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Abstract. Climate emulators are models calibrated on Earth system models (ESMs) to replicate their behavior.
Thanks to their low computational cost, these tools are becoming increasingly important to accelerate the explo-
ration of emission scenarios and the coupling of climate information to other models. However, the emulation
of regional climate extremes and water cycle variables has remained challenging. The MESMER emulator was
recently expanded to represent regional temperature extremes in the new “MESMER-X” version, which is tar-
geted at impact-related variables, including extremes. This paper presents a further expansion of MESMER-X
to represent indices related to fire weather and soil moisture. Given a trajectory of global mean temperature,
the extended emulator generates spatially resolved realizations for the seasonal average of the Canadian Fire
Weather Index (FWI), the number of days with extreme fire weather, the annual average of the soil moisture, and
the annual minimum of the monthly average soil moisture. For each ESM, the emulations mimic the statistical
distributions and the spatial patterns of these indicators. For each of the four variables considered, we evaluate
the performances of the emulations by calculating how much their quantiles deviate from those of the ESMs.
Given how it performs over a large range of annual indicators, we argue that this framework can be expanded
to further variables. Overall, the now expanded MESMER-X emulator can emulate several climate variables,
including climate extremes and soil moisture availability, and is a useful tool for the exploration of regional
climate changes and their impacts.

1 Introduction

Changes in climate extremes and water cycle variables have
received increased attention in recent years, including dedi-
cated chapters in the recent Sixth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC) (Senevi-
ratne et al., 2021; Douville et al., 2021; Caretta et al., 2022).
These assessments, also confirming the IPCC Special Report
on 1.5 ◦C of global warming (IPCC, 2018; Hoegh-Guldberg
et al., 2018), showed that both climate extremes and changes
in water cycle are substantially changing with increasing
global warming, even when shifting from 1.5 to 2 ◦C of
global warming. Evaluating the societal and economic im-
pacts of these climate changes requires different approaches
(IPCC, 2014). They show that climate extremes and changes
in water cycle affect many aspects of our societies, such as

agriculture (Wiebe et al., 2015; Vogel et al., 2019; Hasegawa
et al., 2021), the energy sector (Schaeffer et al., 2012; Perera
et al., 2020), and human health (Libonati et al., 2022).

However, exploring regional changes in climate extremes
and the water cycle, as well as their associated impacts, re-
mains a challenging endeavor for multiple reasons. First, cli-
mate extremes occur with a lower frequency, thus robust
analyses require larger samples to correctly represent their
distributions (Kim et al., 2020). Besides, changes in the water
cycle are more challenging to represent than changes in tem-
perature (Allan et al., 2020). However, impacts of changes
in climate extremes and water cycle conditions are essential
to assess in the context of climate change projections, since
they may also be of relevance to the emissions scenarios de-
rived by integrated assessment models (IAMs) (Stehfest et
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al., 2014). For instance, IAMs simulate the mitigation of cli-
mate change by using bio-energies with carbon capture and
storage (BECCS) and afforestation. However, these nature-
based solutions would be impacted by droughts and fires
(Fuss et al., 2014; Smith et al., 2016; Anderson and Peters,
2016). Thus, accurately replicating regional changes in cli-
mate extremes and water conditions simulated by Earth sys-
tem models (ESMs) at a lower computational cost would help
in exploring mitigation potentials and new emissions scenar-
ios.

The MESMER emulator has been developed for this pur-
pose, first for regional mean variables (Beusch et al., 2020a,
2022b) and more recently also extended to the MESMER-X
version representing annual maximum temperatures (TXx;
Quilcaille et al., 2022). Given a trajectory of global mean
surface temperature, MESMER-X evaluates TXx for every
land grid point of the Earth over an arbitrary number of emu-
lations, reproducing the natural variability and the local sta-
tistical distributions of TXx. Each one of these emulations
accounts for the spatial and temporal correlations in TXx.
MESMER-X was trained on each available ESM of the Cli-
mate Model Intercomparison Project Phase 6 (CMIP6) over
1850–2100 (Eyring et al., 2016; O’Neill et al., 2016).

So far, climate emulators have focused on the representa-
tion of global properties (Nicholls et al., 2020, 2021), often
without natural variability. Comparatively, there are few spa-
tially resolved climate emulators and even fewer with natu-
ral variability (Link et al., 2019; Beusch et al., 2020a; Nath
et al., 2022; Liu et al., 2023). There are even fewer emula-
tors for climate extremes, either without representing natural
variability (Tebaldi et al., 2020) or for a single ESM (Watson-
Parris et al., 2022). Alternatives to emulators are also en-
visaged (Tebaldi et al., 2022). Good performances for the
emulation of TXx over all available ESMs were shown for
MESMER-X (Quilcaille et al., 2022), and its method has the
potential to be extended to other climate extremes.

Here, we present new extensions that build on the
MESMER-X framework to emulate annual indicators of in-
terest for fire weather and soil moisture (Abatzoglou et al.,
2019; Cook et al., 2020). These specific variables were cho-
sen because they offer a range in statistical properties to
stress test the capacity of the emulator in various situations.
While we focus here on the emulation of annual average of
the soil moisture and the annual minimum of the monthly
average of the soil moisture, these variables are related to
changes in drought occurrence (Seneviratne et al., 2021).
Furthermore, fire weather and soil moisture are both relevant
to assess the potential of nature-based solutions to mitigate
climate change, such as BECCS and afforestation (Wang et
al., 2014; von Buttlar et al., 2018; Vogel et al., 2019; Lüthi et
al., 2021). These variables are thus of high relevance for the
further extension of the MESMER-X emulator.

2 General method of MESMER-X

2.1 MESMER-X as extension of MESMER

The spatially resolved emulator MESMER provides real-
izations of local annual mean temperature given a scenario
of global mean surface temperature (1T ) (Beusch et al.,
2020a). These emulations result from a local average re-
sponse to the global climate signal and from a local term
for the natural variability. The forced response relies on pat-
tern scaling (Tebaldi and Arblaster, 2014; Herger et al., 2015;
Alexeeff et al., 2018). The natural variability is a stochastic
term deduced from a temporal auto-regressive process with
spatially correlated innovations. The model can be calibrated
using climate model output, e.g., from the CMIP6 collection
(Eyring et al., 2016) using the historical simulations and the
Shared Socioeconomic Pathways (SSP) scenarios up to 2100
(O’Neill et al., 2016). Note that each ESM is calibrated sepa-
rately to reproduce their individual responses. MESMER has
already been used for different applications. For example, it
can integrate spatial observational constraints to improve the
local temperature projections (Beusch et al., 2020b). Further-
more, MESMER has also been coupled to the simple climate
model MAGICC (Meinshausen et al., 2011), allowing for an
efficient calculation of the local response to emissions sce-
narios, including not only uncertainties in modeling but also
natural variability (Beusch et al., 2022b). An application of
this coupling is the evaluation of the contributions of emit-
ters to regional warming (Beusch et al., 2022a). A first ex-
tension of MESMER was achieved, allowing the emulation
of monthly local temperatures (Nath et al., 2022).

The MESMER-X emulator is an extension of MESMER,
dedicated to the representation of impact-related variables,
including climate extremes, and it has already been described
and showcased for annual maximum temperature in previous
work (Quilcaille et al., 2022).

2.2 The MESMER-X approach: emulating spatially
resolved climate variability by sampling from
conditional distributions

The method used in the MESMER-X emulator can be sum-
marized in two steps. First, MESMER-X replaces the pattern
scaling of MESMER using conditional distributions with a
more flexible “distribution” scaling (Tebaldi and Arblaster,
2014). Following this, the training of the spatiotemporal cor-
relations is similar to MESMER, although they are not per-
formed on the residuals of the pattern scaling but by project-
ing the sample onto a standard normal distribution using a
probability integral transform.

We represent the climate variableXs,t for grid points s and
at annual time steps t . Typically,Xs,t is deduced from CMIP6
historical and SSP scenarios, covering 1850–2100 and the
whole Earth. The first assumption is that this variable can be
represented locally by a probability distribution D. For in-
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stance, block extrema (e.g., annual maximum of temperature,
monthly minimum of soil moisture) may be represented by a
generalized extreme value distribution (GEV) (Coles, 2001).
Similarly, averages (e.g., annual mean temperature) may be
represented by a normal distribution. The second assumption
is that this distribution D depends on variables expressing
changes in global climate. Explicitly, the p parameters αs,t,p
of D at grid points s are functions fs,p of a matrix of global
variables Vt . The columns of the matrix Vt contain covari-
ants, explanatory variables such as global mean temperature
anomalies, while the rows of Vt correspond to time steps.
The functions fs,p may be linear, quadratic, sigmoid, or other
functions of the covariants Vt . In Eq. (1), we summarize how
the probability P ofXs,t follows a distributionD conditional
on global climate through its parameters αs,t,p as functions
fs,p of changes in global climate Vt . We call configuration
E the choice of a distributionD combined with the equations
for fs,p.

E :

{
P
(
Xs,t

)
= D

(
Xs,t |αs,t, p

)
αs,t, p = fs,p (Vt )

(1)

In the case where D is a normal distribution and fs,p is lin-
ear on the mean and constant on the standard deviation of
the distribution, this approach is equivalent to (Beusch et al.,
2020a). Similarly, if D is a GEV, Eq. (1) is equivalent to the
formalism introduced in the article showcasing MESMER-X
(Quilcaille et al., 2022).

Equation (1) offers a large flexibility in terms of model-
ing. Using variables such as global mean surface tempera-
ture, radiative forcing, or ocean heat content facilitates the
representation of the most relevant processes within the Earth
system. Using lagged variables such as the global mean tem-
perature at 1Tt−n or accumulated warming over the past n
years would also help in representing more advanced dynam-
ics such as inertia in the water cycle. Such a capacity is of
particular interest for overshoot scenarios. However, Eq. (1)
has also its limits: it would not account for changes in local
climate drivers (e.g., land use or a combination of individual
radiative forcings) that would compensate for this at a global
scale. Such effects may still be modeled (Nath et al., 2023)
but are not integrated in this framework.

Nevertheless, these conditional distributions in each grid
cell are not enough because they do not account for the spa-
tiotemporal correlations. For instance, if the annual average
soil moisture in one grid point happens to be lower than
expected, the values in the adjacent grid points are proba-
bly also lower. To integrate these effects, we follow the ap-
proach of Beusch et al. (2020a), which parameterizes in-
ternal climate variability using the spatially autoregressive
(SAR) noise model (described in Cressie and Wikle, 2011,
and Humphrey and Gudmundsson, 2019). The SAR model
reproduces the temporal and spatial autocorrelation structure
of the training data using two components. Temporal corre-
lations are represented by an auto-regressive process (Eq. 3).
Spatial correlations are reproduced with spatially correlated

innovations, randomly generated from a multivariate Gaus-
sian with zero mean and covariance matrix derived from the
training sample (Eqs. 4 to 6). However, it assumes that the
residual variability of Eq. (1) is stationary in time and is nor-
mally distributed. This is valid only if D is assumed to be a
normal distribution and if it matches the considered sample.
Here, we exploit that Eq. (1) provides the local distributions
of the full sample. This means that we can use a probabil-
ity integral transform to project the training sample Xs,t on
a standard normal distribution (Angus, 1994; Gneiting et al.,
2007; Gudmundsson et al., 2012). We define FD as the cu-
mulative distribution function (CDF) and F−1

D as the quan-
tile function of D (or inverse CDF). We also write the stan-
dard normal distribution N , with zero mean and unit vari-
ance. We write FN and F−1

N , respectively, for its CDF and
inverse CDF. We then employ the probability integral trans-
form, obtaining a normalized variable 8s,t , where 8s,t has
no trend and follows a standard normal distribution such that

8s,t = F
−1
N

(
FD

(
Xs,t |Vt,fs,p

))
. (2)

Note that Eq. (2) works equally well if D is a discrete dis-
tribution, as illustrated in Appendix A1. The normalized
variable 8s,t is then characterized using an autoregressive
process with spatially correlated innovations (Beusch et al.,
2020a). In each grid point, a temporal auto-regressive pro-
cess of the first order is fitted on 8s,t , with parameters γs,0
and γs,1, such that

8s,t = γs,0+γs,18s,t−1+υs,t with υs,t ∼N (0,6ν (r)) . (3)

The residual υs,t represents spatially correlated innovations,
drawn from a multivariate normal distribution with a mean
of zero and a covariance matrix 6ν (r) (Cressie and Wikle,
2011; Humphrey and Gudmundsson, 2019). Here, r repre-
sents the ratio of geographical distance between points and a
localization radius, and the next few paragraphs explain how
6ν (r) is obtained from the empirical covariance matrix.

The representation of interannual variability is discussed
in Appendix Sect. 6.2. Using a first-order auto-regression al-
lows us to analytically derive the covariance matrix 6ν (r)
from the covariance matrix of the residual variability 6η (r)
(Cressie and Wikle, 2011), such that

6ν(r)i,j =
√

1− γ 2
i,1 ·

√
1− γ 2

j,1 ·6η(r)i,j , (4)

where i and j are two grid points. In the simplest case,6η (r)
would be the empirical covariance matrix 6̃η, estimated from
υs,t . However, in the usual settings of climate model emula-
tion, the resulting covariance matrix is rank deficient since
the number of spatial locations by far exceeds the number
of considered time steps. To compensate for this rank de-
ficiency, the empirical covariance matrix 6̃η is regularized
using localization, an approach that is well established in
data assimilation (Carrassi et al., 2018). The principle is to
apply a function that conserves correlations for points rela-
tively close to each other but that shrinks distant points to
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zero. This localization is described in Eq. (5), with ◦ the
Hadamard product and G the Gaspari–Cohn function (Gas-
pari and Cohn, 1999) such that

6η (r)= 6̃η ◦G (r) , (5)

where the Gaspari–Cohn function, which takes r as input, the
ratio of the geographical distance between two grid points,
and a localization radius L, is defined as follows.

G (r)=


1− 5

3 r
2
+

5
8 r

3
+

1
2 r

4
−

1
4 r

5 if 0≤ r < 1
4− 5r + 5

3 r
2
+

5
8 r

3
−

1
2 r

4
+

1
12 r

5

if 1≤ r < 2
0 if 2< r
with r = d

L

(6)

Equations (1–6) correspond to the full training of MESMER-
X, with Eq. (1) being used to train the grid-cell-specific con-
ditional distributions, Eq. (2) being used as interface to the
training of the spatiotemporal structure, and Eqs. (3–6) be-
ing used for this final part of the training. The emulations of
climate extremes for a scenario, typically over 1850–2100,
require time series of anomalies in global climate Vt over
the period of the scenario, which allows Eq. (1) to gener-
ate the distributions at each grid point and each time step.
Equation (3) generates an arbitrary number n of realizations
8̃s,t,n. The emulations X̃s,t,n are then the consequence of a
back probability integral transform, as described in Eq. (7).

X̃s,t,n = F
−1
D

(
FN

(
8̃s,t,n

)
|Vt ,fs,p

)
(7)

2.3 Configuration of MESMER-X

The performance of the emulator relies principally on the two
assumptions made for Eq. (1): the choice of a distribution and
the equations for its parameters, i.e., the configuration E. To
assess and compare the performances, we use the ensemble
continuous rank probability score (CRPS), a generalization
of mean absolute errors for probabilistic forecasts. The CRPS
measures differences in the cumulative distribution functions
of the emulations X̃s,t,n and of the training data Xs,t (Hers-
bach, 2000; Wilks, 2011). It is also used to define the con-
tinuous rank probability skill score (CRPSS) by comparing
the CRPS of a configuration E to the CRPS of a benchmark
E0. Both scores are commonly used in atmospheric sciences
(Wilks, 2011; Jolliffe and Stephenson, 2012). Equations (8)
and (9), respectively, detail the calculation of the CRPS and
of the CRPSS, where 1 is the Heaviside step function.

CRPSE
(
X̃s,t,n,Xs,t

)
s,t
=

+∞∫
−∞

1
n

∑
n

[
1
(
X ≥ X̃s,t,n

)
−1

(
X ≥Xs,t

)]2dX (8)

CRPSSEs,t = 1−CRPSEs,t/CRPSE0
s,t (9)

Here we consider a fit with a stationary distribution as the
benchmark. A high CRPS for this benchmark means that the

differences between the cumulative distribution functions are
too big, which implies that a stationary distribution does not
correctly reproduce the statistical properties of the training
sample, while a distribution perfectly reproducing the train-
ing sample would have a CRPS of zero (Hersbach, 2000),
as illustrated with Fig. A1 in Appendix Sect. 6.3. A high
CRPSS for a proposed configuration means that it improves
the reproduction of the statistical properties of the sample. To
simplify the comparisons, the CRPSS is averaged over space,
time, and scenarios.

3 Emulations for fire weather

Many factors contribute to the burned area by wildland fires.
Agricultural expansion and landscape fragmentation tend to
decrease the burned area (Andela et al., 2017), though the
global wildfire danger itself tends to increase (Jolly et al.,
2015). The strong wildfires observed over the past few years
had their risk of happening increased by climate change (Li et
al., 2019; van Oldenborgh et al., 2021) because it affects the
conditions for ignition and spreading of wildfires. Such con-
ditions are termed fire weather. The strengthening of the fire
weather favors longer-lasting and more intense fires (Abat-
zoglou et al., 2019; Ranasinghe et al., 2021; Seneviratne et
al., 2021). The effect of climate change on fire weather is
especially strong for the extreme events of fire emissions
and burned area (Jones et al., 2022; Ribeiro et al., 2022).
The Canadian Fire Weather Index (FWI) is one of the in-
dices used to evaluate how daily temperature, precipitation,
wind ,and relative humidity are locally conducive to the oc-
currence and spread of fires (Van Wagner, 1987; Abatzoglou
et al., 2019). The FWI is relevant to investigate the impacts
of fire weather thanks to its relationship with the burned area
(Bedia et al., 2015; Abatzoglou et al., 2018; Grillakis et al.,
2022; Jones et al., 2022).

In the following we adapt the MESMER-X framework
presented in Sect. 2.2 for annual indicators of the FWI. We
describe the data used for the training and emulation of the
fire weather (Sect. 3.1), and we then extend the method of
MESMER-X to the emulation of seasonal average of the FWI
(Sect. 3.2) and the number of days with extreme fire weather
(Sect. 3.3).

3.1 Data for the annual indicators of the Fire Weather
Index

Here we consider annual indicators of the FWI computed us-
ing CMIP6 data (Quilcaille et al., 2023). The algorithm used
combines adjustments from various packages to the original
algorithm (Van Wagner, 1987), each aiming at extending the
applicability of the FWI (Quilcaille et al., 2023). The calcu-
lations were applied over the historical period and the Shared
Socioeconomic Pathways scenarios used by ESMs (O’Neill
et al., 2016). All runs with available daily temperature, rela-
tive humidity, wind speed, and precipitation were computed
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in order to maximize the number of ensemble members for
the ESMs, reaching a total of 1486 runs. The daily FWI is
regridded onto a common 2.5◦×2.5◦ longitude–latitude grid
using second-order conservative remapping (Jones, 1999;
Brunner et al., 2020).

The data presented by Quilcaille et al. (2023) are available
in four annual indicators that represent different aspects of
fire weather: the local annual maximum of the FWI (FWIxx),
the number of days with extreme fire weather (FWIxd), the
length of the fire season (FWIls), and the seasonal average of
the FWI (FWIsa). Here we consider only FWIxd and FWIsa,
which allows for greater variety in our approach and less rep-
etition. FWIxd is defined by counting the number of days
each year exceeding a local threshold defined as the 95th per-
centile over 1850–1900, while FWIsa is defined as the local
annual maximum of a 90 d running average over time.

3.2 Emulation of the seasonal average of the Fire
Weather Index

To emulate FWIsa, the first step is to propose an appropriate
distribution as explained in Sect. 2. FWIsa is defined as the
annual maximum of a 30 d running average over time. As a
block maxima, a GEV distribution may correctly represent
the distribution of FWIsa (Coles, 2001). However, the 30 d
running average may be a reason to use a normal distribution.
The second step for emulations is to propose evolutions of
the parameters of the distributions. From a physical perspec-
tive, FWIsa is a product of daily time series of temperature,
relative humidity, precipitation, and wind speed, which may
support relatively elaborate expressions. From a statistical
perspective, the evolutions of FWIsa with 1T shows a rel-
atively linear dependency on the average and sometimes on
the spread of the samples. Some grid points show quadratic
dependencies, especially in South America. In Fig. 1 we
show all of the configurations investigated. For a normal dis-
tribution, the parameters α introduced in Eq. (1) are the lo-
cation and scale, written as µ and σ in Fig. 1, respectively,
corresponding to the mean and standard deviation of the dis-
tribution. For a GEV distribution, the parameters α are the
location, scale, and shape, written as µ, σ , and ξ , respec-
tively, in Fig. 1.

A stationary GEV distribution is used as benchmark for
all the other configurations. Comparing this benchmark E0
to a stationary normal distribution (E7) shows that the two of
them are equivalent to the benchmark. We note that ESMs
with higher CRPS tend to have higher CRPSS. For these
ESMs, stationary distributions are worse at representing their
potentially stronger climate signal, meaning that the im-
provement over a stationary distribution would be relatively
high. We note that the two configurations with the best aver-
age CRPSS values are E2 and E9, which differ only in their
distribution. Both have linear terms for location and scale.
E2 performs slightly better than E9 because some points
present skewed distributions that are better represented by

a GEV distribution. Using quadratic evolutions tends to in-
crease the performance of the fit in only a minority of grid
points while decreasing the performance over the rest of the
land area. For this reason, the results shown in Figs. 2 and 3
are performed using configuration E2. We point out that the
local performances for this configuration are shown in the
Appendix Sect. 6.4, along with those of the other variables
emulated.

E2 : FWIsas,t ∼ GEV
(
µs,0+µs,11Tt ,σs,0

+σs,11Tt ,ξs,0
)

(10)

In Fig. 2a and b we show examples of emulations illustrat-
ing the capacity of the emulator, here UKESM1-0-LL, shown
in the top row. Be it in 2014 or in 2100, the three random
emulations on the three other rows reproduce the spatial pat-
terns of the ESM. There are some minor differences that are
related to internal variability (ESM) and the stochastic rep-
resentation thereof (emulator). Figure 2c illustrates the tran-
sient responses for FWIsa in the emulations and in the ESM
over the course of SSP5-8.5. Note that each row of Fig. 2c is
a chosen grid point or regional average. The red dots corre-
spond to the realizations by UKESM1-0-LL for all ensemble
members available, while the shaded black area represents
the distribution of emulations. Over 2014–2100, the realiza-
tions by UKESM1-0-LL remain mostly within the range of
the emulations, except for the third row, which corresponds
to a grid point close to Manaus in Amazonia. Figures similar
to Fig. 2 are provided in the Appendix Sect. 6.5 for low- and
medium-warming scenarios.

Figure 3 provide more details on the deviation of quantiles
of MESMER-X for each ESM and land region (Iturbide et
al., 2020), thereafter called ESM × regions. Overall, Fig. 3a
shows that the quantiles at 97.5 % of the emulations are lower
than those of the ESMs but higher for the quantiles at 2.5 %
shown in Fig. 3c. This underdispersion is common for spatial
emulators (Beusch et al., 2020a; Quilcaille et al., 2022), and
regional aggregation contributes to this effect. For the quan-
tile 97.5 %, the deviation of quantiles range from +1.5% to
−7.3%, with an average of−1.5%. In other words, the quan-
tile 97.5 % of the emulations would actually instead be at
96 % on average when compared to the ESMs. For the me-
dian, the deviations range from−8.4% to 13.3 %, with an av-
erage of −0.3%. Finally, the deviations at the quantile 2.5 %
range from −1.2% to 16.0 %, with an average at 2.2 %. We
note that the stronger deviations on the median occur when
replicating NorESM2-LM. Because MESMER-X only aims
at replicating the behavior of ESMs, it cannot be used to di-
agnose the reasons for this difference. First analyses might
suggest that the response of FWIsa to 1T is stronger than
for other ESMs and that quadratic terms in the configurations
may have a greater importance for this model.

In summary, the deviations of quantiles are less than 5 %
in absolute value for at least 92 % of the ESM x regions. For

https://doi.org/10.5194/esd-14-1333-2023 Earth Syst. Dynam., 14, 1333–1362, 2023



1338 Y. Quilcaille et al.: A spatially resolved Earth system model emulator

Figure 1. Selection of the configuration for the seasonal average of the FWI (FWIsa). For each ESM, the CRPS and CRPSS are averaged
over space, time, and scenarios. The darker the color of a cell, the better the configuration is at reproducing the distribution of the ESM. The
upper row (white to black) corresponds to the CRPS of the configuration used as a benchmark. A higher CRPS (lighter color) indicates that
the stationary distribution used as benchmark does not reproduce the distribution of the ESM well. The other rows (white to red) correspond
to the CRPSS of the tested configurations relative to the benchmark. A higher CRPSS (darker color) indicates that the proposed configuration
improves the reproduction of the distribution of the ESM.

the quantiles 97.5 %, 50 %, and 2.5 %, these proportions of
ESM x regions below 5 % of deviation are 98 %, 93 %, and
92 %, respectively.

3.3 Emulation of the number of days with extreme fire
weather

For emulating the number of days with extreme fire weather
(FWIxd) we consider the Poisson distribution since it de-
scribes number of events occurring over a fixed period
(Coles, 2001). Using this distribution implicitly assumes that
the events are independent of each other, which is not ex-
actly the case here. For instance, assuming that a day matches
the criteria for extreme fire weather (Quilcaille et al., 2023)
during the fire season, there are is a higher chance to have
the next few days also matching this criterion compared to a
period out of the fire season. Nevertheless, we choose this
distribution because of its relative simplicity. Similarly to
FWIsa, linear and quadratic terms are investigated given the
physical basis and the observed responses to 1T (Jain et al.,
2022). The comparisons of the envisioned configurations are

summarized in Fig. 4. Here, the parameters α introduced in
Eq. (1) are the rate λ and a shift µ in the distribution. This
modified form of the Poisson distribution has the same vari-
ance (λ) as the original Poisson distribution, but the mean
is µ+ λ instead of λ. This shift in the Poisson distribution
allows for more flexibility in the training.

A stationary Poisson distribution is used as benchmark,
showing a range of performances in CRPS FWIxd (9 to 15)
that is greater than the one obtained for FWIsa (2.1 to 2.6).
Because the higher the CRPS is, the worse the distribution
will be at representing the training sample, two results can be
deduced. First, stationary GEV distributions are much bet-
ter at reproducing FWIsa than stationary Poisson distribu-
tions are at reproducing FWIxd. This may be because FWIxd
has stronger responses to climate change than FWIsa, mean-
ing that stationary distributions (Poisson or GEV) cannot
correctly reproduce these evolutions. This may also be be-
cause the shape of a Poisson distribution cannot reproduce
the shape of the observed FWIxd as well as a GEV can for
FWIsa. From Fig. 4 we observe that the best configuration is
E1, which only shows a linear evolution of the location of the
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Figure 2. Examples of results for the emulations of the seasonal average of the FWI (FWIsa) under UKESM1-0-LL. The left column
(a) shows maps of FWIsa in 2014 according to UKESM1-0-LL in the first row, while the following three rows correspond to three emulations
chosen randomly in the full set. The middle column (b) reproduces the same structure but in 2100 for SSP5-8.5. The third column (c) shows
the time series of UKESM1-0-LL, the three emulations used for maps, and the full spread of the emulations (shaded area). The rows in (c)
correspond from top to bottom to the western part of North America, the northern part of South America, a grid point in Amazonia close to
Manaus, and a grid point in Portugal close to Lisbon.

distribution. The configuration E2 had almost the same qual-
ity, albeit not as good for CMCC-CM2-SR5, MPI-ESM1-2-
HR, and NorESM2-LM. Like FWIsa, few grid points, espe-
cially in South America, would benefit from a quadratic term.
However, increasing the complexity of the functions for the
parameters improved the fit only at a few grid points, while
decreasing the performance in many other places. The con-
figuration E1 has the best overall performance in spite of its
simplicity; thus, we use this one for the results presented in
Figs. 5 and 6.

E1 : FWIxds,t ∼ Poisson
(
µs,0+µs,11Tt ,λs,0

)
(11)

Just like in Fig. 2, in Fig. 5 we show examples of out-
puts for the emulation of FWIxd. The spatial patterns are
well respected overall, be it in 2014 or in 2100 (Fig. 5a, b).
There are indeed some differences due to natural variabil-
ity. For instance, in 2014 (Fig. 5a) HadGEM3-GC31-MM re-
turns higher FWIxd to the south of the Sahel but lower values
in South America. In 2100 (Fig. 5b), in the center of Africa

and in Southeast Asia we see differences in these patterns, al-
though the emulations are always relatively similar. Looking
at the transient regional responses (Fig. 5c), the two regions
and the two grid points represented show that HadGEM3-
GC31-MM and the emulations have similar evolutions, with
the distribution of the emulations correctly encompassing the
dispersion of the ESM. We point out one exception in these
time series in the third row. This grid point in Amazonia
shows that the FWIxd of HadGEM3-GC31-MM increases
faster than the emulations replicate. The same effect appears
in the first row, albeit to a lesser extent. Some grid points in
South America would benefit from a quadratic response to
1T , although Fig. 4 shows that a linear response has better
overall performances. Figures similar to Fig. 5 are provided
in Appendix Sect. 6.6 for low- and medium-warming scenar-
ios.

In Fig. 6 we show the regional performance of the emula-
tor by assessing the deviations of its quantiles to the ESM.
On average, the emulators are −2.8% lower than ESMs for
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Figure 3. Deviations of quantiles for the seasonal average of the FWI (FWIsa) at each ESM and each AR6 region. A positive deviation of
quantiles (red) indicates that the quantile of emulations is higher than the one of the ESM, found by counting how often the ESM crosses
the threshold set by the emulations. The deviation is calculated for all available scenarios. The upper panel (a) shows the deviations for the
quantile 97.5 %, the middle panel (b) shows the deviations for the median, and the lower panel (c) shows the deviations for the 2.5 % quantile.

the 97.5 % quantile, 4.4 % higher for the median, and 1.41 %
higher for the 2.5 % quantile. Overall, the emulators show
lower performances in some regions, such as Southeast Asia,
as shown in Fig. 5, or mimic some models such as NorESM2-
LM. Explanations for the latter cannot be pinpointed to spe-
cific processes, as explained in Sect. 3.2. We observe that the
median shows overall lower performance than the tails of the
distribution.

To summarize the performances for FWIxd, the deviations
of quantiles are less than 5 % in absolute value for 95 % of
the ESM x regions at the 97.5 % quantile. At the 2.5 % quan-
tile, the fraction of these ESM x regions below 5 % of devi-
ation decreases to 92 %. However, at the median only 54 %

of the ESM x regions are below 5 % of deviation. A potential
explanation may be the temporal dependence of the events
not respecting one of the conditions for the use of a Poisson
distribution. As detailed at the beginning of this section, this
work using a Poisson distribution is a first attempt with dis-
crete distributions. Using other distributions that would not
assume independent events may improve these results but
would require a higher degree of complexity.
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Figure 4. Similar to Fig. 1 but for the number of days with extreme fire weather (FWIxd).

Figure 5. Similar to Fig. 2 but for the number of days with extreme fire weather (FWIxd) under HadGEM3-GC31-MM. The rows correspond,
from top to bottom, to the northwestern part of South America, Southeast Asia, a grid point in Amazonia encompassing the Jaú National
Park, and a grid point in the Democratic Republic of the Congo encompassing the Salonga National Park.
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Figure 6. Similar to Fig. 3 but for the number of days with extreme fire weather (FWIxd).

4 Emulations for soil moisture

4.1 Data for the annual indicators of soil moisture

We base the annual indicators for soil moisture on the to-
tal soil moisture content (CMIP6 variable mrso). Ideally, soil
moisture in the root zone would be more relevant to investi-
gate droughts. Thus, soil moisture in the soil layer (CMIP6
variable mrsos or mrsol) would have been more adapted
(Qiao et al., 2022). Similarly, the total soil moisture con-
tent includes all water phases and thus frozen soil moisture
as well. We deem that the total soil moisture content re-
mains relevant for droughts in regions without high frozen
soil moisture, i.e., not at higher latitudes or in mountainous
regions like the Himalaya. Nevertheless, a majority of ESMs
only provide the total soil moisture content, thus choosing

this variable ensures that the capacity of the emulator can be
evaluated on more models and ensemble members.

Before computation of the annual indicators, the total soil
moisture content of all available CMIP6 runs is regridded
onto a common 2.5◦× 2.5◦ longitude–latitude grid using
second-order conservative remapping (Jones, 1999; Brunner
et al., 2020).

Two annual indicators are deduced from the total soil
moisture content. By averaging this variable over the year,
we obtain the annual average of soil moisture (SM). In ad-
dition, we calculate the average over each month and de-
duce their minimum, thus obtaining the annual minimum of
the monthly average soil moisture (SMmm). These two an-
nual indicators are both relevant to assess the evolutions of
droughts (Cook et al., 2020). The annual average SM pro-
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vides an indicator for the whole year, while the annual mini-
mum SMmm informs us about the worst period of the year.

4.2 Emulation of the annual average of soil moisture

As for the fire weather, the first step for emulation is to
choose a proper distribution. As an annual average, SM may
be represented by a normal distribution according to the cen-
tral limit theorem. The second step is to propose evolutions
for the parameters. The impact of global temperature on the
local total soil moisture content is not as straightforward as
for the two former cases. Many processes affect this variable,
through evapotranspiration, precipitation, or runoff (Cook et
al., 2020). Some regions show a decreasing trend in the soil
moisture, others an increase (van den Hurk et al., 2016; Qiao
et al., 2022). A first choice could be to propose a linear
evolution on the mean (Greve et al., 2018). However, go-
ing through local responses of SM to 1T shows that they
may often be nonlinear, e.g., following a sigmoid response.
Such responses are characteristic of an evolution between
two regimes, as illustrated in Fig. 7.

Another feature of these local responses is their lagged ef-
fects. The response under SSP1-2.6 (blue points) decreases
faster with 1T than SSP2-4.5 (dark green points). The same
effect happens with SSP3-7.0 (brown points) and SSP5-8.5
(orange points). The faster the warming increases, the slower
the slope is in the response of SM to 1T . A potential ex-
planation would be that different timescales are at play in
the response of SM to 1T . In high-warming scenarios, the
1T increases relatively quickly in the response of SM to the
change in 1T and does not let the SM stabilize. However,
in SSP1-2.6 the 1T stabilizes, allowing the SM to stabilize
as well. To a broader extent, this effect is related to the re-
sponse of the whole water cycle, with rapid adjustments and
slow feedback responses both in precipitation and evapotran-
spiration (Allan et al., 2020). Different methods may be used
to represent the effect of different timescales, such as lagged
variables or impulse response functions. Here, as a first at-
tempt to reproduce this effect, in this configuration we will
test a lagged variable using the 1T at the former year. This
lagged variable is obtained by shifting the 1T of the ESM
by 1 year. From a modeling perspective, having both 1Tt
and 1Tt−1 is equivalent to having the value at year t and its
first derivative.

Figure 8 shows the results for all the tested configurations,
with the coefficients µ and σ corresponding to the location
and the scale of the normal distribution, respectively. For all
ESMs except ACCESS-ESM1-5 and CNRM-ESM2-1, the
best performances according to the CRPSS are met with E4.
For these two other ESMs, the better configuration E5 differs
only from the linear response on the standard deviation of the
distribution. We note that introducing a logistic response on
the mean (E3) improves the performances in a large majority
of the grid points more than a linear effect (E1). Introduc-
ing the lagged effect has an effect that is not as clear (E4)

because the CRPSS is averaged over time and different sce-
narios. Given these results, we choose to use the configura-
tion with the best performance for most ESMs. The results
presented in Figs. 9 and 10 will then use the configuration
E4.

E4 : SMs,t ∼ N

(
µs,0+ µs,L+

µs,R −µs,L

1

+exp
(
λs,11Tt + λs,21Tt−1−µs,ε

)
,σs,0

)
(12)

In Fig. 9, we illustrate the emulations of SM for CNRM-
CM6-1. Just like for FWIsa (Fig. 2) and FWIxd (Fig. 5), the
spatial patterns are correctly reproduced. Note that the mean
climate signal is dominant, and thus the effects of internal
variability are hardly visible. The time series in Fig. 9c show,
however, that the natural variability is in general well repro-
duced over the course of SSP5-8.5. In the region of west-
ern and central Europe, the ESM seems to often be below
the 5 % quantile of the emulations, especially around 2050.
In the region in the western part of of southern Africa, the
spread of the distribution is relatively large but represents the
spread of the ESM in this region relatively well. We point
out that the six ensemble members shown in Fig. 9 com-
bined as a large regional spread show many points relatively
far from the 90 % range of the emulations, but the reparti-
tion of the realizations by CNRM-CM6-1 in this region is
still well respected. Figure 9c shows, however, that some as-
pects of the dynamics are not entirely captured by the em-
ulator, such as the short increase over 2040–2050 in Brazil.
It may indicate that choosing the 1T over the former year
is not good enough to represent lagged effects or that there
are additional processes that cannot be represented as such
by MESMER-X. Figures similar to Fig. 9 are provided in the
Appendix Sect. 6.7 for low- and medium-warming scenarios.

In Fig. 10, we show the deviations of the regional quantiles
of the emulations in each ESM x region. Just like with FWIsa
(Fig. 3) and FWIxd (Fig. 6), the emulations are overall under-
dispersive. The 97.5 % quantile (Fig. 10) shows that the em-
ulations have their quantiles −1.9% on average lower than
their ESM counterparts, up to−10.3%. There, the lower per-
formances of MESMER-X occur in Sahara and in South-East
Asia. Figure 10b shows that the median of emulations is on
average 0.4 % higher than the ESMs, these deviations rang-
ing from 18.9 % to −12.7%. We note lower performances
in regions of Australia and in the Caribbean. Finally, the de-
viations of the 2.5 % quantile show that the emulations are
on average 1.5 % higher than the ESMs, up to 15.7 % of de-
viations. The emulator for FGOALS-g3 exhibits lower per-
formances than for other ESMs, although the reason for this
remains unclear.

As a summary of the performances of the emulations of
SM, the deviations are limited to 5 % in 96 % of the ESM x
regions at the 97.5 % quantile, 88 % at the median, and 97 %
at the 2.5 % quantile.
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Figure 7. Example of local response of the annual average soil moisture (SM) to 1T under CNRM-CM6-1. The grid point is in Sichuan, in
the vicinity of Chengdu, i.e., the same one shown in the fourth row of Fig. 9c. The distribution shown follows the configuration E4 described
in Eq. (12).

Figure 8. Similar to Fig. 1 but for the annual average soil moisture (SM).

4.3 Emulation of the annual minimum of the monthly
average of soil moisture

Emulating the annual minimum of the monthly average soil
moisture is analogous to the emulation of annual average soil
moisture. As an average over a month, SMmm may be rep-
resented using a normal distribution, although the minimum
values over the months may be represented by a GEV distri-
bution. However, sampling a block maxima over 12 values
(each month) is too small to converge towards a GEV dis-
tribution. Thus, a normal distribution is used. Checking the
local evolutions of the sample leads to similar observations

to those observed for the annual average of the soil moisture
illustrated in Fig. 7. Thus, the same configurations are used
for SMmm as for SM.

In Fig. 11 we summarize the performances for the emu-
lations of SMmm over the different configurations, with the
coefficients µ and σ corresponding to the location and the
scale of the normal distribution, respectively. The configura-
tion with the best performance is E4, with the mean as a lo-
gistic function of 1T at the year and the former year, while
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Figure 9. Similar to Fig. 2 but for the annual average soil moisture (SM) under CNRM-CM6-1. The rows correspond from top to bottom
to western and central Europe, the western part of southern Africa, a grid point in the west of Brazil in the state of Acre, and a grid point in
Sichuan, China, close to Chengdu.

the standard deviation remains constant.

E4 : SMmms,t ∼ N
(
µs,0+ µs,L

+
µs,R −µs,L

1+ exp
(
λs,11Tt + λs,21Tt−1−µs,ε

) ,σs,0) (13)

Note that both SM and SMmm have the same best configura-
tion. Both annual indicators are averages and SMmm has SM
as its upper limit, which may explain this result. We also note
that ACCESS-CM2 shows better performance with a linear
evolution of the standard deviation, although the opposite oc-
curs with NorESM2-LM. Without logistic evolution, we note
lower performances for high-warming scenarios because lin-
ear fits fail at reproducing the nonlinear evolutions at high
1T . Without 1T at the former year, the performances of
the emulations are reduced for low-warming scenarios be-
cause the water cycle get more time to stabilize to the current
regime.

The results for the emulations of SMmm under this config-
uration are illustrated in Fig. 12. The spatial patterns of the
ESM shown here on the top row, CNRM-CM6-1, are cor-
rectly reproduced by the emulations on the three following
rows. The right column shows that the regional responses

are correctly reproduced, with a majority of the ESM points
being within the range of the emulations. Their dispersions
seem to respect the distribution of the emulation, as will be
confirmed with the regional performances in Fig. 13. Just like
SM, the realizations by CNRM-CM6-1 in the grid point in
Brazil in the third row of Fig. 12c show a decrease in SMmm
over 2020–2050, then an increase over 2050–2060, and then
a decrease over 2060–2100. In the meantime, the emulations
fail to reproduce these evolutions, decreasing at a slower
pace over 2020–2050 and not increasing over 2050–2060.
The processes explaining such evolutions are not reproduced
by the emulator, and more research would be needed to in-
tegrate them. Figures similar to Fig. 12 are provided in the
Appendix Sect. 6.8 for low- and medium-warming scenar-
ios.

The performance of the emulations for the retained con-
figuration for SMmm are shown in Fig. 13. The deviations of
the quantiles of the emulations in the ESMs are summarized
for each ESM and AR6 region, respectively, at the 97.5 %,
50 %, and 2.5 % quantiles. The emulators are again overall
under-dispersive. On average, the fraction of points above
the 97.5 % quantile of emulations indicates that this quan-
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Figure 10. Similar to Fig. 3 but for the annual average soil moisture (SM).
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Figure 11. Similar to Fig. 1 but for the annual minimum of the monthly average of soil moisture (SMmm).

Figure 12. Similar to Fig. 2 but for the annual minimum of the monthly average of soil moisture (SMmm) under CNRM-CM6-1. The rows
correspond, from top to bottom, to western and central Europe, the western part of southern Africa, a grid point in the west of Brazil in the
state of Acre, and a grid point in Sichuan, China, close to Chengdu.

tile of the emulations is too low by −2.0%. At the median,
the emulations are +1.1% too high. At the 2.5 % quantile,
the emulations are +1.4% too high. The fraction of ESM x
regions with a deviation of the quantiles limited to 5 % is lim-
ited to 96 % for both 97.5 % and 2.5 % quantiles and 85 % for
the median. Overall, the distributions are relatively well re-

produced, although some regions show lower performances.
Here again, the emulator performs lower in Southeast Asia
than in the other regions. As explained in other sections, this
may be an effect of fewer land grid points affecting the re-
production of spatial correlations. On the median, the em-
ulator of MCM-UA-1 has a lower performance than for the
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Figure 13. Similar to Fig. 3 but for the annual minimum of the monthly average of soil moisture (SMmm).
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other ESMs. The emulator of NorESM2-LM has a lower per-
formance than for the two other shown quantiles. These re-
sults cannot be used directly to diagnose different effects in
the ESMs. Instead, further research will be needed to under-
stand and integrate these effects in the modeling framework
of MESMER-X.

5 Conclusions

The emulator MESMER-X, an extension of the MESMER
emulator (Beusch et al., 2020a, 2022b), which is focused
on the emulation of impact-relevant variables, including ex-
tremes, was introduced and showcased for TXx (Quilcaille
et al., 2022), suggesting a potential for extension to other cli-
mate variables. Here, we have confirmed this potential with
a range of yearly indicators of the fire weather index and
soil moisture. We illustrated that several distributions may
be used in this framework, such as the GEV for TXx and
FWIsa, the normal distribution for SM and SMmm, and fi-
nally the Poisson distribution for FWIxd. It clearly shows
how the MESMER-X framework can be easily adapted to
sample from additional probability distribution, thereby fa-
cilitating its adaptation to further climate variables. More-
over, the nonlinear response of soil moisture to global mean
temperature required a more sophisticated parameterization,
including a logistic response and the consideration of time-
lagged predictor variables. This latter extension highlights
that the MESMER-X setup can be easily adapted to also ac-
count for a nonlinear climate response in the considered vari-
able.

We have shown good performances for these emulators,
typically with deviation of quantiles limited to 5 % in about
90 % of the ESM x AR6 regions, with variations in the indi-
cators and quantiles. We have pointed out some limitations.
The main one was observed with FWIxd, with lower perfor-
mances on the median of emulations. In this case, the Pois-
son distribution may not be adequate, and more flexibility in
the moments of the distribution may be necessary, e.g., to al-
low fat tails. Another limitation is that there are regions that
would benefit from local responses with different parame-
terizations, e.g., with fire indicators in South America. Such
effects have not been accounted for here to preserve simplic-
ity in the modeling. Making parameterizations dependent on
the grid point would be a solution but was not implemented
for this article. Finally, some local aspects of the dynamics
are not captured by the emulations, e.g., with soil moisture
indicators in Amazonia. Using time-lagged predictors may
not be good enough locally, and there may even be processes
that cannot be entirely captured in this framework.

Given these results, the further expanded MESMER-X
emulator is capable of emulating several annual impact-
related variables, including climate extremes and a drought-
related water cycle variable, with satisfactory performance.
It can emulate variables distributed over GEV, normal, and

Poisson distributions. Linear, quadratic, and logistic evolu-
tions of the parameters have been shown here. An example
of a lagged effect is shown here. This method is very flexible,
relatively simple, and yet has good performance. We have
identified limitations but also proposed potential solutions.

The expanded MESMER-X is thus a tool now capable
of exploring impact-related variables, including climate ex-
tremes and a drought-related water cycle variable, and may
be used to provide information to assess climate impacts un-
der a range of emissions scenarios, including the upcoming
scenarios to be developed in preparation for the Seventh As-
sessment Report of the IPCC. As such, the MESMER-X em-
ulator is complementary to the ESMs: it relies on ESMs for
training but is fast enough for coupling with other models in
need of climate information. Finally, ESMs may carry some
biases (Kim et al., 2020) even for climate extremes (Schewe
et al., 2019). Tools such as MESMER-X may foster the inte-
gration of observation constraints to correct these biases.

Appendix A

A1 Application of a probability integral transform to
discrete distributions

The probability integral transform (PIT) introduced in Eq. (2)
of this paper transforms values from a known distribution to
another distribution, here a normal distribution of mean 0 and
standard deviation 1, thus “Gaussianizing” the sample. We
illustrate here how the PIT applies to discrete distributions.
For the sake of clarity, these explanations are not based solely
on statistical data instead of climate data.

Here we consider a GEV distribution and a Poisson dis-
tribution. To facilitate the comparison, the parameters are
picked so that their cumulative distribution functions (CDFs)
would be relatively similar. In Fig. A1 we show their respec-
tive CDFs and how the PIT would apply to two values.

Figure A1. Illustration of a probability integral transform applied
to continuous and discrete distributions.

We note that events with a value of 4 would have higher
transformed values under a Poisson distribution than under a
GEV distribution. This observation may raise issues regard-
ing the use of a PIT for a discrete distribution. However, a
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Figure A2. First-order coefficient of a temporal auto-regressive process for FWIsa with UKESM1-0-LL and MESMER-X using the config-
uration presented in Eq. (10).

Figure A3. First-order coefficient of a temporal auto-regressive process for FWIxd with ACCESS-CM2 and MESMER-X using the config-
uration presented in Eq. (11).

value of 4 is representative of the values in the interval [3.5;
4.5[. Thus, over [3.5; 4[, the transformed values over a Pois-
son distribution would be below those of a GEV, while over
[4; 4.5[, they would be higher than those of a GEV. Accord-
ing to this effect, applying a PIT to a discrete distribution
would lead to partially compensating errors.

Intervals from the discrete distribution are represented by a
single value, thus a single value in the “Gaussianized” space.
However, the realizations from the auto-regressive process
with spatially correlated innovations are back-transformed
using another PIT, as described in Eq. (7). These realizations
are continuous, leaving only the values taken by a Poisson
distribution after PIT. As such, the same effect occurs, albeit
the other way round: intervals of values in the realizations
are transformed into single values.

As a result, applying a PIT to a discrete distribution ap-
pears to have the intended effect. This is due to the matching
of intervals of values to single values, which led to partially
compensating effects. Furthermore, this effect occurs another
time during the back transformation. We acknowledge the
extent of the compensations of these effects, will investigate
further in this direction, and welcome other contributions.

A2 Representation of the interannual variability for each
variable

An important aspect of the impacts of climate change is
their potential persistency. Hazardous climate conditions im-
pact the Earth system and our societies, but such conditions
maintained over several years may result in even higher im-
pacts. For instance, droughts lasting several years would have
stronger impacts in terms of food security than the impacts
of non-adjacent droughts.

As such, representing the interannual variability matters
when emulating variables related to climate impacts or the
water cycle. In MESMER-X, it is modeled using an auto-
regressive process of the first order, as shown in Eq. (3). It is
applied on the climate variable after the probability integral
transform of Eq. (2) to ensure the “Gaussianized” distribu-
tion required by the auto-regressive process. However, the
training of this process is performed over the whole train-
ing sample, and the interannual variability of the ESM may
change over time, for instance due to changes in large-scale
oscillations.

Here, we evaluate the local evolutions of the interannual
variability in the trained ESMs and its representation by
MESMER-X. For each climate variable emulated in this pa-
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Figure A4. First-order coefficient of a temporal auto-regressive process for SM with CNRM-CM6-1 and MESMER-X using the configura-
tion presented in Eq. (12).

Figure A5. First-order coefficient of a temporal auto-regressive process for SMmm with CNRM-CM6-1 and MESMER-X using the config-
uration presented in Eq. (13).

per, we use the ESM used for illustration of its emulator in
time series and maps. We choose three periods, the preindus-
trial (1851–1900), the end of a low-warming scenario SSP1-
2.6 (2051–2100) and the end of a high-warming scenario
SSP5-8.5 (2051-2100). In each case, we apply the proba-
bility integral transform as shown in Eq. (2) as a form of
detrending and so that the new sample follows a standard
normal distribution. In each grid point, we calculate an auto-
regressive process of the first order and average its coeffi-
cient over available members. For the emulator, we verify
that these calculations effectively lead to the parameters γs,1
of Eq. (3) because of the spatially correlated innovations over
the realizations. All of these results are shown in Figs. A15
to A18.

These figures show that all the variables presented in this
article are mostly positively correlated. In addition, SM and
SMmm have higher correlations than FWIsa and FWIxd.
This is due to inertia in the water cycle with a relatively long
recovery time from droughts. The evolutions of these cor-
relations in the ESM are relatively slow, mostly in Québec,
Greenland, and Murmansk. Its MESMER-X counterpart is
the average in time of these correlations, thus reproducing
the interannual variability of the ESM well.

Figure A6. CRPS obtained with an observed value of 5 and Gaus-
sian distributions sampled over 10 000 members over different val-
ues of its parameters.

A3 Interpretability of the CRPS

All CRPS scores in this paper have been calculated thanks to
the Python package properscoring available at https://pypi.
org/project/properscoring/ (last access: 7 December 2023).
More specifically, they have been created with its function
calculating crps_ensemble. Below is an illustration of the
CRPS obtained using this function.
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Figure A7. Negative log likelihood obtained during training
of MESMER-X on FWIsa using the configuration presented in
Eq. (10) and for the ESM used in Fig. 2.

Figure A8. Negative log likelihood obtained during training
of MESMER-X on FWIxd using the configuration presented in
Eq. (11) and for the ESM used in Fig. 5.

For interpretability of the CRPS, one may consider the ex-
pression for an observation X and the normal distribution
with f and F , its probability density and cumulative distribu-
tion functions, respectively, derived from Eq. (8.55), p. 353
of Wilks (2011):

CRPS= σ (X (2FN (X,µ,σ )− 1)+ 2fN (X,µ,σ )

−1/
√
π
)
. (A1)

Similar equations may be obtained for a GEV from
Eq. (9) of Friederichs and Thorarinsdottir (2012) or other dis-
tributions (http://cran.nexr.com/web/packages/scoringRules/
vignettes/crpsformulas.html, last access: 7 December 2023).

A4 Performances of the emulators for each variable

The grid-cell-level parameters of MESMER-X are trained by
minimizing the negative log likelihood of the training sample
given a prescribed configuration for each grid cell indepen-
dently. We show here the averaged negative log likelihood
at the grid cell level for the retained configuration and with
the ESM used to illustrate the performance of MESMER-X.
The value is averaged to account for the number of time steps
used during training and to facilitate the comparisons.

Figure A9. Negative log likelihood obtained during training of
MESMER-X on SM using the configuration presented in Eq. (12)
and for the ESM used in Fig. 9.

Figure A10. Negative log likelihood obtained during training
of MESMER-X on SMmm using the configuration presented in
Eq. (13) and for the ESM used in Fig. 12.

A5 Emulations of the seasonal average of the Fire
Weather Index over low- and medium-warming
scenarios

In Sect. 3.2, we emulate the seasonal average of the Fire
Weather Index (FWIsa), that we illustrate in Fig. 2 with
the high warming scenario SSP5-8.5. While this scenario al-
lows us to explore a large range of warming for the model,
it does not show evolutions over more advisable warming
ranges, nor does it show potential stabilization effects over
low-warming scenarios. Here, we produce the equivalent of
Fig. 2 for SSP1-2.6 and SSP2-4.5.

A6 Emulations of the number of days with extreme fire
weather over low- and medium-warming scenarios

As was done in Sect. 6.3 for the seasonal average of the Fire
Weather Index, we extend Sect. 3.3, where we emulated the
number of days with extreme fire weather (FWIxd) and illus-
trated the result in Fig. 5 using the high-warming scenario
SSP5-8.5. Again, while this scenario allows us to explore
a large range of warming for the model, it does not show
evolutions over more advisable warming ranges, nor does it
show potential stabilization effects over low-warming sce-
narios. Here, we produce the equivalent of Fig. 5 for SSP1-
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Figure A11. Similar to Fig. 2 but with the medium-warming scenario SSP2-4.5.

Figure A12. Similar to Fig. 2 but with the low-warming scenario SSP1-2.6.
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2.6 and SSP2-4.5. We highlight that the SSP2-4.5 was not
provided by the ESM HadGEM3-GC31-MM. In addition, its
counterpart HadGEM3-GC31-LL provided only one mem-
ber for SSP1-2.6. For the sake of visualization, we opt to
show the results with ACCESS-CM2, which provided five
members for both SSP1-2.6 and SSP2-4.5.

A7 Emulations of the annual average of the soil
moisture over low- and medium-warming scenarios

As was done in Sect. 6.3 for the seasonal average of the Fire
Weather Index, we extend Sect. 4.2, where we emulated the
annual average of the soil moisture (SM) and illustrated this
in Fig. 9 using the high-warming scenario SSP5-8.5. Again,
while this scenario allows us to explore a large range of
warming for the model, it does not show evolutions over
more advisable warming ranges, nor does it show potential
stabilization effects over low-warming scenarios. Here, we
produce the equivalent of Fig. 9 for SSP1-2.6 and SSP2-4.5.

In Fig. A16, the time series shown in the bottom row show
that the emulations are more optimistic than the ESM for this
grid point from 2080. A potential explanation would be that
the effect introduced by lagged temperatures becomes too
strong. As outlined in this article, having different parameter-
izations of the inertia in the water cycle or parameterizations
that depend on the grid point instead of being identical for all
points may improve the representation of such local effects.

A8 Emulations of the annual minimum of the monthly
average soil moisture over low- and
medium-warming scenarios

As was done in Sect. 6.3 for the seasonal average of the Fire
Weather Index, we extend Sect. 4.3, where we emulated the
annual average of the soil moisture (SMmm) and illustrated
this in Fig. 12 using the high-warming scenario SSP5-8.5.
Again, while this scenario allows us to explore a large range
of warming for the model, it does not show evolutions over
more advisable warming ranges, nor does it show potential
stabilization effects over low-warming scenarios. Here, we
produce the equivalent of Fig. 12 for SSP1-2.6 and SSP2-
4.5.
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Figure A13. Similar to Fig. 5 but with ACCESS-CM2 and the medium-warming scenario SSP2-4.5.

Figure A14. Similar to Fig. 5 but with ACCESS-CM2 and the low-warming scenario SSP1-2.6.

https://doi.org/10.5194/esd-14-1333-2023 Earth Syst. Dynam., 14, 1333–1362, 2023



1356 Y. Quilcaille et al.: A spatially resolved Earth system model emulator

Figure A15. Similar to Fig. 9 but with the medium-warming scenario SSP2-4.5.

Figure A16. Similar to Fig. 9 but with the low-warming scenario SSP1-2.6.
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Figure A17. Similar to Fig. 12 but with the medium-warming scenario SSP2-4.5.

Figure A18. Similar to Fig. 12 but with the low-warming scenario SSP1-2.6.
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Data availability. Data from CMIP6 can be accessed and down-
loaded at https://esgf-node.llnl.gov/search/cmip6/ (last access:
29 January 2023). The search query is as follows: experiment
ID (historical, ssp119, ssp1226, ssp245, ssp370, ssp585, ssp534-
over) and variable (tas, mrso). Code from MESMER is avail-
able at https://doi.org/10.5281/zenodo.10300296 (Quilcaille, 2023).
Data for the FWI can be accessed at https://doi.org/10.3929/ethz-b-
000583391 (Quilcaille and Batibeniz, 2022).
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