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Abstract. Many widely used observational data sets are comprised of several overlapping instrument records.
While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention
is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of
work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate
an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators
such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement
process — rather than actual changes in the dynamical properties of the system — is important in this context. In
this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are
propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on exam-
ples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference
vegetation index from different satellite sources. We find that time series resulting from mixing signals from
sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience
changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by
land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor
signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data
in studies of critical transitions and resilience.

ment periods have the potential to impact inferences based on

Observational records of climatic and environmental vari-
ables are not created equal — there exist large variations in
the design, capabilities, and continuity of data sets. Many
nominally continuous records are comprised of several dif-
ferent data sources, which undergo design changes through
time (Pinzon and Tucker, 2014; Moesinger et al., 2020; Gru-
ber et al., 2019). While diverse records are generally tightly
cross-calibrated, slight changes between different measure-

those data — especially in indicators which are based on high-
frequency changes in data structure. Cross-calibration proce-
dures are also often geared towards maintaining means, long-
term trends, or intra-annual consistency (Moesinger et al.,
2020; Pinzon and Tucker, 2014) and may not properly ad-
dress high-frequency data structures and higher statistical
moments than the mean (Preimesberger et al., 2020), despite
recent work towards homogenizing higher-order statistics
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during data fusion (e.g., triple-collocation analysis) (Stoffe-
len, 1998; Gruber et al., 2017).

It has been noted that measuring the mean state (i.e., the
first statistical moment) of a system alone is not sufficiently
informative for determining the dynamical stability (or re-
silience) of that system (Boulton et al., 2022). The stability
of a system in question is tightly linked to the characteristics
of its variability; the variance (i.e., the second statistical mo-
ment) and lag-one autocorrelation (AR1) have been proposed
as stability indicators (Scheffer et al., 2009; Dakos et al.,
2009; Lenton, 2011; Smith et al., 2022). Indeed, changes in
these higher-order characteristics can reveal that a system
is already committed to a stability gain or loss that would
be impossible to infer from the mean state alone and is not
necessarily linked to observable long-term trends in the data
(Scheffer et al., 2009; Boers, 2021). It is important to note
that for this theoretical relationship to hold, variance and
ART1 should be positively correlated, as they are inferred to
be responsive to the same underlying process (Boers, 2021);
if they are not, we cannot say with certainty whether system
resilience is changing.

Variance and AR1, however, are potentially sensitive not
only to shifts in the underlying processes associated with
stability changes, but also to changes in equipment, mea-
surement procedures, or data processing schemes. For exam-
ple, averaging multiple data sets will reduce variance and in-
crease autocorrelation; if the number of data sets used to cre-
ate such an average changes through time, the temporal de-
velopment of variance and AR1 will be anti-correlated, given
no other changes to the underlying system.

Disentangling the effects of process and measurement
changes can be very challenging in practice — the uncertainty
and noise levels of satellite data sets can change drastically in
both space and time, with or without any changes to instru-
mentation. Well-defined models for temporally and spatially
explicit satellite noise currently do not exist, which limits
the quantification of uncertainty in resilience estimates. As-
sessing changes in noise levels quantitatively using synthetic
data with true reference known by construction can therefore
help to understand whether observed changes in variance
and ARI, for example, should be attributed to underlying
changes in dynamical stability or rather to non-stationarities
induced by changing measurement characteristics.

In this study, we explore the impacts of non-stationary
measurement characteristics on resilience estimates using
both synthetic data and (dis-)continuous satellite records —
the multi-sensor microwave Vegetation Optical Depth Cli-
mate Archive (VODCA; Moesinger et al., 2020), GIMMS3g
AVHRR normalized difference vegetation index (NDVI; Pin-
zon and Tucker, 2014), and MODIS NDVI (Didan, 2015)
— which have been used in several studies of vegetation re-
silience (Verbesselt et al., 2016; Boulton et al., 2022; Smith
et al., 2022; Feng et al., 2021; Forzieri et al., 2022). The
potential impacts of changing satellite mix — VODCA and
GIMMS3g contain information from several different satel-
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lites and instruments — have not previously been considered
in depth with regards to estimating statistical resilience in-
dicators such as variance or AR1. We first develop synthetic
data which mimic the changing data structure of the VODCA
and GIMMS3g data sets and then explore resilience estima-
tion using ensembles of simulated time series. Combining
these simulations can serve as a proxy for global or regional
aggregations of spatio-temporal data fields (e.g., by creat-
ing a single average time series out of a larger set of ob-
servations). We then compare the results of the synthetic ex-
periments to data from VODCA, GIMMS3g, and MODIS
NDVI to quantify the reliability of both local- and global-
scale resilience estimates based on satellite data. We focus
on satellite-derived vegetation data, but our approach can in
principle be adapted to discontinuous data records in general,
from multi-proxy paleo-climate reconstructions to simple in-
strument upgrades at long-term weather stations.

2 Methods and data

2.1 Synthetic data

The underlying structure of a satellite-derived vegetation
time series can be thought of as having three parts: (1) the un-
derlying driving process given by vegetation growth and de-
cline; (2) additional fluctuations including inter-annual vari-
ability and short-term weather-driven effects that we refer to
here as dynamical noise; and (3) additional noise due to im-
perfect measurement or retrieval of the system, termed here
as sensor or measurement noise. If we create a synthetic sys-
tem where (1) and (2) are static, we can observe the influence
of varying measurement noise (3) throughout a given time
series. We can further control the instrument signal-to-noise
ratio (SNR) by tuning the amplitude of measurement noise
relative to the background signal.

We construct synthetic time series mimicking the structure
of the VODCA data — that is, we generate daily data run-
ning from 1987-2017, comprised of five satellite platforms
(Moesinger et al., 2020) (Table S1 in the Supplement). We
first generate a time series X (¢) that represents a true under-
lying signal by integrating, using Euler—Maruyama, the fol-
lowing stochastic differential equation:

dX (1) = aX(1)dt + ogynd W, (1)

with drift parameter a < 0, a Wiener process W, and dynam-
ical noise amplitude ogyy, defining an Ornstein-Uhlenbeck
process (Boers et al., 2022). The dynamical noise term above,
producing white Gaussian noise (dynamical noise), simulates
background “environmental” variability (e.g., due to weather
fluctuations).
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Using this signal as a basis, we then add additional mea-
surement noise according to the relative reliability of each
sensor that makes up the VODCA data set:

Xsatellite(t) = X(t) +0(t) - 1/ Rsatelite - 1/SNR,, ()

where the synthetic series Xgueeliite 1S comprised of the true
signal X plus additional measurement noise o scaled by the
relative reliability of each satellite Rgyellite and a scaling fac-
tor SNR to either increase or decrease the contribution of
measurement noise to the synthetic series. High SNR or reli-
ability de-emphasizes measurement noise; low SNR or relia-
bility increases the contribution of measurement noise to the
overall signal. The relative reliability of each satellite used in
this study can be found in Table S1 in the Supplement.

Finally, we mix the five sensors together by taking a
daily mean, creating a single time series covering the whole
time span of the VODCA data. We then further average this
daily time series into bi-weekly means to match the tempo-
ral resolution of the NDVI data. We repeat this experiment
1000 times to generate a sample which can be used to ex-
amine the influence of underlying changes in sensor noise
across simulations. We create a further 100 iterations of this
process (n = 100 x 1000), taking the median time series at
each of the 100 iterations to assess the impacts of averaging
the underlying data or resilience estimates at different stages
of analysis.

We perform a similar simulation procedure for GIMMS3g
NDVI, which is comprised of a larger number of satellites
(Table S2 in the Supplement; Pinzon and Tucker, 2014).
However, we use a bi-weekly maximum value composite in-
stead of a bi-weekly mean to better match the processing em-
ployed in the GIMMS3g product. Full code to reproduce our
synthetic experiments can be found on Zenodo (Smith and
Boers, 2022). Finally. we note that all correlations presented
in this study refer to the Pearson’s correlation coefficient.

2.2 Satellite data

We rely on three satellite data records in this study:
(1) Ku-band vegetation optical depth (VOD) at 0.25°
spatial resolution (daily, 1987-2017) (Moesinger et al.,
2020), (2) GIMMS3g normalized difference vegetation index
(NDVI, based on AVHRR) at 1/12° spatial resolution (bi-
weekly, 1981-2015) (Pinzon and Tucker, 2014), (3) MODIS
MODI13 NDVI at 0.05° (16 d, 2000-2022; Didan, 2015). To
limit the influence of anthropogenic activity on our results,
we mask out anthropogenic (e.g., urban) and changing (e.g.,
forest to grassland) land covers using MODIS MCD12Q1
(500m, 2001-2020) land-cover data for each data set. That
is, we remove any pixels that have a changed land-cover clas-
sification at any point during the period 2001-2020. Land-
cover data are resampled to match the other vegetation data
via the mode. Finally, we remove areas with low long-term-
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average NDVI (<0.1) to focus our analysis on vegetated ar-
eas.

For both MODIS and GIMMS3g NDVI data, we remove
cloud cover and other artifacts using an upwards correction
approach (Chen et al., 2004). We further resample VOD data
to a bi-weekly time step to more closely match the tempo-
ral resolution of the NDVI data sets. Using these cleaned
and consistently sampled data, we de-season and de-trend
the data via seasonal trend decomposition by loess (Cleve-
land et al., 1990; Smith and Bookhagen, 2018; Smith et al.,
2022). Further details of the decomposition procedure, data
correction, and land-cover masking can be found in Smith
et al. (2022).

3 Results

3.1 Construction of synthetic data

Generally, changes in the amplitude of the measurement
noise throughout a time series will — assuming that tem-
poral correlations in the measurement noise decay rapidly
— have opposing impacts on AR1 and variance; increasing
noise will reduce autocorrelation while increasing variance.
Hence, time-variable measurement noise will bias AR1 and
variance towards anti-correlation, given no other changes to
the system. We can test this with a synthetic experiment
which roughly mimics the sensor input data of the VODCA
product (Fig. 1).

As can be seen in Fig. 1, the addition of multiple overlap-
ping signals with different properties significantly changes
the dynamics of the signal through time. This effect, how-
ever, is also controlled by the overall SNR of the synthetic
satellite data that are averaged together (Figs. S1-S3 in the
Supplement). When measurement SNRs are low, the un-
derlying signal (Fig. 1a) is lost; with higher SNRs, the ef-
fects of combining multiple signals are increasingly muted
(Figs. S1-S3 in the Supplement).

3.2 Signal-to-noise ratios and data aggregation

The correlation of ARI1 and variance for the raw underly-
ing signal (i.e., for the synthetic Ornstein—Uhlenbeck process
containing only dynamical noise; Fig. 1a) is by construction
high (~ 1) and is controlled primarily by the degree of auto-
correlation in the underlying process (Table 1, Fig. S4 in the
Supplement). In contrast, a signal with time-variable mea-
surement noise will tend towards anti-correlation between
AR1 and variance as the changing noise level pushes the
two metrics in opposite directions (Fig. 2). This effect can
also be enhanced by averaging multiple time series; changes
in measurement noise that occur contemporaneously in all
time series are emphasized. Constant underlying variation
(dynamical noise) between time series is removed to the ex-
tent that it is independent, which further increases the rela-
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Figure 1. Synthetic experiment mimicking vegetation optical depth (VOD) time series, with relative measurement noise scaling (Rgaellite;
see Methods) set to values between 1 for the most reliable sensor and 0.44 for the least reliable and signal-to-noise ratio (SNR; see Meth-
ods) set to 1. (a) Ornstein—Uhlenbeck process with dynamical noise mimicking an underlying signal to be measured (see Methods). (b)
Underlying signal plus additional white Gaussian measurement noise by individual synthetic sensor scaled by reliability Rgyteljite, based on
the characteristics of the satellites used in the VODCA data set (Moesinger et al., 2020) (see Table S1 in the Supplement and Methods for
details). (¢) Combined synthetic signal via taking the daily (blue) and bi-weekly (black) means.

tive strength of the time-variable measurement noise in the
aggregated signal.

If we vary the SNR in our synthetic experiments we can
examine the degree to which changes in both the ampli-
tude and structure of measurement noise are reflected in the
resilience metrics AR1 and variance. We further compare
three ways of calculating the correlation between AR1 and
variance: (1) the median of the correlation coefficients of
AR1 and variance of each individual measured time series
(n = 1000), (2) the correlation coefficient of the median AR1
and variance time series (n = 1000), and (3) the correlation
coefficient of the AR1 and variance of the median synthetic
time series (n = 1000 x 100) (Fig. 2); these different aggre-
gation schemes are summarized in Table 1. We note that we
use the resampled bi-weekly means for our estimates of AR1
and variance (Fig. lc, black line); this does not impact our
inferences from the data.

It is clear that changes in measurement noise — in the ab-
sence of changes to the underlying process — will lead to
strong anti-correlation in the two commonly used resilience
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metrics AR1 and variance (Fig. 2). This effect is more pro-
nounced for lower SNRs if the AR1 and variance of indi-
vidual time series, or of median time series (Fig. 2, right
column), are considered. However, the correlation remains
strongly negative when the median of large ensembles of
AR1 and variance time series is considered (Fig. 2, left col-
umn). Essentially, in this case the dynamical characteristics
are averaged out, while the influence of the changing sensor
mix, common to all time series, persists and dominates the
ARI1 and variance medians.

We emphasize that while the correlation between ARI1
and variance is generally positive for individual synthetic se-
ries — assuming reasonable SNRs (Fig. 2, Table 1) — averag-
ing their AR1 and variance time series leads to strong anti-
correlation (Table 1). In contrast, first averaging the underly-
ing signal and then computing the AR1 and variance of that
averaged time series leads to positive correlations at higher
SNR (Fig. 2, right column), indicating that the biassing ef-
fect of the sensor mix is attenuated. It is important to empha-
size this point — averaging an ensemble of AR1 and variance
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Table 1. Role of signal merging, signal-to-noise ratio (SNR), and multi-signal averaging in controlling AR1-variance correlations.

Single synthetic series ARl-variance  Implication
correlation

Raw realization of an Ornstein—Uhlenbeck High (= 1) By construction, the underlying time series will lead to high corre-

process (Eq. 1) lations between AR1 and variance.

Mixed signals from multiple instruments Low to high, Measurement changes induce increasingly strong anti-correlation
increasing between AR1 and variance time series as the SNR is reduced, as
with SNR time-variable uncertainties have an opposite effect on AR1 and

variance.

Signal-to-noise ratio

Low SNR Low Measurement noise masks correlations between AR1 and variance

of underlying raw time series.

High SNR High Changes in the underlying process (e.g., dynamical changes) dom-

inate AR1 and variance of the measured multi-sensor time series.

Multiple mixed-signal synthetic series

Median correlation of individual AR1 and Dependent on

Over many repetitions, correlation between AR1 and variance of

variance series (n = 1000) SNR individual series is consistently low for low SNR and high for high
SNR.
Correlation of median of n AR1 and variance ~ Very low Averaging across many AR1 and variance time series suppresses

time series (n = 1000)

common features of the underlying raw time series, hence empha-
sizing the impact of changing measurement procedures common to
all time series.

Average n mixed signals, then calculate AR1
and variance in the averaged signal (n =
1000)

Dependent on
SNR

Averaging the mixed-instrument time series before calculating
ARI and variance minimizes the impact of changing measurement
procedures.

time series leads to anti-correlation, and thus to strong biases,
while averaging the time series first and then calculating AR1
and variance leads to positive correlation, and thus to weaker
biases; which features of the noise structure of the time se-
ries are emphasized by these two averaging schemes has a
strong impact on the outcome and hence the interpretation of
changes in AR1 and variance through time.

3.3 Comparison to global satellite data

It is possible to compare time-explicit changes in AR1 and
variance from synthetic data (Fig. 2) to global averages of
pixel-wise AR1 and variance estimates for both VODCA and
GIMMS3g NDVI (Figs. 3, S5 in the Supplement). How well
the changes in AR1 and variance for the synthetic and satel-
lite cases match up is strongly controlled by estimates of the
underlying measurement noise levels — i.e., their SNR — of
each individual satellite record that comprises the VODCA
and GIMMS3g NDVI data sets, respectively. As we cannot
constrain dynamic uncertainties or SNRs in the empirical
satellite data, we focus rather on comparing the time evo-
lution of the synthetic and empirical signals (Fig. 3). It is
important to note that VODCA data are merged via cumula-
tive distribution matching and daily means (Moesinger et al.,
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2020), and GIMMS3g is aggregated by bi-weekly maxima
(Pinzon and Tucker, 2014).

Both satellite data sets exhibit anti-correlation between the
global medians of AR1 and variance time series, to differ-
ent degrees (Figs. 3, S5 in the Supplement). In the case of
VODCA (Fig. 3), where the relative noise levels of the in-
dividual satellite instruments are fairly well constrained, the
overall shapes of the medians of the AR1 and variance of the
synthetic measured time series (red) match quite well to the
global median AR1 and variance time series computed from
VODCA (blue), especially at low SNR (Fig. 3a, ¢). At higher
SNRs, the results for the synthetic data still generally follow
the global pattern of the VODCA data (Fig. 3b, d) but have a
more positive AR 1-variance correlation. This indicates that —
when globally aggregated — AR1 and variance changes in the
VODCA data set are to some degree controlled by changes
in the underlying data structure. Inferences on actual stabil-
ity or resilience changes, if based on large-scale averages or
medians of AR1 and variance time series, are hence likely to
be biased.

For the case of GIMMS3g NDVI, resilience metrics — par-
ticularly AR1 — do not match as closely to the synthetic
data, especially in the case of low-SNR data, where the in-
fluence of multiple overlapping sensors is strongly expressed

Earth Syst. Dynam., 14, 173-183, 2023
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Figure 2. Effect of sensor signal-to-noise ratios (SNRs) and data aggregation scheme. Panels (a), (c), (e), and (g) show median (25th-75th
percentiles shaded) AR1 (red) and variance (blue) time series of n = 1000 synthetic time series. Panels (b), (d), (f), and (h) show the median
ARI1 (red) and variance (blue) time series of 100 iterations, taking the median time series from n = 1000 synthetic time series each time
before calculating AR1 and variance. The SNR increases from 0.1 (a, b) to 2 (g, h), while relative noise levels between satellites (Rgaeellite s
see Methods) are held constant. Correlation coefficients (cc’s) &1 standard deviation listed in plot titles. Low SNRs produce anti-correlated
individual AR1 and variance time series, indicating a bias induced by the changing sensor mix. For increasing SNRs, the correlation values
between individual AR1 and variance time series become increasingly positive, indicating a weaker bias. The same holds true if the AR1 and
variance of the medians of the time series themselves are considered (b, d, f, h). However, correlations between median AR1 and variance
time series remain negative, indicating that the bias persists in this case (a, c, e, g). AR1 and variance are calculated on a 5-year rolling

window.

(Fig. S5 in the Supplement). As the GIMMS3g NDVI prod-
uct uses a maximum value composite approach, the presence
of many overlapping satellite data sets has a strong impact
on ARI and variance. It is also important to note that be-
fore 2000, GIMMS3g NDVI relies on AVHRR/2, and from
2000 onwards, the GIMMS3g NDVI relies on data from the
AVHRR/3 satellite instrument (as well as SeaWiFS, SPOT,
MODIS, PROBA V, and Suomi for calibration) (Pinzon and
Tucker, 2014). This change in instrument sensitivity also
likely contributes to changes in AR1 and variance through
time (Fig. S5 in the Supplement).

Earth Syst. Dynam., 14, 173-183, 2023

It is clear from both the synthetic (Fig. 2) and real (Fig. 3)
data that aggregating many AR1 and variance time series
leads to strong anti-correlation between AR1 and variance,
suggesting biases caused by changes in the data structure and
measurement noise. In the synthetic experiment — and at high
SNRs — individual synthetic series maintain the expected
positive correlation between AR1 and variance even when
the medians of AR1-variance series exhibit anti-correlation
(Fig. 2, left column). As it is expected that real satellite data
have a relatively high SNR (> 2) (Salomonson et al., 1989),
it is likely that individual time series also exhibit this positive

https://doi.org/10.5194/esd-14-173-2023
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Figure 3. Comparison between real and synthetic data. (a, b) Median AR1 for synthetic data (red) and vegetation optical depth (VOD) data
(blue; median taken over all AR1 series globally). (¢, d) Same as (a, b) but for the variance. Panels (a) and (c¢) show low signal-to-noise
ratio (SNR =0.1); panels (b) and (d) show SNR =2 for the synthetic data. AR1 and variance are calculated on a 5-year rolling window.
Correlation coefficients (cc’s) between AR1 and variance are given in the individual panel titles. Both the synthetic and satellite data sets
show negative correlation, modulated by SNR. Note that satellite and synthetic data are not plotted on identical y axes. The global medians
of AR1 and variance time series for the VOD data can be approximated to some extent by the corresponding medians of AR1 and variance
time series for the synthetic data, which suggests that the global medians of AR1 and variance are biased by changes in the VOD satellite

composition through time.

correlation between AR1 and variance and that the biassing
effect of changing sensor mixes will be weakly expressed. It
is important to note, however, that not all land surfaces are
equally well measured — SNR can vary considerably based
on instrument, spectra, and land-cover type.

3.4 Individual time series correlations

It is important to distinguish between global-scale aggrega-
tions and the behavior of individual pixels. If we perform
our correlation analysis for the satellite vegetation data sets
at the pixel scale, we can explore the distribution of correla-
tion coefficients between AR1 and variance at each grid cell
and compare them to the corresponding distributions for the
synthetic data for different SNRs (Fig. 4). Correlation coef-
ficients for satellite data are divided by land-cover type to
reduce the number of points in each aggregation and empha-
size that the positive correlations between AR1 and variance
are consistent across multiple ecosystems.

As expected, the distribution of correlation coefficients be-
tween AR1 and variance is skewed towards negative val-
ues for synthetic data at low SNRs (Fig. 4a). As there are
no other processes in the synthetic data that would drive a
change in AR1 or variance, correlation is strongly influenced
by changes in measurement noise through each individual
time series. This, however, is not the case for the satellite
data records (Fig. 4b—d) or the synthetic data at higher SNRs
(Fig. 4a).

Both multi-instrument (VODCA, GIMMS3g NDVI) and
single-instrument (MODIS NDVI) data show strong posi-
tive correlations between the individual AR1 and variance
time series across all land-cover types. We posit that this is
mainly due to changes in underlying processes driving vege-

https://doi.org/10.5194/esd-14-173-2023

tation through time — for example, inter-annual precipitation
variability, long-term trends, or ecosystem changes. To lead
to overall positive correlations between AR1 and variance,
these changes would have to be larger than the shifts in noise
driven by changes in the underlying satellite record. While
we cannot rule out a residual influence of those changes
at the level of individual time series, these results suggest
that individual-pixel AR1 and variance estimates are reliable;
global- or regional-scale averages of AR1 and variance time
series should be treated with more caution.

4 Discussion

Multi-instrument data are common across the environmen-
tal sciences. While long-term records generally aim to create
continuous and tightly cross-calibrated data, they do not al-
ways maintain continuous higher-order statistics, such as the
variance and autocorrelation structure of the data record (Pin-
zon and Tucker, 2014; Moesinger et al., 2020; Markham and
Helder, 2012; Claverie et al., 2018; Smith et al., 2008; Stof-
felen, 1998; Gruber et al., 2017). This is partially by design
— there are vastly more studies examining mean states and
long-term trends in data than those focused on higher-order
statistics, and especially AR1 and variance as resilience in-
dicators. Nevertheless, an increasing number of studies have
investigated resilience shifts based on these indicators using
multi-instrument data.

We focus here on two discontinuous data sets — VODCA
and GIMMS3g — which have been used in recent investiga-
tions into the resilience of vegetation regionally and glob-
ally (Smith et al., 2022; Boulton et al., 2022; Feng et al.,
2021; Rogers et al., 2018; Hu et al., 2018; Wu and Liang,
2020; Jiang et al., 2021). The validity of these multi-sensor
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Figure 4. Distribution of correlation coefficients between AR1 and variance computed for individual time series. (a) Synthetic data based
on the vegetation optical depth (VOD) data for different signal-to-noise ratios (SNRs), (b) VOD data, (¢) GIMMS3g normalized difference
vegetation index (NDVI), and (d) MODIS NDVI. AR1 and variance are calculated on a 5-year rolling window pixel-wise (satellite data) and
for n = 1000 synthetic time series. Each panel has 50 equally spaced bins from —1 to 1. For (a), four different SNRs are shown, as well as
the underlying signal (i.e., without the influence of a changing measurement noise). For (b—d), pixels are divided by land-cover type. The
distribution of correlation coefficients is generally positive, except in the synthetic approach with low SNRs.

records for analyzing vegetation resilience has been debated
(Smith et al., 2022); indeed, we find that much of the global-
scale structure of VOD resilience changes — if inferred based
on large-scale aggregates of AR1 and variance time series —
can be reproduced with synthetic data mimicking a changing
mix of sensors (Fig. 3). While synthetic data do not match as
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closely for AVHRR (Fig. S5 in the Supplement), questions
remain about the degree of influence changing data structure
has on interpretations of changing resilience.

Based on our results, we infer that the correlation between
ARI1 and variance time series can serve as a rough proxy
for the strength of the biases caused by combining differ-
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ent sensors; the more negative (positive) the correlations, the
stronger (weaker) this effect will be. While the residual in-
fluences of changing measurement noise cannot be strictly
ruled out — especially in a real-world case where measure-
ment noise is influenced by a wide range of factors — individ-
ual ARI1 and variance series exhibiting positive correlations
indicate that process-level changes, rather than changes in
measurement noise, dominate AR1 and variance signals. Our
analysis of synthetic data (Figs. 2, 4) shows that reasonably
high SNRs strongly reduce the influence of changing mea-
surement noise on resilience metrics at the individual time
series level or if resilience metrics are computed from aggre-
gated time series of the system state, even given relatively
large variations in measurement noise through time. How-
ever, our results also show that taking large-scale averages
of AR1 and variance time series — especially over incoherent
spatial regions — should generally be avoided as this tends to
amplify the biases induced by changing sensors. This is a key
practical finding of our analysis, as regional- or global-scale
resilience changes are often presented by averaging along a
time axis (Smith et al., 2022; Boulton et al., 2022; Feng et al.,
2021; Forzieri et al., 2022); this way of averaging data has
the potential to enhance the influence of time-variable mea-
surement noise and hence lead to erroneous interpretations
of changing system resilience.

Our findings have important implications for recent
regional- and global-scale analyses of vegetation resilience
based on VODCA (Smith et al., 2022; Boulton et al., 2022)
and GIMMS3g (Feng et al., 2021). All three papers rely pri-
marily on individual-pixel-level analyses to support their in-
ferences about changing resilience patterns, which our results
indicate are reliable (Figs. 2, 4); indeed the vast majority of
VOD and GIMMS3g time series globally have positive AR1
and variance correlations (Fig. 4). However, these three pa-
pers also present spatially aggregated trends in resilience in-
dicators — for example, Extended Data Fig. 6 in Smith et al.
(2022) and Fig. 2c in Boulton et al. (2022) — that should be
treated with caution, as our synthetic experiments indicate
that aggregated AR1 and variance time series can be strongly
influenced by changes in measurement noise (Fig. 2).

Despite the strong positive correlations seen between AR1
and variance at the individual-pixel level (Fig. 4), changes
in satellite mix will still influence long-term estimates of
resilience, especially if AR1 and variance are aggregated
across multiple time series. This impact is unfortunately dif-
ficult to quantify — the underlying noise of a satellite data
record is highly sensitive to the individual characteristics of
the location being monitored, and measurement noise can
change drastically in time and space. Coastal areas with
strong atmospheric moisture signals will behave differently
than dry continental interiors; these differences will be sensi-
tive to diverse factors (e.g., sensing wavelength, time of day
of overpass, satellite footprint size). Thus, not all time se-
ries are equally reliable, and the influence of sensor noise on
resilience metrics could vary widely. Without a strong han-
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dle on the underlying driving process, any quantification of
changing satellite noise will be difficult to disentangle from
changes in the ecosystem being measured. A better model
or empirical quantification of the SNR of different satellite
platforms would greatly improve our ability to assess the un-
certainty in changes in ecosystem dynamics and especially
resilience.

There is thus no safe and efficient way to correct for this
influence globally; simple strategies such as removing the
global average signal from each individual time series as a
normalization procedure create the risk of destroying any un-
derlying changes in AR1 and variance that are in fact due
to changing resilience, such as those potentially driven by
global or regional environmental changes. If, however, there
is a strong reason to believe that a region will behave co-
herently, some of the influence of changes in satellite in-
strumentation can be removed by first aggregating time se-
ries from such a region and then calculating the AR1 and
variance of the resulting mean time series (see Fig. 2, right
column). Conversely, first calculating AR1 and variance and
then averaging those metrics over a region will emphasize
changes in the data structure unrelated to resilience changes
(see Fig. 2, left column). It is thus important to consider
carefully the stage at which data are aggregated, the scale
at which changes in resilience are expected to be expressed
(Wang and Loreau, 2014), and how to interpret regional- or
global-scale changes in AR1 and variance.

5 Conclusions

Our analysis highlights the potential pitfalls of using multi-
instrument or discontinuous data to monitor the commonly
used resilience indicators given by lag-one autocorrelation
and variance. We find that when time series of these re-
silience indicators are averaged — as would typically be done
to show regional- or global-scale changes — the influence of
changes in the underlying data structure is enhanced, leading
to potentially erroneous and biased interpretations. On the
other hand, both synthetic and empirical experiments indi-
cate that — given reasonable signal-to-noise ratios — process-
based or environmental changes in individual time series are
a more important driver of changes in the resilience indi-
cators ARI1 and variance than changes in the measurement
process. This is an important insight that emphasizes how
best to aggregate, present, and interpret changes in resilience
across disciplines. We emphasize that single-sensor instru-
ment records — when available — should be preferred for anal-
yses of system resilience.

Code and data availability. Data used in this study
are publicly available from Moesinger et al. (2020)
(https://doi.org/10.5281/zeno0d0.2575599, Moesinger et
al., 2019), https://doi.org/10.3390/rs6086929  (Pinzon and
Tucker, 2014), https://doi.org/10.5067/MODIS/MCD12Q1.061
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https://doi.org/10.5067/MODIS/MOD13C1.006 (Didan, 2015).

Code to reproduce the synthetic data used in this study can be
found on Zenodo: https://doi.org/10.5281/zenodo.7009414 (Smith
and Boers, 2022)

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-14-173-2023-supplement.
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