and
methods used in this analysis. Section 3 provides the main re-
sults of our study and places them in the overall context. Our
conclusions are presented in Sect. 4.

2 Data and methods

2.1 Data

We use version 3 of the Japanese Ocean Flux Data Sets
with the Use of Remote-Sensing Observations (J-OFURO3;
Tomita et al., 2019; Tomita, 2020). This dataset uses the
data of multiple satellites to estimate surface fluxes between
the ocean and atmosphere over sea-ice-free regions with a
resolution of 0.25◦. It makes use of passive microwave ra-
diometers and scatterometers available from 1988 to 2017
(see Tomita et al., 2019 for further details). From this dataset,
we extract monthly mean latent and sensible heat fluxes, as
well as SST. The latter is computed as an ensemble median
obtained from various global SST products.

We also use the SeaFlux Data Products to estimate the
observational uncertainty. It consists of estimates of ocean
surface latent and sensible heat fluxes, among other vari-
ables (Roberts et al., 2020). It relies on the use of the
Special Sensor Microwave Imager (SSM/I) and the Special
Sensor Microwave Imager Sounder (SSMIS) over the pe-
riod 1988–2018 (we use 1988–2017 to be consistent with
J-OFURO3). The SST is also available for this dataset and
is computed using the Reynolds Optimally Interpolated ver-
sion 2.0 (Reynolds et al., 2007). As for J-OFURO3, SeaFlux
data are available on a 0.25◦ grid, and we extract monthly
mean latent and sensible heat fluxes and SST.

In the main text, we only show results from J-OFURO3,
as results obtained with SeaFlux are largely consistent. The
latter are presented in Appendix B.

2.2 Methods

Our analysis involves three variables, namely SST, SST ten-
dency and THF, following the approach of Bishop et al.
(2017) and Bellucci et al. (2021). The choice of these three
specific variables is based on the stochastic energy balance
model of Wu et al. (2006). As explained in Sect. 1, lead–lag
covariances between these three variables are used as a way
to diagnose ocean-driven and atmosphere-driven regimes.
The goal of our analysis is to go beyond the correlation–
covariance relationships identified by Bishop et al. (2017)
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and Bellucci et al. (2021) and to check the causal links be-
tween SST, SST tendency and THF. THF is defined as the
sum of latent heat flux and sensible heat flux and is expressed
in W m−2 (positive upwards), as in Bishop et al. (2017) and
Bellucci et al. (2021). SST tendency is computed via a cen-
tral difference approximation of SST (expressed in ◦C) using
a time step of 1 month (following Bishop et al., 2017) and is
expressed in ◦C month−1.

We compute the rate of information transfer between SST,
SST tendency and THF at each grid point of the globe using
monthly data from 1988 to 2017. As we would like to ex-
tract statistical information from time series independent of
any specific trend or cycle, we remove the trend and season-
ality of all three variables using a linear regression and addi-
tive decomposition. The absolute rate of information transfer
from variable Xj to variable Xi is computed assuming lin-
earity following Liang (2021) as follows:

Tj→i =
1

detC
·

d∑
k=1

1jkCk,di ·
Cij

Cii
, (1)

where C is the covariance matrix, d is the number of vari-
ables, 1jk are the cofactors of C, Ck,di is the sample covari-
ance between Xk and the Euler forward difference approxi-
mation of dXi/dt (dt is the time step and equals 1 month in
our study), Cij is the sample covariance between Xi and Xj ,
and Cii is the sample variance of Xi .

To assess the relative importance of the different cause–
effect relationships, we compute the relative rate of informa-
tion transfer from variableXj to variableXi following Liang
(2021) as follows:

τj→i =
Tj→i

Zi
, (2)

where Zi is the normalizer, computed as follows:

Zi =

d∑
k=1

|Tk→i | +

∣∣∣∣∣dH noise
i

dt

∣∣∣∣∣ , (3)

where the first term on the right-hand side represents the in-
formation flowing from all the Xk to Xi (including the in-
fluence of Xi on itself), and the last term is the effect of
noise and unobserved processes, computed following Liang
(2021).

When τj→i is statistically different from 0 (either positive
or negative), Xj has an influence on Xi , while if τj→i = 0,
there is no influence. A value of |τ | = 100% indicates that
Xj has the maximum influence on Xi . A positive (negative)
value of τj→i means that the variability in Xj makes the
variability in Xi more uncertain (certain; Liang, 2014); i.e.,
it increases (decreases) the variability in Xi (Appendix A;
Fig. A1). The statistical significance of τj→i is computed via
bootstrap resampling with the replacement of all the terms in-
cluded in Eqs. (1)–(3) using 500 realizations. These bootstrap
realizations are combined together using the false discovery

Figure 1. Pearson correlation coefficient (a) between sea surface
temperature (SST) and turbulent heat flux (THF) and (b) between
SST tendency (SSTt) and THF, based on J-OFURO3 satellite obser-
vations. Black contours are drawn around regions with a statistically
significant correlation coefficient (FDR 5 %; Student’s t test).

rate (FDR) from Wilks (2016) with a significance level of
5 % to account for the multiplicity of tests.

3 Results and discussion

Bishop et al. (2017) identified a strong positive zero-lag co-
variance between SST and THF at a monthly timescale (over
1985–2013) in western boundary currents, the Agulhas Re-
turn Current and eastern tropical Pacific using the OAFlux
dataset (1◦ resolution) for THF and the NOAA OISST
dataset (0.25◦ resolution) for SST (see their Fig. 3b). They
also found a strong negative zero-lag covariance between
SST tendency and THF over many regions of the globe, with
the largest values at mid-latitudes (see their Fig. 3e). Using
the J-OFURO3 dataset (0.25◦ resolution), we find similar re-
sults in terms of zero-lag covariance (Fig. B1). Additionally,
when mapping the Pearson correlation coefficient instead of
the covariance, we find a strong positive correlation between
SST and THF in many regions of the world, with the largest
values in the eastern tropical Pacific and Atlantic regions and
in western boundary currents (Fig. 1a). A strong negative cor-
relation between SST tendency and THF is also identified in
most parts of the world, with the exception of a relatively
narrow band along the Equator and in western boundary cur-
rents (Fig. 1b).

Bishop et al. (2017) and Bellucci et al. (2021) showed
that regions of high SST gradient and THF (such as the
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Gulf Stream) are characterized by an ocean-driven regime. In
these regions, the SST–THF zero-lag covariance is positive,
suggesting that ocean processes drive SST anomalies, and the
SST-tendency–THF lead–lag covariance is anti-symmetric
(positive covariance at lag −1 and negative covariance at lag
+1). On the contrary, an anti-symmetric SST–THF lead–lag
covariance and a negative SST-tendency–THF zero-lag co-
variance are typical of an atmosphere-driven regime (such as
in the North Atlantic subtropical gyre). In the latter case, the
release of heat flux from the ocean to the atmosphere acts to
cool the upper ocean. While this approach is interesting in
terms of identifying whether the SST variability is driven by
ocean or atmosphere processes, it does not precisely indicate
whether the SST causally influences THF or the other way
round. In our study, we quantify the causal relationships be-
tween SST and/or SST tendency and THF using the rate of
information transfer from Liang (2021).

3.1 The two-dimensional (2D) case

If we only take into account SST and THF (i.e., two-
dimensional system, hereafter referred to as 2D) in the com-
putation of the rate of information transfer, we find that many
regions are characterized by relatively strong two-way in-
fluences between SST and THF (Fig. 2). The spatial distri-
bution of the rate of information transfer is relatively sim-
ilar to the one of the correlation coefficient between SST
and THF (Fig. 1a), with the largest values (either positive
or negative) in the eastern tropical Pacific and Atlantic re-
gions, western boundary currents and many parts of the
Southern Hemisphere. Interestingly, the rate of information
transfer is mainly positive for the influence of SST on THF
(Fig. 2a), while negative values dominate for the reverse in-
fluence (Fig. 2b). This suggests that SST variability generally
increases THF variability, while THF variability mainly con-
strains SST variability. Also, the regions where the influence
of SST on THF is strongest are also characterized by a strong
influence of THF on SST (in absolute values).

Regarding the SST-tendency–THF relationship, using only
these two variables in the computation of the rate of infor-
mation transfer also provides relatively strong two-way in-
fluences (either positive or negative) in many regions of the
world (Fig. 3). The spatial distribution is more contrasted
than with the SST–THF relationship, as both positive and
negative values are now present in both directions, especially
for the influence of SST tendency on THF (Fig. 3a). The in-
formation transfer from SST tendency to THF is character-
ized by positive southwest–northeast bands in the North At-
lantic and North Pacific, positive northwest–southeast bands
in the South Atlantic and South Pacific, and negative val-
ues between these regions (Fig. 3a). The information trans-
fer from THF to SST tendency shows relatively symmetrical
behavior to that from SST tendency to THF, with positive
(negative) values where the reverse information transfer is
negative (positive; Fig. 3b). This indicates that, in regions

Figure 2. Relative rate of information transfer τ (a) from sea sur-
face temperature (SST) to turbulent heat flux (THF) and (b) from
THF to SST, based on J-OFURO3 satellite observations, when two
variables are considered. Black contours are drawn around regions
with a statistically significant transfer of information (FDR 5 %; 500
bootstrap samples).

where the variability in SST tendency increases (decreases)
the variability in THF, the variability in THF decreases (in-
creases) the variability in SST tendency.

In summary, the 2D analysis shows additional information
compared to previous lead–lag correlation studies (Bishop
et al., 2017; Bellucci et al., 2021). In particular, we find that
the ocean surface influences the lower atmosphere not only
in strong boundary currents but also in many other regions of
the world (Figs. 2a and 3a). In turn, the lower atmosphere
(via surface heat fluxes) influences the ocean surface not
only at mid-latitudes but also in tropical regions and western
boundary currents (Figs. 2b and 3b). Our results are in line
with Bach et al. (2019), who also find significant two-way
influences between the upper ocean and lower atmosphere in
many regions of the world using the Granger causality but
with some methodological differences (daily timescale and
other atmospheric fields). This shows that the lead–lag co-
variance analysis, while interesting in terms of identifying a
particular ocean-driven or atmospheric-led regime, is not suf-
ficient to accurately quantify causal links between the upper
ocean and lower atmosphere. Importantly, our analysis (like
the ones from Bishop et al., 2017 and Bellucci et al., 2021)
applies to the monthly timescale, and we will show results
beyond this specific timescale in Sect. 3.4.

However, this 2D analysis excludes one of the three key
variables considered in the stochastic energy balance model
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Figure 3. Relative rate of information transfer τ (a) from sea
surface temperature tendency (SSTt) to turbulent heat flux (THF)
and (b) from THF to SSTt, based on J-OFURO3 satellite observa-
tions, when two variables are considered. Black contours are drawn
around regions with a statistically significant transfer of information
(FDR 5 %; 500 bootstrap samples).

of Wu et al. (2006), either SST tendency in Fig. 2 or SST
in Fig. 3. Thus, it may provide a false impression of a two-
way influence emerging due to the absence of a hidden vari-
able. Also, the symmetry between the two directions for both
the SST–THF (Fig. 2) and SST-tendency–THF (Fig. 3) rela-
tionships is questionable due to inaccurate results that were
found using a theoretical example (see Sect. 3.5 for further
discussion of this aspect). That is why we repeated the com-
putation of the rate of information transfer including all three
variables in the next section (Sect. 3.2).

3.2 The three-dimensional (3D) case

We computed the rate of information transfer based on the
three variables analyzed in Bishop et al. (2017) and Bellucci
et al. (2021), namely SST, SST tendency and THF (hereafter
referred to as 3D). The 3D case provides additional sources
of information compared to the 2D case and should thus be
preferred in terms of result interpretation.

In the 3D case, the influence of SST on THF (Fig. 4a) is
very similar to that in the 2D case (Fig. 2a). This is logi-
cal, since SST has no significant influence on SST tendency
(Fig. B2), so all the information from SST goes to THF,
demonstrating the robustness of the approach. However, a
much-reduced number of regions shows a significant rate of
information transfer from THF to SST (Fig. 4b) compared

Figure 4. Relative rate of information transfer τ (a) from sea sur-
face temperature (SST) to turbulent heat flux (THF) and (b) from
THF to SST, based on J-OFURO3 satellite observations, when three
variables are considered (SST, SST tendency and THF). Black con-
tours are drawn around regions with a statistically significant trans-
fer of information (FDR 5 %; 500 bootstrap samples).

to that in the 2D case (Fig. 2b). This reduction is due to the
fact that we now take SST tendency into account in the com-
putation of the rate of information transfer; part of the infor-
mation transfer from THF also goes into SST tendency, as
we will see below. Despite this reduction in the number of
regions with a significant transfer of information, the eastern
tropical Pacific and Atlantic regions still show a strong neg-
ative rate of information transfer, suggesting that THF vari-
ability constrains SST variability in these regions (Fig. 4b).
Interestingly, some regions (such as the Agulhas Return Cur-
rent) show a positive rate of information transfer from THF
to SST in the 3D case (Fig. 4b), while it is negative or close
to 0 in the 2D case (Fig. 2b).

In the 3D case, the rate of information transfer from SST
tendency to THF (Fig. 5a) is very similar to that in the 2D
case (Fig. 3a) for the same reason as for the SST–THF in-
fluence. However, a much-reduced number of regions shows
a significant transfer of information from THF to SST ten-
dency (Fig. 5b) compared to that in the 2D case (Fig. 3b).
Similarly as for the influence of THF on SST, this is due to
the inclusion of a third variable; specifically, part of the in-
formation transfer from THF also goes into SST. Neverthe-
less, we still find regions of significant influence, e.g., nega-
tive values in the North Atlantic and northeastern Pacific and
positive values in tropical regions.
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Figure 5. Relative rate of information transfer τ (a) from sea sur-
face temperature tendency (SSTt) to turbulent heat flux (THF) and
(b) from THF to SSTt, based on J-OFURO3 satellite observations,
when three variables are considered (SST, SST tendency and THF).
Black contours are drawn around regions with a statistically signif-
icant transfer of information (FDR 5 %; 500 bootstrap samples).

Thus, computing the rate of information transfer based on
the three variables of interest (SST, SST tendency and THF)
somehow partitions the total influence of the lower atmo-
sphere (THF) into a contribution to SST (Fig. 4b) and an-
other contribution to SST tendency (Fig. 5b). Additionally,
the total number of regions with a significant influence by
THF on SST and by THF on SST tendency (both combined)
clearly decreases compared to the 2D case. As the influences
of SST on THF and of SST tendency on THF remain strong
in the 3D case (almost unchanged compared to the 2D case),
this is in favor of a stronger ocean influence compared to
the atmosphere influence at monthly timescale, especially in
extra-tropical regions.

In western boundary currents, we find large values of the
rate of information transfer from SST to THF (Fig. 4a), sug-
gesting a strong ocean influence, in agreement with Bishop
et al. (2017). However, in extra-tropical regions far away
from western boundary currents, such as in the central North
Atlantic, we also find a strong transfer of information from
SST (Fig. 4a) and from SST tendency (Fig. 5a) to THF,
which is generally stronger than the reverse influence (from
THF to SST and to SST tendency). This somewhat brings
into question previous findings that suggest an atmospheric-
driven SST variability in these regions (Bishop et al., 2017;
Bellucci et al., 2021), and this shows that lead–lag covari-
ance analyses should be supplemented by causality studies.

The use of the SeaFlux observational dataset provides results
that are in broad agreement with J-OFURO3 (Figs. B3–B4),
which confirms the robustness of our findings.

The extension to additional variables can of course be per-
formed to refine the analysis further, making sure that the
additional variables are not nearly parallel (otherwise, the
singularity of the covariance matrix could numerically dete-
riorate the results). We can do this by including other fields,
higher-order tendencies or lagged fields. A first step toward
an analysis of such a type is provided below. In our study,
we prefer to keep the three fields used in the stochastic en-
ergy balance model from Wu et al. (2006) and analyzed by
Bishop et al. (2017) and Bellucci et al. (2021), i.e., SST, SST
tendency and THF. We will therefore focus on the use of a
lagged field (Sect. 3.3), as well as on the analysis of interan-
nual to decadal variability (Sect. 3.4).

3.3 Lagged transfer of information

Due to the inertia of the ocean mixed layer, the SST does not
necessarily respond directly to changes in THF (Deser et al.,
2003; Shi et al., 2022). To take this effect into account, we
added a fourth variable to our analysis, namely THF lead-
ing SST by 1 month, hereafter referred to as THF(-1). Thus,
the following four variables are considered here: SST, SST
tendency, THF and THF(-1). The rate of information transfer
has been applied to lagged variables in a previous study to
predict El Niño Modoki based on solar activity (Liang et al.,
2021). Note that the rate of information is not entirely free
of time lag, as it involves a tendency term (dXi/dt in Eq. 1),
which is estimated in a discrete way.

We find that there is a significant positive rate of infor-
mation transfer from THF(-1) to SST in eastern tropical Pa-
cific and Atlantic regions, western boundary currents (Gulf
Stream and Kuroshio Extension) and the Agulhas Return
Current, as well as negative values in other parts of the world
(Fig. 6a). Thus, the lagged analysis shows that THF taken
1 month before strongly controls SST variability, especially
in northern extra-tropical regions where this influence is al-
most absent in the original 3D case (Fig. 4b). There is also
additional information provided by this fourth variable in
the transfer of information from THF(-1) to SST tendency
(Fig. 6b), but this is mostly restricted to the eastern tropical
Pacific and Atlantic (negative values). The influence of SST
and/or SST tendency on THF(-1) is found to be very close
to 0 and to be not significant almost everywhere (Fig. B5),
which confirms the robustness of the method, as causality
cannot go back in time.

Interestingly, most regions showing a positive rate of in-
formation transfer from THF(-1) to SST (Fig. 6a) also have
a positive lead–lag covariance between THF(-1) and SST
(Fig. 3c of Bishop et al., 2017). Bishop et al. (2017) show
that these regions have a symmetric lead–lag structure be-
tween SST and THF, which is characteristic of an ocean-
driven regime. However, these similarities between the rate
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Figure 6. Relative rate of information transfer τ (a) from turbulent
heat flux at lag−1 (THF(-1) – THF leading SST by 1 month) to sea
surface temperature (SST) and (b) from THF(-1) to SST tendency
(SSTt), based on J-OFURO3 satellite observations, when four vari-
ables are considered (SST, SST tendency, THF and THF(-1)). Black
contours are drawn around regions with a statistically significant
transfer of information (FDR 5 %; 500 bootstrap samples).

of information transfer and the lead–lag covariance disappear
when we look at the relationships between THF(-1) and SST
tendency. According to Bishop et al. (2017), the strongest
values of lead–lag covariance between THF(-1) and SST ten-
dency appear in western boundary currents (negative values;
Fig. 3f of Bishop et al., 2017), while the rate of information
transfer is significant only in the eastern tropical Pacific and
Atlantic (negative values; Fig. 6b).

3.4 Interannual to decadal variability

All previous results are based on monthly mean outputs.
Thus, our results are valid at a monthly timescale. In or-
der to figure out what happens at interannual and decadal
timescales, we take the 12- and 120-month (respectively)
running-mean SST and THF (moving average with the same
number of samples), and we re-compute the rate of informa-
tion transfer in the 3D case (SST, SST tendency and THF).
This approach is similar to the one used in Vannitsem and
Liang (2022), who found differences in the rate of infor-
mation transfer between climate indices depending on the
timescale used.

At the interannual timescale (12-month running mean), the
influence of SST on THF encompasses approximately the
same regions as at a monthly timescale but with a general
increase in the magnitude of the rate of information transfer

Figure 7. Relative rate of information transfer τ (a) from sea sur-
face temperature (SST) to turbulent heat flux (THF) and (b) from
THF to SST, based on J-OFURO3 satellite observations, when three
variables are considered (SST, SST tendency and THF) and using
a 12-month running mean (interannual variability). Black contours
are drawn around regions with a statistically significant transfer of
information (FDR 5 %; 500 bootstrap samples).

(Fig. 7a). We also find regions that have a negative rate of
information transfer, such as in the western North Atlantic
Ocean, whereas such regions are not present with monthly
means. The reverse influence of THF on SST provides a more
contrasted pattern compared to that in the original 3D case,
with a reduced number of regions with negative values along
the Equator but also the additional presence of regions with
positive values (Fig. 7b).

At a decadal timescale (120-month running mean), al-
most the whole globe is covered by significant informa-
tion transfer between SST and THF in the two directions
(Fig. 8). Also, the magnitude of the rate of information trans-
fer clearly increases at this timescale compared to at inter-
annual and decadal timescales. These results suggest that
ocean-atmosphere interactions become more pronounced at
larger timescales.

3.5 Limitations of the method

The rate of information transfer used in our study has ma-
jor advantages compared to other causal methods, including
its derivation from the first principles of information entropy
(Liang, 2016) and its relative simplicity (Eq. 1). However,
several limitations exist, which need to be kept in mind.

The first limitation arises from the linearity assumption
(Liang, 2014). While the method has been tested and vali-
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Figure 8. Relative rate of information transfer τ (a) from sea sur-
face temperature (SST) to turbulent heat flux (THF) and (b) from
THF to SST, based on J-OFURO3 satellite observations, when three
variables are considered (SST, SST tendency and THF) and using a
120-month running mean (decadal variability). Black contours are
drawn around regions with a statistically significant transfer of in-
formation (FDR 5 %; 500 bootstrap samples).

dated with highly nonlinear synthetic examples (e.g., Liang,
2014, 2018, 2021), it provides an approximated solution, and
a generalization to the fully nonlinear case is still to be devel-
oped to get a more accurate solution (Liang, 2021). However,
recent studies applying the rate of information transfer to cli-
mate data show that the method is successful at representing
some key causal influences, such as the interactions between
El Niño and the Indian Ocean Dipole (Liang, 2014), CO2 and
global mean temperature (Stips et al., 2016), and Arctic sea
ice and its drivers (Docquier et al., 2022).

The second limitation is linked to the problem of hidden
variables. If we omit an important variable in our system, the
rates of information transfer might be biased. In our specific
study, some differences appear between the 2D case and the
3D case (Sect. 3.2). As we do not include one of the key vari-
ables of the stochastic energy balance model designed by Wu
et al. (2006) in the 2D case, we end up with a biased result. In
particular, the rate of information transfer from THF to SST
is overestimated in northern and southern extratropical re-
gions (compare Fig. 2b to Fig. 4b). This overestimation also
appears in the rate of information transfer from THF to SST
tendency (compare Fig. 3b to Fig. 5b). Also, a relatively sym-
metric behavior appears in the 2D case between both causal
directions for the SST–THF relationship (Fig. 2) and for the
SST-tendency–THF relationship (Fig. 3), although a number

of regions do not show such a symmetry. This somehow goes
in hand with the inaccurate symmetry obtained in computing
the rate of information transfer in the unidirectionally cou-
pled Rössler systems (Paluš et al., 2018) when using only
two variables (Paluš, 2022; Fig. C1f). Thus, the results ob-
tained in the 2D case in our study must be taken with great
care, and 3D results should be privileged. Further research
should be carried out to better understand the impact of hid-
den variables in computing the rate of information transfer.

Finally, the information flow method depends on the sam-
pling frequency when applied to unidirectionally coupled
Rössler systems and possibly to other systems and real-case
studies. In the case of the Rössler systems, the method be-
comes inaccurate when the sampling frequency is too coarse
(Appendix C; Fig. C1a–e). In our real-case study, it is diffi-
cult to accurately quantify this effect due to the shortness of
the time period (360 months). Further research is needed to
better understand the effect of the sampling frequency on the
computation of the rate of information transfer.

4 Conclusions

In summary, we find that the rate of information transfer pro-
vides a more detailed quantification of dependencies between
SST, SST tendency and turbulent heat flux (THF) than pre-
vious classical correlation–covariance studies. We do not ar-
gue that causal methods should replace covariance analyses,
but they should rather be used as a complement in order to
get a better understanding of physical interactions between
variables. We show that the ocean surface (SST and SST
tendency) strongly drives changes in the lower atmosphere
(THF) and that the lower atmosphere also has an important
influence on the ocean surface in many regions of the world.
This result is somewhat different from what has been found
in covariance analyses, in which ocean-driven regimes ex-
ist in western boundary currents and where atmospheric-led
regimes dominate in the open ocean (Bishop et al., 2017; Bel-
lucci et al., 2021). It is, however, supported by another recent
analysis using the Granger causality, which shows that many
regions of the world present a significant two-way influence
between the lower atmosphere and the upper ocean, with a
stronger ocean influence in tropical regions and a stronger at-
mospheric impact in the extra-tropics (Bach et al., 2019). As
the latter study presents methodological differences – i.e., it
focuses on the daily timescale and uses different atmospheric
variables – we need to be cautious in comparing it to our
analysis. In any case, our interpretation of these results is
that ocean–atmosphere interactions are more complex than
presented by classical covariance analyses.

Furthermore, we find that the influence of THF is parti-
tioned between SST and SST tendency if we consider the
three variables together (3D case, which should be privileged
due to the inclusion of additional sources of information) so
that the single impact of either THF on SST or of THF on
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SST tendency is decreased in the 3D case compared to that
in the 2D case. Also, the number of regions with a significant
rate of information transfer from THF to SST and from THF
to SST tendency (combined) is smaller than the one with a
significant rate of information transfer from SST to THF and
from SST tendency to THF (combined) in the 3D case. This
suggests an overall stronger upper-ocean influence compared
to the lower atmosphere. However, when adding THF taken
1 month before to take the lagged effect into account, we find
that this variable has a relatively strong influence on SST in
a large portion of the globe. Finally, a larger timescale (go-
ing from monthly to interannual and decadal) provides larger
values in terms of the rates of information transfer between
the three variables.

In our study, we only considered the ocean surface, but
several studies have shown that variations in the ocean heat
content are controlled by both air–sea fluxes and ocean heat
transport convergence, with a more important role for the lat-
ter with a deeper integration of ocean heat and with higher-
resolution climate models (Roberts et al., 2017; Small et al.,
2020). Also, only observations were considered here. Thus,
extending our analysis to the ocean heat budget terms in cli-
mate models would provide further insights into the causal
influences between the ocean and atmosphere. This is of
large importance, as ocean–atmosphere interactions consti-
tute an important regulator of our climate. Finally, from a
theoretical perspective, additional investigations of the role
of hidden and lagged variables should be performed, as well
as a comparison of the rate of information transfer to other
causal methods.

Appendix A: Impact of the rate of information
transfer on the variability

As explained in the main text (Sect. 2.2), a positive value
of the relative rate of information transfer τj→i means that
the variability in Xj increases the variability in Xi , while
a negative value means that the variability in Xj decreases
the variability in Xi . More broadly, an increase in the rate of
information transfer fromXj toXi leads to an increase in the
variability of Xi . We demonstrate this by computing the rate
of information transfer τj→i from variable Xj to variable Xi
(based on Eq. 3 in the main text) using a three-dimensional
stochastic linear system of equations as follows:

dX1 =(a11X1+ a12X2+ a13X3) dt + 0.1dW1,

dX2 =(a21X1+ a22X2+ a23X3) dt + 0.1dW2,

dX3 =(a31X1+ a32X2+ a33X3) dt + 0.1dW3, (A1)

where X1, X2 and X3 are the three variables; akl are the dif-
ferent coefficients; t is time and varies between 0 and 100
with 100 000 time steps (1t = 0.001); and W1, W2 and W3
represent normal random noises (standard Wiener process).
We set a11 = a22 = a33 =−1, and we vary the six other co-
efficients one by one with five different values between −1

Figure A1. Variance σ 2 of a variable as a function of the relative
rate of information transfer τ from any other variable to this variable
using the linear system of Eq. (A1). The error bars show the 95 %
confidence intervals of the rates of information transfer.

and 1 (−1, −0.5, 0, 0.5 and 1). When varying one of the six
coefficients, we set the other five coefficients to a fixed value
(a12 = a13 = 0.5 and a21 = a23 = a31 = a32 = 0).

We solve the linear system (A1) using the Euler–
Maruyama method, and 40 different values of the random
noise are taken in order to take into account the uncertainty
related to the rate of information transfer. The variance in
each variable is compared to the rate of information transfer
from any other variable to this variable to test our hypothesis.
Results show that when the rate of information transfer from
Xj to Xi increases, the variance in Xi increases (Fig. A1).
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Appendix B: Additional figures

Figure B1. Covariance (a) between sea surface temperature (SST) and turbulent heat flux (THF) and (b) between SST tendency (SSTt) and
THF, based on J-OFURO3 satellite observations.

Figure B2. Relative rate of information transfer τ (a) from sea surface temperature (SST) to SST tendency and (b) from SST tendency to
SST, based on J-OFURO3 satellite observations, when three variables are considered (SST, SST tendency and THF). None of the grid points
shows a statistically significant transfer of information (FDR 5 %; 500 bootstrap samples).
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Figure B3. Relative rate of information transfer τ (a) from sea surface temperature (SST) to turbulent heat flux (THF) and (b) from THF to
SST, based on SeaFlux satellite observations, when three variables are considered (SST, SST tendency and THF). Black contours are drawn
around regions with a statistically significant transfer of information (FDR 5 %; 500 bootstrap samples).

Figure B4. Relative rate of information transfer τ (a) from sea surface temperature tendency (SSTt) to turbulent heat flux (THF) and (b) from
THF to SSTt, based on SeaFlux satellite observations, when three variables are considered (SST, SST tendency and THF). Black contours
are drawn around regions with a statistically significant transfer of information (FDR 5 %; 500 bootstrap samples).
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Figure B5. Relative rate of information transfer τ (a) from sea surface temperature (SST) to turbulent heat flux 1 month before (THF(-1))
and (b) from SST tendency to THF(-1), based on J-OFURO3 satellite observations, when four variables are considered (SST, SST tendency,
THF and THF(-1)). Black contours are drawn around regions with a statistically significant transfer of information (FDR 5 %; 500 bootstrap
samples).

Appendix C: Dependence on the sampling frequency

In order to test the dependence of the information flow
method on the sampling frequency, we compute the absolute
rate of information transfer (Eq. 1) on the two unidirection-
ally coupled Rössler systems using the same parameters as
Paluš and Vejmelka (2007) and Paluš et al. (2018) as follows:

dx1/dt =−ω1 x2− x3,

dx2/dt = ω1 x1+ a1 x2,

dx3/dt = b1+ x3 (x1− c1),
dy1/dt =−ω2 y2− y3+ ε (x1− y1),
dy2/dt = ω2 y1+ a2 y2,

dy3/dt = b2+ y3 (y1− c2), (C1)

where ω1 = 1.015, ω2 = 0.985, a1 = a2 = 0.15, b1 = b2 =

0.2 and c1 = c2 = 10. We use the same time step for inte-
gration as Paluš et al. (2018); i.e., dt = 0.0785. We use the
same initialization method as Paluš et al. (2018), solve the
equations using the fourth-order Runge–Kutta scheme, and
run the model for 7.5× 106 time steps. We discard the first
1.5× 106 time steps from the analysis. We use a coupling
strength ε that varies between 0 and 0.25 with an increment
of 0.025. We test different numbers of samples per pseudo-
period and retain here the five of them (20, 60, 80, 200 and
6000) that best illustrate our results.

As illustrated in Fig. C1, results depend on the num-
ber of samples per pseudo-period. When using 20 sam-
ples per pseudo-period, Ty1→x1 > Tx1→y1 when the coupling
strength ε ≥ 0.2, which is physically not correct (Fig. C1a).
For 60 samples per pseudo-period, both influences are com-
parable for larger coupling strengths (Fig. C1b). From 80
samples per pseudo-period, Tx1→y1 > Ty1→x1 (Fig. C1c–e),
which is physically correct, and one needs to reach ∼ 6000
samples per pseudo-period to have Ty1→x1 = 0 (Fig. C1e).
Importantly, all six variables need to be considered in the
computation of the rate of information transfer (multivariate
formula; Liang, 2021) to reach this result. If we only consider
X1 and Y1 and compute the rate of information transfer using
the bivariate formula (Liang, 2014), we obtain an inaccurate
result with a symmetry between the two directions whatever
the number of samples per pseudo-period (Fig. C1f).
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Figure C1. Absolute rate of information transfer T (multivariate formula) as a function of the coupling strength ε applied to unidirectionally
coupled Rössler systems with (a) 20, (b) 60, (c) 80, (d) 200 and (e) 6000 samples per pseudo-period; (f) is similar to (e), except that the
bivariate formula is used instead. The sign of T is kept in all panels.
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