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Abstract. Statistical bias correction (BC) is a widely used tool to post-process climate model biases in heat-
stress impact studies, which are often based on the indices calculated from multiple dependent variables. This
study compares four BC methods (three univariate and one multivariate) with two correction strategies (direct
and indirect) for adjusting two heat-stress indices with different dependencies on temperature and relative hu-
midity using multiple regional climate model simulations over South Korea. It would be helpful for reducing
the ambiguity involved in the practical application of BC for climate modeling and end-user communities. Our
results demonstrate that the multivariate approach can improve the corrected inter-variable dependence, which
benefits the indirect correction of heat-stress indices depending on the adjustment of individual components,
especially those indices relying equally on multiple drivers. On the other hand, the direct correction of multi-
variate indices using the quantile delta mapping univariate approach can also produce a comparable performance
in the corrected heat-stress indices. However, our results also indicate that attention should be paid to the non-
stationarity of bias brought by climate sensitivity in the modeled data, which may affect the bias-corrected results
unsystematically. Careful interpretation of the correction process is required for an accurate heat-stress impact
assessment.
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1 Introduction

Climate models unavoidably produce biased representations
of the simulated variables, and it is more problematic not to
know how these biases translate into the modeled response
to external forcings such as the CO2 concentration, which
is known to be responsible for global warming. Therefore,
statistical bias correction (BC) of climate model outputs has
been progressively adopted as a standard procedure to im-
prove their performance, in particular when feeding them
into various climate change impact assessments (e.g., G. Kim
et al., 2020; Kim et al., 2022; Masaki et al., 2015; Qiu et
al., 2022; Schwingshackl et al., 2021). Indeed, the visible
benefits archived by adjusting simple statistics (e.g., mean,
variance) have led to the wide application of BC. A signif-
icant body of research demonstrated that the systematic bi-
ases observed in the long-term pattern of the current climate
can be well eliminated even when using a very simple tech-
nique (e.g., linear scaling). However, the effectiveness of BC
methods and their improper assumptions (e.g., statistical sta-
tionarity) remain a topic for debate (Maraun et al., 2017).
For example, the non-stationary model bias and the large
monthly/seasonal correction factor can potentially degrade
the BC’s performance, particularly with respect to mislead-
ing interpretations of extremes (Chen et al., 2021; Lee et al.,
2019). Meanwhile, the choice of BC approaches in differ-
ent contexts (e.g., heat-stress impact study, hydrological im-
pact study, adjustment of boundary conditions in downscal-
ing) needs careful assessment on a case-by-case basis (Ehret
et al., 2012; Rocheta et al., 2017; Kim et al., 2022; Zscheis-
chler et al., 2019).

A variety of BC methods with different levels of complex-
ity and performance have been developed and implemented
for both global and regional climate simulations (François et
al., 2020; Teutschbein and Seibert, 2012; Kim et al., 2021).
Generally, their aim is to correct certain features in the tar-
get’s distribution, such as the simple statistics of the mean
(linear scaling, LS; Teutschbein and Seibert, 2012) and vari-
ance (variance scaling, VA; Chen and Dudhia, 2001) or the
more advanced quantiles (quantile mapping, QM) for adjust-
ing the entire distribution by parametric (PQM) or empirical
(EQM) transformation (Switanek et al., 2017; Gudmunds-
son et al., 2012). Continuous efforts have also been made to
eliminate the drawbacks of existing BC approaches. Quan-
tile delta mapping (QDM; Cannon et al., 2015), for exam-
ple, is designed to explicitly preserve the long-term trend that
may be artificially distorted in QM. Nonetheless, all the ap-
proaches described above correct bias in a univariate context.
They cannot adjust the inter-variable dependencies, which
are important for representing physical processes and esti-
mating compound hazards. It was not until quite recently that
the multivariate BC technique was considered and proposed
(e.g., Bárdossy and Pegram, 2012; Cannon, 2018; Mehrotra
and Sharma, 2015, 2016; Robin et al., 2019; Vrac, 2018),
and they have been applied to various climate change impact

studies (Zscheischler et al., 2019; Qiu et al., 2022; Meyer et
al., 2019; Dieng et al., 2022). Although it is intuitively rec-
ognized that multivariate BC could be more suitable for deal-
ing with climate variables characterized by a strong physical
linkage in nature, an unambiguous assessment of univariate
and multivariate BC methods is essential to understand the
potential limitations of individual methods and to avoid mis-
leading application.

Despite the BC method used, when correcting the multi-
variate indices representing compound hazards, the index can
also be either directly adjusted using BC techniques, as in the
majority of studies (Schwingshackl et al., 2021; Kang et al.,
2019; Coffel et al., 2017), or indirectly corrected so that its
components are individually corrected prior to the index cal-
culation (Casanueva et al., 2019; Zscheischler et al., 2019).
In this regard, there have been few systematic comparisons of
how the direct and indirect use of univariate and multivariate
BC methods, respectively, affect the multivariate indices’ ad-
justment. Only Casanueva et al. (2018) tested the direct and
indirect use of EQM in correcting the multivariate fire danger
index, while several studies compared the indirect use of uni-
variate and multivariate BC methods in impact assessments
(e.g., Cannon, 2018; François et al., 2020; Zscheischler et al.,
2019). Although Casanueva et al. (2018) pointed out that the
direct application of EQM outperforms the indirect one, how
it compares with the multivariate BC method remains un-
known. Therefore, there is room for a more comprehensive
assessment of the effects of univariate and multivariate BC
under direct and indirect application strategies, which may
vary along with the dependence structure of the multivariate
indices and may affect correction efficiency since the multi-
variate approach has a higher computation cost.

In this study, we investigate the effects of different BC
methods (univariate vs. multivariate) applied with different
strategies (direct vs. indirect) on the statistical adjustment of
heat-stress indices that represent the combined effect of hu-
man exposure to temperature (T ) and relative humidity (RH),
using regionally tailored, fine-scale climate information in
Korea from multiple regional climate models (RCMs). The
extreme heat is one of the most critical impacts of climate
change, and we adopt two heat-stress indices with different
sensitivities to humidity (Sherwood, 2018), namely wet-bulb
globe temperature (WBGT) and apparent temperature (AT).
A comparative assessment of the two indices derived from
different BC methods and different strategies will provide
valuable insights into understanding how the relationship be-
tween heat-stress index and its drivers (e.g., T and RH) af-
fects the performance of univariate and multivariate BC for
modeled heat stress. This study will be helpful for reducing
the ambiguity involved in the practical application of BC for
climate modeling as well as end-user communities.
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2 Data and methods

2.1 Data

The 3-hourly data used for BC are the near-surface T and RH
during the historical period (1979–2014) generated by five
RCMs (Table S1 in the Supplement) over the CORDEX-East
Asia domain (Lee et al., 2020). It is the dynamical down-
scaling product of the UK Earth System Model (UKESM) in
Coupled Model Intercomparison Project Phase 6 (CMIP6).
The same variables from ERA5 reanalysis (Hersbach et al.,
2023) during the same period are adopted as the observation
for BC and validation procedures. For consistency, the vari-
ables from all RCMs are first interpolated spatially onto the
0.25◦× 0.25◦ regular latitude–longitude grid of ERA5 and
temporally interpolated onto a standard Gregorian calendar.
The analysis focuses only on the land area in South Korea.

2.2 Heat-stress indices

Two popular heat-stress indices are evaluated in this study:
WBGT (ACSM, 1984) and AT (Steadman, 1984). There are
several different formulations for both indices, and we em-
ploy the versions using only T and RH as input variables (i.e.,
the simplified WBGT and the AT without the wind effect;
Eqs. 1–3). Although both indices are calculated as a function
of T and RH, their T /RH dependences are different (Fig. 1).
WBGT is more evenly dependent on T and RH, whereas AT
relies mostly on T . Also, each index has strengths and limits
in evaluating heat-stress impacts (Sherwood, 2018; Schwing-
shackl et al., 2021); thus, they are selected for a more com-
prehensive evaluation of BC techniques’ applicability.

WBGT= 0.567T + 0.393e+ 3.94 (1)
AT= 0.92T + 0.22e− 1.3 (2)

T is the near-surface temperature in degrees Celsius, and RH
is the near-surface relative humidity in percent; e is the vapor
pressure (hPa) that can be calculated by

e =

(
RH
100

)
× 6.105exp

(
17.27T

237.7+ T

)
. (3)

All 3-hourly data are used for the BC procedure, but the
daily maximum of WBGT/AT during summer (June–July–
August, JJA), together with the T and RH at the correspond-
ing time, are selected for analysis in order to facilitate the use
of heat-stress impact studies.

2.3 Bias correction

The principle of BC is to use observations to calibrate the
simulated output (e.g., climate model output). In this study,
four BC methods are applied, including LS, VA, QDM, and
a multivariate BC algorithm with an N -dimensional prob-
ability density function (MBCn). Information on each BC

Figure 1. Contours lines of equal-level heat-stress indicators:
WBGT (red) and AT (blue).

approach is provided in the Supplement. The four transfor-
mation algorithms cover a varying range of complexity, with
MBCn being selected as an example of multivariate correc-
tion methods and the trend-preserving QDM being a more
“advanced” member of the QM family. Several different mul-
tivariate BC methods have been developed recently based
on different statistical techniques and/or assumptions (e.g.,
rank resampling for distributions and dependences (R2D2;
Vrac, 2018), matrix recorrelation (MRec; Bárdossy and Pe-
gram, 2012)). Different multivariate methods have their pros
and cons, depending on the varying perspectives considered
(François et al., 2020). The MBCn adopted here is based
on an image processing algorithm that repeatedly rotates the
multivariate matrices and applies QDM correction on indi-
vidual variables until the multivariate distribution is matched
to observation. It is selected in this study not only due to its
wide application in various kinds of climate studies; more
importantly, it facilitates the comparison with the univariate
QDM as it is built on the latter.

During the BC process, univariate BC methods are applied
to T , RH, and WBGT/AT, respectively, after WBGT/AT has
been calculated from the original RCM output (ORI). For
MBCn, the multivariate approach is applied simultaneously
to T , RH, and WBGT (or T , RH, and AT). As the 3-hourly
data are adopted, BCs are applied separately to each 3 h in-
terval in each calendar month (e.g., June, 00:00 UTC). The
direct correction of heat-stress levels is defined as WBGT/AT
directly adjusted by BC, while the levels calculated from the
bias-corrected T and RH are treated as an indirect correction
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of the heat-stress indices (marked as WBGT′/TW′). ENS is
the unweighted ensemble mean of the five RCM models.

As an illustrative example, Fig. 2 provides the quantile–
quantile plots of the WBGT corrected using various ap-
proaches for one grid point from one RCM during 1979–
1996. ORI shows a cold bias inherited from the driving
global climate model (GCM; M.-K. Kim et al., 2020), lead-
ing to a notable underestimation over the entire distribution
compared to ERA5. For the direct correction of WBGT, LS
reduces the cold bias, but with a non-negligible overestima-
tion, especially in the range of 30–32.5 ◦C. This is due to the
asymmetric distribution of T being corrected with a single
correction coefficient taken only from the monthly mean. VA,
on the other hand, provides a significant improvement by ad-
ditionally taking the variance into account. QDM, equivalent
to EQM for the calibration period, manages to show a perfect
match with ERA5 across all the quantiles since the empirical
distribution is designed to fit the observation. However, mov-
ing to the WBGT′ obtained from the corrected T and RH,
all univariate BC approaches show a degraded performance,
while only MBCn retains a qualified correction output. The
MBCn’s algorithm ensures that the observed multivariate re-
lations (e.g., the T –RH–WBGT pairwise dependency) are re-
flected in the corrected distribution, resulting in a better indi-
rect correction outcome.

For cross-validation of the BC methods, we use a his-
torical period of 1979–2014 and adopt the “jack-knifing”
split-sample test that first splits the historical period into two
halves and uses one part for calibration and the other for
validation, and then we reverse the two parts systematically
(Refsgaard et al., 2014). Specifically, the 18-year period of
1979–1996 is first set as the calibration part with the period
of 1997–2014 as the validation part; then, the periods are
swapped using 1997–2014 for calibration and 1979–1996 for
validation. For each test, the ERA5 data in the correspond-
ing calibration period are used to obtain the correcting al-
gorithms that are then applied to the validation period. To
distinguish the two tests, the one using 1997–2014 for cal-
ibration is marked with a letter “r”, standing for “reverse”,
and the default is the one using 1979–1996 for calibration.
The statistical metrics used for evaluation are noted in the
Supplement.

3 Results

Figure 3 presents the performance of WBGT and AT in ORI
simulations. Substantial bias can be seen across the entire
distribution of the heat-stress indices. For 1979–1996, both
WBGT and AT generally exhibit a cold bias covering the
whole domain. There is more bias in the bottom and top 15 %
of the distribution, but the bias of WBGT is more skewed to
the left tail, whereas that of AT is more skewed to the right.
Taking the 90th percentile (90p) as an indicator representing
heat events, Fig. 3b and c show a greater cold bias in the low-

elevation regions (e.g., basins in southeastern Korea), where
an RCM with a spatial resolution of around 20 km is highly
unlikely to capture the local high temperatures owing to an
inadequate representation of topography (Qiu et al., 2020).
For 1997–2014, however, i.e., the next 18 years within the
historical period, the cold bias is systematically reduced, with
a certain area even displaying a slight warm bias. This can be
explained by the high climate sensitivity in the driving GCM
(i.e., UKESM; Zelinka et al., 2020), leading to a different
level of warming between the simulations and ERA5 during
this historical period. According to Fig. 3d and e, the model
shows around 0.5 ◦C more warming than ERA5 between the
two periods, which could in turn “compensate” for the mod-
els’ cold bias and result in a reduced bias in 1997–2014.
However, while the biased presentation of the heat-stress in-
dices emphasizes the necessity of BC application, the differ-
ence in bias between the two historical periods underscores
the need for caution when using and interpreting BC output
in climate models since BC is built on the fundamental as-
sumption of stationary bias (Teutschbein and Seibert, 2012).
In particular, the combined bias from climate representation
and the long-term trend may amplify the non-stationarity of
model biases, thereby causing potential problems in the BC
output.

Figure 4 shows the median absolute error (MAE; Eq. S2 in
the Supplement) over South Korea (land only) in all RCMs
after BC using different methods. Two indicators – the 90p
and the mean of monthly maximum (MMX) – are selected
to represent extreme heat events. The diamonds standing for
ENS are marked for ease of comparison. During the calibra-
tion period, LS, as the simplest BC approach used in this
study, shows the largest bias among the four methods. For
direct correction of WBGT, the other four methods have a
reasonable MAE of less than 0.25 ◦C in the 90p and less
than 0.5 ◦C in the MMX for ENS, with QDM slightly outper-
forming the VA and MBCn approaches. For the indirect cor-
rection, however, there is more variability among the meth-
ods and a larger bias than the direct correction. In this case,
while LS still shows the worst performance, QDM presents
a degraded performance, with the MAE for WBGT′ reach-
ing 0.6 and 1.2 ◦C in the 90p and MMX, respectively. Sur-
prisingly, VA outperforms the more advanced QM methods
(i.e., QDM) in ENS, indicating the complexity of using uni-
variate approaches to apply an indirect correction for multi-
variate hazards. In this case, the multivariate approach, i.e.,
MBCn, clearly demonstrates its strengths in such indirect
correction, regardless of the indicators or periods consid-
ered. MBCn performs comparably to the direct correction of
QDM during the calibration period; however, for the valida-
tion period, MBCn surpasses direct correction with an MAE
of roughly 0.5 ◦C for both the 90p and MMX. In addition,
MBCn shows less variability among the RCMs in WBGT′.
For example, the range of MAE for WBGT′ during the cal-
ibration period as corrected by QDM is 0.38–1.23 ◦C, while
that corrected by MBCn is 0.12–0.14 ◦C.
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Figure 2. The quantile–quantile plots of ORI (blue) and data after BC (red) adjusted by (a, e) LS, (b, f) VA, (c, g) QDM, and (d, h) MBCn.
The x axis is for quantiles from ERA5, and the y axis is for quantiles from model simulations; the unit is ◦C. Panels (a)–(d) are WBGT from
direct correction, and (e)–(h) are WBGT′ from indirect correction (calculated from directed T and RH). The data are from one point in the
GRIMs model (one of the five RCMs) over South Korea land during the calibration period.

Figure 3. (a) Root mean square error (RMSE; Eq. S1 in the Supplement) over the land area of South Korea in percentiles 1–99 during 1979–
1996 (blue) and 1997–2014 (red). The lines and shading indicate the median and the range, respectively, of the five RCMs. (b, c) Spatial
map of the bias in the 90p from ENS during the calibration (C; 1979–1996) and validation (V; 1997–2014) period, respectively. (d, e) The
difference between the validation and the calibration period in 90p from ENS and ERA5, respectively. The upper row is for WBGT, and the
lower row is for AT.

Similar results are found in AT and AT′ according to
Fig. 4e–h. However, for the indirect correction of AT′, the
weakness of QDM is less significant, and the advantage of
MBCn is also weakened compared to WBGT′. The ability to
additionally correct the multivariate dependency despite their
individual distributions leads to a better result in the indirect
correction of the heat-stress indices, which are functions of

T and RH. In this case, since AT is more reliant than WBGT
on T , the effect of correcting T –RH interdependence is less
critical to its correction outcome. On the other hand, because
T and RH both play important roles in WBGT, multivariate
BC is more likely to demonstrate its importance in this case.
Not surprisingly, the performances of different BC methods
are retained in the reverse test, although with different magni-
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Figure 4. The MAE over South Korea (land only) for the calibration period (1979–1996, x axis) and validation period (1997–2014, y axis)
in terms of the (a, b, e, f) 90p and (c, d, g, h) MMX from (a, c) WBGT, (c, d) WBGT′, (e, f) TW, and (g, h) TW′. The different colors stand
for different BC methods, and the different markers stand for different RCMs.

tudes of MAE (Fig. S1 in the Supplement). MBCn shows an
even better performance in this case, outperforming all other
methods despite the heat indices and matrices considered.

To assess the quantitative differences in the marginal dis-
tributions corrected by different BC methods, Fig. 5a, b, e,
and f present the maximum differences calculated from the
Kolmogorov–Smirnov (K–S) test (Eq. S3) between the ob-
served (i.e., ERA5) and bias-corrected empirical cumulative
distribution functions (CDFs). A smaller value stands for a
better correction output. For the direct correction, QDM and
MBCn show better performances than LS and VA across all
the indices and matrices considered. However, for indirect
correction, MBCn shows its unique advantage in the multi-
variate index, depending unequally on the components (i.e.,
WBGT′ in this study), in that it can provide a similarly good
result in either the direct or indirect correction. In this as-
pect, QDM shows the largest difference between the direct
and indirect applications. Figure 5c, d, g, and f show the D
value calculated between outputs from direct and indirect ap-
plications of the same BC method, and a smaller value stands
for more similar outputs. This clearly indicates a higher sim-
ilarity seen in the multivariate method than the univariate
methods in WBGT, as MBCn successfully retains the inter-
variable dependence during the correction procedure.

Figure 6 investigates the spatial distribution of bias in the
QDM and MBCn corrections, using the 90p as an example
for WBGT and AT. A similar pattern can also be seen in the
case of MMX (Fig. S3). For the calibration period, the bi-

ases are well reduced to less than 0.5 ◦C, with only indirect
correction by QDM showing a warm bias in the southeast-
ern part. Specifically, the resultant bias magnitude from in-
direct QDM correction is even larger than in ORI (Fig. 3b)
over southeastern Korea. The spatial pattern of the warm bias
persists in the validation period, although with greater mag-
nitude, which can be explained by the different bias magni-
tudes for the two periods in ORI simulations. This behav-
ior is seen in both WBGT and AT, but more strongly in
WBGT, which is more affected by the T –RH dependency.
The overall cold bias in the model simulations during the
calibration period must result in a positive correction coef-
ficient (i.e., towards a warmer condition). However, as dis-
cussed above, a reduced cold bias in the RCMs is seen in the
validation period because of overestimated warming in the
models. Such a “trimmed” bias in the validation period may
be over-corrected by the correction coefficient derived from
the calibration period, even causing a larger bias than in ORI
over the eastern part of the country, with a warm bias in the
validation period. The results from the reverse test (Figs. 7
and S4) can further prove the impact of non-stationary bias
on the result. In this case, the validation period of 1979–1996
retains a cold bias after BC for the reason that the correction
coefficient derived in 1997–2014 is not large enough to com-
pensate for its negative bias. Again, this highlights the impor-
tance of the careful interpretation of bias-corrected climate
data, especially in the context of future warming projections.
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Figure 5. K–S test D value between bias-corrected output and observation for (a, e) 90p and (b, f) MMX and between direct and indirect
corrected output for (c, g) 90p and (d, h) MMX. The D value is the ensemble mean of five RCMs averaged over South Korea (land only).
The different colors stand for different BC methods. Panels (a)–(d) are for the calibration period (C), and (e)–(h) are for the validation period
(V). In (a), (b), (e), and (f), the solid and patterned fill is for the direct and indirect BC, respectively.

Figure 6. Spatial maps of the bias in the 90p during the calibration
period (C) and validation (V) period corrected by QDM and MBCn
in ENS. The first and third rows are the directly corrected WBGT
and AT. The second and fourth rows are the WBGT′ and AT′ calcu-
lated by the corrected T and RH.

Figure 7. Same as Fig. 6 but for the reverse test.
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Figure 8. Spatial patterns of T vs. RH Spearman’s rank correlation (α = 001) computed in each grid cell during the calibration (rows 1 and
3) and validation (rows 2 and 4) period. Column (a) shows the results from ORI simulations. Columns (b) and (d) are the heat-stress indices
directly corrected by QDM and MBCn. Columns (c) and (e) are the heat-stress indices indirectly corrected by QDM and MBCn. Column (f)
is from ERA5.

On the other hand, the spatial maps of bias also clearly
demonstrate the superiority of MBCn for the indirect correc-
tion of the heat-stress indices over the entire domain in both
the calibration and validation periods. Since the heat-stress
indices are functions of T and RH, we investigate the T vs.
RH Spearman’s rank correlation at a confidence interval of
99 % using daily T and RH at the time when the heat-stress
indices reach their daily maxima (Fig. 8). ERA5 shows a neg-
ative correlation ranging from −0.4 to −0.6 that gradually
increases from northeast to southwest. Comparatively, ORI
has a significantly weaker negative correlation and does not
adequately reflect the spatial gradient. The correction with
QDM, even with the good outcome in the direct correction
of the heat-stress indices, cannot properly present the T –RH
relation. In fact, it even further weakens their correlation dur-
ing the calibration period. In contrast, MBCn calibrates the
multivariate dependency according to the observed correla-
tion pattern, which explains why it significantly improves the
correction of WBGT′ and AT′. The correlation derived from
the calibration period is also passed to the validation period
by MBCn, which in this case shows no significant change
between the two historical periods according to ERA5.

4 Discussion and conclusion

Previous studies have challenged the applicability of univari-
ate BC for adjusting individual components of multivariate
hazard indicators and proved the benefit of multivariate BC in
compound event evaluations (François et al., 2020; Zscheis-
chler et al., 2019). Our study also demonstrates MBCn’s
advantage in correcting the interdependence of the relevant
variables, which results in a substantial improvement in the
indirect BC of heat-stress indices. Such an advantage is more
prominent for the index relying more equally on the compos-
ing variables (e.g., WBGT), which was also pointed out by
Zscheischler et al. (2019). However, to the best of our knowl-
edge, no study has been conducted to compare the multivari-
ate BC methods with the direct application of univariate BC
on multivariate indices. Our results show that QDM applied
directly to the multivariate indices can provide a similar re-
sult to MBCn in heat-stress assessments, while MBCn addi-
tionally provides a more reasonable underlying inter-variable
dependence. In this regard, if only considering heat-stress in-
dices, the more computationally efficient direct QDM correc-
tion may be sufficient for the impact assessment. However, if
the relationship between T /RH and the heat-related impacts
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is of interest, the multivariate BC is suggested for maintain-
ing the physical linkage of the variables.

On the other hand, regarding the study of heat stress un-
der future warming that is not evaluated in this study, more
aspects should be considered. This study uses historical cli-
mate simulations comprising non-stationarity combined with
two “jack-knifing” split-sample tests. It is found that the
non-stationarity of bias in the modeled heat-stress indices,
as combined effects of internal climate variability and cli-
mate model sensitivity, can significantly affect the BC output.
Teutschbein and Seibert (2012) once suggested that the more
advanced correction methods (e.g., QM) are more robust to
a non-stationary bias compared to the simpler ones (e.g.,
LS), but our result shows no significant difference. In fact,
lying under the fundamental assumption of stationary bias,
current BC approaches may not be able to provide a suit-
able solution to this issue. Therefore, a case-by-case evalua-
tion of BC approaches for a certain climate model and study
area, as well as a clear understanding of the relevant pro-
cesses including the uncertainties underlying original model
data, is required for reliable data post-processing using BC
methods. Meanwhile, for the continuous development in fu-
ture projections of multivariate heat-stress indices, there are
also potential problems worth investigating. For example, we
may need to consider whether there is any substantial change
in the modeled multivariate dependence structure, which is
also highly likely under global warming (Singh et al., 2021;
Hao et al., 2019). Although both QDM and MBCn are sup-
posed to preserve the simulated trend in the corrected vari-
ables, MBCn, as well as other multivariate BC methods, does
not consider the change in the multivariate relationships. In
this regard, the direct correction of QDM may outperform
MBCn. However, as direct correction of QDM may discard
the physical consistency in the input variables, in terms of
both the variable representation and the projected change, it
can hide the compensating bias (Schwingshackl et al., 2021)
and thus introduce additional uncertainty in climate change
signal (Casanueva et al., 2018) in the multivariate heat-stress
indices. To solve these problems, a deeper understanding and
continuous enhancement in climate models, particularly for
the uncertainty and credibility of projections, may be prereq-
uisites for better evaluation and application of the statistical
procedures (i.e., BC approaches).

Code and data availability. Near-surface temperature and rela-
tive humidity data from the CORDEX-East domain downscaling
product used in this study are archived in the institutional reposi-
tory at https://doi.org/10.14711/dataset/GTXJVQ (Qiu et al., 2023).
ERA5 hourly data on single levels are downloaded from the Cli-
mate Data Store via https://doi.org/10.24381/cds.adbb2d47 (Hers-
bach et al., 2023; ERA5 hourly data on single levels from 1979
to present). The R package “qmap” (https://CRAN.R-project.org/
package=qmap; Gudmundsson, 2016) is used for applying EQM
and QDM, and the R package “MBC” (https://CRAN.R-project.

org/package=MBC; Cannon, 2020) is used for applying MBCn. The
Climate Data Operators (CDO) open-source package is used for
(1) computations in LS and VA, (2) temporal and spatial correla-
tion, and (3) statistical analysis.
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