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Abstract. Seasonal variability of the global hydrologic cycle directly impacts human activities, including haz-
ard assessment and mitigation, agricultural decisions, and water resources management. This is particularly true
across the High Mountain Asia (HMA) region, where availability of water resources can change depending on
local seasonality of the hydrologic cycle. Forecasting the atmospheric states and surface conditions, including
hydrometeorologically relevant variables, at subseasonal-to-seasonal (S2S) lead times of weeks to months is an
area of active research and development. NASA’s Goddard Earth Observing System (GEOS) S2S prediction
system has been developed with this research goal in mind. Here, we benchmark the forecast skill of GEOS-S2S
(version 2) hydrometeorological forecasts at 1–3-month lead times in the HMA region, including a portion of
the Indian subcontinent, during the retrospective forecast period, 1981–2016. To assess forecast skill, we evalu-
ate 2 m air temperature, total precipitation, fractional snow cover, snow water equivalent, surface soil moisture,
and terrestrial water storage forecasts against the Modern-Era Retrospective analysis for Research and Applica-
tions, Version 2 (MERRA-2) and independent reanalysis data, satellite observations, and data fusion products.
Anomaly correlation is highest when the forecasts are evaluated against MERRA-2 and particularly in variables
with long memory in the climate system, likely due to the similar initial conditions and model architecture used in
GEOS-S2S and MERRA-2. When compared to MERRA-2, results for the 1-month forecast skill range from an
anomaly correlation of Ranom = 0.18 for precipitation to Ranom = 0.62 for soil moisture. Anomaly correlations
are consistently lower when forecasts are evaluated against independent observations; results for the 1-month
forecast skill range from Ranom = 0.13 for snow water equivalent to Ranom = 0.24 for fractional snow cover. We
find that, generally, hydrometeorological forecast skill is dependent on the forecast lead time, the memory of
the variable within the physical system, and the validation dataset used. Overall, these results benchmark the
GEOS-S2S system’s ability to forecast HMA hydrometeorology.
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1 Introduction

Skillful prediction of hydrometeorological conditions at
subseasonal-to-seasonal (S2S) timescales depends on a range
of factors, including the representation of land and ocean ini-
tial conditions (Dirmeyer et al., 2018; Mariotti et al., 2018), a
model’s ability to capture large-scale atmospheric processes
(Gibson et al., 2020), a model’s representation of climate
mode variability (e.g., Waliser et al., 2006, 2009; Shukla
et al., 2018), the chosen perturbation and ensemble scheme
(Scaife et al., 2014), and the level of predictability itself.
S2S forecasting differs from numerical weather prediction,
where skill largely depends on accurate representation of at-
mospheric initial conditions (Pielke Sr. et al., 1999). There is
a need to understand the processes that drive S2S prediction
skill, and there has been extensive research (e.g., Merryfield
et al., 2020; White et al., 2021) aimed towards understanding
the complexity of these systems. However, further improve-
ments in S2S forecasting skill, particularly of societally rel-
evant variables, are sought because accurate S2S forecasts
are useful for advance planning in various sectors, such as
energy, water resources, agriculture, and disaster mitigation
(National Academies Press, 2016).

S2S hydrometeorological forecasts can be valuable in
heavily populated regions, such as the Indian subcontinent,
as well as in more sparsely populated areas, such as High
Mountain Asia (HMA). These regions experience substantial
inter- and intra-annual variability in water resources. HMA
has been dubbed one of the main “water towers” of the
Earth (Viviroli et al., 2007; Immerzeel et al., 2010, 2020) and
has been hypothesized to influence global weather patterns
through its impact on teleconnections (Nash et al., 2021).
S2S forecasting systems, such as the Goddard Earth Observ-
ing System S2S prediction system (GEOS-S2S), could skill-
fully capture large-scale atmospheric patterns and telecon-
nections (Gibson et al., 2020; Lim et al., 2021), including
those impacting the HMA region. Ding and Wang (2007)
and Lim (2015) demonstrated the importance of the Eurasian
teleconnection in driving the planetary-scale Rossby-wave
propagation that causes the intraseasonal variability over
central Asia and the northern part of India. Other studies in-
vestigated climate variations over HMA by the impact of the
North Atlantic Oscillation (Li et al., 2005, 2008), the Indian
Ocean Dipole and El Niño–Southern Oscillation (Stuecker et
al., 2017; Sang et al., 2019; Power et al., 2021; Meena et al.,
2022), the Central Indian Ocean mode (Zhou et al., 2017),
and the boreal summer intraseasonal oscillation (Jiang et al.,
2004; Hatsuzuka and Fujinami, 2017).

The proper representation of large-scale teleconnections
in S2S forecasting systems and how that impacts hydrom-
eteorological conditions is complicated by local character-
istics, which degrade the accuracy of high-resolution S2S
forecasts at local scales. For example, the northward prop-
agation of the boreal summer intraseasonal oscillation origi-
nates in the northern Indian Ocean and tends to dissipate near

the foothills of the Himalayas, and high humidity along the
southern slope of the Himalayas and Tibetan Plateau leads to
enhanced precipitation events (Jiang et al., 2004; Hatsuzuka
and Fujinami, 2017). It is, however, extremely difficult to
pinpoint specific locations where this process ultimately oc-
curs. Therefore, to gain a better understanding and to make
better predictions of how the Earth system behaves at re-
gional scales, such as for the HMA region, further research
is warranted.

Numerous investigations have examined the impacts of
climate and weather in the HMA region, including air tem-
perature (Su et al., 2013; Dars et al., 2020), precipitation (Su
et al., 2013; Ghatak et al., 2018; Liu and Margulis 2019;
Christensen et al., 2019; Dars et al., 2020; Stanley et al.,
2020), terrestrial water storage and the overall water bud-
get (Loomis et al., 2019a; Yoon et al., 2019), groundwater
storage (Xiang et al., 2016; Wang et al., 2021), snow (Liu et
al., 2021a; Liu and Margulis, 2019; Margulis et al., 2019),
glaciers (Shugar et al., 2020; Maurer et al., 2020; Batbaatar
et al., 2021), atmospheric river storms (Nash et al., 2021),
hydropower (Mishra et al., 2020), and landslides (Bekaert et
al., 2020; Stanley et al., 2020). There are many communities
of scientists in the US, Europe, and Asia investigating how
climate is changing in HMA and what drives these changes
(e.g., Arendt et al., 2017).

More broadly, studies such as those by Vitart and Robert-
son (2018), de Andrade et al. (2019), and Robertson et
al. (2020) have investigated the usefulness of S2S forecast-
ing for global climate and weather extremes. These types of
studies can be used to deduce the skill of S2S forecasts for
the HMA region. For instance, these studies show how fore-
casting a variable like precipitation in the HMA region can
be difficult, with forecasts being acceptable out to week 1
but starting to degrade for forecasts in weeks 2–4. Further-
more, there have been studies that investigate the skill of
S2S forecasts specifically for regions including or close to
HMA. For example, Deorias et al. (2021) compared the pre-
diction of the Indian monsoon in different S2S models; Hsu
et al. (2021) investigated simulations of the East Asian win-
ter monsoon on S2S time scales; Gerlitz et al. (2020) applied
climate-informed seasonal forecasts of water availability in
Central Asia; and Zhou et al. (2021) developed a hydrologi-
cal monitoring system and S2S forecasting system for South
and Southeast Asian river basins. Many of these studies uti-
lized S2S prediction systems, but there is still a need for fur-
ther evaluation of S2S forecast skill for hydrometeorological
variables in the HMA region. Our study examines the skill
of S2S forecasting for the HMA region using the GEOS-S2S
forecasting system.

The NASA Global Modeling and Assimilation Office
utilizes the GEOS-S2S forecasting system, which initial-
izes S2S forecasts each month using a weakly coupled
atmosphere–ocean data assimilation system (Borovikov et
al., 2018; Molod et al., 2020). Forecasts are provided to na-
tional and international multi-model prediction efforts, in-
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cluding the North American Multi-Model Ensemble (Kirt-
man et al., 2014). The skill of GEOS-S2S has been reported
in various works, such as by Gibson et al. (2020), who as-
sessed the hindcast skill of representing ridging events over
the western United States in different S2S models and found
the forecast horizon of GEOS-S2S to be comparable with
other S2S models in the community. Recent GEOS-S2S sys-
tem developments improved the representation of ocean tem-
peratures and heat transport (Molod et al., 2020) and the
retrospective forecast of climate indices, including the El
Niño–Southern Oscillation, North Atlantic Oscillation, and
the Madden–Julian Oscillation, particularly at 1–3-month
lead times (Molod et al., 2020; Lim et al., 2021). These im-
provements should contribute to enhancements in global hy-
drometeorological forecast skill in GEOS-S2S.

In this study, we examine the ability of GEOS-S2S fore-
casts to accurately predict near-surface air temperature, to-
tal precipitation, fractional snow cover area, snow water
equivalent, surface soil moisture, and terrestrial water stor-
age across the HMA region and a large portion of the Indian
subcontinent at 1-, 2-, and 3-month lead times. These vari-
ables are directly relevant to the accurate prediction of water
resources and processes critical to local populations. Evalu-
ation and improvement of hydrometeorological forecast lead
time can improve warning systems for natural hazards such
as flooding or landslides and can provide critical information
for agricultural purposes (Bekaert et al., 2020; Stanley et al.,
2020). However, the complex relationships among variables
and the regional topography within HMA make S2S forecast-
ing for this area challenging. Some of these variables, such as
temperature or precipitation, are more difficult to accurately
forecast at the S2S time scales compared to other variables
because of their fast nature and low memory in the phys-
ical system. It is hypothesized that there is higher forecast
skill for the variables with longer temporal memory in the
physical system, such as snow, soil moisture, or terrestrial
water storage. Therefore, proper initialization of these vari-
ables can allow for longer-lasting skill in the S2S forecasting
system.

The first objective of this work is to provide a bench-
mark of GEOS-S2S hydrometeorological forecast skill for
the HMA region and across a large portion of the Indian
Subcontinent. A second objective of the analysis is to de-
termine potential areas of improvement in model initializa-
tion or more realistic representation in the model architec-
ture, which can help enhance the forecast accuracy in future
GEOS-S2S versions and extend the skillful forecast window
of variables in the HMA region. The paper is organized as
follows: Sect. 2 introduces the datasets and methods used in
this study, Sect. 3 reports the results of the evaluation, Sect. 4
offers a discussion on the main findings, and Sect. 5 con-
cludes with a summary of the paper.

Figure 1. Topography and ocean bathymetry using the NOAA Na-
tional Geophysical Data Center’s ETOPO1 global relief model. The
map shows the elevation (m) for the HMA domain. The topography
shown in this map is not the same as the topography used by GEOS-
S2S, which has a coarser representation of the actual topography in
the HMA region. In this figure, countries are in black text, moun-
tain ranges are in white text, and main rivers that are in major basins
are in blue text. Four subregions are defined for additional analysis,
where the west region shown in red includes the Hindu Kush and
Karakoram mountains, the south region includes the Indian subcon-
tinent, the east region includes the Inner Tibetan Plateau, and the
central region includes the Himalayas.

2 Data and methods

2.1 Region of focus

Here, we refer to “HMA” as the domain shown in Fig. 1, cov-
ering parts of China, Afghanistan, Pakistan, Nepal, Bhutan,
India, Bangladesh, Myanmar, Kazakhstan, Uzbekistan, Kyr-
gyzstan, and Tajikistan and stretching across several moun-
tain ranges, including the Himalayas, Inner Tibetan Plateau,
Karakoram, and Hindu Kush. These mountains funnel fresh
water into major river basins, including the Tarim, In-
dus, Yangtze, and Ganges–Brahmaputra basins, that support
about 1.5 billion people, providing drinking water, irrigation,
and hydropower (Immerzeel et al., 2020). HMA has one of
the highest concentrations of snow and glacier ice outside of
the polar regions, making it an extremely important region
to study and evaluate S2S forecasting of hydrometeorologi-
cal variables. The HMA region we consider here includes ar-
eas of different topography, population density, and climate.
For this reason, we split our domain into different subregions
(shown in the boxes in Fig. 1) that account for the different
areas within HMA.
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2.2 GEOS-S2S prediction system

We evaluate GEOS-S2S, version 2 (Molod et al., 2020);
the GEOS-S2S forecasting system is an atmosphere–ocean
general circulation model (AOGCM) and ocean data as-
similation system. The AOGCM includes the GEOS atmo-
spheric general circulation model (AGCM; Molod et al.,
2015; Rienecker et al., 2008), the catchment land surface
model (Koster et al., 2000), version 5 of the Modular Ocean
Model developed by the Geophysical Fluid Dynamics Labo-
ratory (Griffies, 2012), and version 4.1 of the sea ice model
developed by the Los Alamos National Laboratory (Hunke
and Lipscomb, 2008). GEOS-S2S forecasts are initialized us-
ing a precomputed atmospheric analysis and ocean data as-
similation (Penny et al., 2013). The system components are
coupled using the Earth System Modeling Framework (Hill
et al., 2004) and the Modeling Analysis and Prediction Layer
interface layer (Suarez et al., 2007).

The GEOS-S2S analysis uses a weakly coupled
atmosphere–ocean data assimilation system with a 5 d
assimilation cycle. During the initial 5 d predictor segment,
every 6 h, the departure of model trajectory from observed
ocean fields is determined, and sea ice fraction is replaced
with satellite-derived observations (Cavalieri et al., 1996).
Following the predictor segment, the model is rewound,
and ocean analysis increments are applied during the first
18 h of the 5 d corrector segment. During both segments,
the atmosphere is nudged to a precomputed state, and SST
is strongly relaxed to MERRA-2 values to ensure that the
ocean and atmosphere are as consistent as possible. A
detailed description is in Molod et al. (2020).

Forecasts are initialized from the GEOS-S2S analysis at
the end of the corrector segment. During the retrospective
forecast period (1981–2016), forecasts are initialized using
an unperturbed lagged scheme, with unperturbed forecasts
initialized every 5 d during the last half of each month for a
total of four ensemble members. During the operational fore-
cast period (2017–present), an additional six perturbed fore-
casts are initialized on the last forecast day of each month.
All forecasts are 9 months in duration, but we focus here
on the four ensemble members in the retrospective forecasts
with 1-, 2-, and 3-month lead times. Retrospective forecasts,
which are used in this study, are completed to provide a
model climatology for use in probabilistic forecasting and
to provide a long period for forecast verification (Molod et
al., 2020). GEOS-S2S forecasts have been used and evalu-
ated in studies related to the Madden–Julian Oscillation (Lim
et al., 2021), sea surface salinity and its impact on the El
Niño–Southern Oscillation (Hackert et al., 2020), the impact
of volcano eruptions on surface temperatures and precipita-
tion (Aquila et al., 2021), and others.

The hydrometeorological variables of interest were ob-
tained from the GEOS-S2S archive and include the follow-
ing: 2 m air temperature (T2M from the “surf” collection),
total precipitation (PRECTOT from the “vis2d” collection),

snow cover area fraction (ASNOW from the “vis2d” collec-
tion and called fSCA for the remainder of this paper), snow
water equivalent (SNOMAS from the “vis2d” collection and
called SWE for the remainder of this paper), soil moisture
in the surface layer from 0–5 cm (WET1 from the “vis2d”
collection and SM for the remainder of this paper), and ter-
restrial water storage (TWLAND from the “surf” collection
and “TWS” for the remainder of this paper). The PRECTOT
variable investigated here is total precipitation including rain
and snowfall, i.e., PRECTOT= liquid+ solid (total) precipi-
tation. SM is calculated at each grid cell by scaling the WET1
variable with porosity. For grid cells that are frozen or are
covered in snow, the soil moisture value is masked out as a
no-data-value grid cell to focus on the warm season, follow-
ing the work of De Lannoy and Reichle (2016). Simulated
TWS includes soil moisture, snow, and the canopy intercep-
tion reservoir, but not surface water (that is, lake and river
water) or glaciers. Table 1 provides a list of these variables,
as represented in GEOS-S2S (Nakada et al., 2018), and the
corresponding evaluation datasets, detailed in the following
subsections.

2.3 Evaluation datasets

The first product used here to evaluate the GEOS-S2S fore-
casts is the Modern-Era Retrospective analysis for Research
and Applications, version 2 (MERRA-2; Sect. 2.3.1; Gelaro
et al., 2017). MERRA-2 and GEOS-S2S output includes
many compatible variables because the version of the GEOS
AGCM in GEOS-S2S-2 is similar to the version used for the
production of the MERRA-2 reanalysis.

To further evaluate GEOS-S2S, we also use indepen-
dent reanalysis and observational products (Table 1). To this
end, for air temperature we use the fifth-generation atmo-
spheric reanalysis from the European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis product
(ERA5; Sect. 2.3.2; Hersbach et al., 2020). For precipi-
tation, we use the Asian Precipitation – Highly Resolved
Observed Data Integration Towards Evaluation product
(APHRODITE; Sect. 2.3.3; Yatagai et al., 2012). For snow
cover, we use the Moderate-Resolution Imaging Spectrora-
diometer (MODIS; Sect. 2.3.4; Hall et al., 2002) remotely
sensed product. For SWE, we use the HMA Snow Reanal-
ysis product (HMA-SR; Sect. 2.3.5; Margulis et al., 2019;
Liu et al., 2021b). For soil moisture, we use the European
Space Agency’s Climate Change Initiative data (ESA-CCI;
Sect. 2.3.6; Dorigo et al., 2017). Lastly, for TWS, we use data
from the NASA Gravity Recovery and Climate Experiment
satellite mission (GRACE; Sect. 2.3.7; Tapley et al., 2004).
We utilize information from different sources to make sure
that evaluation results are not solely dependent on biases or
uncertainties in a single reference product. The datasets used
for evaluation in our study have their own biases and issues,
particularly over the mountainous regions of our study.
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Table 1. The list of all data products used, including the GEOS-S2S V2 forecasting system, the MERRA-2 reanalysis product, and the
various reference data products. The information in this table includes the period of data availability, the period used in the evaluation, the
variables used in this study, the original spatial and temporal resolutions, and the main reference for each dataset. GEOS-S2S-V2, MERRA-
2, and ERA5 data are provided up until the present day, and production of these datasets occurs in near-real-time, where quality-assured
monthly updates are typically published within 3 months of data production. GRACE data are originally provided at 3◦ spatial resolution,
but the version used here is posted at 1◦ spatial resolution.

Data product Available period Evaluation period Variables Spatial Temporal Reference
evaluated resolution resolution

GEOS-S2S-V2 01/1981–12/2021 01/1981–12/2016 All variables 0.5◦ Daily Nakada et al. (2018)
MERRA-2 01/1980–12/2021 01/1981–12/2016 All variables 0.625× 0.5◦ Hourly Gelaro et al. (2017)
ERA5 01/1979–12/2021 01/1981–12/2016 T2M 31 km 3 h Hersbach et al. (2020)
APHRODITE 01/1998–12/2015 01/1998–12/2015 PRECTOT 0.05◦ Daily Yatagai et al. (2012)
MODIS 02/2000–12/2016 02/2000–12/2016 fSCA 0.05◦ Daily Hall et al. (2002)
HMA-SR 10/1999–09/2017 01/2000–12/2016 SWE 500 m Daily Liu et al. (2021b)
ESA-CCI 01/1978–12/2020 01/2000–12/2016 SM 0.25◦ Daily Dorigo et al. (2017)
GRACE 04/2002–10/2017 04/2002–12/2016 TWS 3◦ Monthly Tapley et al. (2004)

2.3.1 MERRA-2

MERRA-2 is the most recent NASA global atmospheric re-
analysis product and is generated using the GEOS atmo-
spheric model and analysis (Gelaro et al., 2017). MERRA-
2 output contains similar variables to GEOS-S2S and of-
fers a rich product to apply systematic evaluation of the
model forecasts. We obtain information from MERRA-2 on
all the variables of interest listed in the previous section (Ta-
ble 1) and for the same period (1981–2016; Bosilovich et
al., 2016). The variables of interest include the following:
2 m air temperature (T2M from the “single-level diagnos-
tics” collection; GMAO, 2015a), total precipitation (PREC-
TOTCORR from the “surface flux diagnostics” collection;
GMAO, 2015b), snow cover area fraction (FRSNO from the
“land surface diagnostics” collection and called fSCA for the
remainder of this paper; GMAO, 2015c), snow water equiv-
alent (SNOMAS from the “land surface diagnostics” collec-
tion and SWE for the remainder of this paper), soil moisture
in the surface layer from 0–5 cm (GWETTOP from the “land
surface diagnostics” collection and SM for the remainder of
this paper), and terrestrial water storage (TWLAND from
the “land surface diagnostics” collection and TWS for the
remainder of this paper). MERRA-2 uses observation-based
precipitation data as forcing for the land surface parameter-
ization (Reichle et al., 2017), which is available as part of
the “surface flux diagnostics” collection (GMAO, 2015b).
This PRECTOTCORR variable in MERRA-2 is compared
to the PRECTOT variable in the GEOS-S2S forecasts, and
similarly, it contains both liquid and solid precipitation (rain-
fall+ snowfall). Like GEOS-S2S, SM is calculated at each
grid cell by multiplying the GWETTOP variable with poros-
ity.

2.3.2 ERA5 2 m air temperature

For our study, we obtain information on T2M from ERA5.
ERA5 covers the period from January 1950 to present and
is available from the Copernicus Climate Change Service at
ECMWF. ERA5 embodies a detailed record of the global at-
mosphere, land surface, and ocean waves (Hersbach et al.,
2020). The surface analysis in ERA5 ingests station obser-
vations of T2M where available and under suitable, warm-
season conditions (de Rosnay et al., 2014). For times and lo-
cations where T2M observations are assimilated, the ERA5
T2M estimates are therefore closer to observations. In HMA,
however, this is not necessarily the case, owing to the topo-
graphically complex terrain and generally colder conditions.

2.3.3 APHRODITE precipitation

APHRODITE’s gridded precipitation is a set of long-term,
continental-scale, daily products that is based on a dense net-
work of rain gauge data for Asia. The data include informa-
tion for many regions, including the Himalayas, South and
Southeast Asia, and mountainous areas in the Middle East,
from January 1951 until December 2015. We obtain infor-
mation on the total precipitation from APHRODITE (version
V1901; Yatagai et al., 2012) in our evaluation, which we uti-
lize as the alternative observation for precipitation. The data
are aggregated from daily to monthly time steps and regrid-
ded from 0.05◦ to 0.5◦ resolution to match the model grid.
There was no further quality control done on the data, since
this was already conducted by the data provider (Maeda et
al., 2020).

2.3.4 MODIS snow cover area

MODIS MOD10C1 version 6 provides the daily (∼ 10:30 lo-
cal time) percentage of snow-covered land and cloud-covered
land on the MODIS climate-modeling grid (posted at 0.05◦;
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Hall and Riggs, 2016a). The MOD10C1 CMG dataset is
generated from the normalized-difference snow index snow
cover of MOD10A1 (Hall and Riggs, 2016b) by mapping the
500 m MOD10A1 observation types (snow, snow-free land,
cloud, etc.) to 0.05◦ bins. Snow and cloud cover percentages
are derived by calculating the ratio of 500 m snow and cloud
cover observations to the total number of 500 m land obser-
vations within each CMG grid cell. MOD10C1 also has ba-
sic quality assurance flags to document any low-quality data
points, and any grid cells that are flagged are not used in this
analysis. Daily data between February 2000 and December
2016 are averaged to create monthly mean snow cover per-
centages.

2.3.5 HMA-SR snow water equivalent

The HMA-SR assimilates Landsat- and MODIS-derived
fractional snow-covered area to derive seasonal snow wa-
ter equivalent in HMA, where in situ data are limited (Mar-
gulis et al., 2019; Liu et al., 2021b). The method is a prob-
abilistic data assimilation version of a snow reconstruction
approach (Girotto et al., 2014), where SWE information is
retrieved from the accumulation of melt events driven by en-
ergy forcings (i.e., downscaled global datasets for forcing a
snow model) and observed snow cover area disappearance.
The data product provides snow depth and SWE estimates
from October 1999 to September 2017. The data are aggre-
gated from daily to monthly time steps and regridded from
16 arcsec (∼ 0.0044◦) to 0.5◦ resolution to match the model
grid. We used a non-seasonal snow mask to exclude grid cells
with permanent snow and ice from the evaluation (Liu et al.,
2021a).

2.3.6 ESA-CCI soil moisture

The ESA-CCI Program on Global Monitoring of Essential
Climate Variables produces an updated soil moisture product
every year (Dorigo et al., 2017; Gruber et al., 2019; Preimes-
berger et al., 2021). The ESA-CCI SM product comprises of
active, passive, and combined microwave satellite soil mois-
ture datasets from 1978 to 2020. In this study, information
on soil moisture in the surface layer from ESA-CCI (version
6.1) is utilized. While the contributing data products repre-
sent soil moisture at varying sensing depths depending on
their characteristics (active or passive sensor, measurement
frequency, etc.), the merged ESA-CCI SM dataset is repre-
sentative of the top ∼ 0–5 cm of the soil. There are gaps in
the original ESA-CCI data due to the quality control applied
during post-processing, such as areas that are masked out for
ice and snow (different time steps will have different masks
applied). Furthermore, the product quality changes over time
with the number and type of sensors integrated into the prod-
uct, with more recent retrievals being generally of higher
quality.

2.3.7 GRACE terrestrial water storage

From 2002 to 2017, NASA’s twin Gravity Recovery and
Climate Experiment (GRACE) satellites monitored large-
scale water storage changes all over the globe (Tapley et
al., 2004; Rodell et al., 2009; Famiglietti et al., 2011; Mas-
soud et al., 2018, 2021, 2022). GRACE provided estimates
of global mass change at monthly resolution and at a rela-
tively coarse spatial resolution (∼ 300 km). Information on
TWS from GRACE captures the dynamic signature of all
water sources on the ground, such as surface reservoirs,
lakes, rivers, glaciers, canopy water, soil moisture, snow, and
groundwater. For our study, we utilize the GRACE mascon
product (Loomis et al., 2019b), available from April 2002–
present.

2.4 Forecast evaluation

For the evaluation of all variables with MERRA-2, we use
monthly averaged forecasts from 1981–2016. For the ver-
ification with the reference data products, we also utilize
monthly averaged data, yet the time periods differ for each
of the reference data products, depending on the availabil-
ity and quality of the reference data. The length of record of
each data product used is indicated in Table 1.

2.4.1 Calculating climatologies and anomalies

S2S forecasts can be assessed based on anomaly skill, i.e.,
the departure from expected normal conditions for a particu-
lar month (Kirtman et al., 2014). For this study, we remove
the forecast climatology (i.e., the long-term mean value for
each calendar month throughout the length of the available
data record) for all analyzed variables. For an example of
how this is estimated, consider the calculation of the 1-month
lead anomaly that is initialized in January and has a fore-
cast in February. For this, we take all the 1-month-lead fore-
casts for February between 1981–2016 and calculate their
mean. This climatology will be subtracted from the forecast
of February conditions that were initialized in January (i.e.,
1-month lead) to determine the anomaly for that forecast. The
same procedure is applied on the 2-month and 3-month fore-
casts to develop their respective anomalies. For the evalua-
tion datasets, monthly climatologies were created using the
time intervals defined in the previous sections and in Table 1
and subtracted from each respective dataset.

2.4.2 Regridding and masking

All the data products listed above are remapped to a half-
degree resolution to match the grid size of the GEOS-S2S
forecasts. For the case of higher-resolution data, such as
MODIS (0.05◦), the aggregation was done by computing the
average across all the grid cells within each half-degree grid
cell in GEOS-S2S. For products with lower resolution, such
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as GRACE (1◦ posting), the data were re-gridded to half-
degree grids using bilinear interpolation. Furthermore, all
the data were aggregated to monthly averages to facilitate
the temporal comparisons with the S2S forecasts. There are
cases where grid cells were excluded from the analysis for
reasons such as availability or quality of the data. These ex-
cluded data were removed in the calculation of the evaluation
metrics, which are described in the next section.

2.4.3 Evaluation metrics

For evaluating the 1-, 2-, and 3-month forecasts from GEOS-
S2S, we use the monthly anomalies from each dataset
(Sect. 2.4.1) and estimate the unbiased root-mean-square er-
ror (ubRMSE), as well as the anomaly correlation (Ranom)
between the model forecasts and the reference data. For the
remainder of this paper, we use ubRMSE to refer to the er-
ror, and we use Ranom to refer to the correlation of the S2S
forecasts.

The ubRMSE score is calculated as the RMSE of the
anomaly forecasts from all grid cells and at all time steps
as follows:

ubRMSE=

1/
√
n×

√∑
x, y, t
[GEOS.S2Sanom(x,y, t)−Ref.Dataanom(x,y, t)]2, (1)

where GEOS.S2Sanom is the forecast anomaly from the S2S
system at location (x,y) and at time (t), Ref.Dataanom rep-
resents the respective anomaly of the reference data product
used for the evaluation, and n represents the number of el-
ements in the calculation, which is a product of the number
of grid cells and the number of time steps. For evaluation
estimates that include masked-out grid cells, n is reduced to
represent the total number of elements that are accounted for
in the calculation.

The Ranom score is calculated as the correlation of the
anomaly of the S2S forecasts with the anomaly of the ver-
ification data. This score is estimated using the “corrcoef”
function in MATLAB (Press et al., 1992), which also pro-
vides upper and lower limits that can be used for estimat-
ing the error bars around the correlation estimate. We report
the error bars around the Ranom score by representing the in-
terquartile range of the anomaly correlation from all the con-
sidered grid cells. The equation for the Ranom score used here
is as follows:

Ranom =

1/(n− 1) ×
n∑
i=1

(
GEOS.S2Sanom (x,y, t)

σGEOS

)(
Ref.Dataanom (x,y, t)

σData

)
, (2)

where σGEOS and σData are the standard deviation of the S2S
forecasts and the evaluation datasets, respectively.

In this study, we also report on the ensemble spread of the
GEOS-S2S forecasts. For estimating the ensemble spread for
the S2S forecasts, we calculate the standard deviation of the

Figure 2. Anomaly correlation skill between variables for the
GEOS-S2S forecasts when evaluated against MERRA-2 (a) and
against reference data products (b). The evaluation of the 1-month-
lead forecasts is shown in the first bar (blue), the evaluation of the
2-month-lead forecasts is shown in the second bar (green), and the
evaluation of the 3-month-lead forecasts is shown in the third bar
(black). The red error bars indicate the spatial standard deviation of
the anomaly correlation for each variable. The reference data that
are used in Figure 2B are listed in Table 1.

ensemble members from GEOS-S2S for each grid cell and at
each monthly time step. The ensemble spread estimated here
is lead time dependent. Since there are only four ensemble
members at each time step and for each grid cell, the ensem-
ble spread can be rather noisy. Therefore, we estimate the
ensemble spread as the long-term mean of the standard devi-
ation of the ensemble members at each grid cell. This helps
reduce noise in the ensembles.

3 Results

In this section, we report the results of the evaluation, show-
ing the skill of the GEOS-S2S hydrometeorological forecasts
for the HMA region. For reference, Table 2 lists the ubRMSE
and the Ranom for all variables when comparing the S2S fore-
casts to the reanalysis (MERRA-2, Sect. 2.3) and the refer-
ence data products (Sect. 2.4). Further discussion of the re-
sults is provided in Sect. 4.

3.1 Difference in skill among variables and forecast lead
times

Table 2 and Fig. 2 show the anomaly correlation for each
variable and for each lead time considered, along with the er-
ror bars for each anomaly correlation assessment. The red er-
ror bars in Fig. 2 indicate the spatial standard deviation of the
anomaly correlation for each variable. The results indicate
that, across all variables, the forecast skill at 1-month lead is
higher than at 2-month lead, which is higher than at 3-month
lead. For example, for T2M, the 1-month forecast anomaly
correlation when compared to MERRA-2 is Ranom = 0.24,
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Table 2. The unbiased RMSE (ubRMSE) and the anomaly correlation (Ranom) for all variables when comparing the GEOS-S2S forecasts to
the reanalysis (“MERRA-2”) and the reference data products (“reference data”). The reference data that are used here are as follows: ERA5
for T2M, APHRODITE for PRECTOT, MODIS for fSCA, HMA-SR for SWE, ESA-CCI for SM, and GRACE for TWS (Sect. 2.3).

ubRMSE Ranom

1-month 2-month 3-month 1-month 2-month 3-month

GEOS-S2S vs. MERRA2

T2M (K) 1.61 1.74 1.77 0.24 0.13 0.11
PRECTOT (mm d−1) 1.06 1.08 1.08 0.18 0.08 0.06
fSCA (–) 0.035 0.041 0.041 0.31 0.07 0.04
SWE (m) 0.002 0.003 0.004 0.32 0.09 0.05
SM (m3 m−3) 0.019 0.023 0.025 0.62 0.40 0.28
TWS (m) 0.025 0.032 0.035 0.55 0.35 0.25

GEOS-S2S vs. reference data

T2M (K) 1.78 1.87 1.90 0.19 0.13 0.10
PRECTOT (mm d−1) 1.03 1.06 1.06 0.16 0.06 0.04
fSCA (–) 0.048 0.051 0.052 0.24 0.11 0.06
SWE (m) 0.021 0.021 0.022 0.13 0.06 0.06
SM (m3 m−3) 0.021 0.020 0.020 0.14 0.10 0.03
TWS (m) 0.101 0.103 0.104 0.13 0.09 0.07

for the 2-month forecast it is 0.13, and for the 3-month fore-
cast it is 0.11. And when compared to ERA5, the 1-month
forecast anomaly correlation for T2M is Ranom = 0.19, for
the 2-month forecast it is 0.13, and for the 3-month forecast
it is 0.10. Higher anomaly correlation for forecasts with a
shorter lead time is seen regardless of which data product was
used for the evaluation, which is aligned with other studies
that evaluate S2S forecasts (e.g., Deflorio et al., 2019; Molod
et al., 2020).

When comparing the S2S forecasts to MERRA-2, the vari-
ables with longer memory in the physical climate system,
such as SM or TWS, have higher accuracy in the S2S fore-
casting system compared to variables that represent more
quickly changing processes, such as T2M or PRECTOT
(Fig. 2a). When the reference data products are used in the
evaluation (Fig. 2b), results show that there is little evidence
that variables with longer memory have higher forecast ac-
curacy, since there is similar skill for forecasting most vari-
ables; for example, when evaluated against reference data,
the range of Ranom for all variables in the verification results
is 0.13 to 0.24 for the 1-month-lead forecasts.

Figure 3 shows the S2S forecast evaluation based on dif-
ferent subregions within the HMA domain. In Fig. 3a–b, the
ubRMSE of each box is normalized by the absolute value of
the climatological mean of that climate variable in that re-
gion, then it is normalized again by all the skill values for
that climate variable. For example, the ubRMSE of the west
region’s 1-month forecast for T2M is divided by the abso-
lute value of mean T2M in the west region (this is done to
eliminate the impact of the magnitude of each climate vari-
able in each region), then this is compared with each of the

other normalized ubRMSE values of T2M for all subregions
and all lead times (this is done to get a sense of which re-
gions have more or less skill in their forecasts compared to
the other regions). So, in these figures, if a box is blue (red),
that climate variable in that subregion for that lead time has a
lower (higher) normalized error when compared to that same
climate variable in other subregions and lead times. These
figures show that, for example, most variables in the east re-
gion (Inner Tibetan Plateau) have a lower normalized error
when compared to the other regions. Conversely, nearly all
the variables in the south region (India) have a higher nor-
malized error than other regions. Then, in Fig. 3c–d, we show
the original ubRMSE values for each subregion at all lead
times, separated by climate variable. In these figures, errors
can be compared for each region. For instance, fSCA and
SWE have the highest error in the west region (Karakoram
and Hindu Kush). Also, PRECTOT, SM, and TWS have the
lowest error in the east (Inner Tibetan Plateau) region.

3.2 Annual cycles

Figure 4 shows the annual cycle, averaged over HMA, of all
data products considered in this study. For T2M (Fig. 4a), the
GEOS-S2S forecasts, MERRA-2, and ERA5 all have very
similar annual cycles; this is persistent across lead times.
The peak of the T2M annual cycle occurs during the sum-
mer months (June, July, August), reaching 290–295 K, and
the low occurs during the winter months (December, January,
February), dropping to 273–275 K. GEOS-S2S PRECTOT
forecasts (Fig. 4b) have a wet bias compared to the MERRA-
2 and APHRODITE products across nearly the entire annual
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Figure 3. (a) Portrait diagram visually depicting the S2S forecast skill when evaluated against MERRA-2, comparing the skill between the
different subregions (e.g., west region’s 1-month forecast for T2M). Values in each box are the ubRMSE normalized by the absolute value of
the climatological mean of that variable in that region (i.e., divided by the absolute value of mean T2M for the west region), normalized again
by all the skill values for that climate variable (i.e., compare each metric with the normalized ubRMSE values of T2M for all subregions and
all lead times). This means that if a box is blue (red), that climate variable in that subregion for that lead time has a lower (higher) normalized
error when compared to that same climate variable in other subregions and lead times. (b) Same as (a) but when evaluating against other
observations. (c) Errors shown here are the original ubRMSE values for each subregion when evaluating against MERRA-2, shown for all
lead times and separated by climate variable. (d) Same as (c) but when evaluating against other observations.

cycle. The peak of all products occurs in the summer months
(JJA), reaching ∼ 4–4.5 mm d−1 for the S2S forecasts and
3.5–4 mm d−1 for the evaluation products, and a low in the
winter months (NDJF), dropping to 0.5–0.75 mm d−1 for the
S2S forecasts and 0.25–0.5 mm d−1 for the evaluation prod-
ucts.

GEOS-S2S fSCA forecasts have more snow cover com-
pared to the MERRA-2 and MODIS products, with a con-
sistently higher mean and amplitude in the S2S forecasts
(Fig. 4c). As expected, the peak of all fSCA products oc-
curs in the winter months (DJF) and the low in the summer
months (JAS); however, the magnitude and amplitude are
different between the products. The peak fSCA in the S2S
forecasts reaches ∼ 0.23–0.25, and the low is about 0.05 for
the S2S forecasts; for the evaluation products, the peak is
only about 0.1–0.15, with lows that are less than 0.03. Fur-
thermore, the annual cycle of fSCA in MERRA-2 is consis-
tently the lowest out of all the products. For SWE (Fig. 4d),
the GEOS-S2S forecasts have a different annual mean and
amplitude for the various lead times and in comparison to
the evaluation products. The peak SWE in the S2S fore-
casts occurs in the spring months (March and April), reach-
ing a high of about 0.02 m for the 1-month-lead forecasts,
0.025 m for the 2-month-lead forecasts, and 0.03 m for the
3-month-lead forecasts. For the HMA-SR product, the sea-
sonality has a higher amplitude and magnitude, reaching a
peak of ∼ 0.03 m in the spring months. For MERRA-2, the
annual cycle of SWE is consistently lower compared to the

other products, reaching a peak of ∼ 0.005 m in February.
All products show a minimum SWE of less than 0.005 m in
the summer months.

For SM, the annual cycle of the GEOS-S2S forecasts is
like that of the MERRA-2 product but is substantially dif-
ferent from the annual cycle of the ESA-CCI data (Fig. 4e).
The peak SM in the S2S forecasts occurs in the fall (∼ Oc-
tober) and reaches ∼ 0.25 m3 m−3, and the low occurs in the
spring (around May) and drops to about 0.12 m3 m−3. This
is similar in MERRA-2, with a peak of just over 0.2 m3 m−3

that occurs in November and a low of just under 0.15 m3 m−3

that occurs in May. For the ESA-CCI, the peak SM reaches
∼ 0.27 m3 m−3 and is observed in the summer months (JJAS)
and the low drops to 0.17 m3 m−3 and is observed in the early
spring (March). Similarly, for TWS (Fig. 4d), the annual cy-
cle of the GEOS-S2S forecasts is like that of the MERRA-
2 product but is substantially different from the annual cy-
cles of the GRACE data. The peak of the TWS anomaly
in the S2S forecasts and in MERRA-2 occurs in the late
summer (ASO) and reaches ∼ 0.05 m, and the low occurs
in the spring (April and May) and drops to about −0.02 m.
For GRACE, the peak TWS reaches a high of 0.05 m in the
summer (JJA) and drops to a low of −0.05 m in the spring
(March–April). Therefore, there is a 1–2-month temporal lag,
as well as a difference in the mean and amplitude of the an-
nual cycles of the different products of SM and TWS be-
tween the various products considered.
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Figure 4. Annual cycle for each variable, averaged over the HMA domain. The annual cycles from the GEOS-S2S forecasts are shown for
all lead times (blue, green, and black curves), and those estimated from the MERRA-2 reanalysis (red) and the reference data products (pink)
are shown for comparison.

3.3 Error by forecast month

The S2S forecast skill depends on various factors, such as
the lead time or the variable of interest. Our results in Figs. 5
and 6 show that skill also depends on the month that is fore-
casted. We observe this behavior in GEOS-S2S when com-
pared to both MERRA-2 (Fig. 5) and reference data prod-
ucts (Fig. 6). Note, the y axes in Figs. 5 and 6 are different
so that the seasonality in each figure is properly portrayed.
Figures 5 and 6 show the area-averaged error based on the
forecast month of interest for each variable. As an example,
the three bars for the month of April include the 1-month,
2-month, and 3-month forecasts, which are the forecasts ini-
tialized in March, February, and January respectively. These
results can be suitable for those interested in understanding
the errors of a forecast for a specific month, say April, using
forecasts that were made 1 to 3 months prior.

We find that GEOS-S2S forecasts of T2M have less
skill in the winter season, with ubRMSE greater than 2 K
around February, and more skill in the summer season, with
ubRMSE of less than 1.5 K around August (Figs. 5a and 6a).
Errors in the precipitation forecasts are higher in the summer
(July–August) compared to the winter months (December–
January), with ubRMSE that is greater than 2 mm d−1 in the
summer and less than 0.5 mm d−1 in the winter (Figs. 5b and
6b).

For the snow variables, forecasts of fSCA have higher
errors in the winter season (December–February), with
ubRMSE close to 0.1, and less error in the summer sea-
son (July–August), with ubRMSE of less than 0.01 (Figs. 5c
and 6c). For SWE, results are different when comparing the
S2S forecasts with MERRA-2 and with the HMA-SR prod-
uct. Figure 5d shows that when comparing the S2S forecasts
of SWE to MERRA-2, there are higher errors in the spring
(March–April), with ubRMSE of 1–1.5 cm, and lower errors
in the summer (August–September), with ubRMSE of less
than 0.1 cm, with the forecast lead time impacting the amount
of error. Yet, Fig. 6d shows that when comparing the S2S
forecasts of SWE to the HMA-SR product, there are higher
errors in the summer months (July–August), with ubRMSE
of 4 cm, and lower errors in the fall (October–November),
with ubRMSE close to 1 cm.

Errors in the SM forecasts are higher in the summer (July–
August) compared to the winter months (February–April),
with ubRMSE values up to 0.03 m3 m−3 in the summer and
as low as 0.01 m3 m−3 in the winter and spring (Figs. 5e
and 6e) and with the forecast lead time impacting the magni-
tude of error. For TWS forecasts, results are different when
comparing the S2S forecasts with MERRA-2 and with the
GRACE data. Figure 5f shows that when comparing the S2S
forecasts of TWS to MERRA-2, there are higher errors in
the summer (around August), with ubRMSE that is over
4 cm, and lower errors in the winter (around February), with
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Figure 5. The expected error (ubRMSE) based on which month is forecasted. Shown here are results for 1-month (blue, first bar), 2-month
(green, second bar), and 3-month (black, third bar) lead times for each variable. For example, the three bars for the month of April include
the 1-month, 2-month, and 3-month forecasts, which are the forecasts initialized in March, February, and January respectively. The results
displayed in this figure use MERRA-2 as the evaluation target.

ubRMSE as low as 2 cm, with the forecast lead time impact-
ing the magnitude of error. Yet, Fig. 6f shows that when com-
paring the S2S forecasts of TWS to the GRACE data, there
are higher errors in the spring months (around April), with
ubRMSE greater than 15 cm, and lower errors in the winter
(around February), with ubRMSE below 10 cm.

3.4 Spatial patterns: climatology, ensemble spread, and
forecast error

This section focuses on the spatial aspect of the evaluation.
Figures 7–12 show, for each variable, the GEOS-S2S ensem-
ble mean climatology (1981–2016), the ensemble spread, the
ubRMSE versus MERRA-2, and the ubRMSE versus the ref-
erence data products. The top rows of these figures show the
results for the 1-month forecasts, and the middle and bottom
rows show the differences in the 2-month and 3-month fore-
casts with respect to the 1-month forecasts.

3.4.1 Evaluation of temperature and precipitation

As expected, T2M is generally higher at lower elevations (for
example, in India and Pakistan), and it is much cooler in the
mountains and at higher elevations (for example, in the Hi-
malayas and the Inner Tibetan Plateau; Fig. 7a). The ensem-
ble spread of T2M (Fig. 7) is low compared to the ubRMSE

(Fig. 7c, d), indicating that most ensemble members forecast
similar T2M values. The ubRMSE is larger in regions where
the spread is higher, indicating that the spatial patterns of
the ensemble spread and ubRMSE are similar. The ubRMSE
values relative to MERRA-2 and ERA5 show a similar mag-
nitude throughout most of the domain, with ubRMSE values
of up to ∼ 3 K (Fig. 7c, d). However, for the Inner Tibetan
Plateau, there is more agreement with MERRA-2 (ubRMSE
of ∼ 2 K) than with the ERA5 product (ubRMSE of ∼ 3 K).
The 2-month (Fig. 7e) and 3-month (Fig. 7i) forecasts show
a progressively warmer Indian subcontinent but are cooler in
the remainder of the domain compared to the 1-month fore-
cast. Furthermore, the ensemble spread (Fig. 7f and j) and
ubRMSE (Fig. 7g, h, k, l) generally increase with increas-
ing lead times, except for the Pakistan region. Notably, the
increase in ensemble spread and error with increasing lead
time is greatest in India and less pronounced for the Tibetan
Plateau. These results reinforce the findings from Fig. 3 that
show the evaluation based on subregions.

The mean climatology of precipitation is much wetter in
parts of the domain with higher gradients of elevation, with
greater than 15 mm d−1 in the mountain ranges (e.g., Hi-
malayas) and less than 5 mm d−1 for other parts of the do-
main (Fig. 8a). Furthermore, for these same regions, the en-
semble spread of PRECTOT is also much higher compared
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Figure 6. Same as Fig. 5, but the results displayed in this figure use the reference data products as the evaluation target. The data that are
used in this figure are as follows: ERA5 for T2M, APHRODITE for PRECTOT, MODIS for fSCA, HMA-SR for SWE, ESA-CCI for SM,
and GRACE for TWS.

to other parts of the domain (Fig. 8b), with a mean ensem-
ble spread up to 6 mm d−1. The comparisons with MERRA-
2 (Fig. 8c) and APHRODITE (Fig. 8d) both show a simi-
lar magnitude of error throughout most of the domain. The
largest errors in PRECTOT forecasts are in the Indian sub-
continent and in the Himalayas (ubRMSE up to 5 mm d−1).
This result matches the spatial interpretation of the subre-
gion analysis shown in Fig. 3c–d. The 2-month (Fig. 8e)
and 3-month (Fig. 8i) forecasts show a drier Indian subcon-
tinent and are somewhat wetter in regions with high eleva-
tion when compared to the 1-month forecast. This difference
tends to propagate to other variables shown in later figures,
i.e., higher fSCA and SWE values in the mountains and lower
SM and TWS values in the Indian subcontinent for 2- and
3-month forecasts compared to 1-month forecasts. Further-
more, the ensemble spread is generally higher in the moun-
tain regions and lower over the Indian subcontinent with in-
creasing lead time (Fig. 8f and j). For the error in precipi-
tation, there are regions with higher error in forecasts with
longer lead times, such as in India, and other regions where
the error is lower with longer lead times, such as in Southeast
Asia (Fig. 8g, h, k, l).

3.4.2 Evaluation of snow cover area and snow water
equivalent

Snow cover is generally only found in the regions of the do-
main with high elevation (Fig. 9a), and there is much more
snow-covered area in the northwestern parts of the domain
(e.g., Hindu Kush and Karakoram). The ensemble spread of
fSCA (Fig. 9b) is high for much of the domain where there is
snow cover, including the Himalayas and the Inner Tibetan
Plateau. The 2-month (Fig. 9e) and 3-month (Fig. 9i) fore-
casts show higher amounts of fSCA for much of the do-
main compared to the 1-month forecasts (Fig. 9a), which
could be attributed to the fact that at longer lead times the
forecasts are colder and wetter at higher elevations (Figs. 7
and 8a, e, i). The comparison with MERRA-2 (Fig. 9c) and
MODIS (Fig. 9d) both show that errors are present where
there is snow cover, where the grid cells that have no snow
cover are masked out. This result matches the spatial in-
terpretation of the subregion analysis shown in Fig. 3c–d.
The error compared to MERRA-2 (ubRMSE close to 0.2)
is noticeably higher than the error compared to MODIS
(ubRMSE close to 0.1), especially for regions with high
fSCA. This shows that GEOS-S2S fSCA is closer to what
is shown in MODIS than to what is shown in the MERRA-2
product, which supports the results from Fig. 4c. Addition-
ally, the ensemble spread (Fig. 9f, j) and the forecast errors
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Figure 7. Screen-level (2 m) air temperature (T2M) metrics in HMA; (a) shows the climatology (long-term mean) from the GEOS-S2S
1-month forecast for the hindcast period (1981–2016); (b) shows the ensemble spread from the GEOS-S2S 1-month forecast, calculated as
the standard deviation of the model ensemble at each grid cell; (c, d) show the ubRMSE when comparing the GEOS-S2S 1-month forecast
to MERRA-2 and ERA5 respectively. The bottom two rows of the figures show the differences in the climatology, ensemble spread, and
ubRMSE between the 2-month (e–h) and 3-month (i–l) forecasts compared to the 1-month forecast shown in the top row. Note, to calculate
the difference shown in the bottom two rows, the 1-month maps in the top row are subtracted from the corresponding 2- and 3-month maps
(i.e., 2-month maps minus 1-month maps and 3-month maps minus 1-month maps respectively). Therefore, red in the subfigures indicates
higher values (i.e., hotter temperature, larger spread, or larger error) in the 2- and 3-month forecasts, and blue indicates lower values compared
to the 1-month forecasts. The units for these plots are in K.

(Fig. 9g, h, k, l) generally increase in the mountain regions
with increasing lead time.

Similarly, the mean climatology of SWE (Fig. 10a) indi-
cates that snow is present in the regions of the domain with
high elevation, specifically in the major mountain ranges.
Consequently, the ensemble spread of SWE (Fig. 10b) is
also high in these locations (mean spread up to 0.05 m) and
very low elsewhere in the domain (mean spread less than
0.01 m). The 2-month (Fig. 10e) and 3-month (Fig. 10i) fore-
casts show higher amounts of SWE in the major mountain
ranges, which again could be attributed to the fact that at
longer lead times the forecasts are colder (Fig. 7e and i) and
wetter (Fig. 8e and i) in regions with high elevation gra-
dients. The ubRMSE maps vs. MERRA-2 (Fig. 10c) and
HMA-SR (Fig. 10d) show that errors are higher where there
is more snow, which is expected. Again, this result matches
the spatial interpretation of the subregion analysis shown in
Fig. 3c–d. Here, the error compared to HMA-SR is consid-
erably higher (ubRMSE up to 0.1 m) than the error com-
pared to MERRA-2 (ubRMSE up to 0.04 m), especially for
regions with high SWE. And like fSCA, the ensemble spread
(Fig. 10f and j) and the forecast errors (Fig. 10g, h, k, l) are
generally higher with increasing lead times, particularly in
the major mountain ranges.

3.4.3 Evaluation of soil moisture and terrestrial water
storage

The mean climatology of SM (Fig. 11a) shows that soil
moisture is high in India and Southeast Asia (∼ 0.4 m3 m−3)
and is low in the western and northern parts of the do-
main (∼ 0.1 m3 m−3). There are lower SM values for fore-
casts with increasing lead times for the Indian subcontinent
(Fig. 11e and i). This could be attributed to the fact that at
longer lead times the forecasts are hotter (Fig. 7e and i) and
have less precipitation (Fig. 8e and i) across the Indian sub-
continent. However, for Myanmar and Southeast Asia, longer
lead times produce higher SM values. The ensemble spread
of SM (Fig. 11b) is lower for the 1-month forecasts and in-
creases in magnitude for longer lead times (Fig. 11f and j).
The ubRMSE maps vs. MERRA-2 (Fig. 11c) and ESA-CCI
(Fig. 11d) report higher errors over regions with higher soil
moisture values (ubRMSE of up to 0.06 m3 m−3). This re-
sult matches the spatial interpretation of the subregion anal-
ysis shown in Fig. 3c–d. Furthermore, the error increases
with lead time (Fig. 11g, h, k, l), especially in India, when
compared to MERRA-2 (Fig. 11g and k). However, when
compared to ESA-CCI, the forecast error decreases with
lead time for the western and northern parts of the domain
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Figure 8. As in Fig. 7, but for precipitation (PRECTOT) in mm d−1 and vs. APHRODITE in the right column. Here, red in the subfigures
indicates lower values (i.e., less precipitation, smaller spread, or smaller error) in the 2- and 3-month forecasts, and blue indicates higher
values compared to the 1-month forecasts.

(Fig. 11h and l). Additional data gaps are shown in these fig-
ures due to snow-covered and frozen grid cells being masked
out in the S2S forecasts and due to quality control applied
during post-processing of the ESA-CCI product.

The mean climatology of TWS (Fig. 12a) shows that wa-
ter storage is higher in Myanmar and Southeast Asia and is
lower in the other parts of the domain. The ensemble spread
of TWS (Fig. 12b) is higher in the regions with a high ele-
vation gradient (e.g., the Himalayan mountain range). Addi-
tionally, the spread of TWS is lower for the 1-month forecasts
and increases in magnitude with lead time (Fig. 12f and j).
The evaluation of GEOS-S2S forecasts of TWS show that the
forecasts are much closer to MERRA-2 (Fig. 12c, ubRMSE
less than 0.1 m) than to GRACE (Fig. 12d, ubRMSE up
to 0.3 m). The errors compared to GRACE are 3–4 times
higher in many regions, especially for the Indian subconti-
nent, Myanmar, and Southeast Asia (Fig. 12d). Again, this
result matches the spatial interpretation of the subregion
analysis shown in Fig. 3c–d. When compared to MERRA-2,
forecasts with longer lead time (Fig. 12g and k) have higher
errors, yet when compared to GRACE, there is no consistent
change in the error with longer lead times (Fig. 12h and l),
with some regions, such as in India, having less error with
longer lead times.

4 Discussion

4.1 Role of model initialization and hydrologic
persistence

S2S forecasting for HMA is in its infancy. Skill has histori-
cally been somewhat low, and as shown in our results, certain
variables have high forecast skill, while others are more dif-
ficult to forecast. When comparing the S2S forecasts with
MERRA-2, Figs. 2a and 3a show that the snow variables,
SM, and TWS have relatively higher skill at early lead time
(1 month), and for SM and TWS, this skill can persist for
forecasts at longer lead times (2–3 months). This could be
because GEOS-S2S and MERRA-2 have similar land condi-
tions during initialization, both modeling systems are quite
similar, and because these variables have longer persistence
and memory in the physical system. When evaluating the
S2S forecasts against MERRA-2, forecast skill is highest in
long-memory variables (snow and soil moisture related) and
lower in near-surface atmospheric variables (T2M and pre-
cipitation). In all instances, forecast skill decreases rapidly
with increasing forecast lead time. When comparing the S2S
forecasts with reference data products (Figs. 2b and 3b), the
decline in forecast skill across lead times is slower, and the
anomaly correlations are not consistently statistically differ-
ent across lead times.
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Figure 9. As in Fig. 7, but for fractional snow cover area (fSCA) (unitless) and vs. MODIS in the right column. Grid cells that are masked
out (in white) show areas with no-data values. Here, red in the subfigures indicates lower values (i.e., less snow cover, smaller spread, or
smaller error) in the 2- and 3-month forecasts, and blue indicates higher values compared to the 1-month forecasts.

Another reason that could explain the skill in certain vari-
ables is the role of better land surface initial conditions. For
example, fSCA, SWE, SM, and TWS vary more slowly com-
pared to T2M or PRECTOT, and their initial conditions play
an important role in the skill of 1-month forecasts. This can
be inferred in our results. For example, in Fig. 2a, the fore-
cast skill relative to MERRA-2 is higher for these variables,
perhaps due to similar initialization in the GEOS-S2S and
MERRA-2 systems. However, in Fig. 2b, the forecast skill
relative to the reference data products is not as high. Further-
more, in a more regional sense, it is possible that improve-
ments in model initialization for SWE and SM may translate
to improvements in forecast skill for the west and east sub-
regions (Karakoram and Inner Tibet Plateau); the evidence
for this is shown in Fig. 3a and b, where higher skill can
be seen in the 1-month forecast for SWE and SM for these
regions when evaluated against MERRA-2 compared to the
evaluation against the other observations. Enhancements in
forecast skill due to improved model initialization for these
processes with slower temporal dynamics has been shown
in other studies as well (Getirana et al., 2020; Zhou et al.,
2021). Therefore, forecast skill in shorter-memory variables
(T2M, PRECTOT) may increase with improvements in reso-
lution and process representation, and gains in forecast skill
for longer-memory variables (fSCA, SWE, SM, and TWS)
may be achieved with improved land surface initial condi-
tions, and if successful, increased forecast skill in 1-month
lead time can propagate through to longer leads.

4.2 Reliability of S2S forecasts

Other than looking at the forecast error to determine whether
a forecast was skillful or not, the spread of the forecast en-
semble is another metric that gives an indication of reliabil-
ity when preparing for impacts of weather events. For in-
stance, a smaller spread in the S2S forecasts for a given re-
gion might be an indication of higher skill for that variable
in that region. The results shown in this study, such as those
in Figs. S1–S3 in the Supplement, provide a benchmark of
information regarding the forecast skill, as well as the en-
semble spread in the GEOS-S2S seasonal forecasts. Gener-
ally, one can compute the spread / error ratio with the goal
of that being close to 1; if it is larger than 1 (more spread
than error), this is considered “under-confident”, and if it is
less than 1, this is considered “overconfident” (Fortin et al.,
2014). For the reliability plots in Figs. S1–S3, almost all the
maps are blue, indicating that the forecasts are overconfident,
meaning there is a smaller spread compared to what the er-
ror is. However, for SM (Fig. S3), this is the opposite, with
red indicating that the forecasts are under-confident, meaning
there is a larger spread compared to what the error is. Further-
more, for PRECTOT, fSCA, and SWE (Figs. S1–S2), there
are regions in the Karakoram, Himalayas, and Inner Tibetan
Plateau that also show red, indicating that the forecasts are
under-confident. It is important to note, however, that there
are limitations to using this reliability metric, including the
fact that one can have a “perfect” ensemble prediction system
with low correlation between skill and spread (see Hopson,
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2014), in which case the reliability of the forecasts would be
difficult to capture.

4.3 The role of model characteristics

4.3.1 Resolution

For parts of the domain with high elevation and high topo-
graphic variability, many of the variables, including PREC-
TOT, fSCA, SWE, and TWS, had large errors (Figs. 8c–d,
9c, and 10d) and large ensemble spreads (Figs. 8b, 9b, 10b,
and 12b). This is an indication of the difficulties of accurately
forecasting climate for regions of high elevation and complex
topography. This could be because of the coarse spatial reso-
lution of the GEOS-S2S simulations with topography posted
at a 0.5◦ resolution (i.e., ∼ 50 km). The topographic smooth-
ness in the model can impact the simulations in various ways,
such as limited orographic effects or issues associated with
the formation and propagation of weather events. To confirm
this argument, Cannon et al. (2017) discussed the effects of
topographic smoothing on the simulation of winter precipita-
tion in HMA and found that precipitation distributions in to-
pography that is represented in experiments with coarser res-
olution are biased relative to a simulation with more realistic
topography. Furthermore, Zhou et al. (2021) used optimized
land initial conditions from GEOS-S2S, and they were able
to downscale outputs of soil moisture to 5 km resolution and
to assess the forecast time horizon out to 9 months. There-
fore, resolution can have a contribution to forecast skill, and
it is possible that improved resolution in the S2S forecasts
can help to enhance the forecast skill of certain variables.

4.3.2 Seasonality: representing the monsoon and other
atmospheric processes

S2S forecast skill largely depends on getting the seasonal
signature in the forecasting system correct. In our results,
there are seasonal patterns in the GEOS-S2S forecast skill
(Figs. 4–6), and the simulated seasonality and the annual cy-
cle of the hydrometeorological variables are generally well
captured. For example, T2M and PRECTOT errors vary in
relation to the Indian monsoon season (JJAS). Precipitation
error tends to increase in these months (Figs. 5b and 6b)
due to higher amounts of precipitation and because monsoon
representation in the S2S system is not ideal. T2M error de-
creases in these months (Figs. 5a and 6a) because air temper-
ature is most strongly related to ENSO during the monsoon
season (Zhou et al., 2019), and GEOS-S2S tends to capture
ENSO rather well (Molod et al., 2020; Hackert et al., 2020;
Lim et al., 2021). In a regional sense, Fig. 3a and b show
that errors in precipitation are generally higher for the south
subregion, possibly due to the difficulties of accurately fore-
casting monsoon activity, which can impact precipitation in
the Indian subcontinent more than in other surrounding re-
gions. For snow variables, fSCA and SWE have low errors
when snow is low during the warmest months (Figs. 5c, d

and 6c). An exception is shown in Fig. 6d, where forecast er-
rors for SWE are higher during the warm months and lower
in the fall, which could be due to the forecasts accumulat-
ing SWE more rapidly in the S2S system than what is shown
in the HMA-SR reanalysis product. Another explanation for
this could be the role of westerly disturbances, which bring
enhanced precipitation during the winter months for the west
and northern parts of HMA (Cannon et al., 2016), where
in our analysis the precipitation forecasts for these regions
are under-confident (Fig. S1), and larger errors for fSCA
(Figs. 3c, d and 9c, d) and SWE (Figs. 3c, d and 10c, d) can be
expected in these regions. For SM and TWS, error patterns
in Figs. 5e and f and 6e and f may be related to monsoon
representation in the S2S system, but the errors can also be
associated with the observational difference in the seasonal
cycles shown in Fig. 4e and f. Overall, improving the repre-
sentation of monsoon and westerly dynamics in GEOS-S2S
may improve forecast skill, particularly during and following
the monsoon season.

Our results confirm those from recent studies, such as by
Deoras et al. (2021), who compared the predictions of the In-
dian monsoon low-pressure system in various S2S prediction
models on a timescale of 15 d to ERA-Interim and MERRA-
2 reanalysis data. Their study found that most models were
able to predict basic features; however, all S2S models un-
derestimated the frequency of the low-pressure systems, and
precipitation biases increased with forecast lead time. Hsu et
al. (2021) simulated the East Asian winter monsoon on S2S
timescales for 45 d hindcasts using the Model for Prediction
Across Scales (MPAS). Their evaluation results revealed that
MPAS can simulate the climatological characteristics of the
monsoon reasonably, with a surface cold bias for tempera-
ture and a positive rainfall bias over East Asia. However, they
also found that a biased sea surface temperature may modify
the circulation over the western Pacific and affect the simu-
lated occurrence frequency of cold events near Taiwan during
winter. Furthermore, climate models are notoriously known
to simulate a double intertropical convergence Zone (ITCZ),
in which excessive precipitation is produced on both sides of
the Equator and especially in the Southern Hemisphere trop-
ics (Hwang and Dargan, 2013; Zhang et al., 2019). This is
a problem that has been persistent in climate model simula-
tions and can impact the results of S2S forecasts in the HMA
region.

4.3.3 Representation of land processes

Differences in the level of the S2S forecast skill relative
to MERRA-2 and to the other reference products (Table 2
and Fig. 2) could be due to certain physical processes that
are seen in the signatures of the reference data products
but underrepresented in the frameworks of GEOS-S2S and
MERRA-2. Characterizing hydrometeorological conditions
in HMA, through both observations and modeling, is diffi-
cult owing to the scarcity of in situ observations and the com-
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Figure 10. As in Fig. 7, but for snow water equivalent (SWE) in (m) and vs. HMA-SR in the right column. Grid cells that are masked out
(in white) show areas with no-data values. Here, red in the subfigures indicates lower values (i.e., less snow water, smaller spread, or smaller
error) in the 2- and 3-month forecasts, and blue indicates higher values compared to the 1-month forecasts.

Figure 11. As in Fig. 7, but for soil moisture (SM) in (m3 m−3) and vs. ESA-CCI in the right column. Grid cells that are masked out (in
white) show areas with no-data values. Here, red in the subfigures indicates lower values (i.e., less soil moisture, smaller spread, or smaller
error) in the 2- and 3-month forecasts, and blue indicates higher values compared to the 1-month forecasts.

plex orographic conditions that impede accurate retrievals of
satellite estimates and due to properly representing these pro-
cesses in the model simulations (Su et al., 2013; Ghatak et
al., 2018; Loomis et al., 2019a; Yoon et al., 2019; Gerlitz et
al., 2020). These challenges are reflected in the wide range of

GEOS-S2S forecast skill when compared to MERRA-2 and
reference datasets (i.e., as seen in Figs. 2, 4–12).

For example, ESA-CCI data of SM are probably of lim-
ited quality in the topographically complex HMA region,
and GRACE TWS data show the signature from rivers,
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Figure 12. As in Fig. 7, but for terrestrial water storage (TWS) in (m) and vs. GRACE in the right column. Here, red in the subfigures
indicates lower values (i.e., less TWS, smaller spread, or smaller error) in the 2- and 3-month forecasts, and blue indicates higher values
compared to the 1-month forecasts.

lakes, glacier mass changes, and groundwater pumping that
are included in GRACE data but not fully represented in
the GEOS-S2S modeling framework. Some regions within
HMA, particularly the Indian subcontinent, are known for
intense over-pumping of groundwater, which has led to ex-
treme levels of groundwater depletion and has played a
prominent role in the loss of freshwater storage for these re-
gions (Tiwari et al., 2009; Xiang et al., 2016; Girotto et al.,
2017). This dynamic is captured in the GRACE data but not
in the GEOS-S2S forecasts (i.e., compare Fig. 7c, d). More
realistic representation of the various water budget compo-
nents within GEOS-S2S, such as surface water or groundwa-
ter pumping, is likely to contribute to improved skill in the
S2S forecasts.

Appropriate representation of seasonal snow along with
temperatures and antecedent precipitation are critical to real-
istically forecast the HMA energy and water cycles. GEOS-
S2S forecasts tend to underestimate temperature and overes-
timate precipitation relative to both MERRA-2 and the ref-
erence observations during all months and nearly all lead
times (Fig. 4a–b); this cumulatively impacts snow cover and
volume (Fig. 4c–d). MERRA-2-corrected precipitation has
a known dry bias (Fig. 4b; Yoon et al., 2019), which lim-
its fSCA and SWE accumulation in the MERRA-2 product
(Fig. 4c–d). GEOS-S2S is initialized with similar land con-
ditions to MERRA-2, resulting in low fSCA and SWE dur-
ing winter 1-month-lead forecasts; however, GEOS-S2S at-
mospheric physics increases precipitation as forecasts con-
tinue for 2- and 3-month-lead forecasts, with more extensive

snow cover and higher snow volume (Fig. 4c–d), resulting
in a seasonal cycle that more closely approximates MODIS
and the HMA-SR. This results in a relatively constant re-
gional ubRMSE for all lead times when compared to MODIS
and the HMA-SR (Fig. 6c–d) and localized improvements in
ubRMSE with lead time across the Hindu Kush and Karako-
ram (Figs. 9h–l and 10h–l).

Despite the improvement in the absolute magnitude of
snow volume due to increasing precipitation, limitations
in the snow depletion curve used within GEOS-S2S and
MERRA-2 result in more extensive snow coverage region-
ally and more limited reduction in fSCA relative to SWE
in the Hindu Kush (Figs. 9h–l and 10h–l). Both GEOS-S2S
and MERRA-2 systems use a globally consistent linear rela-
tionship between SWE and fSCA, with the minimum SWE
needed to fully cover a pixel in snow; that is fSCA= 1 if
SWE is greater than 26 mm (Stieglitz et al., 2001; Toure et
al., 2018). This prescription was developed based on stud-
ies in the northeastern USA and oversimplifies the relation-
ship between SWE and fSCA in mountainous regions (e.g.,
Schneider et al., 2021) and results in too much snow cover
in the GEOS-S2S forecasts (Fig. 4c). Considering the re-
gional pattern of the SWE–fSCA relationship, in addition to
improvements in topography (Sect. 4.2.1) and inclusion of
regionally important processes like surface albedo evolution,
either through assimilation (Girotto et al., 2020) or directly
modeling aerosol deposition on snow (Sarangi et al., 2019,
2020) will likely improve snow forecasting and associated
runoff from snow melt within GEOS-S2S.
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4.4 S2S forecasting for society’s needs

There are various efforts in the broader community (e.g.,
Arendt et al., 2017) that are aimed at addressing climate
change impacts on natural hazards (such as flooding or land-
slides) in the HMA region. S2S predictions for HMA from
GEOS-S2S can potentially provide useful information for
the local populations, such as by potentially providing fore-
casts with several-months lead time that can be beneficial
in preparing for local natural hazards (Bekaert et al., 2020;
Stanley et al., 2020). Different subregions within HMA can
benefit in different ways from S2S forecasts based on the
varying needs of local populations. Studies that utilize nu-
merical methods and state-of-the-art model initialization to
enhance S2S prediction skill are beginning to emerge. For
example, Gerlitz et al. (2020) provided a review of seasonal
forecasts of water availability in Central Asia. Their review
showed that exceptionally skillful discharge forecasts for the
agriculturally relevant vegetation season can be derived by
means of statistical models taking remote-sensing-based es-
timations of snow coverage in the Central Asian mountain
regions as independent covariates, and they found that the
consideration of global climate indices, in particular El Niño,
allows one to extend the forecast lead times. Therefore, there
is reason to believe that improvements in S2S forecast skill
can generally be achieved.

In our study, the modest levels of forecast error provide a
sense of trust in the model forecasts in the context of S2S
forecasting skill. For example, when compared to MERRA-
2, the anomaly correlation for forecasts at 1-month lead was
above 0.18 for all variables and as high as 0.62 (for SM).
Relative to the reference data products, the anomaly corre-
lation for forecasts at 1-month lead was above 0.13 for all
variables and as high as 0.24 (for fSCA). Compared to other
S2S evaluation studies, these results for HMA are promising.
For instance, de Andrade et al. (2019) showed that anomaly
correlation of global precipitation forecasts at lead times of
1 to 4 weeks was greatly reduced with lead time for a vari-
ety of S2S models, and by week 4, the anomaly correlation
was consistently below 0.2 for all models. This skill level is
comparable to the results presented here for the GEOS-S2S
forecasts in the HMA region. Therefore, the GEOS-S2S fore-
casts for HMA shown in our study generally have acceptable
skill at 1-month lead time compared to other S2S studies. For
this study, we use multiple sources of observed and verifica-
tion data to estimate the forecast skill, since relying solely on
one source of information may be misleading. Here, we used
two different products for each climate variable to get a sense
of the uncertainty in the forecast skill for each variable. We
are not aware of a merged data product for the HMA region,
which would be extremely valuable for an evaluation study
like this, but perhaps the combination of MERRA-2 data with
other verification data products is a good alternative.

Results shown here, and from the GEOS-S2S system in
general, can help the community benchmark the S2S fore-

casting skill for the HMA region and for specific subregions
within HMA and can also help the community synthesize ar-
eas of model improvements that can potentially enhance the
forecast skill or expand the time horizon of skillful forecasts.
Other areas of enhancing the S2S forecasts could be achieved
by the assimilation of land surface observations during the
initialization period for variables such as surface soil mois-
ture (Koster et al., 2011) or snow-covered area (Senan et
al., 2016). More accurate representation of initial conditions
could lead to improved forecast accuracy at the 1-month lead
time, but it is possible that a gain in skill can persist for 2-
and 3-month lead times and perhaps longer. Given the con-
fluence of water resource needs from the local population and
the complexity of the hydrologic cycle in HMA, further in-
vestment for improving S2S forecasts can be extremely use-
ful for this region, and such improvements can potentially be
felt globally.

5 Conclusions

We showed here an evaluation of the GEOS-S2S forecasting
system in the HMA region, utilizing various products such as
reanalysis data and datasets obtained from satellites or model
data fusion products. The hydrometeorological variables in
our evaluation results included 2 m air temperature (T2M),
total precipitation (PRECTOT), fractional snow cover area
(fSCA), snow water equivalent (SWE), surface soil mois-
ture (SM), and terrestrial water storage (TWS). The main
data product used for the evaluation was the MERRA-2 re-
analysis product, which provided information to compare all
the considered variables in GEOS-S2S. For further verifica-
tion, we used separate data for the evaluation of each vari-
able, including ERA5 for T2M, APHRODITE for PREC-
TOT, MODIS for fSCA, HMA-SR for SWE, ESA-CCI for
SM, and GRACE for TWS. We showed various aspects of
the model evaluation, such as the skill based on variables,
lead time, or observation used for the evaluation. To gain a
more regional point of view, we showed the evaluation based
on specific subregions. We also displayed the climatology of
the GEOS-S2S ensemble mean, the ensemble spread, and the
mean error for each variable.

Choice of evaluation datasets heavily impacted our results.
For example, when compared to MERRA-2, variables with
longer memory in the physical climate system, such as soil
moisture and TWS, had higher accuracy in the S2S fore-
casting system compared to variables representing quickly
changing processes, such as temperature or precipitation.
This was true when comparing the S2S forecasts to the
MERRA-2 reanalysis because of similar initialization and
model architecture as used in GEOS-S2S. However, this find-
ing was not conclusive when reference data products were
used in the evaluation. Finally, we provided potential av-
enues for model improvements that can help enhance the
forecasts, such as higher-resolution topography representa-
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tion and more realistic representation of surface water and
groundwater pumping. These improvements can help, for
example, with forecasts of TWS, since the model does not
have groundwater pumping, whereas the GRACE signature
includes this process. Other paths to improvement could be
the assimilation of observations for the initialization of land
surface state variables, such as soil moisture or snow cover.

Our results shown here benchmark the GEOS-S2S sys-
tem’s ability to forecast HMA on the 1–3 month timescale.
We showed that, when compared to MERRA-2, the anomaly
correlation for forecasts at 1-month lead was above 0.18 for
all variables and as high as 0.62 (for SM). Relative to the ref-
erence data products, the anomaly correlation for forecasts at
1-month lead was above 0.13 for all variables and as high as
0.24 (for fSCA). Compared to other S2S evaluation studies,
these results for HMA are promising. The reported results
should motivate future improvements in the forecasts, such
as model initialization, model physics, or more realistic oro-
graphic representation, that will be helpful for climate adap-
tation, natural hazard mitigation, and water resources plan-
ning for the population of HMA.
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