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Abstract. Climate projections from global circulation models (GCMs), part of the Coupled Model Intercom-
parison Project 6 (CMIP6), are often employed to study the impact of future climate on ecosystems. However,
especially at regional scales, climate projections display large biases in key forcing variables such as temperature
and precipitation. These biases have been identified as a major source of uncertainty in carbon cycle projections,
hampering predictive capacity. In this study, we open the proverbial Pandora’s box and peer under the lid of
strategies to tackle climate model ensemble uncertainty. We employ a dynamic global vegetation model (LPJ-
GUESS) and force it with raw output from CMIP6 to assess the uncertainty associated with the choice of climate
forcing. We then test different methods to either bias-correct or calculate ensemble averages over the original
forcing data to reduce the climate-driven uncertainty in the regional projection of the Australian carbon cycle.
We find that all bias correction methods reduce the bias of continental averages of steady-state carbon variables.
Bias correction can improve model carbon outputs, but carbon pools are insensitive to the type of bias correc-
tion method applied for both individual GCMs and the arithmetic ensemble average across all corrected models.
None of the bias correction methods consistently improve the change in simulated carbon over time compared to
the target dataset, highlighting the need to account for temporal properties in correction or ensemble-averaging
methods. Multivariate bias correction methods tend to reduce the uncertainty more than univariate approaches,
although the overall magnitude is similar. Even after correcting the bias in the meteorological forcing dataset, the
simulated vegetation distribution presents different patterns when different GCMs are used to drive LPJ-GUESS.
Additionally, we found that both the weighted ensemble-averaging and random forest approach reduce the bias
in total ecosystem carbon to almost zero, clearly outperforming the arithmetic ensemble-averaging method. The
random forest approach also produces the results closest to the target dataset for the change in the total car-
bon pool, seasonal carbon fluxes, emphasizing that machine learning approaches are promising tools for future
studies. This highlights that, where possible, an arithmetic ensemble average should be avoided. However, po-
tential target datasets that would facilitate the application of machine learning approaches, i.e., that cover both
the spatial and temporal domain required to derive a robust informed ensemble average, are sparse for ecosystem
variables.
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1 Introduction

Global circulation models (GCMs) are useful projection
tools of future climate at continental and global scales but in-
evitably simulate large biases in temperature, precipitation,
and humidity at regional scales and at individual grid points
(Randall et al., 2007; Flato et al., 2013). Projections of atmo-
spheric variables from GCMs, represented by the Coupled
Model Intercomparison Project (CMIP), underpin a suite of
critical future predictions of the carbon and water cycles
(e.g., Ahlström et al., 2012; Ukkola et al., 2016; Ahlström
et al., 2017), species distributions (Cheaib et al., 2012),
species resilience to climate extremes (Sperry et al., 2019),
and predictions of conservation planning (Gallagher et al.,
2021). Critically, many applications utilize atmospheric vari-
ables from GCMs as forcing without explicitly considering
underlying uncertainty in their (bias-corrected) climate pro-
jections. This uncertainty includes, but is by no means lim-
ited to, the fact that CMIP is an “ensemble of opportunity”
and not explicitly designed to represent an independent set of
estimates; i.e., CMIP models share modules and are related
to varying degrees (e.g., Annan and Hargreaves, 2017; Boe,
2018; Abramowitz et al., 2019).

To tackle biases in GCM forcing, a range of approaches
have been employed, with no clear agreement or “best prac-
tice” on how to assess GCM skill, to bias-correct simu-
lated climate variables, and/or to weight ensemble members.
Some studies have quantified the sensitivity of impact stud-
ies to GCM selection method, the choice of bias correction,
and/or the ensemble-averaging techniques. For example, Go-
har et al. (2017) examined the impact of bias correction meth-
ods on future warming levels and found that both select-
ing GCMs based on performance and bias-correcting model
data reduced uncertainties in regional projections. In an Aus-
tralian study, Johnson and Sharma (2015) increased model
consensus in future drought projections using bias-corrected
simulations. These studies focused either directly on the cli-
mate variables and/or derived relatively simple indices based
on a single variable. In an analysis of hazard indices based on
multiple climate drivers, Zscheischler et al. (2019) showed
multivariate methods tended to outperform univariate bias
correction methods. In addition, Kolusu et al. (2021) tested
the impact of different weighting techniques and two bias
correction methods on the spread of hydrological risk pro-
files and found that the sensitivity to climate model weighting
was considerably smaller than the uncertainty resulting from
bias correction methodologies. When Ahlström et al. (2012)
used CMIP5 simulations to run the dynamic global vegeta-
tion model (DGVM) LPJ-GUESS, they found that GCM cli-
mate biases translated into a divergence in the future simu-
lated (offline) carbon cycle responses on regional and global
scales that was significantly reduced when the climatologi-
cal input forcing was bias-corrected (Ahlström et al., 2017).

The need to address biases in GCM forcing is commonly ac-
knowledged, but the wide range of possible solutions (e.g.,
bias correction, ensemble averages across GCMs) makes it
difficult to determine the impact of the correction in climate
forcing on the specific question of interest. Here, we exam-
ine multiple methods to constrain regional projections of the
carbon cycle by opening Pandora’s box of Greek mythology
fame. When Pandora could not resist opening the lid on her
box, she allowed all the evils of the world to escape. Sim-
ilarly, we could not resist testing the impact of various ap-
proaches to constraining the carbon cycle, and the challenges
we identify are not easily resolvable. However, we hope that
by highlighting these challenges we at least begin the process
of resolving them.

There have been multiple efforts to constrain future multi-
model ensemble uncertainty (e.g., Michelangeli et al., 2009;
Knutti et al., 2010b; Bárdossy and Pegram, 2012; Bishop
and Abramowitz, 2013; Johnson and Sharma, 2015; François
et al., 2020). Most of these attempts assume that the GCMs
that simulate the historical climate well are likely to provide
more skillful future projections. Based on this assumption,
different approaches for dealing with ensemble uncertainty
have emerged that can broadly be grouped into three strate-
gies: (i) selecting only a subset of GCMs fit for the respec-
tive study (e.g., Pennell and Reichler, 2011; Rowell et al.,
2016; Herger et al., 2018; Gershunov et al., 2019), (ii) apply-
ing downscaling and bias correction methods (e.g., Panofsky
et al., 1958; Wood et al., 2004; Déqué, 2007; Michelangeli
et al., 2009; Bárdossy and Pegram, 2012; François et al.,
2020), and/or (iii) applying ensemble weighting techniques
(e.g., Bishop and Abramowitz, 2013; Sanderson et al., 2017;
Massoud et al., 2019, 2020).

The first strategy focuses on sub-selecting GCMs from the
full ensemble, using metrics deemed to be application rele-
vant, to obtain an ensemble that is truly representative of the
uncertainty linked to GCM simulations. Commonly, this is
based on how well GCMs simulate relevant climate variables
compared to historical observations (e.g., Kolusu et al., 2021)
and represents the “skilled models” category shown in Fig. 1.
Other studies find that excluding the “weakest” models has
little impact on the overall uncertainty range (e.g., Déqué and
Somot, 2010; Knutti et al., 2010b; Rowell et al., 2016). Some
studies choose models defined as independent (e.g., based on
the correlation of the biases in the simulations or within a
Bayesian framework; Jun et al., 2008; Knutti et al., 2010a;
Pennell and Reichler, 2011; Annan and Hargreaves, 2017).
Lastly, Evans et al. (2014) and Cannon (2015) suggest se-
lecting those models that “span” the (plausible) CMIP pro-
jections when selecting GCMs for dynamical downscaling
(the “bounding” models category in Fig. 1).

The second strategy employs a range of bias correction
methods to reduce errors in the GCM outputs. Univariate
bias correction methods are widely used to improve agree-
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ment of the statistical attributes (mean, variance, quantiles)
of the simulated climate variables with those of historical
climate data. While these methods can produce reasonable
results (e.g., Yang et al., 2015; Casanueva et al., 2018) they
typically correct each climate variable independently, one
grid cell at a time. This can result in inconsistent relation-
ships across physically interlinked climate variables and/or
across a spatial domain. Given univariate methods do not ac-
count for multidimensional dependencies, they cannot cor-
rect temporal, inter-variable or spatial aspects of the simula-
tions (François et al., 2020). To address these gaps, multivari-
ate methods account for dependencies between variables and
spatial patterns. Multivariate methods are especially valuable
in impact modeling frameworks where the combination of at-
mospheric processes across a range of timescales and spatial
scales, such as coinciding low rainfall and high temperatures
inducing vegetation drought stress, are important (Zscheis-
chler et al., 2019).

Finally, several weighting methods have been developed to
derive ensemble averages. The arithmetic multi-model mean
is commonly used (Knutti et al., 2010a), and by cancel-
ing non-systematic errors it usually outperforms individual
GCMs. However, assigning each ensemble member a uni-
form weight has been criticized (Knutti et al., 2010b; Herger
et al., 2019). Nonuniform weights, based on skill, indepen-
dence, or skill and independence combined (e.g., Bishop and
Abramowitz, 2013; Brunner et al., 2019, 2020), can also be
used. In addition, machine learning techniques have become
increasingly popular to calculate multi-model averages (e.g.,
Huntingford et al., 2019; Thao et al., 2022) that use GCM
outputs as predictors to match an observation-based target
(e.g., reanalysis products). For example, Wang et al. (2018)
explored a random forest approach, support vector machine,
and Bayesian model averaging to calculate a best-fit multi-
model ensemble average for monthly temperature and pre-
cipitation over Australia. Similarly, other studies have fo-
cused on climate extremes (e.g., Deo and Şahin, 2015; Liu
et al., 2016) and climate impacts on the environment (e.g.,
Jung et al., 2010; Yang et al., 2016; C. Wu et al., 2019) using
machine learning approaches.

In this study, we focus on Australia, and analyze the
impact of climate forcing bias correction and ensemble-
averaging methods on the simulated historical carbon cycle.
Australia is a suitable study system for this work because cli-
mate projections of precipitation will remain uncertain at re-
gional scales for the foreseeable future (IPCC, 2013; Ukkola
et al., 2020; Grose et al., 2020). These uncertainties are likely
to have a disproportionate influence on water-limited regions
such as Australia, with potential impacts on vegetation distri-
butions and water and carbon cycles, given many biologically
relevant processes are threshold-based and disproportion-
ately responsive to extremes as opposed to midrange changes
in climate forcing. While Australia is not the largest con-
tributor to the global carbon sink on centennial timescales,
the continents’ total carbon storage is still significant. On

shorter timescales, the interannual variability (IAV) in net
biome productivity (NBP) is important for the both histor-
ical and future estimates of atmospheric growth rate since
several studies (e.g., Poulter et al., 2014; Ahlström et al.,
2015) have found that Australia can be a major contributor
to the global net carbon sink in wet years. It is therefore im-
portant to reduce the uncertainty in carbon cycle projections
over Australia, first to improve estimates of future carbon
sinks, second to help constrain future atmospheric growth
rates, and third because the improved understanding will ul-
timately enable better predictions of vegetation responses
and of fire to climate change over Australia. Here, we as-
sess the impact of different Coupled Model Intercompari-
son Project 6 (CMIP6) GCM selection, bias correction, and
ensemble-averaging methods on the simulated carbon cycle
in a synthetic experiment. We use a single dynamic global
vegetation model, LPJ-GUESS (Smith et al., 2014), forced
with different versions of CMIP6 climate forcing, as well
as LPJ-GUESS forced with the CRUJRA reanalysis (Harris,
2019), as a target dataset for the carbon variables and fo-
cus on responses at seasonal to centennial timescales. Using
a single model forced with multiple realizations of climate
allows us to separate climate-driven uncertainties from those
arising from model parametrizations. LPJ-GUESS belongs to
an emerging second generation of DGVMs, i.e., it is a cohort-
based DGVM that incorporates the dynamics of forest gap
models. It can therefore be expected to simulate more realis-
tic temporal carbon dynamics than first-generation DGVMs,
which typically rely on a single area-averaged representation
of each plant functional type (PFT) for each climatic grid
cell (e.g., Fisher et al., 2018). Our goal is to examine how the
choice of method to deal with climate biases and uncertainty
in the CMIP6 climate forcing influences the projection of the
terrestrial carbon cycle and whether any selected method rep-
resents a robust or preferable choice.

2 Climate forcing

2.1 CMIP6

We chose the historical simulations of 21 CMIP6 GCMs
(see Table 1) that provide the three meteorological forc-
ing variables needed to run LPJ-GUESS, i.e., the near-
surface air temperature (tas), the total precipitation flux
(pr), and the incoming shortwave radiation (rsds), and ex-
amine the r1i1p1f1 realization that covers the time period
1850–2100. Four GCMs (ACCESS-CM2, ACCESS-ESM1-
5, BCC-CSM2-MR, and NESM3) provide incoming short-
wave radiation starting in 1950 only. For these GCMs, we re-
cycled the climate forcing of the first 25 years of the available
forcing (i.e., 1950–1974) for the first 100 years (i.e., 1850–
1949). All GCMs provide daily data but differ in their spatial
resolution. We therefore regridded all GCMs to a common
0.5◦ grid using first-order conservative remapping to match
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the resolution of the reanalysis and the native grid of LPJ-
GUESS and focus on the historical time period (1901–2019).

2.2 Reanalysis

We chose the CRUJRA reanalysis product (Harris, 2019)
as the reference dataset to compare with the unconstrained
CMIP6 results, as well as to derive bias corrections and en-
semble weights. In addition, we use LPJ-GUESS runs forced
with the CRUJRA reanalysis as reference datasets for carbon
variables. CRUJRA is derived from the Climatic Research
Unit gridded Time Series (CRU TS) v4.03 monthly data
(Harris et al., 2014) and from the Japanese 55-year Reanal-
ysis data (JRA-55) (Kobayashi et al., 2015). Temperature,
downward solar radiation flux, specific humidity, and precip-
itation in JRA-55 are aligned to temperature, cloud fraction,
vapor pressure, and precipitation in CRU TS (v4.03), respec-
tively. The CRUJRA dataset spans the years 1901–2018 on a
6 h time step, which we aggregated to a daily temporal reso-
lution at a 0.5◦ spatial resolution.

2.3 Dataset sensitivity

The CRUJRA reanalysis is not “observations” and, as with
all reanalyses, is subject to uncertainty itself. To test the sen-
sitivity to the choice of reference dataset, we compared the
CRUJRA to the ERA5 reanalysis dataset.

ERA5 is the fifth-generation reanalysis from the European
Centre for Medium-Range Weather Forecasts (ECMWF;
Hersbach et al., 2020). It uses a linearized quadratic 4D-Var
assimilation scheme that takes the timing of the observations
and model evolution within the assimilation window into ac-
count. Compared to the predecessor ERA-Interim reanaly-
sis, it has a higher spatiotemporal resolution and assimilates
more observations. The reanalysis is produced at an hourly
time step and covers the time period 1979–2020. Its hori-
zontal resolution is 0.1◦. As for the CRUJRA reanalysis, we
aggregated the data to a daily time step and regridded the
dataset to a 0.5◦ spatial resolution using first-order conserva-
tive regridding.

2.4 Atmospheric CO2 forcing and nitrogen deposition

In addition to the climate forcing, both atmospheric CO2 con-
centration and nitrogen deposition are transient. We force
LPJ-GUESS with the atmospheric CO2 forcing following
historical data until the year 2014. For the remaining years,
values for the shared socio-economic pathway SSP245 are
used (both from Meinshausen et al., 2020). We further pre-
scribe historical nitrogen deposition until 2009. After 2009,
LPJ-GUESS is forced with the nitrogen deposition following
the representative concentration pathway RCP4.5 (based on
Lamarque et al., 2013).

Figure 1. Schematic for study setup. All terms are defined in the
text, and the key steps are also described in the text. GCM refers
to Global circulation models. MAV, QM, CDF-t, dOTC, and R2D2
represent five different bias correction methods (mean and variance,
quantile mapping, cumulative distribution function, dynamical op-
timal transport correction, and rank resampling for distributions and
dependences, respectively).

3 Methods

To assess the sensitivity of carbon cycle projections to differ-
ent GCM selection, bias correction, and ensemble-averaging
methods, we followed the steps outlined in Fig. 1 and de-
tailed below.

3.1 Step 1: model selection

Our first step was to decide whether to use the full CMIP6 en-
semble (“full ensemble”) or to select a subset of GCMs based
on a selection criterion (“skilled”, “independent”, “bound-
ing”; see Fig. 1 step 1 and Fig. A1 in the Appendix). Since
precipitation is the single largest driver of variability in the
Australian carbon cycle (Haverd et al., 2013), we selected
the GCMs solely based on the performance of projected pre-
cipitation. We next describe each of the selection criteria in
more detail (see Fig. 1 step 1).

3.1.1 Skilled GCMs

An intuitive way to select CMIP GCMs is to define a set of
performance metrics and select those GCMs with a prede-
fined level of skill (e.g., Rowell et al., 2016; Gershunov et al.,
2019). We calculated the metrics suggested by Haughton
et al. (2018) (see Table 2) using the CRUJRA reanalysis as
the reference dataset for daily, monthly, and annual precip-
itation; ranked all GCMs for each metric; and finally chose
the GCMs with the highest average rank for monthly and an-
nual timescales. For the last method (overlap of histogram),
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Table 1. CMIP6 models used to force LPJ-GUESS. Further details for each model are available at the references listed in this table.

GCM Institute ID Native resolution Key reference
(lat× long)

ACCESS-CM2 CSIRO-ARCCSS 1.25◦× 1.875◦ Bi et al. (2013)
ACCESS-ESM1-5 CSIRO 1.25◦× 1.875◦ Law et al. (2017)
BCC-CSM2-MR BCC 1.121◦× 1.125◦ T. Wu et al. (2019)
CanESM CCCma 2.7905◦× 2.8125◦ Swart et al. (2019)
CESM2-WACCM NCAR 1.3◦× 0.9◦ Liu et al. (2019)
CMCC-CM2-SR5 CMCC 0.94◦× 1.25◦ Cherchi et al. (2019)
EC-Earth3 EC-Earth-Consortium ∼ 0.7◦× 0.7◦ Döscher et al. (2022)
EC-Earth3-Veg EC-Earth-Consortium ∼ 0.7◦× 0.7◦ Döscher et al. (2022)
GFDL-CM4 NOAA-GFDL 1◦× 1.25◦ Held et al. (2019)
GFDL-ESM4 NOAA-GFDL 1◦× 1.25◦ Dunne et al. (2020)
INM-CM4-8 INM 1.5◦× 2◦ Volodin et al. (2018)
INM-CM5-0 INM 1.5◦× 2◦ Volodin et al. (2018)
IPSL-CM6A-LR IPSL 1.3◦× 2.5◦ Boucher et al. (2020)
KIOST-ESM KIOST 1.875◦× 1.875◦ Pak et al. (2021)
MIROC6 MIROC 1.4◦× 1.4◦ Tatebe et al. (2019)
MPI-ESM1-2-HR MPI-M 0.94◦× 0.94◦ Mauritsen et al. (2019), Müller et al. (2018)
MPI-ESM1-2-LR MPI-M 1.865◦× 1.875◦ Mauritsen et al. (2019)
MRI-ESM2-0 MRI 1.121◦× 1.125◦ Yukimoto et al. (2019)
NESM3 NUIST 1.865◦× 1.875◦ Cao et al. (2018)
NorESM2-LM NCC 1.9◦× 2.5◦ Seland et al. (2020)
NorESM2-MM NCC 0.94◦× 1.25◦ Seland et al. (2020)

Table 2. Metrics used to evaluate GCM performance (compare
Haughton et al., 2018). O is the observation, here the reanalysis,
and S is the simulation.

Metric Formulation

Mean bias error 1
n

∑n
i=1

Si−Oi
n

Difference in standard deviation |1− σS
σO
|

Correlation corr(O,S)

Difference in 5th percentile P5(S)−P5(O)

Difference in 95th percentile P95(S)−P95(O)

Difference in skewness
∣∣∣1− skew(S)

skew(O)

∣∣∣
Difference in kurtosis

∣∣∣1− kurt(S)
kurt(O)

∣∣∣
Overlap of histogram

∑
(min(binS,k,binO,k))

we estimated the intervals (“bin size”) using the Freedman–
Diaconis estimator (Freedman and Diaconis, 1981) for the
reference dataset (CRUJRA) and then used the same bin size
for the simulated variable (i.e., CMIP forcing).

3.1.2 Independent GCMs

The CMIP6 ensemble is not designed to be an ensemble of
independent models, and therefore there is a risk that the
members of the ensemble share systematic biases. We there-

fore seek to select GCMs that are independent of each other,
in order to obtain a better sample of model projections. Here
we defined that GCMs are independent if their (in this case,
precipitation) biases are uncorrelated with any of the other
ensemble members. We derived the bias by subtracting the
reanalysis from the simulated precipitation and then calcu-
lated the Pearson correlation coefficient between the different
CMIP6 GCMs on monthly and annual timescales and chose
the GCMs with a weak correlation coefficient (i.e., lower
than 0.3; cf. Bishop and Abramowitz, 2013). While 0.3 is an
arbitrary threshold, it is commonly interpreted to represent
weak to moderate correlation. We further note that multiple
approaches exist to define GCM dependence (see, for exam-
ple, Knutti et al., 2010a; Herger et al., 2019), and following
a different method may yield a different result. Moreover,
reanalysis products and GCMs can share modules as well,
which further complicates achieving an estimate of truly in-
dependent GCMs.

3.1.3 Bounding GCMs

Similar to Evans et al. (2014), we also chose GCMs that span
the largest range of simulated precipitation based on the av-
erage, the interannual variability (IAV) and the change of av-
erage precipitation in the last 30 years of the historical time
period (1989–2018) compared to 1901–1930. Accordingly,
the five bounding GCMs are the driest (INM-CM4-8) and the
wettest (MPI-ESM1-2-HR) GCM, the GCMs with the lowest
(KIOST-ESM) and highest (NorESM-MM) IAV in precipita-
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tion and the GCMs with the lowest (EC-Earth3-Veg) and the
highest (NorESM2-MM) change of average precipitation in
1989–2018 relative to the 1901–1930 average.

3.2 Step 2: bias correction methods

Once a selection of GCMs is made, the biases of a given
GCM can be corrected (see Fig. 1 step 2). We explored six
approaches using CRUJRA as our reference dataset. We cor-
rected the three climate forcing variables, i.e., temperature,
precipitation, and incoming shortwave radiation, and derived
the correction based on the calibration time period 1989–
2010 given this is common to both reanalysis products used
here. We applied each method per pixel so that the different
grid points were corrected independently of each other and
tested the correction on both daily and monthly timescales,
and we note that none of the correction methods used here
are designed to correct temporal properties of the climate
forcing. We show the corrections based on daily timescales
in the main figures and use the corrections based on monthly
timescales to assess the sensitivity to the correction timescale
in the Supplement. To understand the sensitivity to the cor-
rection technique, we only corrected the five bounding mod-
els (see Sect. 3.1.3) because they defined the total CMIP6
ensemble spread. In the subsections below, we describe the
methods in more detail. In the following, O and S represent
the observed and simulated variables at the same grid point
for the calibration time period. P is the simulated variable for
the projection period to adjust with bias correction methods,
and C is the resulting bias-corrected variable. The projection
period was split into 10 separate 25-year slices. The bias cor-
rection was then derived and applied to each calendar month
on a daily time step within each time slice separately. Let Pt
and Ct be the values of the variables at time t .

3.2.1 Scaling

We calculated additive (temperature) and multiplicative (pre-
cipitation and incoming shortwave radiation) scaling bias
corrections based on the 1989–2010 climatology (compare,
e.g., Chen et al., 2011). For temperature, the bias-corrected
value at time t for the projection period is derived as follows:

Ct = Pt − S+O, (1)

with S and O the means of the variables S and O, respec-
tively. For precipitation and incoming shortwave radiation,
bias-corrected values are derived according to

Ct =
Pt

S
·O (2)

to avoid negative values.

3.2.2 Mean and variance correction (MAV)

Here, we aimed to additionally correct the variance in the
temperature forcing. We followed Eq. (1) and accounted for

the variance by multiplying by the ratio between the standard
deviation of the observed and simulated variables σO and σS .
The forcing variables are corrected following

Ct = (Pt − S) ·
σO

σS
+O. (3)

We used the precipitation and incoming shortwave radiation
corrected following the multiplicative correction (see Eq. 2)
since the (proportional) scaling correction affects both mean
and variance.

3.2.3 Quantile mapping (QM)

We employed the univariate quantile mapping (QM) method
(Panofsky et al., 1958; Wood et al., 2004; Déqué, 2007),
which adjusts the cumulative distribution function of a mod-
eled climate variable to that of the observed one. Let FO and
FS denote the cumulative distribution function (CDF) of the
observed and simulated variables, respectively. By linking
CDFs between the model and the reference, the QM method
allows us to derive the bias-corrected value Ct as follows:

Ct = F
−1
O (FS(Pt )), (4)

where F−1
O is the inverse cumulative distribution function of

O.

3.2.4 Cumulative distribution function (CDF-t)

The “cumulative distribution function – transform” (CDF-
t; Michelangeli et al., 2009) method is a version of quan-
tile mapping that adjusts the cumulative distribution function
of the simulated climate variables using a quantile-mapping
transfer function. The difference with QM is that, by link-
ing cumulative distribution functions using a two-step proce-
dure, CDF-t is specifically designed to take into account the
simulated changes of CDFs from the calibration to the pro-
jection period. Thus, the future climate scenarios incorporate
the model’s projected changes in both mean climate and vari-
ability at all timescales up to the decadal. More details can be
found in Vrac et al. (2012). Implementing the CDF-t method
in the present study in addition to the QM method allows us
to assess the influence of taking into account simulated dis-
tribution changes in the bias correction procedure on results
of regional projections of carbon cycle for Australia.

3.2.5 Dynamical optimal transport correction (dOTC)

The “dynamical optimal transport correction” method
(dOTC, Robin et al., 2019) is a generalization of the CDF-
t method to the multivariate case. By using optimal transport
theory, dOTC is designed to adjust both univariate distribu-
tions and dependence structures of the simulated variables.
Moreover, following the philosophy of CDF-t, dOTC is able
to preserve not only the simulated changes in the univariate
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distributions between the calibration and the projection peri-
ods but also the simulated change in multivariate properties
(e.g., induced by climate change). For more details and equa-
tions, see Robin et al. (2019) and François et al. (2020).

3.2.6 Rank resampling for distributions and
dependences (R2D2)

The “rank resampling for distributions and dependences”
method (“R2D2”, Vrac, 2018) is based on the Schaake Shuf-
fle (Martyn Clark et al., 2004). The Schaake Shuffle is a re-
ordering technique that reorders a sample so that its rank
structure corresponds to the rank structure of a reference
sample. This allows the reconstruction of multivariate depen-
dence structures. As a first step, the R2D2 performs the uni-
variate CDF-t bias correction (see Sect. 3.2.4). The method
allows for the possibility to select a “reference dimension”
for the Schaake Shuffle, i.e., one physical variable at one
given site, for which rank chronology remains unchanged.
The reconstruction of inter-variable correlations of the refer-
ence is then performed using the Schaake Shuffle with the
constraint of preserving the rank structure for the reference
dimension. For more details and equations, see Robin et al.
(2019) and François et al. (2020).

3.3 Step 3: run LPJ-GUESS

We ran LPJ-GUESS with a reference dataset (CRUJRA re-
analysis), the full raw CMIP6 ensemble (which includes the
skilled, independent, and bounding models) and addition-
ally with the bounding models (see Sect. 3.1.3) after they
were bias-corrected according to the methods described in
Sects. 3.2.1–3.2.6.

LPJ-GUESS (Smith et al., 2014; Lund–Potsdam–Jena
General Ecosystem Simulator) is a widely used dynamic
global vegetation model for climate–carbon studies (Sitch
et al., 2003; Smith et al., 2014). LPJ-GUESS simulates the
exchange of water, carbon, and nitrogen through the soil–
plant–atmosphere continuum (Smith et al., 2014) by account-
ing for resource competition for light and space between
plants. We adopted the global configuration of the model
that uses 12 plant functional types (PFTs), simulating dif-
ferences in growth form (grasses, broadleaved trees, or de-
ciduous trees), photosynthetic pathway (C3 or C4), phenol-
ogy (evergreen, summer green, or rain green), tree allometry,
life history strategy, fire sensitivity, and bioclimatic limits for
establishment and survival (see Smith et al., 2014, for de-
tails). LPJ-GUESS is a second-generation DGVM part of the
TRENDY ensemble (compare Fisher et al., 2010, 2018) and
explicitly represents demographic processes, such as stand
age and size structure development, mortality, and competi-
tion, among locally co-occurring PFT populations, as well as
disturbance-induced heterogeneity across the landscape of a
grid cell.

We use LPJ-GUESS version 4.0.1 in “cohort mode”,
where woody plants of the same size and age co-occur in
a “patch” and, as such, are represented by a single average
individual. Each PFT is represented by multiple average in-
dividuals, and one PFT cohort is defined as the average of
several individuals. We run LPJ-GUESS with the plant and
soil nitrogen dynamics switched on. Fire is simulated annu-
ally (stochastically) based on temperature, fuel availability,
and the moisture content of upper soil layer as a proxy for
litter moisture content (Thonicke et al., 2001).

3.4 Step 4: ensemble averages

After running LPJ-GUESS with either the raw or corrected
climate data (step 3), the final step was to calculate an en-
semble average of the resulting carbon fluxes. We focused
on the total carbon storage (CTotal) and foliar projective cover
(FPC) over Australia at annual time steps and the gross pri-
mary productivity (GPP) at seasonal time steps. We explored
three different approaches based on the full ensemble or the
selected models (see Sect. 3.1)

3.4.1 Arithmetic ensemble average

We first calculated the arithmetic ensemble average where
each of the GCM+LPJ-GUESS ensemble members was as-
signed the same weight.

3.4.2 Skill and independence

Following Bishop and Abramowitz (2013), we calculated
weights based on both independence and skill. We here
chose the carbon variables resulting from the reference LPJ-
GUESS run (driven with the CRUJRA reanalysis) as the tar-
get variable, and the carbon variables resulting from the LPJ-
GUESS runs forced with the CMIP6 as the predictor vari-
ables. This method accounts for both the performance differ-
ences and their error dependencies. In a first step, the bias
with respect to observational data is calculated. Then, the er-
ror correlation coefficient is used as a metric for error depen-
dencies. The linear combination of the CMIP6 members is
derived to minimize the mean square difference to the results
from the reanalysis runs following:

Cjw = w
T xj =

K∑
k=1

wkx
j
k , (5)

where j represents the grid cells and k is the number of the
ensemble members. Consequently, xjk is the value of the kth
bias-corrected model (i.e., after subtracting the mean error
from the dataset) at the j th grid cell. The weights (wT ) pro-
vide an analytical solution to the minimization of

J∑
j=1

(Cjw − x
j

obs)
2, (6)
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when subject to the constraint that the sum of the weights
(wk) always adds up to 1. The solution can be expressed as
follows:

w =
A−11

1TA−11
, (7)

where 1T
=

k elements︷ ︸︸ ︷
[1,1, . . .,1] and A is the K ×K difference co-

variance matrix.

3.4.3 Random forest

Random forest is an ensemble learning method that con-
structs a collection of decision trees and then outputs a
weighted average of predictions of the individual trees. For
each decision tree, a subset of training samples are randomly
selected following a bootstrap sampling approach. At each
node, a random sample of predictor variables is selected for
splitting. We varied the number of predictor variables and
number of trees, and here we show the results that produced
the lowest error. The metric of splitting is the sum of squares
of errors. As in Sect. 3.4.2, we chose the carbon variables re-
sulting from the reference LPJ-GUESS run (driven with the
CRUJRA reanalysis) as the target variable and the carbon
variables resulting from the LPJ-GUESS runs forced with
the CMIP6 as the predictor variables. We further included
the latitude and longitude as predictors and, when analyz-
ing monthly data, the month. The random selections change
as the “tree” grows following a random sampling with the
replacement approach. The algorithms involved in different
decision trees are run in parallel. Both the random sampling
procedure and the parallelism in algorithm operations mean
that the predictor blocks in random forest are built indepen-
dently.

3.5 Summary of methods

Our methods examine many of the approaches previously
used to select from and/or constrain the CMIP6 ensemble
in carbon cycle modeling. In this study, we seek to examine
how applying these corrections methods affects the simula-
tion of the Australian carbon cycle by LPJ-GUESS as a case
study. In the following, we use the abbreviations defined in
Table 3.

4 Results

We first explored the uncertainty in the CMIP6 climate fields
by examining the average and IAV (depicted by the stan-
dard deviation of the detrended annual precipitation and
temperature) of the simulated and reanalysis annual precip-
itation and temperature over Australia between 1989 and
2018 (see Fig. 2). Annual precipitation (1989–2018) simu-
lated by the CMIP6 ensemble members varies widely from

254 mm yr−1 (MPI-ESM1-2-HR) to 858 mm yr−1 (INM-
CM4-8). The CRUJRA reanalysis lies in the lower quar-
tile of the CMIP6 spread (499 mm yr−1; see Fig. 2c), im-
plying a systematic overestimate across the CMIP6 GCMs.
The precipitation IAV varies between 55 mm yr−1 (KIOST-
ESM) and 183 mm yr−1 (NorESM2-MM), and most CMIP6
ensemble members simulated higher IAV than the CRUJRA
reanalysis (66 mm yr−1; see Fig. 2c). Relative to 1901–
1930, most CMIP6 GCMs do not show a significant trend
(17 out of 21), two GCMs significantly increase in precipita-
tion (up to 76 mm yr−1 at the end of the historical time pe-
riod; NorESM2-MM) and two GCMs significantly decrease
(down to −59 mm yr−1, EC-Earth3-Veg). CRUJRA slightly
increases in precipitation relative to 1901–1930 for the latter
half of the historical time period (27.2 mm with a significant
trend of 0.40 mm yr−1; see Fig. 2d).

The average simulated temperature over Australia for the
last 30 years of the historical time period varies amongst
the CMIP6 ensemble members from 21.2 ◦C (INM-CM5-0)
up to 24.6 ◦C (MIROC6). The median of the full ensemble
is 22.7 ◦C and slightly higher than the average temperature
for the CRUJRA reanalysis (22.1 ◦C). The IAV in tempera-
ture ranges from 0.27 ◦C (NorESM-LM) to 0.68 ◦C (GFDL-
ESM4). The CMIP6 GCMs tend to simulate higher IAV in
temperature compared to the year-to-year variability found
in the CRUJRA reanalysis (0.31 ◦C; see Fig. 2a). Relative to
1901–1930, all CMIP6 ensemble members show a continen-
tal average increases in temperature but to varying degrees
(∼ 0.4–1.2 ◦C averaged over 1989–2018; see Fig. 2b). We
note that Fig. 2b, d, and f show the smoothed change in the
according variable and do not allow conclusions on IAV.

Finally, Fig. 2e and f show the impact of differences
in the meteorological forcing on the average simulated to-
tal carbon pool (CTotal), the IAV in net biome productivity
(NBP), and the change in CTotal for Australia when LPJ-
GUESS is forced with the raw climate forcing of each of
the CMIP6 ensemble members. Depending on the choice
of GCM, CTotal varies between 28.6 PgC (LGMPI-ESM1-2-HR)
and 75.1 PgC (LGINM-CM4-8). Compared to CTotal simu-
lated by LGCRUJRA (56.4 PgC), the LPJ-GUESS driven
with CMIP6 forcing tends to simulate lower CTotal. The
IAV in NBP ranges between 0.3 PgC (LGKIOST-ESM) and
1.1 PgC (LGCMCC-CM2-SR5). The IAV in NBP simulated by
LGCRUJRA (0.6 PgC) falls into the lower interquartile range
(IQR) of the CMIP6 ensemble runs. CTotal for Australia in-
creases by the end of the historical period for all CMIP6 forc-
ings with values between 0.1 PgC (LGEC-Earth3) and 4.1 PgC
(LGNorESM2-MM). Compared to the reanalysis results, most
of the CMIP6 models lead to a weaker increase in CTotal over
the historical period (except for LGINM-CM4-8, LGINM-CM5-0,
LGNorESM2-LM, and LGNorESM2-MM).

Taken together, Fig. 2 demonstrates both the uncertainties
in meteorological variables obtained from GCMs and how
these propagate to large simulation biases in Australia’s car-
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Table 3. List of LPJ-GUESS runs and ensemble-averaging methods tested in this study.

Run Climate input used to force LPJ-GUESS Ensemble abbreviation Averaging method Based on

LGCRUJRA CRUJRA reanalysis ENSArithmetic,Full Arithmetic Full CMIP6 ensemble (raw)
LGEC-Earth3-Veg Raw EC-Earth3-Veg climate ENSArithmetic,Skill Arithmetic Skilled GCMs (raw)
LGINM-CM4-8 Raw INM-CM4-8 climate ENSArithmetic,Independence Arithmetic Independent GCMs (raw)
LGKIOST-ESM Raw KIOST-ESM climate ENSArithmetic,Bounding Arithmetic Bounding GCMs (raw)
LGMPI-ESM1-2-HR Raw MPI-ESM1-2-HR climate ENSArithmetic,Bounding,Scaling Arithmetic Corrected bounding GCMs (scaling)
LGNorESM2-MM Raw NorESM2-MM climate ENSArithmetic,Bounding,MAV Arithmetic Corrected bounding GCMs (MAV)

ENSArithmetic,Bounding,QM Arithmetic Corrected bounding GCMs (QM)
ENSArithmetic,Bounding,CDF-t Arithmetic Corrected bounding GCMs (CDF-t)
ENSArithmetic,Bounding,R2D2 Arithmetic Corrected bounding GCMs (R2D2)
ENSArithmetic,Bounding,dOTC Arithmetic Corrected bounding GCMs (dOTC)
ENSWeighted Weighted Full CMIP6 ensemble (raw)
ENSRF Random forest Full CMIP6 ensemble (raw)

Figure 2. Average and interannual variability (IAV) of annual precipitation averaged over Australia for the time period 1989–2018 (a),
average and IAV of annual temperature averaged over Australia for the time period 1989–2018 (c) for the 21 CMIP6 ensemble members (see
Table 1). Panel (e) shows the average of the total carbon stored in Australia for the time period 1989–2018 based on LPJ-GUESS simulations
with the CMIP6 ensemble on the left and the IAV of the net biome productivity over Australia for the same time period on the right. The
black stars represent the respective values obtained using the CRUJRA reanalysis. Panels (b), (d), and (f) show the 30-year moving average
of the change in annual temperature, precipitation, and total carbon storage, respectively, relative to the 1901–1930 average. The thick black
line represents simulations obtained using the CRUJRA reanalysis.
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bon cycle. In the following, we examine the impact of cor-
recting climate forcing on these biases.

The large ensemble spread in the CMIP6 forcing variables
(see Fig. 2a–d) results in a large spread in the simulated car-
bon cycle (see Fig. 2e and f). Figure 3a shows the biases in
the forcing variables precipitation (pr) and temperature (T )
and CTotal based on the CMIP6 compared to the results of the
reanalysis. Positive values indicate that the results based on
the CMIP6 forcing are higher compared to the reanalysis, and
negative values demonstrate the opposite. Each of the bias
correction methods reduces the bias in the forcing variables
so that the bias in the corrected precipitation is significantly
lower, and thus the bias in corrected temperature in com-
parison to the raw CMIP6 meteorology is close to zero (see
Fig. 3a, c). Consequently,CTotal based on LPJ-GUESS driven
with the corrected CMIP6 GCMs results in a smaller distance
to CTotal based on the LGCRUJRA run compared to the raw
forcing for most LPJ-GUESS runs (see Fig. 3a). However,
while the results based on the LGNorESM2-MM model initially
simulated ∼ 3 PgC more than the runs based on the CRU-
JRA reanalysis, all univariate bias correction methods lead to
larger biases from −5.0 PgC (CDF-t) to −8.3 PgC (scaling),
while the multivariate methods result in biases similar in
magnitude (dOTC) or reduce it significantly (R2D2). When
averages are calculated based on the full CMIP6 ensemble
(hollow circles in Fig. 3e), the random forest and weighted
ensemble average approaches produce almost identical re-
sults compared to the LGCRUJRA run (−0.29 and−0.16 PgC,
respectively; see Fig. 3). The arithmetic ensemble average of
CTotal is with −7.7 PgC lower than the weighted average and
the random forest approach. Figure 3e also shows the impact
of model selection on calculated ensemble averages. Given
both the weighted ensemble-averaging and random forest ap-
proaches are insensitive to redundant (i.e., models with simi-
lar biases) information, we expect that testing those methods
based on different GCM subsamples will yield similar re-
sults. We therefore only show the impact on the arithmetic
average of CTotal. The values for the arithmetic average can
depend on the selection of models it is derived from. Calcu-
lating the arithmetic average based on the full ensemble or on
the five independent or bounding models gives similar results
(but lower than the weighted and random forest approach,
which give −9.0, and −7.6 PgC, respectively). Notably, the
arithmetic ensemble average based on the five most skilled
models produces the lowest value of all selection methods
(−18.9 PgC). The arithmetic average of the bounding models
is almost identical to that of the full ensemble for CTotal and
does not change with the correction method (black hexagons
in Fig. 3).

While the type of bias correction method only shows small
alterations of the values of the arithmetic average of any
of the variables examined in Fig. 3, the coefficient of vari-
ation (CV), which we here use as a measure for ensem-
ble uncertainty, can vary depending on the method chosen.
All bias correction methods reduce the CV compared to the

raw CMIP6 data. For temperature, all bias correction meth-
ods result in similar values for CV (see Fig. 3d). Precipi-
tation shows some variation depending on the type of bias
correction method applied (univariate vs. multivariate; see
Fig. 3b). For temperature, the CV is robust and does not
change strongly depending on the sub-selection of GCMs,
while for precipitation, selecting GCMs with high skill de-
creases the CV most. The CV of CTotal is most reduced when
the multivariate dOTC approach is applied on the forcing
variables, and selecting the most skilled GCMs for an arith-
metic average here yields the strongest reduction in CV com-
pared to the full ensemble or selecting independent or bound-
ing models.

Figure 4 shows the change in CTotal relative to the 1901–
1930 average for the five bounding models (i.e., weakest
and highest amount, change, and IAV in precipitation over
time; see Figs. A3 and A2 for the corrected precipitation and
temperature forcing). For the LPJ-GUESS runs based on the
lowest amount in precipitation and increase in precipitation
(LGEC-Earth3-Veg and LGMPI-ESM1-2-HR, respectively), none of
the bias correction approaches significantly alter the change
in CTotal so that the change in CTotal remains significantly
lower compared to LGCRUJRA (see Fig. 4c and e). In the
LPJ-GUESS runs forced with the highest annual precipita-
tion (LGINM-CM4-8) and the strongest increase and highest
IAV in precipitation (both LGNorESM2-MM), the bias correc-
tion methods generally reduce the simulated change of CTotal
so that it is closer to the LGCRUJRA result (see Fig. 4a, b). For
LGINM-CM4-8, all methods are successful in bias-correcting
to the reanalysis. For LGNorESM2-MM, four methods approx-
imately halve the difference between the reanalysis and raw
runs, with the exception of CDF-t and dOTC. Figure 4f
shows the impact of different ensemble-averaging methods
applied to CTotal. All averaging methods simulate very sim-
ilar 1CTotal values in the last 10 years of the model runs,
whereas the weighted approach is lower by ∼ 0.5 PgC in the
first 50 years.

Figure 5 shows the regional details of the relative differ-
ences between CTotal based on the three ensemble-averaging
methods (full ensemble; a–c) and different model selection
methods (d–e) compared to the reference run LGCRUJRA. The
arithmetic (see Fig. 5a) and weighted average (see Fig. 5b)
show regional biases that can be both positive (eastern central
Australia) and negative (southwestern Australia) and along
the Tropic of Capricorn. The random forest approach shows
small differences in CTotal compared to the CRUJRA reanal-
ysis. Figure 5 further supports that using a weighted average
or random forest approach yields a more robust ensemble es-
timate than using the mean of any of the sub-ensembles. De-
riving the arithmetic average based on the full ensemble or
on a sub-selection based on independent or bounding models
(see Fig. 5a, e, f) yields very similar results; notably, choos-
ing the five most skilled models produces an overall negative
bias in the CTotal estimate (see Fig. 5d).
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Figure 3. Difference between precipitation (pr), temperature (T ), and carbon storage (CTotal) based on the CMIP6 and CRUJRA forc-
ing (a, c, e) and the coefficient of variance across the ensemble of the same variables averaged over Australia. The different colors represent
the results based on the raw (blue) or corrected climate forcing using scaling (orange), mean and variance (MAV, green), quantile mapping
(QM, red), cumulative distribution function – transform (CDF-t, purple), dynamical optimal transport correction (dOTC, brown), and matrix
re-correlation (R2D2, dark grey) approaches and the three ensemble-averaging methods (arithmetic mean (olive), weighted average (pink),
and random forest (cyan)). The different symbols show LPJ-GUESS runs forced with the five bounding models, i.e., EC-Earth3-Veg (filled
circle), INM-CM4-8 (×), KIOST-ESM (square), MPI-ESM1-2-HR (+), and NorESM2-MM (triangle), the full ensemble (empty circle), and
the three model selection methods, i.e., skill (diamond), independence (horizontal bar), and bounding models (hexagon). The black hexagons
depict the ensemble average of the LPJ-GUESS runs based on the raw and corrected bounding climate forcing.

Correcting the bounding models tends to reduce the bias in
the ensemble average of CTotal (see Fig. 5g–m). The resulting
bias map for individual GCMs can depend on the raw sim-
ulation by the GCM to which the bias correction is applied.
Each of the bias correction methods leads to similar spatial
patterns within the same GCM (see Fig. A4).

Figure 6 shows the coefficient of variation (CV) of CTotal
across the ensemble. Selecting either the full ensemble or
making a sub-selection based on skill and independence (see
Fig. 6a–c) results in a high CV across the Tropic of Capri-
corn that results from the assumed bioclimatic limit for C4
grasses (similar to Fig. 5). Selecting models based on skill
(see Fig. 6a) reduces the CV compared to the full ensem-

ble, while choosing the five bounding models reduces the CV
across the Tropic of Capricorn but increases it in most of the
other regions. The CV is significantly lower when the cli-
mate forcing input is bias-corrected for all methods, and the
quantile mapping approach overall leads to the lowest values.

The different patterns in 1CTotal for the bounding model
runs imply that the underlying vegetation composition might
vary with the climate forcing and the bias correction method
applied. Indeed, studies have suggested that the sensitivity to
climate forcing is generally larger on regional and PFT scales
(Wu et al., 2017). To examine the impact of bias correction
on vegetation composition, we examine the FPC, which can
be seen as an indicator for the vegetation growth (due to the
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Figure 4. The 30-year moving average of the change in CTotal
averaged over Australia. In each panel, the bold black line is the
change in CTotal obtained using the CRUJRA reanalysis and the
grey-shaded area represents the full unconstrained CMIP6 model
ensemble. Panels (a)–(e) show the CTotal change simulated using
input from the five individual bounding models separately. The col-
ors show the change in CTotal based on the different bias correc-
tion methods. Panel (f) shows the change in CTotal estimated by the
ensemble-averaging methods.

relationship between foliar area and light interception), and
species competition through tree–grass shading. We focus on
the FPC of four different vegetation groups (temperate and
tropical trees and C3 and C4 grasses) for the five bound-
ing models and different ensemble averages (see Fig. 7).
For temperate trees, most raw models simulate a higher me-
dian compared to the FPC based on LGCRUJRA (except for
MPI-ESM1-2-HR; see Fig. 7a), and the variability in simu-
lated FPC depends strongly on the GCM used to drive LPJ-
GUESS. For the LPJ-GUESS runs based on the wettest GCM
(LGINM-CM4-8 and the one based on the strongest increase
in precipitation (LGNorESM2-MM), the median falls outside
the LGCRUJRA interquartile range, and the 75th percentile of
both models is more than double (LGMPI-ESM1-2-HR) or triple
(LGINM-CM4-8) of what the LGCRUJRA run suggests. For all
models, correcting the GCM forcing brings the simulated
FPC much closer together. The arithmetic and weighted en-
semble average result in a higher median and 25th and 75th
percentile compared to the LGCRUJRA run. The median of the

random forest run is close to the LGCRUJRA median. How-
ever, the 75th percentile is significantly lower compared to
that of LGCRUJRA, and the variability for the random for-
est approach is overall lower compared to LGCRUJRA. Only
choosing skilled models reduces the median of the arith-
metic ensemble average, leading to better agreement with the
LGCRUJRA reanalysis, but the variability is lower. The other
selection methods produce similar values for the median
compared to the full ensemble result with a larger spread.

For the tropical trees (see Fig. 7b), most models simu-
late medians and interquartile ranges similar to that based
on the LGCRUJRA reanalysis. In contrast, the FPC based on
wettest GCM (LGINM-CM4-8) shows a significantly higher
median and 75th percentile (the latter being about 4 times
higher than LGCRUJRA). All bias correction methods de-
crease the median so that it is within the LGCRUJRA interquar-
tile range (IQR). The MAV approach, however, still leads
to a 75th percentile that is too high. The weighted ensem-
ble average shows the distribution that is the most similar
compared to the LGCRUJRA FPC. Calculating the arithmetic
average based on the full ensemble yields a similar result;
however, the random forest approach median almost drops
out of the LGCRUJRA IQR. The arithmetic approach based on
the independent GCMs produce the best match compared to
LGCRUJRA.

In contrast to the two tree groups, the median C3 grass FPC
based on the CMIP6 forcing tends to be lower than that based
on LGCRUJRA (see Fig. 7). The C4 grasses show a mixed
response to the raw CMIP6 forcing. The LPJ-GUESS runs
based on the wettest model and the one with the strongest
increase in precipitation (LGINM-CM4-8 and LGNorESM2-MM)
simulate a higher median FPC compared to the LGCRUJRA,
while the runs based on the driest model and the model
with the lowest increase in precipitation (LGMPI-ESM1-2-HR
and LGEC-Earth3-Veg) are lower. The LGMPI-ESM1-2-HR run
shows especially large variation in simulated C4 grass FPC
depending on the correction method. For LGINM-CM4-8, the
three approaches based on quantile mapping (QM, CDF-t,
and dOTC) lower the median closer to the LGCRUJRA me-
dian. For the wet model, all approaches lead to significant
improvement compared to the target dataset. None of the
arithmetic or weighted ensemble averages in FPC match the
LGCRUJRA median and are mostly below the lower quartile
of LGCRUJRA.

Overall, the analysis of FPC highlights important implica-
tions for bias correction. The results show that LPJ-GUESS
responds very differently to the various bias correction meth-
ods because the change in the GCM forcing alters the com-
petitive interactions between vegetation types. Importantly,
although the spatial maps show similar agreement in CTotal
between correction methods, the change in FPC implies that
the resulting change in carbon is simulated by difference un-
derlying vegetation compositions. We therefore further ex-
amine the seasonal cycle of GPP of C4 grasses in the follow-
ing as the change was the most different after bias correction.
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Figure 5. Difference between the ensemble averages of CTotal and CTotal simulated by LGCRUJRA. Panels (a)–(c) show the arithmetic,
weighted, and random forest ensemble average based on the LPJ-GUESS runs using the full CMIP6 ensemble, respectively. Panels (d)–(f)
show the arithmetic ensemble average based on LPJ-GUESS runs using sub-selections of the CMIP6 ensemble (skilled, independent, and
bounding GCMs, respectively). Panels (g)–(l) show the arithmetic ensemble average based on LPJ-GUESS runs using the bias-corrected
bounding GCMs following the scaling, MAV, QM, CDF-t, R2D2, and dOTC approach, respectively. The noticeable bias across the Tropic of
Capricorn results from the assumed bioclimatic limit for C4 grasses.

Figure 8 shows the seasonal GPP for C4 grasses. All sim-
ulations, including LGCRUJRA, simulate peak productivity in
the wet season and minimum productivity in the dry season
(see Fig. 8a), but the uncertainty in simulated seasonal GPP
is large (see ensemble spread with values between ∼ 0.1 and
0.4 PgC month−1 at the peak of the wet season and ∼ 0 and
0.15 PgC month−1 at the peak of the dry season). Through
December to March, the maximum GPP during the wet sea-
son is lower compared to the reanalysis results but is closer

to the reanalysis simulations in the dry season. As a result,
the bias correction methods achieve similar CTotal values (see
Fig. 3) predominantly through reducing biases during the dry
season and introducing an underestimation bias in the wet
season. Notably, the R2D2 method always achieves the low-
est bias to the target dataset compared to the remaining bias
correction methods.

For LGMPI-ESM2-2-HR, the raw climate forcing does not
generate the right magnitude and timing of peak GPP. When
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Figure 6. Coefficient of variation (CV) over the ensemble of CTotal simulated by LPJ-GUESS. Panel (a) shows the CV based on the LPJ-
GUESS runs using the full CMIP6 ensemble. Panels (d)–(f) show the CV based on LPJ-GUESS runs using sub-selections of the CMIP6
ensemble (skilled, independent, and bounding GCMs, respectively). Panels (g)–(l) show the CV based on LPJ-GUESS runs using the bias-
corrected bounding GCMs following the scaling, MAV, QM, CDF-t, R2D2, and dOTC approach, respectively. The noticeable CV across the
Tropic of Capricorn results from the assumed bioclimatic limit for C4 grasses. Note that we do not show a coefficient of variation for the
weighted ensemble averages. Given they produce a single estimate rather than an ensemble estimate, a coefficient of variation does not exist
for these methods.

corrected with the two multivariate approaches, both become
more similar to the LGCRUJRA runs. For LGINM-CM4-8 and
LGMPI-ESM1-2-HR, all bias correction methods increase GPP
from December to March, while for LGKIOST-ESM only the
two multivariate approaches achieve a change closer to the
LGCRUJRA runs in the wet season GPP. When the NorESM2-
MM climate forcing is corrected, the magnitude is even
lower than when the raw climate forcing is used. Figure 8f

also shows the impact of the different ensemble-averaging
approaches. Applying the random forest approach leads to
near identical result to the LGCRUJRA simulation. Both the
weighted and arithmetic ensemble average result in a lower
peak in GPP in the wet season, where the arithmetic average
is lower than both the random forest result and the weighted
average.
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Figure 7. Boxplots showing the median, 75th, and 25th percentiles of foliar projective cover (FPC) for temperate (a) and tropical (b) trees and
C3 (c) and C4 (d) grasses for Australia. The first five groups are the LPJ-GUESS runs based on the five bounding models LGEC-Earth3-Veg,
LGINM-CM4-8, LGKIOST-ESM, LGMPI-ESM1-2-HR, and LGNorESM2-MM, where blue shows the FPC based on the raw model forcing and
orange, green, red, purple, brown, and grey show the FPC when LPJ-GUESS is forced with the corrected model forcing following the
scaling, MAV, QM, CDF-t, dOTC, and R2D2 method, respectively. The yellow, pink, and bright blue boxplots on the right-hand side of each
panel show the different ensemble-averaging methods (arithmetic average, weighted average, and random forest, respectively) when the full
ensemble is used (group “full”). The groups “skill” (dashed), “independence” (dotted), and “bounding” (filled with stars) show the results for
the arithmetic average when only a sub-selection of models is used (see Sect. 3.1). The solid lines show the median values of the simulations
with the CRUJRA reanalysis, the dotted lines are the 75th percentile, and the dashed–dotted line is the 25th percentile.

5 Discussion

In this study, we explored the impact of climate model un-
certainty on the regional carbon cycle over Australia and
the sensitivity of the carbon cycle to different approaches
to correcting climate forcing biases. We found that, uncor-
rected, the continental-scale climate projections over Aus-
tralia were associated with large uncertainties. The differ-
ence between the hottest and coldest model is very large,
3.4 ◦C higher than the observed historical warming over the
continent (1.4 ◦C; IPCC, 2021), and local differences can
be even larger. Similarly, average precipitation ranges be-
tween 254 and 858 mm yr−1, and the IAV ranges from 55
to 183 mm yr−1. The differences on both timescales have
a large impact on predicted vegetation, especially across a

water-limited continent such as Australia. Our finding that
the simulation of Australia’s carbon cycle is particularly sen-
sitive to the choice of climate forcing is consistent with pre-
vious studies (e.g., Ahlström et al., 2012, 2015, 2017). The
uncertainty in the CMIP6 forcing translates into a significant
variability in the simulated carbon cycle in LPJ-GUESS; for
example, the average values for CTotal vary between 28.6 and
75.1 PgC, and the IAV in NBP was between 0.3 and 1.1 PgC.
We explored three approaches to reduce biases and ensemble
uncertainty and discuss each in turn below.

5.1 Sensitivity to bias correction methods

We tested six different methods for bias-correcting the CMIP
model forcing driving LPJ-GUESS. Four methods incorpo-
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Figure 8. Seasonal cycle of gross primary productivity for C4
grasses in Australia. The different panels show the seasonality when
LPJ-GUESS is forced with the bounding five bounding models (a–
e). The different colors show the unconstrained model climate forc-
ing (blue) or after bias-correcting the data following the scaling (or-
ange), mean and variance (green), quantile mapping (red), CDF-t
(purple), dOTC (brown), and R2D2 (grey) methods. The black lines
represent the reanalysis simulations with CRUJRA, and the grey
shading shows the full CMIP6 ensemble spread. The blue-shaded
area indicates the wet season (November–April), and the red-shaded
area shows the dry season (May–October).

rate univariate approaches (each climate variable is corrected
independently), while the remaining two employ multivariate
approaches (inter-variable relationships are accounted for).
The methods tested range in complexity. The widely used
scaling method applied in this study can correct the mean val-
ues of the variables; however, it cannot adjust variability and
extreme values correctly (see, for example, Berg et al., 2012).
The mean and variance approach therefore builds on the scal-
ing method by correcting both mean and variance. We also
considered two alternative approaches that attempt to correct
the bias based on their distribution, i.e., quantile mapping and
CDF-t. The basic quantile mapping method not only corrects
the mean bias but also adjusts the distribution and may there-
fore be more suitable when both the average and extremes are
studied. Based on quantile mapping, the CDF-t method ad-
ditionally incorporates projected changes in mean and vari-
ability simulated by the GCM. In contrast to the univariate
approaches discussed, multivariate correction methods allow
us to adjust inter-variable dependencies. One of the main dif-

ferences between the dOTC and R2D2 methods applied here
is that dOTC is designed to transfer some of the multidimen-
sional properties from the GCM to the bias-corrected data
(such as the change in time; see François et al., 2020). The
R2D2 approach instead assumes that inter-variable and inter-
site rank correlations are stable in time.

We found that all bias correction methods reduce the aver-
age bias of CTotal to that of the reference run for the five in-
dividual models. When deriving an arithmetic ensemble av-
erage of the raw and bias-corrected results, the values for the
ensemble averages are relatively similar. Correcting the cli-
mate forcing significantly reduces the spread amongst the en-
semble members compared to the raw model forcing. We fur-
ther explored regional differences for Australia in the CTotal
bias compared to our reference run and found that all bias
correction methods reduce the magnitude of the bias. The
spatial patterns in bias were consistent across the bias correc-
tion methods, implying that the relative spatial distribution
of CTotal remains similar. We note that all maps display high
values for both bias and CV in CTotal across the Tropic of
Capricorn (23◦26′10.7′′ S). This is an artifact resulting from
assumed model bioclimatic limits. In LPJ-GUESS, vegeta-
tion growth of C4 grasses and tropical trees is restricted by a
lower temperature boundary such that these vegetation types
cannot establish or survive when the 20-year-average mini-
mum temperature falls below 15.5 ◦C. Therefore, C4 grasses
and tropical trees only grow north of the Tropic of Capri-
corn, while south of it only temperate trees and C3 grasses
are simulated. The strong variation across GCMs in simu-
lated temperature thus leads to very different simulated veg-
etation cover (and thus high CV) in LPJ-GUESS.

In contrast to the average CTotal results, bias-correcting the
forcing CMIP models does not necessarily lead to better re-
sults for other variables simulated by LPJ-GUESS. The dif-
ferent bias correction approaches did not necessarily lead to
improved simulations of the change in CTotal compared to the
target dataset. The arithmetic average across all five bound-
ing models is relatively close to that of the reference run, and
the upper boundary of the model spread was reduced when
bias correction methods were applied. However, the lower
boundary was almost the same or slightly worse than be-
fore (EC-Earth3-Veg). The different biases and magnitudes
in CTotal reflect that the underlying vegetation composition
may vary depending on the CMIP6 ensemble member used
to run LPJ-GUESS and the bias correction method.

The foliar projective cover gives an indication of the fi-
delity of vegetation cover. In LPJ-GUESS, FPC results from
simulated vegetation competition, which in turn is influenced
by the climate input forcing. For example, water-limited re-
gions such as arid Australia will have limited tree growth
and increased grass growth. Further, competitive processes
amongst tree species and C3 and C4 grasses that are driven by
temperature (either dynamically or prescribed) can drive veg-
etation competition and therefore FPC. We found that tem-
perate trees and C4 grasses in particular can vary strongly in
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dominance and relative cover depending on the GCM used
as the input forcing and the bias correction applied. Only the
two multivariate approaches adjust the distribution so that it
is more comparable to the reference dataset and the other
ensemble members. This implies that both the model selec-
tion and the bias correction method can lead to small but po-
tentially important differences in composition of vegetation
distributions across the landscape. Models that show large
differences in the vegetation distribution are also sensitive to
the bias correction for seasonal GPP. For the two models with
the strongest divergence in C4 grass distribution, all bias cor-
rection methods improve the seasonal productivity compared
to the target dataset. However, correcting the climate forcing
also led to a lower skill in predicting seasonal GPP for one
model (LGNorESM2-MM). We also found the foliar projective
cover, especially that of C4 grasses, showed a strong sensi-
tivity to the bias correction method chosen for some mod-
els (e.g., MPI-ESM1-2-HR). However, the spatial patterns in
average bias of CTotal remain relatively consistent across all
bias correction methods tested and show some similarity to
that of the raw model forcing (LGEC-Earth3-Veg, LGKIOST-ESM,
and LGNorESM2-MM). This outcome may emerge as we cor-
rected each grid cell independently. When François et al.
(2020) correct their climate variables taking into account spa-
tial properties, both methods tested here improved the results
for small regional scales. Given the heterogeneity of climate
and large area of the Australian continent, we did not attempt
to correct the spatial scales given limitations in computation
time, but this would be worth exploring in future work.

In summary, within a framework of testing bias correc-
tion methods on the five models spanning the CMIP6 model
spread, we found that the bias correction methods success-
fully reduced the bias to the reference dataset for averages
over time and space (CTotal). Overall, the two multivariate
approaches achieved a stronger reduction in bias for both in-
dividual GCMs and the ensemble average while also present-
ing a lower uncertainty across the ensemble. A clear advan-
tage of applying multivariate approaches is that they account
for inter-variable dependencies and can therefore preserve
the consistency between the climate variables used to drive
LPJ-GUESS. However, the variation across the different cor-
rection methods is small, and value ranges for multivariate
approaches are comparable to the univariate quantile map-
ping approaches. Given the increased computation cost as-
sociated with multivariate approaches and the limited benefit
demonstrated in this study, multivariate bias correction meth-
ods may therefore not necessarily be the best approach in fu-
ture impact studies. Further, all correction methods show lim-
ited impact for other temporal properties (such as the change
over time; e.g., Hagemann et al., 2011; Maurer and Pierce,
2014; Cannon et al., 2015; François et al., 2020). For exam-
ple, Hagemann et al. (2011) found that bias correction does
not necessarily lead to a more realistic climate change signal.
In a different study focusing on precipitation, Maurer and
Pierce (2014) demonstrated that long-term changes in simu-

lated precipitation can artificially deteriorate following quan-
tile mapping. Further, Cannon et al. (2015) find that quantile
mapping approaches can inflate relative trends in precipita-
tion extremes projected by GCMs. The lack of skill in cor-
recting temporal properties was also demonstrated for mul-
tivariate bias correction approaches (François et al., 2020).
Using single models or even a subset of the ensemble may
therefore not inform trends and processes on short timescales
for studies exploring the future carbon cycle. Conversely, ex-
plicitly bias-correcting trends based on historical data, when
the spatiotemporal nature may not yet have clearly emerged,
could equally be problematic for unbiased estimation of cli-
mate system properties like equilibrium climate sensitivity.
Despite the demonstrated limited impact of bias correction
on temporal and spatial scales, correcting the driving forc-
ing is still preferable to using raw climate forcing. DGVMs
largely rely on bioclimatic limits that define where specific
types of vegetation can grow. Relying on a biased climate
forcing dataset might therefore result in a misrepresenta-
tion of the vegetation. Indeed, we found strong differences
in the foliar projective cover of different vegetation groups.
This mismatch in vegetation composition that can result from
threshold-defined boundaries is likely to lead to diverging
carbon and water cycle responses to the climate, which might
be even more pronounced in areas with higher vegetation car-
bon mass than Australia. Future studies could further explore
options to improve temporal features in climate variables.
Robin and Vrac (2021), for example, include time as an ad-
ditional variable for their multivariate bias correction, which
may be a promising avenue for future research.

Climate change impact studies need to be aware of the lim-
itations of bias correction methods. As we have shown, bias
correction cannot solve fundamental deficiencies in GCMs
(Maraun et al., 2017). A possible flaw in applying univariate
bias correction methods to a set of climate variables needed
to force a dynamic vegetation model is a resulting inconsis-
tency within the climate forcing. While all bias correction
methods improve the averages of CTotal compared to the tar-
get dataset, importantly, based on our findings it is not clear
that one method systematically outperforms any other. This
may be because the carbon cycle in Australia is mostly driven
by precipitation, and for vegetation limited by both tem-
perature and precipitation, multivariate approaches may out-
perform univariate approaches more distinctly (Zscheischler
et al., 2019). While the ensemble average is mostly insensi-
tive to the choice of raw or corrected data, the spread between
the outlier models is significantly reduced by any of the cor-
rection methods (especially the quantile mapping approaches
and the multivariate dOTC method). Other temporal proper-
ties, such as the change over time, are not necessarily im-
proved or can even deteriorate compared to the raw climate
forcing, such as the trend, interannual variability or extreme
events. Researchers should be especially cautious when they
rely on a small sub-sample or even single models for their
impact study, given different GCMs can react differently to
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the same bias correction method (e.g., for LGINM-CM4-8, the
magnitude in bias is reduced, while for LGNorESM2-MM the
sign in bias can change depending on correction method ap-
plied).

5.2 Sensitivity to ensemble-averaging methods and
model selection methods

We also tested the commonly used arithmetic ensemble aver-
age, a weighted averaging approach following Bishop and
Abramowitz (2013), and a random forest regression ap-
proach. We found that the weighted average and the ran-
dom forest approach outperform the arithmetic ensemble
average for average CTotal, and seasonal GPP with results
very similar to the reference dataset. The random forest ap-
proach produces a small error magnitude when spatial di-
mensions are explored (see Fig. 5) while for the arithmetic
and weighted ensemble average, systematic biases persist.
While the FPC of tropical trees and C3 grasses seems to be
broadly captured by all averaging methods, C4 grasses shows
a strong bias where only the random forest approach achieves
a median value within the IQR of the LGCRUJRA run. As
shown in previous studies (e.g., Bishop and Abramowitz,
2013; Knutti et al., 2017; Abramowitz et al., 2019; Mer-
rifield et al., 2020) there is benefit to avoiding the use of
the arithmetic ensemble-averaging method for impact stud-
ies. An additional caveat of the arithmetic ensemble average
is the sensitivity to the model selection. The ensemble av-
erage somewhat depends on the models it is derived from.
Counterintuitively, choosing the models that show high skill
in simulating precipitation led to the worst results in most
cases (a result similar to Herger et al., 2018).

5.3 General caveats

All methods explored in this study rely on the general as-
sumption that the reanalyses used to describe the historical
time period are accurate and that the methods employed ap-
ply equally to the past and the future. It seems reasonable to
argue that methods that fail to constrain models in the histor-
ical period are unlikely to work well for future periods. Un-
fortunately, the converse point that methods that work well in
the historical period will necessarily work well in the future
is not always true. Shifts in atmospheric circulation, emer-
gence of novel climates, or the triggering of ecosystem tip-
ping points might alter land–atmosphere feedbacks that lead
to changes in the climate such that methods that are reliable
in the historical period cease to be reliable in the future.

A possible caveat in our study setup is the design of the
ensemble subsets. We selected all models based on the sim-
ulated precipitation based on the assumption that precipita-
tion is the most important driver of Australia’s carbon cycle.
However, temperature and perhaps the extremes of tempera-
ture may also be an important constraint for vegetation dis-
tribution (especially in LPJ-GUESS where vegetation grows

within predefined bioclimatic limits that are based on temper-
ature like the boundary between C3 and C4 grasses). How-
ever, when we repeated the analysis using the raw temper-
ature and incoming shortwave radiation forcing and bias-
corrected precipitation data, the results were almost identi-
cal compared to the runs where all climate variables were
corrected, confirming that precipitation drives the carbon cy-
cle response within this framework. Further, for simulating
vegetation the skill of the variables may be important on
multiple timescales. We attempt to account for this in the
model selection methods by applying the respective metrics
on monthly and annual timescales. In addition, the response
of the simulated terrestrial carbon cycle to the climate forc-
ing is intimately linked to the sensitivity to the atmospheric
CO2 concentration. This study chose a model setup with both
transient atmospheric CO2 concentration and nitrogen depo-
sition, and therefore it does not fully isolate the impact of
the climate forcing. However, given all LPJ-GUESS simu-
lations have the same configuration apart from the climate
forcing, i.e., the prescribed atmospheric CO2 concentration
and nitrogen deposition are identical, we argue that our ex-
periment setup is suitable for this study. Lastly, five mod-
els for all selection methods may seem like a small subset.
However, earlier studies (e.g., Pierce et al., 2009) found that
the multi-model ensemble mean tends to converge towards a
similar value after including five models. We therefore con-
clude that five models was a sufficient number in our testing
framework.

We further chose a relatively short calibration time period
(1989–2010) to allow sensitivity tests with multiple reanaly-
sis datasets. While these 22 years may not cover decadal vari-
ability, we assume it is sufficient to account for interannual
variability such as the El Niño–Southern Oscillation, the In-
dian Ocean Dipole, and Southern Annular Mode, which have
been shown to be important influences on the Australian car-
bon cycle (e.g., Cleverly et al., 2016).

Other areas of uncertainty may include the sensitivity of
the methods to the reference dataset. Several studies have
discussed that both bias correction methods (e.g., Iizumi
et al., 2017; Famien et al., 2018; Casanueva et al., 2020)
and weighted ensemble-averaging methods (e.g., Merrifield
et al., 2020) depend on the observation dataset they are cal-
ibrated on. Casanueva et al. (2020) demonstrate that pre-
cipitation in particular is sensitive to the choice of refer-
ence dataset. We therefore repeated the bias correction and
chose ERA5 as a second dataset. We found high correla-
tion coefficients between LPJ-GUESS runs that are based on
GCMs corrected to CRUJRA and LPJ-GUESS runs that were
based on GCMs corrected to ERA5 for CTotal (0.96–0.98; not
shown here). We conclude that our results were robust to the
choice of reference dataset. Another concern frequently dis-
cussed is impact of the mismatch in spatial resolution (high-
resolution reanalysis product vs. low-resolution GCM out-
put). A solution to reduce the mismatch in spatial resolution
might be to use dynamically downscaled datasets such as
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CORDEX. However, Casanueva et al. (2020) find the impact
of the horizontal resolution on the bias correction results to
be small in comparison to the impact of the bias correction
method. Given dynamically downscaled products were only
available for older CMIP generations (CORDEX is based on
CMIP5, while NarCLIM is based on CMIP3) or contained
only a small subset of GCMs (ISIMIP), and we expected the
uncertainty associated with the spatial mismatch to be small,
we chose the state-of-the-art CMIP6 GCM output.

Further, in this study, we chose just one realization from
each GCM, and therefore the results presented in this study
do not fully reflect the uncertainty in simulations of the ter-
restrial carbon cycle linked to the entire spectrum of possible
GCM forcings. Adding more realizations would significantly
increase the computational costs, and we do not expect that
our results would differ significantly. Ukkola et al. (2020)
looked at the effects of additional ensemble members in their
assessment of future rainfall change and found limited sen-
sitivity. Nevertheless, to fully understand the impact of un-
certainty in simulated climate within individual GCMs, fu-
ture work could consider using the CESM large ensemble. In
addition, Teckentrup et al. (2021) showed significant uncer-
tainty in the simulated terrestrial carbon cycle linked to the
choice of DGVM, but in this study we chose a single DGVM
to study the impact of climate uncertainty. However, to cap-
ture the full uncertainty and to achieve a stronger constraint
on the simulated terrestrial carbon cycle, future work could
explore the response in other members of the TRENDY en-
semble and create an ensemble composed of both different
DGVMs and different GCM climate forcings.

Lastly, we chose to correct daily climate data for the main
analysis. However, correcting monthly data may be statisti-
cally more robust, especially for highly variable climate vari-
ables with a large number of null values such as daily pre-
cipitation. Indeed, our analysis of the corrected input vari-
ables surprisingly showed an increase in bias in simulated
precipitation for two GCMs after correction (see Fig. 3) that
is likely linked to a mismatch in simulated days without
rain in the target dataset and the GCM simulation. We ad-
ditionally tested the importance of timescales; i.e., we bias-
corrected the GCMs on both daily and monthly timescales
before forcing LPJ-GUESS with them. CTotal simulated by
LPJ-GUESS driven by daily and monthly corrected GCM
output was strongly correlated (0.92–0.99; not shown here).
Given only a few grid cells displayed an unreasonably high
bias in precipitation (not shown) and the fact that vegetation
growth is also driven by temperature and incoming shortwave
radiation in LPJ-GUESS, we assume that the impact on the
simulated carbon on monthly to multidecadal timescales is
small.

5.4 Implications

Based on our findings, we conclude that decisions in re-
gard to model selection, bias correction of GCM output,

and ensemble-averaging methods, may alter future projec-
tions of ecosystem studies, especially the uncertainty esti-
mates. Selecting a subset of models to reduce computation
time is common, but sensitive to the criterion chosen for both
arithmetic average and uncertainty estimate. While choosing
GCMs based on how well they represent the historical cli-
mate may seem intuitive, we find that the arithmetic average
based on a subset representing only independent models or
models that define the full ensemble spread reduces the bias
compared to our reference run. Conversely, a subset of only
skilled models reduces the ensemble uncertainty. However,
this reduction in uncertainty may stem from the wrong bio-
physical reasons, and a sub-selection of skilled models might
not truly represent all plausible GCM outputs.

We further demonstrate that correcting GCM output can
significantly alter Australia’s carbon cycle projections. Bias
corrections, however, only reduce the biases in relatively
steady vegetation variables, such as the longer-term carbon
states. Averaged over the continent, we find that LPJ-GUESS
forced with individually corrected GCM output can be sensi-
tive to the bias correction method, but the arithmetic ensem-
ble averages were found to be insensitive. Some bias correc-
tion methods did reduce the ensemble uncertainty more than
others (e.g., scaling vs. dOTC). On smaller scales, i.e., ex-
ploring regional differences or on PFT level, the choice of
bias correction method can have a big influence on species
distribution and magnitude in fluxes. Correcting biases may
also lead to different outcomes relying on thresholds of ab-
solute values when applied to individual GCMs, such as for
climate threshold studies exploring tipping points.

Importantly, bias correction methods do not correct tem-
poral (such as IAV or trend) and spatial properties unless the
methods are specifically designed and set up to do so. We
found that using corrected GCM output can even increase
the distance in change compared to our reference dataset.
Future studies of ecosystem and carbon cycle impacts based
on GCM climate forcing should therefore carefully choose a
subset of models that is representative of the ensemble un-
certainty and not rely on using a single GCM.

To conclude, when Pandora opened the lid on her box
she released the evils of the world, and these could never
be put back into the box. We fear that we have also made
the challenge of constraining the future regional-scale carbon
budgets more difficult. We have, for example, raised more
questions than answers, identified limitations of existing ap-
proaches, and ultimately provided a challenge to the commu-
nity to find more robust strategies to reduce the uncertainty in
the projection of regional carbon stores. We acknowledge we
have not provided easy answers, but we hope that by high-
lighting the challenges, strategies may be developed that can
robustly constrain regional estimates of carbon storage.
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Appendix A

Figure A1. Ranks derived for CMIP6 GCM sub-selection. Panels (a) and (b) show the rank according to the skill of each GCM in simulating
temperature (a) and precipitation (b) on monthly and annual timescales for Australia (compare Table 2 and Sect. 3.1.1). Panels (c) and (d)
show the independence rank of each GCM for temperature (c) and precipitation (d) on monthly and annual timescales (compare Sect. 3.1.2).
Lastly, (e) and (f) show the GCMs defining the ensemble spread, i.e., the GCM simulating the highest and lowest total amount in precipitation
(“averages”), change in precipitation (“change”), and interannual variability (“IAV”; compare Sect. 3.1.3).

Earth Syst. Dynam., 14, 549–576, 2023 https://doi.org/10.5194/esd-14-549-2023



L. Teckentrup et al.: Opening Pandora’s box: how to constrain regional projections of the carbon cycle 569

Figure A2. The 30-year moving average of the change in tempera-
ture (T ) averaged over Australia. In each panel, the bold black line
is the change in T based on the CRUJRA reanalysis, while the grey-
shaded area represents the full unconstrained CMIP6 model ensem-
ble. Panels (a)–(e) show the T change based on the five bounding
models. The colors show the change in T based on the different bias
correction methods. Panel (f) shows the change in T estimated by
the ensemble-averaging methods.

Figure A3. The 30-year moving average of the change in precipita-
tion (pr) averaged over Australia. In each panel, the bold black line
is the change in pr based on the CRUJRA reanalysis, while the grey-
shaded area represents the full unconstrained CMIP6 model ensem-
ble. Panels (a)–(e) show the pr change based on the five bounding
models. The colors show the change in pr based on the different bias
correction methods. Panel (f) shows the change in pr estimated by
the ensemble-averaging methods.
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Figure A4. Difference between the simulated CTotal based on the five bounding models and the CRUJRA reanalysis when LPJ-GUESS is
forced with the raw model forcing or with the corrected forcing following the scaling, MAV, QM, CDF-t, dOTC, and R2D2 approach. The
bottom row shows the different ensemble-averaging methods (arithmetic average, weighted average, and random forest).

Code and data availability. The CMIP6 output used in this
study is available via the Earth System Grid Federation (ESGF,
2023, https://esgf-node.llnl.gov/search/cmip6/). The CRUJRA re-
analysis dataset is accessible via https://catalogue.ceda.ac.uk/uuid/
7f785c0e80aa4df2b39d068ce7351bbb (Harris, 2019). The bias cor-
rection is applied based on the Python SBCK package https://github.
com/yrobink/SBCK (Robin, 2022). The analysis code can be found
at https://doi.org/10.5281/zenodo.7882380 (Teckentrup, 2023).
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