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Abstract. Planning for the impacts of climate change requires accurate projections by Earth system models
(ESMs). ESMs, as developed by many research centres, estimate changes to weather and climate as atmospheric
greenhouse gases (GHGs) rise, and they inform the influential Intergovernmental Panel on Climate Change
(IPCC) reports. ESMs are advancing the understanding of key climate system attributes. However, there remain
substantial inter-ESM differences in their estimates of future meteorological change, even for a common GHG
trajectory, and such differences make adaptation planning difficult. Until recently, the primary approach to re-
ducing projection uncertainty has been to place an emphasis on simulations that best describe the contemporary
climate. Yet a model that performs well for present-day atmospheric GHG levels may not necessarily be accurate
for higher GHG levels and vice versa.

A relatively new approach of emergent constraints (ECs) is gaining much attention as a technique to remove
uncertainty between climate models. This method involves searching for an inter-ESM link between a quantity
that we can also measure now and a second quantity of major importance for describing future climate. Combin-
ing the contemporary measurement with this relationship refines the future projection. Identified ECs exist for
thermal, hydrological and geochemical cycles of the climate system. As ECs grow in influence on climate policy,
the method is under intense scrutiny, creating a requirement to understand them better. We hypothesise that as
many Earth system components vary in both space and time, their behaviours often satisfy large-scale differen-
tial equations (DEs). Such DEs are valid at coarser scales than the equations coded in ESMs which capture finer
high-resolution grid-box-scale effects. We suggest that many ECs link to such effective hidden DEs implicit in
ESMs and that aggregate small-scale features. An EC may exist because its two quantities depend similarly on an
ESM-specific internal bulk parameter in such a DE, with measurements constraining and revealing its (implicit)
value. Alternatively, well-established process understanding coded at the ESM grid box scale, when aggregated,
may generate a bulk parameter with a common “emergent” value across all ESMs. This single emerging param-
eter may link uncertainties in a contemporary climate driver to those of a climate-related property of interest. In
these circumstances, the EC combined with a measurement of the driver that is uncertain constrains the estimate
of the climate-related quantity. We offer simple illustrative examples of these concepts with generic DEs but with
their solutions placed in a conceptual EC framework.
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1 Introduction

Earth system models (ESMs) are a key pillar of climate
research and provide predictions of global environmental
change due to burning fossil fuels. Projections by ESMs
strongly inform the reports of the Intergovernmental Panel
on Climate Change (e.g. IPCC, 2013, 2021) and influence
climate policy. These models consist of solving, on numer-
ical meshes, discretised differential equations that describe
the evolution of the atmosphere, oceans, land and cryosphere
and their interactions. In addition to physical processes, these
models have evolved to emulate key global geochemical cy-
cles. ESMs are typically forced with prescribed values of his-
torical atmospheric greenhouse gas (GHG) concentrations,
followed by a range of scenarios for their future levels (e.g.
Meinshausen et al., 2011). This process estimates how the
planetary climate system responds to altered atmospheric gas
composition. Alternatively, an ESM can be forced with CO2
emissions scenarios (e.g. Cox et al., 2000), if the ESM has
a complete description of the global carbon cycle. A major
achievement of the scientific community is the pooling of cli-
mate model projections from different research centres into
common Coupled Model Intercomparison Project (CMIP)
databases such as CMIP5 (Taylor et al., 2012) and CMIP6
(Eyring et al., 2016). CMIP databases also hold simulations
with forcings held at pre-industrial levels to test ESM stabil-
ity and characterise their representation of natural variability.
Furthermore, there exist illustrative idealised ESM experi-
ments, to determine the response to a continuous cumulative
1 % per annum increase in atmospheric CO2, or to an abrupt
jump by a factor of 4 in CO2 from pre-industrial levels.

Almost all parts of the climate system vary in both space
and time. Hence partial differential equations (PDEs) are
solved for evolving temporal variations on the spatial numer-
ical mesh particular to any ESM. Many of these PDEs central
to understanding the climate system are well-established, as
described in standard textbooks on atmospheric and oceanic
behaviours (e.g. Vallis, 2017). However, for the same future
GHG scenario, analyses of the CMIP databases reveal signif-
icant inter-ESM differences between projections of even fun-
damental quantities such as the level of global warming (Lee
et al., 2021). As standard equations are frequently solved
in ESMs, a valid question is why are ESM projections of-
ten so different? The simplest answer is that some processes
are still not fully understood and are therefore parameterised
differently between ESMs. Components frequently noted in
this category are the modelling of cloud–climate interactions
(e.g. Bony et al., 2015) and how aerosols act in modulat-
ing global temperature rise (e.g. Bellouin et al., 2020). A
secondary source of uncertainty is the dependence of pro-
cess parameterisation on grid box resolution. Larger indi-
vidual grid boxes (i.e. a coarser numerical grid) often need
effective parameterisation of sub-grid processes, and vari-
ation in this may cause inter-ESM differences. Numerical
tests with extremely high-resolution models allow the ex-

plicit representation of convection (“convection permitting”;
e.g. Clark et al., 2016) and verify its importance in describ-
ing local rainfall characteristics. However, while very high
resolutions are achievable in weather forecast models, com-
putational speed precludes their routine operation for ESMs
designed to simulate century timescales.

Unfortunately, the considerable variation in model esti-
mates of future climate change makes societal adaptation
planning difficult. Such discrepancies can be used by some
to discredit the overall notion of a human influence on cli-
mate. One possibility to lower inter-ESM spread is to rank
models by their ability to describe the contemporary climate
and known recent changes (e.g. Knutti et al., 2017). ESMs
regarded as the most reliable at describing expected future
change are those that perform best at simulating the recent
past. However, this can be a subjective activity, depending
on selected datasets for comparison and geographical loca-
tion analysed. Furthermore, there is a risk of downrating a
model that performs poorly for the present day yet accurately
projects a future change of concern to society.

Recently a technique called “emergent constraints” (ECs)
has gained prominence as a new method to reduce the spread
between the projections by different ESMs. The EC method
capitalises on discovered relationships between two quanti-
ties calculated by climate models when considering estimates
of each from across many ESMs. One variable is an attribute
of the climate system for the present day or historical period,
for which observationally based data also exist. The second
variable, for which data are unavailable, is often a feature of
the evolving climate system and is informative for climate
policy. For example, this second variable may be an inter-
nal sensitivity of the climate system that determines changes
to mean meteorological conditions as GHGs rise. Alterna-
tively, it can be the direct estimate of some feature of climate
change (e.g. an aspect of near-surface meteorology) corre-
sponding to specific future higher GHG levels. Measurement
of the first quantity, in combination with the discovered inter-
ESM link between the two variables (i.e. the EC), provides
the constraint on the magnitude of the second unknown vari-
able.

The first applications of the EC technique were to con-
strain estimates of transient climate response (TCR) and
mean precipitation changes for different warming levels
(Allen and Ingram, 2002) and to refine estimates of large-
scale snow albedo feedbacks in a warming world (Hall
and Qu, 2006). Since then, the EC method has lowered
uncertainty in a substantial number of components of the
Earth system (Hall et al., 2019) and including for funda-
mental climate quantities such as equilibrium climate sen-
sitivity (ECS) (e.g. Cox et al., 2018). Other researchers
have provided EC-based estimates of both ECS and TCR
(Jimenez-de-la Cuesta and Mauritsen, 2019; Nijsse et al.,
2020; Tokarska et al., 2020). Applications of ECs to phys-
ical parts of the Earth system have included cloud feed-
backs (e.g. Klein and Hall, 2015), as well as components of
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global geochemical cycles. ECs on aspects of geochemi-
cal cycles include constraining the expected level of ocean
acidification (Terhaar et al., 2020), marine primary produc-
tivity (Kwiatkowski et al., 2017) and soil carbon turnover
(Varney et al., 2020). Notable is that for many discovered
ECs, the modelled quantity that is also measured during the
contemporary period is often a high-frequency statistic or
attribute of the climate system. The EC relates this quan-
tity that fluctuates at shorter timescales to a longer-term at-
tribute of the Earth system relevant to projecting how cli-
mate will respond to rising GHG concentrations. The ability
of ECs to use knowledge of contemporary high-frequency
variations to constrain understanding of expected future cli-
mate change highlights how ignoring fluctuations at short
timescales may constitute disregarding valuable information.
The EC approach, therefore, offers an interesting comparison
to the method of weighting ESMs by simply comparing their
projections of present-day trends against measurements, es-
pecially as the latter method often neglects short-timescale
variations about such trends.

With ECs becoming ubiquitous in climate research and
with their potential to enable better decisions on GHG emis-
sions trajectories that avoid dangerous change, it is appropri-
ate that the method is placed on a stronger scientific basis.
Some recent papers review the EC method, highlighting its
capability and listing a set of potential pitfalls. For instance,
Williamson et al. (2021) identify a particularly broad range
of discussion points related to ECs, all framed in their appli-
cation to refining estimates of ECS. Further critiques of the
EC method exist in the context of the terrestrial carbon cy-
cle (Winkler et al., 2019), Arctic warming (Bracegirdle and
Stephenson, 2012) and ECS (Caldwell et al., 2018) – all note
potential issues that could result in incorrect bounds on future
estimates of change. Schlund et al. (2020) test the robustness
of proposed emergent constraints by out-of-sample testing
on a different model ensemble. These researchers found that
emergent constraints on ECS, developed using the CMIP5
ensemble, do not provide useful constraints on ECS in the
CMIP6 models. These ECs, therefore, fail to be “confirmed”
(Hall et al., 2019). Fasullo et al. (2015) also discuss whether
it is expected that ECs hold across different generations of
ESMs. Those authors argue that additional processes identi-
fied as important but uncertain, and introduced to newer en-
sembles, could generate ECs that make different predictions.
Fasullo et al. (2015) provide the example of newer ESMs
that characterise better convection and its impact on simu-
lated cloud features, which ultimately may alter EC estimates
of ECS. Recognising the danger of arriving at spurious emer-
gent constraints based on the results of relatively small model
ensembles (Caldwell et al., 2018), Williamson et al. (2021)
have set the challenge of deriving more robust theory-based
emergent constraints. To inform attempts to meet that chal-
lenge, here we address the fundamental, almost philosophical
question: What is an emergent constraint?

Despite much scrutiny of ECs, there are likely many per-
spectives on what forms their basis (see for example Nijsse
and Dijkstra, 2018; Williamson et al., 2021). Here we sug-
gest that one way to interpret many ECs is that they derive
bulk parameters associated with differential equations that
are valid at large spatial scales. Such equations are implicit in
ESMs (i.e. are not coded explicitly) and instead “emerge” by
aggregating the numerical finite difference schemes solved
in ESMs at the finer grid-box spatial resolution. Here we
hope to initiate a discussion of whether this is an appropriate
way to describe the underpinning properties of many ECs.
We consider simple illustrative examples using standard so-
lutions to basic differential equations but with the novelty
of being placed in the context of the framework of the EC
method.

2 Methods and conceptual examples

2.1 The emergent constraint method

The core of any EC is the discovery of a robust link, across
different ESMs, between a driving variable, say X, and an-
other model-calculated quantity, Y . Variable X is a quantity
for which contemporary measurements are available. Quan-
tity Y is a climate-related statistic, metric or parameter often
of importance for developing future adaptation or mitigation
strategy, but for which data do not exist. The EC relationship
between X and Y , in tandem with the measurement of X,
constrains our understanding of Y . In general, it is considered
preferable that ECs are found by process intuition that re-
veals related system quantities, rather than direct inter-ESM
“data mining”. For instance, in the context of finding ECs to
constrain understanding of the size of cloud feedbacks, Klein
and Hall (2015) propose that each should be “accompanied
by credible physical explanations”. The EC relationship be-
tween X and Y may take many forms, such as a nonlinear
response, or is potentially multidimensional with more than
one X component.

For illustration purposes, we imagine an EC that is a sim-
ple linear regression between two variables and when index-
ing each ESM with i is of the form

Yi = a0+ a1Xi + εi + ηi . (1)

Here parameters a0 and a1 quantify the emergent constraint,
and εi and ηi are ESM-specific “noise” terms. We consider
that εi captures how far an individual ESM is from the fit-
ted relationship of Eq. (1), and so any large absolute value
corresponds to a model outlier. Quantity ηi is a random vari-
able that describes natural climate variability for each model.
MeasurementX∗ utilises this relationship to predict the value
of Y , named Y ∗. Cox et al. (2018) provide the methodology
to derive uncertainty bounds on the constrained value Y ∗,
which include being a function of ε and η, as well as the size
of uncertainty bounds on data X∗. Here, and elsewhere, the

https://doi.org/10.5194/esd-14-433-2023 Earth Syst. Dynam., 14, 433–442, 2023



436 C. Huntingford et al.: Emergent constraints

“∗” symbol represents a measurement (or a value constrained
by an EC and a measurement).

2.2 Simple thermal “box” model with different heat
capacities

Our working assumption is that ECs exist due to common
inter-ESM deterministic processes, which we attempt to mir-
ror with abstract but illustrative simple models. As such, the
noise quantities εi and ηi are only reconsidered towards the
end of our analysis and then only visually. We start with
an especially simple conceptual representation of an EC.
We consider a set of single thermal box models indexed
by i. This indexing may mirror the differentiation between
ESMs in a collection of models, such as the CMIP6 ensem-
ble (Eyring et al., 2016). Each model has a different heat ca-
pacity cpi (J K−1), into which we assume there is a common
and known forcing heat flux H (t) (W). We regard long-term
changes in this forcing as analogous to representative con-
centration pathways (RCPs) of future GHG levels, often ap-
plied as an equal forcing across ESMs. As a single box, there
is no spatial variation, so the model is treated as having in-
finite diffusion. The equation for the box temperature T (t)
(K), where t (year) is time, c′pi = cpi/ny,s (J K−1 yr s−1) and
ny,s (s yr−1) is the number of seconds in a year, is

c′pi
dT
dt
=H. (2)

We first study for a known fluctuating heat flux, H =
bcos(ωt), for the contemporary period to force each model
indexed by i. This forcing could be interpreted as a form of
known annual seasonal cycle (and therefore ω = 2π ), un-
affected by any background trends. This driver results in a
model-specific temperature, Ti(t). In addition to the known
common H driver, observed are seasonal temperature fea-
tures named T ∗ (K). The simple solution to Eq. (2) with this
periodic forcing is

Ti(t)= C0+
b

c′piω
sin(ωt). (3)

Removal of background multi-year temperature allows the
setting of arbitrary constant C0 as C0 = 0. ECs require a
quantity that is both modelled for the contemporary period
and is available as a measurement, such as the seasonal range
1TS (K). Here 1TSi =max(Ti)−min(Ti), and so for each
model and from Eq. (3),

1TSi =
2b
c′piω

. (4)

Considered additionally is a longer-term forcing of our
model, representing ongoing climate change. We describe
this extra forcing as simply a fixed value of H0 (W) for
t > 0. Hence this gives a combined forcing of H (t)=H0+

bcos(ωt), and solving Eq. (2) for both drivers simultaneously
gives

Ti(t)=
H0t

c′pi
+

b

c′piω
sin(ωt) t > 0. (5)

A second set of temperature-based statistics we can consider
are based on changes in annual means. The time derivative of
annual averages for T is a proxy for the rate of global warm-
ing. Annual averaging of Eq. (5) and denoted by an overline
is simply

Ti(t)=
H0t

c′pi
. (6)

A possible EC is now revealed where the issue of future con-
cern might be the rate of change of mean temperature Ti .
Plotting for the simple model an “x” axis of 1TSi (from
Eq. 4) and a “y” axis of dTi(t)/dt =H0/c

′
pi

(from Eq. 6)
would yield a diagram where both quantities increase, lin-
early, in 1/c′pi . The EC is, therefore, a relation between
seasonal temperature variation and long-term warming that
holds across all c′pi values. Knowledge of the actual x-axis
variable, which here would be the known observed seasonal
amplitude, 1T ∗S , constrains the bounds of the uncertainty of
the y-axis quantity. We present these ideas schematically in
Fig. 1 and show the uncertainty, εi + ηi , as just random dis-
tances by individual models (black dots) away from the EC
regression line.

In the analysis presented above, the parameters related to
forcings, i.e. b and H0, are assumed to be invariant between
models. The measurement in tandem with the EC is in ef-
fect lowering uncertainty on the model-specific value of bulk
parameter c′pi . However, an alternative possibility is an EC
where there is instead uncertainty in the magnitude of the
forcing of an Earth system component (rather than inter-
ESM spread in how the component itself is modelled). For
instance, there remains a range of representations between
ESMs of translating atmospheric aerosol levels to their cool-
ing effect. Instead, we can regard the forcing parameters as
uncertain, indexed as bi and H0i , although we imagine for
each ESM the uncertainty is similar, and so set the ratio
bi/H0i as invariant between models. This setup yields an EC
of identical form to that of Fig. 1, but instead, c′p has a single
numerical value common to all models. Measurements then
provide the constraint to remove uncertainty in the forcing
element bi . With the forcing uncertainties common for both
short- and long-term drivers (i.e. the assumption that bi/H0i
is constant between ESMs), the measurement1T ∗S implicitly
constrains bi , hence H0i , and thus the background warming
dTi/dt .

2.3 Thermal model with spatial variation

We extend the basic box model of Sect. 2.1 with a further
illustrative example that introduces spatial variability via di-
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Figure 1. Schematic representation of a simple emergent con-
straint. Panel (a) (top row) shows the combined equation for long-
term and seasonal forcing (so with ω = 2π yr−1) driving the ther-
mal box model given by Eq. (2) (middle row), and the related re-
sponse to both forcings, which combine additively to give Eq. (5)
(bottom row). Panel (b) illustrates a related emergent constraint,
based on the response Eq. (5), as also shown in (a). This response
contains a seasonal (x axis) and long-term (y axis, with seasonal-
ity ignored) variation, and the EC links the two. The EC allows the
observation of seasonal fluctuations (1T ∗S , x axis) to constrain the
long-term rate of change of state variable, T (y axis). Each model
(black dots, indexed by i) has a different implicit value for c′p i.e.
c′pi . The EC is assumed to not be exact, with noise causing variation
around the regression line (the εi and ηi terms of Eq. 1). The ver-
tical yellow band represents uncertainty in the measurement, 1T ∗S .
The constrained projection of the long-term warming rate (based on
the EC, the value of 1T ∗S and its uncertainty) is given by the green
horizontal band.

rectional coordinate z (m). Temperature is retained as our no-
tional state variable. Now we consider the system to evolve
on a semi-infinite domain 0≤ z ≤∞, and with the heat forc-
ing boundary condition, H , specified at z= 0. This frame-
work may depict, for instance, heat absorption by the oceans
and where information on future trends in surface tempera-
ture is required. Specifically, we solve for Ti(z, t) as satisfy-
ing a diffusion equation:

c′pi
∂Ti

∂t
= κi

∂2Ti

∂z2 0≤ z ≤∞. (7)

Here c′pi (J K−1 m−3 yr s−1) remains a form of heat capacity,
while κi (W m−1 K−1) is a conductivity or mixing parameter,
and both parameters may be model specific, as indexed by i.
We again start by prescribing a boundary condition (Fourier’s
law of heat conduction) that is seasonal, here at z= 0, given
by

κi
∂Ti

∂z

∣∣∣∣
z=0
=−H =−bcos(ωt). (8)

The solution to governing Eq. (7) with the boundary condi-
tion of Eq. (8), assuming no non-seasonal transient terms and
that Ti is bounded as z→∞, is

Ti(z, t)=
be
−

(
z

√
c′pi

ω

2κi

)
√
c′piκiω

cos

−ωt + π
4
+ z

√
c′piω

2κi

+C0. (9)

Hence the value of Ti at z= 0, with additive constant set to
C0 = 0, is given by

Ti(0, t)=
bcos(ωt −π/4)√

c′piκiω
. (10)

From Eq. (10), the temperature seasonal cycle at z= 0 there-
fore corresponds to a range of

1TSi =max(Ti(0, t))−min(Ti(0, t))=
2b√
c′piκiω

(11)

and for which we consider there to be a corresponding mea-
surable (i.e. observable value) 1T ∗S .

In further analogy with our example with the box model
example, we consider an additional long-term heat flux, H0
at z= 0, starting at time t = 0, that is, a boundary condition
of

κi
∂Ti

∂z

∣∣∣∣
z=0
=−H0 t > 0. (12)

Satisfying Eq. (7) with this boundary condition has a solution
of

Ti(z, t)=
2H0

κi

− z
2

erfc

 z
2

√
c′pi

κi t

+√ κi t

πc′pi
e
−
c′pi

z2

4κi t


t > 0, z > 0. (13)
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Eq. (13) calculated at z= 0 corresponds to

Ti(0, t)= 2H0

√
t

c′piκiπ
t > 0. (14)

As our governing Eq. (7) is linear, the seasonal and long-term
solutions (Eqs. 9 and 13 respectively) may be simply added.
Hence a combined heat flux into the system of bcos(ωt)+H0
at z= 0 generates a surface temperature Ti(0, t), for t > 0,
given by the addition of Eqs. (10) and (14). The inclusion
of spatial variation, via z, causes a long-term transient effect
where although the long-term average heat flux is constant,
the surface temperature given by Eq. (14) has a

√
t response.

This solution compares to a linear long-term temperature re-
sponse for our single box model example in Eqs. (5) and (6).

For our example with spatial variation, a possible emer-
gent constraint could constitute an x axis of 1TSi (Eq. 11)
and a y axis of dTi(0, t)/dt ×

√
t =H0/

√
c′piκiπ (from dif-

ferentiation of Eq. 14 with respect to time, in tandem with
averaging out the seasonal variations of Eq. 10). Using these
variables, both the x and y axes are linear in 1/

√
c′piκi for

the different indices i. We present this EC schematically in
Fig. 2. In conjunction with this EC, knowledge of seasonal
temperature variation (x axis, Fig. 2) reveals the long-term
warming rate (y axis, Fig. 2.). In this example the data point
constrains, implicitly, the value of c′piκi . If c′pi is well known
and fairly invariant between ESMs, then the data point is con-
straining the implicit value of κi , or vice versa where the con-
straint is on c′pi . As an aside, in the y axis of Fig. 2, we retain
the
√
t factor to make the vertical position of the EC in the

diagram independent of time or GHG level.
As for the discussion of uncertainty in the forcing bound-

ary conditions of the box model, and their potential con-
straint, the same possibility exists for our example with spa-
tial variability. Should effective parameters cp and κ show
little or no variation between ESMs, yet there is uncertainty
in b of Eq. (8) and H0 of Eq. (12) (and both parameters have
similar unknowns, so again b/H0 is invariant inter-ESMs),
then the EC combined with data for 1TS acts to remove that
forcing uncertainty. Such removal of forcing-related uncer-
tainty between ESMs, via the EC and measurement of 1TS,
again constrains longer-term warming levels in this illustra-
tive framework.

3 Discussion and conclusions

How climate will change due to the ongoing burning of fos-
sil fuels remains one of the highest-profile questions asked
of the scientific community. ESMs are central to such re-
search activity, and their primary objective is to predict cli-
mate change for different potential future GHG levels as ac-
curately as possible. However, substantial differences can ex-
ist between ESM projections, even for the same future sce-
nario of atmospheric GHG changes, so dependable meth-

Figure 2. Schematic representation of an emergent constraint with
a spatial component. The spatial dimension is defined by variable
z. Panel (a) (top row) shows the combined equation for long-term
and seasonal forcing at z= 0, driving the diffusive model given by
Eq. (7) (middle row), and the related response at z= 0 and t > 0
given by Eqs. (10) and (14) (bottom row). The seasonal forcing (so
with ω = 2π yr−1) is given by Eq. (8) and the long-term forcing to
the thermal model given by Eq. (12). These two forcings generate a
response in T at z= 0 given by Eqs. (10) and (14) respectively, that
combine additively and as shown. Panel (b) illustrates the related
emergent constraint based on the response Ti (0, t) shown in (a).
This response contains a seasonal (x axis) and long-term (y axis,
with seasonality ignored) part, and the EC links the two. The EC
allows the observation of seasonal fluctuations, (1T ∗S , x axis), to
constrain the long-term rate of change (y axis). Each model (black
dots, indexed by i) has a different implicit value for c′pi ×κi . As for
the example of Fig. 1, the EC is again assumed to not be exact, with
noise causing variation around the regression line. The vertical yel-
low band represents uncertainty in the measured value of 1TS. The
constrained projection of the long-term warming rate (multiplied by
√
t , as based on the EC and the value of 1TS and its uncertainty),

is given by the green horizontal band.
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ods are required to reduce the spread in simulations. Emer-
gent constraints are discovered linkages, inter-ESM, between
a quantity that is also presently measured and a second
important climate attribute associated with future changes,
and where data on the former constrain our assessment of
the value of the latter. With a constant requirement to pro-
vide policymakers with refined estimates of future climate
change and against the backdrop of considerable variation
between ESMs, ECs have attracted substantial application to
a plethora of components of the Earth system. The rapid rise
in EC discoveries and their near-ubiquitous use to constrain
uncertainty enables a way to extract additional information
from available ESMs that have required huge expenditure to
build and operate. However, with such a high prominence of
ECs as a method to lower uncertainty, it is timely to inves-
tigate the assumptions that underline them and any potential
pitfalls (e.g. Williamson et al., 2021). Here we start an ad-
ditional but related route of investigation. We suggest a po-
tential explanation of many ECs is that their basis relates to
solving large-scale equations that are implicit in ESMs and
have common features between models.

We develop the hypothesis that many identified ECs relate
to undiscovered differential equations that describe the Earth
system at large geographical scales. Such equations are not
coded explicitly in ESMs but instead “emerge” as the aggre-
gation of the finer-resolution behaviour of the climate sys-
tem. Such finer-resolution features are calculated in ESMs
as the solution of differential equations solved on the nu-
merical mesh of each model and capture environmental pro-
cesses that are often understood well. Such understanding in-
troduces similarities between models, which remain present
in any spatial aggregation. The role of ECs is to enable the
discovery of the implicit value of parameters associated with
such large-scale equations where uncertainty remains. Such
bulk parameters affect both a quantity of interest linked to
predicting future climate and a contemporary attribute of the
Earth system. The contemporary quantity is measurable and,
in tandem with the EC, constrains the parameterisation and,
thus, understanding of the quantity associated with the fu-
ture. In many instances of discovered emergent constraints,
the present-day component is of a higher-frequency fluctua-
tion (e.g. seasonal), with the EC then used to project a climate
attribute of relevance to decadal or century timescales.

We have presented two illustrative examples of solving
standard differential equations but placed them in a structure
as if they underpin an emergent constraint. We imagine the
equations to be underlying large-scale bulk equations, solved
implicitly in multiple ESMs, as outlined above. Many ex-
amples of equations represent the aggregated behaviour of
fine-scale systems. For example, the bulk properties of an
ideal gas, temperature and pressure are related through the
ideal gas law. However, these bulk properties can also be un-
derstood as the aggregated behaviour of the molecules (their
mean velocity, mass and number density) that make up the
gas. Formally these relations can be made through kinetic

theory (Lifshitz and Pitaevskiĭ, 1981). There are also exam-
ples of linear bulk dynamics emerging from nonlinear fine-
scale dynamics and the converse of effective nonlinear bulk
behaviour from linear microscopic dynamics (e.g. the phase
transition in the two-dimensional Ising model McCoy and
Wu, 1973).

Our first case is a simple box model for which we wish
to derive a thermal capacity term, c′p, and the second has a
single spatial variation and represents a search for a multi-
plicative combination of capacity and diffusion, c′pκ . A dis-
covered EC between models, combined with measurements,
is in effect revealing the actual real-world value of c′p or c′pκ .
Large values of noise term εi are for models that are outliers
to the EC. In the context of our abstract examples, outliers
have different values of effective parameters c′p or c′pκ de-
pendent on whether considering shorter seasonal timescales
or longer periods, which implies these models have sub-
stantially different process representation compared to most
other ESMs. We also suggest an additional EC possibil-
ity where effective parameters emerge as invariant between
ESMs, and instead there is uncertainty in forcings (here, b
and H0, although the uncertainty is similar between the two
parameters). Our conceptual model determines internal sys-
tem properties, i.e. parameters, which for the spatial exam-
ple are constrained based on behaviours at the edges of the
domain. We note the basic theorems of vector calculus (e.g.
Stokes’ theorem) that relate integrated internal system fea-
tures to conditions along domain edges.

A broad set of possibilities may link to our suggestion
that the underlying principle of many ECs is the existence
of equations valid at large scales. For instance, in addition to
our example of diffusion, ECs may reveal implicit PDEs with
an advective component corresponding to atmospheric trans-
port. In many cases, atmospheric transport provides the cou-
pling between two spatially distant components of the Earth
system, generating what is often called a “teleconnection”.
To constrain the strength of future teleconnections, an EC
is likely to need a present-day measurement of wind fluxes
or measurements of a quantity of interest in two locations.
In addition, modelling many components of the Earth sys-
tem requires coupled differential equations to link different
physical quantities and capture changes of state, where geo-
chemical cycles link tightly to climate variation. An exam-
ple of an EC capturing features of a coupled system is that
of Cox et al. (2013). In that analysis, data on present-day si-
multaneous fluctuations in atmospheric CO2 and annual tem-
perature anomalies reveal the fate of future South American
carbon stores under global warming and the related risk of
Amazon forest “die-back”. In some cases, the EC x axis,
for which measurements exist, is a combination of high-
frequency drivers and response, and for the same variable. As
an example of such a more refined and complex contempo-
rary statistic, Cox et al. (2018) estimate equilibrium climate
sensitivity with a statistic9 that is a combination of the stan-
dard deviation and autocorrelation of current global temper-
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ature fluctuations. Arguably, the 9 statistic merges a system
driver (standard deviation) and a response (autocorrelation).
Here, we assume underlying PDEs that are simple by design
to aid transparency. Making these underlying models more
relevant to the Earth’s climate is an outstanding challenge.
Additional to horizontal heat transport, our planet emits long-
wave radiation to the wider universe. Such radiation pro-
vides the restoring force, λ, that ultimately stabilises the near-
surface temperature. Including such a restoring force in our
simple PDE models is one possible extension of our anal-
ysis, although, in tandem with an unknown heat capacity,
cp, this would potentially generate a two-dimensional EC.
In practice, fitting a two-dimensional EC may be challenging
given the relatively small number of data points (i.e. avail-
able ESMs). Analytical solutions may exist that allow for a
time-varying value ofH0 that approximates known historical
climatic forcing.

In summary, the analysis of ensembles of ESMs, as built
by different research centres, has revealed multiple emergent
constraints for all parts of the Earth system (Hall et al., 2019).
Discovered ECs have reduced uncertainty bounds for fea-
tures of the climate system that directly affect society and
are, therefore, of particular interest to policymakers. With the
placement of much emphasis on the EC method to lower un-
certainty, there is a growing requirement to understand its
underlying assumptions better. Timely research is emerging
that critically assesses the method (e.g. Williamson et al.,
2021). We add to the discussion by suggesting that many
ECs represent the discovery of parameters associated with
large-scale implicit equations that describe features of the
Earth system. Such equations emerge from the aggregation
of more local effects simulated on the grid points of the nu-
merical meshes of individual ESMs. With the prevailing view
that physical intuition should guide EC discoveries rather
than, e.g. data mining, our suggestion supports that stand-
point. Hence we consider most ECs to correspond to underly-
ing processes and related mathematical representation. This
bulk process discovery helps counter a view that ESMs are
so complex that they can never be amenable to interpreta-
tion via standard applied mathematics techniques (a concern
raised by Huntingford, 2017). Such methods include scaling
of the equations directly coded in ESMs (“nondimensionali-
sation”) to find the dominant underlying forms, although we
speculate that EC discovery may instead identify key large-
scale processes. Further hinting at the need to confirm un-
derlying processes is the analysis of Qu et al. (2018). Those
authors consider the statistical linkages between four differ-
ent ECs proposed for ECS and suggest that the discovered
commonalities are because each is constraining, implicitly,
shortwave radiation cloud feedbacks. We present two simple
illustrative examples of differential equations, their solutions,
and their potential interpretation as ECs. Despite differential
equations representing a range of processes, mathematics can
often characterise them in discrete ways (for instance, ev-
ery linear second-order PDE being either diffusive, elliptic

or hyperbolic). The perspective offered here may open ways
to classify ECs based on the type of any discovered under-
pinning equations they link to. Confirming such links allows
the study of some aspects of climate change from a more an-
alytical applied mathematics standpoint. The equation forms
may be PDEs, they may be coupled, or they could be sim-
ply ordinary differential equations or in algebraic form. Al-
though our examples are synthetic, we hope the concepts we
present support the placement of ECs on a stronger theoret-
ical footing by, where applicable, revealing underlying bulk
equations that fit with process intuition. Brient (2020) argues
that when multiple ECs exist to predict the same quantity,
each should be weighted by the level of physical understand-
ing they offer to elucidate the relationship. It remains impor-
tant to understand ECs as they offer an elegant potential capa-
bility to lower the continuing uncertainty between ESM pro-
jections. In conclusion, we suggest an interpretation of ECs
is that they reveal parameters of large-scale implicit differen-
tial equations that aggregate the numerical finite differencing
upon which ESMs are built.
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