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Abstract. We show that the distribution of anthropogenic carbon between the atmosphere, land surface, and
ocean differs with the choice of projection scenario even for identical changes in mean global surface tempera-
ture. Warming thresholds occur later in lower-CO2-emissions scenarios and with less carbon in the three main
reservoirs than in higher-CO2-emissions scenarios. At 2 ◦C of warming, the mean carbon allocation differs by up
to 63 PgC between scenarios, which is equivalent to approximately 6 years of the current global total emissions.
At the same warming level, higher-CO2-concentration scenarios have a lower combined ocean and land carbon
allocation fraction of the total carbon compared to lower-CO2-concentration scenarios.

The warming response to CO2, quantified as the equilibrium climate sensitivity, ECS, directly impacts the
global warming level exceedance year and hence the carbon allocation. Low-ECS models have more carbon
than high-ECS models at a given warming level because the warming threshold occurs later, allowing more
emissions to accumulate.

These results are important for carbon budgets and mitigation strategies as they impact how much carbon the
ocean and land surface could absorb at a given warming level. Carbon budgeting will be key to reducing the
impacts of anthropogenic climate change, and these findings could have critical consequences for policies aimed
at reaching net zero.
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1 Introduction

The Intergovernmental Panel on Climate Change’s (IPCC)
Sixth Assessment Report found that the global-mean surface
air temperature was 1.1 ◦C warmer in the last decade (2011–
2020) than in the pre-industrial era. They found that hu-
man activities have indisputably caused this warming (IPCC,
2021b), with anthropogenic greenhouse gases, particularly
carbon dioxide (CO2), being the primary cause.

Since the industrial revolution, carbon has been transferred
gradually from fossil fuel reservoirs to the atmosphere, pri-
marily via combustion. Once in the atmosphere, some of the
CO2 is absorbed by the ocean via gas transfer, some is ab-
sorbed by the land surface via terrestrial carbon fixation, and
some CO2 remains in the atmosphere, as illustrated in Fig. 1.
While these fluxes also occur naturally, the additional anthro-
pogenic carbon load has perturbed the Earth system from its
pre-industrial equilibrium. In the atmosphere, anthropogenic
carbon causes additional warming (Hansen et al., 1981).
In the ocean, anthropogenic carbon can cause acidification
(Caldeira and Wickett, 2003) or participate in primary pro-
duction or sequestration (Schlunegger et al., 2019). On the
land surface, carbon can allow enhanced primary production
and subsequent carbon sequestration. Once converted into
biomass, this carbon may be a fuel source for fires, which
returns a portion of the sequestered carbon back to the atmo-
sphere (Burton et al., 2022; Sullivan et al., 2022). Elevated
atmospheric CO2 can worsen food quality and nutrient con-
centrations (Erda et al., 2005) and affect water-balance evap-
otranspiration, reducing streamflow in water-stressed regions
(Ukkola et al., 2016).

The instantaneous distribution of anthropogenic carbon
between the atmosphere, ocean, and land surface is known
as “carbon allocation in the Earth system”, which we hence-
forth call “carbon allocation”. The balance between these
carbon sinks is hugely important to climate projections and
policymakers (IPCC, 2021b), impacting warming feedbacks,
marine biogeochemistry, and life on land (Macreadie et al.,
2019; Hilmi et al., 2021). The physical and biogeochemical
feedbacks could affect the future rates of greenhouse gas ac-
cumulation in the atmosphere, directly impacting warming
(Canadell et al., 2021). They also directly influence the re-
maining carbon budget, which policymakers may use to limit
fossil fuel consumption in order to keep warming in line with
policy goals (Jiang et al., 2021). In addition, the balance of
carbon between the atmosphere, land, and ocean has large-
scale consequences for the future of climate engineering via
CO2 removal and solar radiation modification (Lawrence
et al., 2018). Changes to carbon allocation also impact sev-
eral United Nations Development Programme Sustainable
Development Goals, notably 13: climate action; 14: life be-
low water; and 15: life on land (United Nations, 2015).

In observations, the atmospheric CO2 concentration is
typically measured directly, while the ocean and terres-
trial CO2 sinks are estimated with global process mod-

els constrained by observations. For the decade 2008–
2017, the Le Quéré et al. (2018) synopsis of the global
carbon budget summarised that the fossil fuel emissions
were 9.4± 0.5 PgC yr−1, and emissions from land use and
land use change were 1.5± 0.7 PgC yr−1, most of which
were due to deforestation. The growth of the atmospheric
carbon was 4.7± 0.02 PgC yr−1, the ocean carbon sink
was 2.4± 0.5 PgC yr−1, and the terrestrial carbon sink was
3.2± 0.8 PgC yr−1. The difference between the estimated to-
tal emissions and the estimated changes in the atmosphere,
ocean, and terrestrial biosphere was 0.5 PgC yr−1, which in-
dicated that there were either overestimated emissions or
underestimated sinks or both. There is also a flux of land
carbon into the ocean via rivers between 0.45± 0.18 and
0.78± 0.41 PgC yr−1, but this flux is not generally included
in recent models from the Sixth Coupled Model Intercompar-
ison Project (CMIP6, described below in Sect. 1.1) (Jacob-
son et al., 2007; Resplandy et al., 2018; Hauck et al., 2020).
There may also be a direct flux of fossil fuel extraction and
other leaks into the ocean or land surface (Roser and Ritchie,
2023), but these are also neglected in models.

It is long established that the relationship between cumu-
lative emissions and peak warming is insensitive to the emis-
sion pathway, either in the timing of emissions or the peak
emission rate (Allen et al., 2009). More recently, Fig. 5.31 of
Canadell et al. (2021) also supports negligible pathway de-
pendence between the cumulative carbon emissions and the
global-mean temperature change in several projections with
CMIP6 data.

The rising atmospheric CO2 and warming climate will
cause major changes in vegetation structure and function
over large fractions of the global land surface. An increase
in global land vegetation carbon has been projected, but
with substantial variation between vegetation models (Friend
et al., 2014). Much of the variability between models in
global land vegetation carbon stocks was explained by differ-
ences in land vegetation carbon residence time (Jiang et al.,
2015). In the ocean, the increase in atmospheric CO2 en-
hances the ocean carbon storage, while warming acts to de-
crease the ocean carbon storage (Katavouta and Williams,
2021).

Both the ocean and land carbon sinks are projected to con-
tinue to grow as the atmospheric concentration of CO2 rises
(Canadell et al., 2021). However, the combined fraction of
emissions taken up by the land and ocean is projected to
decline, and a larger fraction of the emissions will remain
in the atmosphere. The carbon allocation in the year 2100
is strongly scenario-dependent (IPCC, 2021b, Fig. SPM.7).
The projected atmospheric carbon allocation in the year 2100
ranges from 30 % in SSP1-1.9 to 62 % in SSP5-8.5. The
Shared Socioeconomic Pathways (SSPs) are described be-
low in Sect. 1.1. While the land and ocean carbon uptake
are expected to remain approximately equal, the uncertainty
is much larger in the land carbon sink than the ocean. The
uncertainty in the land sink is due to the balance of carbon
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Figure 1. A simplified version of the Earth system carbon cycle. Interactive fluxes are shown as arrows, prescribed fluxes are shown as box
arrows, and derived fluxes are shown as chevrons. The arrows in gold are considered in this analysis, and the grey arrows are not considered.
The prescribed change in atmospheric carbon, 1CO2, accounts for the anthropogenic fossil fuel exploitation and the subsequent carbon
emission.

accumulation in the high latitudes against the loss of land
carbon in the tropics and the challenges of forecasting the
water cycle, especially droughts, which significantly reduce
the carbon absorption potential of the land surface (Ukkola
et al., 2016; van der Molen et al., 2011; Canadell et al., 2021).
On the other hand, continuous absorption of carbon into the
ocean reduces its mean global buffering capacity and drives
changes in the global ocean’s carbonate chemistry, building
a strong dependency on the choice of scenarios (Jiang et al.,
2019; Katavouta and Williams, 2021).

1.1 Sixth Coupled Model Intercomparison Project

Earth system models (ESMs) are the only tools capable
of projecting a future coupled carbon–climate system. The
Sixth Coupled Model Intercomparison Project (CMIP6) is
the most recent global effort to standardise, share, and study
ESM simulations (Eyring et al., 2016). The CMIP6 standard
simulation protocols, called the Diagnostic, Evaluation, and
Characterization of Klima (DECK), are required simulations
for a model to participate in CMIP6. The DECK includes
a pre-industrial control, a gradual 1 % CO2 growth experi-
ment, and a rapid 4×CO2 experiment. Although it is not a
formal requirement of the CMIP6 DECK, each model invari-
ably contributes at least one simulation of the historical pe-
riod. For quality assurance, only models whose pre-industrial
control simulations have a global drift of less than 10 PgC
per century in the air–sea CO2 flux and less than 0.1 ◦C per

century in the volume mean ocean temperature are accepted
(Jones et al., 2011; Eyring et al., 2016; Yool et al., 2020).

In order to make projections of the future anthropogenic
climate drivers, multiple scenarios were proposed in the Sce-
narioMIP project to cover a wide range of potential futures
(O’Neill et al., 2016). ScenarioMIP expands upon the CMIP6
DECK simulations with multiple scenarios of the future an-
thropogenic climate drivers that cover a wide range of po-
tential future climate and human behaviours (O’Neill et al.,
2016). Scenario names in CMIP6 ScenarioMIP are com-
posed of one of the five shared socioeconomic pathways
(SSP1–SSP5) followed by an estimate of the radiative forc-
ing in the year 2100 between 1.9 and 8.5 W m−2. The five
SSPs are narratives that describe broad socioeconomic trends
that are expected to shape the future of humanity and are
based on trends in population, urbanisation, and technolog-
ical and economic growth (Riahi et al., 2017). In this work,
we include two sustainable-development scenarios, SSP1-1.9
and SSP1-2.6; the intermediate emissions scenario, SSP2-
4.5, which has a medium level of radiative forcing by the
end of the century; the regional rivalry scenario, SSP3-7.0,
which has more regional conflict and concerns about do-
mestic security, pushing global collaboration into the back-
ground; and the enhanced-fossil-fuel-development scenario,
SSP5-8.5, which has extremely high fossil fuel deployment
and atmospheric CO2 concentration (O’Neill et al., 2016; Ri-
ahi et al., 2017).
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1.2 Climate sensitivity

Given the same rise in atmospheric CO2 concentration, each
ESM will warm to a different temperature due to the struc-
tural and parametric differences between models. The equi-
librium climate sensitivity (ECS) is defined as the global-
mean near-surface air temperature rise in degrees Celsius in
response to a doubling of the atmospheric CO2 concentration
once the model has reached equilibrium. Constraints on the
value of ECS are based on four lines of evidence: feedback
process understanding, climate change and variability seen
within the instrumental record, paleoclimate evidence, and
emergent constraints (Arias et al., 2021). The 5 %–95 % con-
fidence range of ECS is between 2 and 5 ◦C, the likely ECS
range is 2.5–4 ◦C, and the most likely value is 3 ◦C (Arias
et al., 2021, TS.6). In ESMs, the spread in the sensitivity
to CO2 between models is one of the causes of uncertainty
for when projections reach certain warming levels. Similarly,
the uncertainty in the “allowable emissions” that would keep
global temperature rise within policy targets is also impacted
(United Nations Treaty Collection, 2015). This uncertainty
is exacerbated in CMIP6 as it has a broader range of ECS
values than previous generations, and several CMIP6 models
are outside the likely ECS range (Hausfather et al., 2022).
Uncertainties in cloud feedbacks have been identified as the
main cause of the large ECS range in CMIP6 (Ceppi and
Nowack, 2021).

1.3 Global warming levels

Climate change policy has a tendency to focus on the climate
in specific target years, such as 2050 or 2100 (United Na-
tions Treaty Collection, 2015; IPCC, 2021a). However, due
to the diversity of ECS values in CMIP6, an ensemble will
project a wide range of warming rates and surface tempera-
tures at a given point in time. This wide range of behaviours
has knock-on effects on climate feedbacks and may distort
the realism and representativeness of the ensemble’s multi-
model mean (Hausfather et al., 2022; Swaminathan et al.,
2022). On the other hand, this more comprehensive range of
responses is valuable in exploring carbon–climate processes
that are of direct relevance to policy.

Instead of specific target years, we used the global warm-
ing level (GWL) method (Swaminathan et al., 2022) to fo-
cus on three specific warming levels. These are 2, 3, or 4 ◦C
of warming relative to the pre-industrial period. The GWL
method allows us to generate policy-relevant assessments
while exploiting the full ensemble of CMIP6 models. Not
only does the GWL method mirror the policy discourse sur-
rounding the warming targets, it is also largely independent
of the choice of future emissions scenario as the world is
thought to look generally the same at 2 ◦C, irrespective of
the pathway (Hausfather et al., 2022). In addition, the GWL
method bypasses the need to select or weight CMIP6 mod-
els as each model provides distinct and relevant informa-

tion, so the full CMIP6 ensemble can be used (Hausfather
et al., 2022). The three GWLs were chosen because the 2 ◦C
GWL is a key target set in the 2015 Paris Agreement and
thought to be a threshold for potentially dangerous climate
change (United Nations Treaty Collection, 2015); the 3 ◦C
GWL is close to the warming level that current nationally
determined emission policies will realise for the year 2100
assuming a median climate sensitivity (United Nations Envi-
ronment Programme, 2019); and finally, the 4 ◦C GWL is a
low-likelihood but high-impact outcome if climate sensitiv-
ity is higher than the median estimate, or emission reductions
and climate policy break down (World Bank, 2012).

This is the first work that presents the carbon allocation
using the GWL method. Previous analyses project carbon al-
location at an arbitrary point in time using the mean of a set
of models with widely different warming rates and sensitiv-
ities (IPCC, 2021b; Canadell et al., 2021). When compared
against projections at specific points in time, our results are
less influenced by the overall climate sensitivity of the en-
semble and may be more relevant for policymakers.

2 Methods

2.1 Carbon allocation calculation

We calculate the carbon allocation for the land, ocean, and
atmospheric reservoirs separately. The amount of carbon in
the land sink, SLand, is derived from two other fields: the
net biome production, NBP, and global total land use emis-
sions, LUEs, as shown in Fig. 1. The NBP is a diagnostic
variable calculated by the models and is defined as posi-
tive for fluxes into the land carbon store in CMIP6 (Jones
et al., 2016). SLand is the activity of the vegetation, which
is the combined carbon flux of all natural sources, includ-
ing photosynthesis, respiration, wildfire, and other sinks and
sources. These natural fluxes and therefore the carbon sinks
are altered by anthropogenic carbon emissions into the at-
mosphere, for example from fossil fuel combustion. SLand is
positive in the direction of a sink into the land from the at-
mosphere, but it does not include the effects of anthropogenic
land use change. The LUEs are anthropogenic carbon emis-
sions, including deforestation, land management, reforesta-
tion, and others (Lawrence et al., 2016). LUEs are positive
into the atmosphere. NBP is a diagnostic that combines both
SLand and LUEs. NBP is positive into the land, so for these
sign conventions, NBP= SLand−LUEs and represents the
net exchange between land and atmosphere, including an-
thropogenic emissions relating to land use change. The di-
rections of these fluxes are taken as positive, as indicated in
Fig. 1. To diagnose only the SLand component, it is therefore
necessary to add back in the LUEs to NBP. As such, SLand
here is computed as the sum of the global total net biome
production and the global total land use emissions:

SLand = NBP+LUEs. (1)
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ESMs produce NBP as a diagnostic field in the NBP
dataset, but this is actually their total carbon change in the
land. It is not possible to directly isolate the LUEs for each
model and ensemble member in CMIP6 simulations, and the
LUE values are calculated from prescribed land use scenarios
and are common across all models and all ensemble members
following Liddicoat et al. (2021). A more accurate method of
determining the LUEs would be to calculate the difference in
net biosphere production between a pair of simulations, one
with land use changing over time and the other with fixed
land use (Pongratz et al., 2014; Liddicoat et al., 2021). How-
ever, these simulation pairs exist only for a limited subset
of models and scenarios as part of the Land Use Model In-
tercomparison Project, LUMIP (Lawrence et al., 2016). In
practice, we calculated the global total net biome production
as the cumulative sum along the time axis of the land surface
NBP multiplied by the cell surface area then summed with
the annual LUE value from Liddicoat et al. (2021).

The ocean component of the carbon allocation, SOcean, is
the total global sum of the air–sea flux of CO2. We calculated
this as the sum of the air–sea flux of CO2 multiplied by the
ocean area of each cell, expressed as a cumulative sum of the
annual totals. Like the land surface, the ocean can be both a
sink and a source of CO2.

In the atmosphere, the global-mean CO2 concentration is
provided in the scenario forcing from ScenarioMIP in units
of parts per million (ppm). The total mass of the carbon in
atmospheric CO2, CAtmos, is calculated by multiplying the
change in concentration relative to the 1850 value in parts
per million by a constant factor. This conversion factor is
2.13 PgC per part per million change in CO2 concentration
(Myers, 1983). No matter how much carbon the land and
ocean components absorb from the atmosphere, the atmo-
spheric concentration of CO2 will always strictly follow the
prescribed atmospheric CO2 concentrations of the forcing
scenario. This means that anthropogenic emissions differ for
each model but can be estimated (Jones et al., 2013). The to-
tal anthropogenic carbon, CTotal, is the sum of the total CO2
in the atmosphere, CAtmos; the total global sum of the CO2
flux into the sea, SOcean; and the land sink, SLand:

CTotal = CAtmos+ SOcean+ SLand. (2)

2.2 Models included in this study

This analysis used all CMIP6 ESMs for which the following
three variables were available as monthly averages over the
time period 1850–2100: the near-surface atmospheric tem-
perature (tas), the net biome productivity (NBP), and the air-
to-sea flux of CO2 (fgco2). For each scenario, we limited
the size of the ensemble for each model to 10 members and
required at least one historical and future scenario pair for
each ensemble member. The grid cell area was also required
for the ocean (areacello) and for land and atmosphere (area-
cella) grids. We excluded the entire ensemble member if any

variables were absent, the time series was incomplete, or the
data could not be made compliant with CMIP6 standards.

Each modelling centre has flexibility on which scenarios
they simulate and how many ensemble members are gener-
ated for each scenario. This means that there is wide varia-
tion in the number of ensemble members between models.
For instance, the UKESM1-0-LL model produced 19 differ-
ent variants for the historical experiment, each using slightly
different initial conditions drawn from the pre-industrial con-
trol simulation (Sellar et al., 2020). This generates an ensem-
ble of variants which samples a wide range of the unforced
variability simulated by the model. By spanning the range
of internal variability, the mean of a single model ensemble
can give a more robust estimate of its forced climate change
response. In our work, we used a “one model, one vote”
weighting scheme to balance models with large ensembles
against models with small ensembles. This ensured that each
model was given equal weight in the final multi-model mean.
In practice, each ensemble member of a given model was
weighted inversely proportional to the number of ensemble
members that the model contributed. For reasons described
in Sect. 1.3, we did not weight the results on the basis of the
model quality, sensitivity, or historical performance.

Table 1 lists the contributing models, the number of en-
semble members for each scenario, and each model’s equi-
librium climate sensitivity (ECS). The ECS plays a first-
order role in how rapidly a given model reaches a given
GWL for a given CO2 pathway. For most models, we took
the ECS value from Zelinka et al. (2020). For the models
whose ECS was not included in Zelinka et al. (2020), we
use the following ECS values: ACCESS-ESM1-5 from Ziehn
et al. (2020), CMCC-ESM2 from Lovato et al. (2022), EC-
Earth3-CC from Hausfather et al. (2022), GFDL-ESM4 from
Dunne et al. (2020), and MPI-ESM1-2-LR from Mauritsen
et al. (2019). No ECS value was available for the CanESM5-
CanOE model as results were not available for the abrupt
4×CO2 experiment required to calculate ECS using the Gre-
gory method (Gregory et al., 2004; Christian et al., 2022).
However, it only differs from CanESM5 by the addition of
a marine biogeochemistry component model (Swart et al.,
2019; Christian et al., 2022). We follow the method used
elsewhere (Hausfather et al., 2022; Scafetta, 2022) and use
CanESM5’s ECS value for CanESM5-CanOE. Other ECS
datasets also exist (see for instance Flynn and Mauritsen,
2020; Meehl et al., 2020; Weijer et al., 2020; and Hausfa-
ther et al., 2022), and agree to less than 0.1 ◦C with the values
used in this study. All ECS values included here were derived
using the Gregory et al. (2004) method; we note, however,
that the value of ECS for any given model is sensitive to the
method that was used to derive it. See for instance Table 4 of
Boucher et al. (2020), where ECS for the same model may
vary by more than 1 ◦C depending on the methodology.

The last row of Table 1 shows the ensemble-mean ECS
of the contributing models for each scenario. Following the
“one model, one vote” scheme, the “weighted ECS” only
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Figure 2. Carbon allocation for the multi-model mean for each scenario for the year 2100 and the three GWLs. The green, blue, and grey
areas represent the land, ocean, and atmospheric carbon allocations. The left side shows the percentage allocation, and the right side shows
the totals in petagrams of carbon. The total values are shown in bold to the right of the bars. These values are rounded to the nearest 0.1 % or
the nearest integer PgC, so the three values may not add exactly to 100 % or the total.

takes into account the presence or absence of models, not
the number of contributing ensemble members. The spread
of weighted ECS values between scenarios is small, ranging
from 3.96 for SSP1-1.9 to 4.17 for SSP5-8.5. Five out of six
of these ensemble means sit above the likely ECS range of
2.5–4 ◦C, and four of the individual models are outside the
5 %–95 % confidence band, 2–5 ◦C (Sherwood et al., 2020;
Arias et al., 2021).

As seen in other CMIP ensemble studies, we attempt to
maximise the number of models in this work in order to im-
prove robustness (Flynn and Mauritsen, 2020; Meehl et al.,
2020; Weijer et al., 2020; Hausfather et al., 2022). This
means that we include all available candidates, even pairs
of sibling models; thus, there are two CESM2 models and
two CanESM5 models in the ensemble. CESM2-WACCM6
is configured identically to CESM2, except that it has ex-
panded aerosol chemistry and uses 70 vertical levels, and
its model top is at 4.5× 10−6 hPa (approximately 130 km),
instead of CESM2’s 32 vertical levels and a model top at
2.26 hPa (approximately 40 km) (Danabasoglu et al., 2020).
As noted above, the CanESM5-CanOE model differs from
CanESM5 by the addition of a more complex marine bio-
geochemistry component (Christian et al., 2022).

In addition to sibling models, the same individual compo-
nent models are used by several modelling centres. For in-
stance, the NEMO ocean circulation model forms the marine
circulation component model of six of the ESMs used here
(Heuzé, 2021). While the ESMs use differing versions of
NEMO with different configurations and settings, these mod-
els could not strictly be treated as statistically independent.
However, it is beyond the scope of this work to develop or
apply a method to weight models such that the multi-model
mean is statistically robust, as in, for instance, Brunner et al.
(2020).

2.3 Global warming level calculation

We calculated the global warming level following the method
of Swaminathan et al. (2022). The global-mean atmospheric
surface temperature is calculated for each model, scenario,
and ensemble member. The anomaly is the difference from
the mean of the 1850–1900 period from the relevant histor-
ical ensemble member. This temperature time series is then
smoothed by taking the mean of a window with a width of
21 years, i.e. 10 years either side of the central year. The
first year that the smoothed global-mean surface temperature
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Table 1. A list of the models, the number of contributing ensemble members for each scenario, the model ECS, and the weighted mean ECS
of the contributing models.

Model Historical SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 ECS

ACCESS-ESM1-5 3 2 3 2 1 3.87
CESM2 3 3 3 3 3 5.15
CESM2-WACCM 3 1 3 1 3 4.68
CMCC-ESM2 1 1 3.57
CanESM5 10 10 10 10 10 10 5.64
CanESM5-CanOE 2 2 2 2 5.64
EC-Earth3-CC 8 8 1 4.23
GFDL-ESM4 1 1 1 1 1 1 2.7
IPSL-CM6A-LR 12 5 3 6 10 5 4.56
MIROC-ES2L 5 5 5 5 5 5 2.66
MPI-ESM1-2-LR 5 5 5 5 5 5 2.83
NorESM2-LM 2 1 2 1 2.56
UKESM1-0-LL 10 5 10 10 10 5 5.36

Total number of Ensembles 65 31 43 59 50 39
Total number of Models 13 6 11 13 11 10

Weighted ECS 4.11 3.96 4.15 4.11 4.15 4.17

anomaly exceeds the global warming level is the GWL ex-
ceedance year, as in Fig. 1 of Swaminathan et al. (2022). Due
to the size of our smoothing window and the fact that these
simulations end in 2100, the last possible GWL exceedance
year is 2090.

We calculate the multi-model mean for each of the vari-
ables using the “one model, one vote” scheme described
above. We also determine the multi-model-mean GWLs and
their exceedance years from the multi-model-mean temper-
ature instead of taking the weighted mean of the GWL ex-
ceedance years for each ensemble member. This method en-
sures that the multi-model mean is more representative of the
overall ensemble, instead of being biased towards only those
models that reach the GWL.

We used the ESMValTool toolkit to perform our analy-
sis. ESMValTool is built to facilitate the evaluation and in-
tercomparison of CMIP datasets by providing a set of mod-
ular and flexible tools (Righi et al., 2020). These tools in-
clude quick ways to standardise, slice, re-grid, and apply
statistical operators to datasets. In our case, we used the
annual_statistics preprocessor to calculate the an-
nual mean, the mask_landsea preprocessor to mask the
land or ocean areas, and the area_statistics prepro-
cessor to calculate the area-weighted global mean. ESMVal-
Tool is hosted on GitHub, and we have made available all of
the code used in the study (see “Code and data availability”
section).

3 Results

3.1 Multi-model-mean carbon allocation

The total multi-model-mean carbon allocation for each sce-
nario in the year 2100 and for each of the three GWLs is
shown in Fig. 2. The top pane shows the carbon allocation for
the year 2100. In 2100, the higher-emission scenarios have
greater total carbon allocations, and more of that carbon is
allocated to the atmosphere, relative to the lower-emission
scenarios. In the year 2100, more carbon is allocated to the
ocean than the land in SSP5-8.5, SSP3-7.0, and SSP2-4.5,
while more carbon is allocated to the land than the ocean
in SSP1-1.9 and SSP1-2.6. This reproduces the results from
Fig. SPM.7 of IPCC (2021b), as discussed earlier in Sect. 1.

The lower three panes of Fig. 2 show the carbon allocation
at each GWL. In all cases, the variability between scenar-
ios at a given GWL is significantly less than the variability
between scenarios in the year 2100 in the top pane. How-
ever, the variability within the same GWL is still significant
in absolute terms. For instance, the multi-model-mean total
carbon allocation for the 2 ◦C GWL ranges from 909 PgC in
SSP2-4.5 to 972 PgC in SSP3-7.0 (a range of 63 PgC). At the
3 ◦C GWL, the range is 56 PgC, and at 4 ◦C GWL, the range
is 15 PgC. When compared against the annual total emissions
estimate, 9.4± 0.5 PgC yr−1 (Le Quéré et al., 2018), these
differences between scenarios represent several years’ worth
of the global total anthropogenic emissions.

In the land surface, the multi-model means have a range of
46, 35, and 52 PgC between scenarios for the 2, 3, and 4 ◦C
GWLs, respectively. The recent annual terrestrial carbon sink
was 3.2± 0.8 PgC yr−1 (Le Quéré et al., 2018), so the differ-
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ence between scenarios is equivalent to at least a decade’s
worth of current carbon absorption by the land surface.

The multi-model means of the ocean flux have a range
of 28, 34, and 21 PgC between scenarios for the 2, 3, and
4 ◦C GWLs, respectively. This reflects the previous result
that the carbon allocation to the land surface is more vari-
able than the ocean, as the land values have wider ranges.
The most recent annual estimate for the ocean carbon sink is
2.4± 0.5 PgC yr−1 (Le Quéré et al., 2018). As in the case of
the land described above, the difference between scenarios is
equivalent to approximately 1 decade’s worth of the current
ocean carbon absorption.

On the left-hand side of Fig. 2, the higher-CO2-
concentration scenarios have a larger atmospheric fraction
than lower-CO2-concentration scenarios at the same GWL.
For instance, the atmospheric fraction is 46.9 % in SSP5-8.5
and 41.9 % in SSP1-2.6 at the 2 ◦C GWL, and the atmo-
spheric fraction is 52.4 % in SSP5-8.5 and 47.4 % in SSP2-
4.5 at the 3 ◦C GWL.

Figure 2 only shows the multi-model means, not results
for individual models, so the multi-model means that do not
reach the GWL are not included in this figure. Table 1 shows
that there are six models contributing to the SSP1-1.9 sce-
nario in this analysis, yet the multi-model mean does not
reach the 2 ◦C GWL here. Similarly, there are 11 SSP1-2.6
models, but the multi-model mean does not reach the 3 ◦C
GWLs before the year 2100, nor does the mean of the 13
SSP2-4.5 models reach 4 ◦C of warming.

3.2 Carbon allocation time series

The CMIP6 multi-model-mean carbon allocation time series
is shown in Fig. 3. The top left pair shows the development
over the historical period, and the other five pairs show the
projections. We include all data cumulatively from the year
1850, and all the cumulative carbon panes share the same
y-axis range. The exceedance years for each of the multi-
model-mean GWLs are marked as vertical lines.

In the historical pane of Fig. 3, the fractional atmospheric
carbon starts to grow in the second half of the 20th century, as
the land fraction declines, and the ocean fraction increases.
However, all three reservoirs increase in absolute terms over
the entire historical period. By the end of the historical pe-
riod, the land and ocean match reasonably well against the
observational records of Raupach et al. (2014) and Watson
et al. (2020), which are shown as dashed horizontal lines. In
future scenarios, the GWL exceedance year occurs sooner in
higher-concentration scenarios than in lower-concentration
scenarios. In all scenarios, the total anthropogenic carbon
rises until at least the year 2050. In the two SSP1 scenarios,
the total carbon starts to fall after this point, while it contin-
ues to grow in the other projections.

The fraction of carbon that is absorbed by the combined
land and ocean reservoirs rises in the two SSP1 scenarios,
remains approximately constant in SSP2-4.5 after 2050, and

declines in the SSP3-7.0 and SSP5-8.5 scenarios. The time
series in the year 2100 closely match the IPCC atmospheric
fraction projections for the year 2100 IPCC (2021b, Fig.
SPM.7), shown in Fig. 3 as a short horizontal line at the
end of the period. This corroboration with existing results
increases confidence in the appropriateness of our methodol-
ogy.

3.3 Multi-model ensemble carbon allocation

Figure 4 shows the carbon allocation at each GWL as a per-
centage (left) and in terms of the total carbon for each model
(right). For each scenario and each GWL, the models are or-
dered by their ECS, as shown in Table 1. The lower-ECS
models are at the top, and higher-ECS models are at the bot-
tom of each section. The lower-sensitivity models take longer
to reach the same warming level and have more total emis-
sions than the higher-sensitivity models. This results in the
saw-tooth pattern visible on the right of this figure.

There is a significant variability between individual mod-
els in the total cumulative carbon allocated between sce-
narios at each GWL. For instance, the total carbon change
at 2 ◦C ranges from 615 PgC (CanESM5-CanOE SSP3-
7.0) to 1521 PgC (NorESM2-LM SSP3-7.0). This range of
behaviours between models is very large, and the differ-
ence between these two extremes is equivalent to a cen-
tury’s worth of current global emissions, i.e. 100 years of
9.4± 0.5 PgC yr−1 (Le Quéré et al., 2018).

Proportionally large ranges can also be seen in the land,
ocean, and atmospheric carbon sinks in Fig. 4. For in-
stance, at the 2 ◦C GWL, the land has absorbed between
164 PgC (EC-Earth3-CC SSP2-4.5) and 432 PgC (MIROC-
ES2L SSP3-7.0). Similarly, at the 2 ◦C GWL, the ocean has
absorbed between 137 PgC (CanESM5-CanOE SSP3-7.0)
and 401 PgC (NorESM2-LM SSP2-4.5). These ranges are
equivalent to several decades worth of current global emis-
sions, or approximately a century of the current annual rates
of land or ocean carbon absorption. Almost all of the mini-
mum and maximum values described here occur in the SSP3-
7.0 scenario, for reasons discussed below in Sect. 4.2.

The left side of this figure shows several key results re-
lated to how carbon is allocated as a percentage of the total
between models. At a given GWL, higher-emission scenarios
have a higher atmospheric fraction, a lower land fraction, and
a relatively consistent ocean fraction. Warmer GWLs have
larger atmospheric fractions, lower land fractions, and con-
sistent ocean fractions than cooler GWLs.

3.4 Carbon allocation and ECS

The data from Fig. 4 are re-framed in Fig. 5 as a series of
scatter plots. For each group of data, the line of best fit is
calculated, and the absolute value of the fitting error (Err,
the standard error of the estimated gradient under the as-
sumption of residual normality) divided by the slope (M) is
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Figure 3. Multi-model-mean carbon allocation time series for the historical period and each scenario. Each scenario includes a pair of panes:
the top pane of each pair shows the total allocation in petagrams of carbon, and the bottom pane shows the allocation as a percentage. The
historical pane includes the observational records for the land and ocean fractions, from Raupach et al. (2014) and Watson et al. (2020),
and the length of the lines represents the time over which the data were collected for these two observational datasets. The grey area is the
cumulative anthropogenic carbon in the atmosphere, and the blue and green represent the fraction in the ocean and in the land, respectively.
The SPM.7 lines in the year 2100 indicate the atmospheric fraction projections from the IPCC AR6 WG1 summary for policymakers (Fig. 7,
IPCC, 2021b).

shown in the legend as Err / M. This value indicates whether
the slope crosses the origin within the 95 % confidence limit
(Err / M < 1) or not (Err / M > 1). While the value always
appears in the legend, the line of best fit is only shown when
Err / M < 1. All groups with three models or fewer that reach
the GWL were excluded as there were not enough data points
to draw meaningful conclusions.

We see that the GWL exceedance year, total carbon
change, and the individual total carbon allocation fractions
are inversely correlated with ECS in Fig. 5. The GWL ex-
ceedance year and the total carbon allocations both have all
absolute Err / M values lower than unity and are both related
to ECS. The total carbon change is linked to ECS in both the
ocean and the atmosphere, as their Err / M values are smaller
than 1 in both cases. However, the correlations between car-
bon allocation fraction of the ocean and the atmosphere with
ECS do not show a consistent correlation with ECS at any
GWLs. For land, both the total carbon sink and the allocation
fraction are not consistently correlated to ECS at all GWLs.

In addition to the GWL data, the values for the target year
2100 are shown in Fig. 5. The Err / M for the target year 2100
is greater than unity for the total carbon, the atmospheric car-
bon fraction, and both land columns, indicating a poor fit
to a straight line. This indicates that ECS is not correlated
to these quantities in the analysis around target years. Else-
where, when the Err / M of the target year 2100 is less than
unity, it is often close to unity or larger than the Err / M of
the fits to the GWL data. This indicates that ECS is often
less correlated to these quantities in target year analysis than
they are in the GWL analysis. The GWL method allows us to
characterise the impact of ECS, while the target year analysis
obscures its influence.

4 Discussion

We present an analysis of the carbon allocation in the Earth
system for an ensemble of CMIP6 simulations at the 2, 3,
and 4 ◦C global warming levels. As described in Sect. 1.3,
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Figure 4. Global total carbon allocation for each level of warming for individual models. The left side shows the allocation as a percentage,
and the right side shows the total value in petagrams of carbon. Each colour palette represents a different scenario, with SSP1-1.9 in greens,
SSP1-2.6 in blues, SSP2-4.5 in oranges, SSP3-7.0 in purples, and SSP5-8.5 in reds. The darkest shade denotes the land, the middle shade
is the ocean, and the lightest shade is the atmosphere. Within a given GWL and scenario, the models are ordered by their ECS, with less
sensitive models at the top and more sensitive models at the bottom.
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Figure 5. The GWL and target year 2100 carbon allocation scatter plot matrix. Each row represents a different scenario, and each column is
a different data field, including the year, the total carbon allocated, the carbon allocation for each domain, and the fractional carbon allocation
to each domain. The y axis is the model’s ECS, and each point is a different GWL, where the squares are the 2◦ GWL, the circles are the 3◦

GWL, and the triangles are the 4◦ GWL. In all cases, the darkest colours correspond to the 2◦ GWL, the middle colours the 3◦ GWL, and
the lightest colours the 4◦ GWL. The results for the target year 2100 are shown as purple downward-pointing triangles. The absolute value
of the fitting error of the slope over the slope is shown in the legend as Err / M. The line of best fit is shown when Err / M < 1. The year 2100
and the total atmospheric carbon are indicated with purple vertical dash–dot lines.

using the GWL method instead of focusing on a specific
target year allows us to provide estimates of the behaviour
of the carbon cycle that may be more useful and relevant
to policymakers. The difference between a focus on a spe-
cific target year and the GWL method can clearly be seen
in Fig. 2 by comparing the top pane against the other three
panes. By the year 2100, there are large differences across
the five scenarios in the total carbon change, the allocation
between the three reservoirs, and the fractional distributions.
In the lower three panes, the differences between scenarios
are much smaller. However, these small differences are still
significant in absolute terms, where several years’ worth of
global CO2 emissions separate the scenarios at each GWL.
The pathway to a given GWL is scenario-dependent in two
main ways. Firstly, the rate of anthropogenic CO2 emissions
has a non-negligible impact on the atmospheric fraction be-
cause the ocean and land surface cannot quickly absorb the
additional carbon load. A higher rate of emission leads to a
slightly greater transient warming because fractionally more
of the emitted CO2 is still in the atmosphere. Secondly, CO2
is the primary but not the only driver of warming. Differences
in the non-CO2 forcings for each scenario play a role in the
realised warming at a given point in time. In addition, while

the composition of each scenario ensemble results in a rela-
tively uniform set of values of the mean ECS in Table 1, the
mean ECS varies by up to 0.21 ◦C between scenarios. This
could also account for some of the differences seen between
multi-model means in Fig. 2. Furthermore, the SSP1-1.9 en-
semble has the lowest mean ECS, and the SSP5-8.5 ensemble
has the highest mean ECS, which may exaggerate the differ-
ences between their multi-model means.

The GWL methodology allows a focused analysis of the
small and subtle differences between scenarios. For instance
in Canadell et al. (2021), Fig. 5.31 shows the cumulative car-
bon emissions against global-mean temperature change for
several projections. In that figure, all five projections show a
strong correlation between CO2 emissions and warming, all
projections overlap at the same cumulative CO2 emissions,
and there are no clear differences between scenarios for the
same cumulative CO2. Using the GWL method, we are able
to focus on the differences between scenarios at the same
warming level and demonstrate that small differences exist
between scenarios and that the pathway to a GWL has an
effect on the carbon allocation. While these differences in
carbon allocation are highlighted by the GWL analysis, the
differences between scenarios are consistent with previous
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studies and are likely due to differences in non-CO2 forcing.
However, it is beyond the scope of this work to quantify the
non-CO2 effect as Smith et al. (2020) have done.

On the left side of Fig. 2, the fraction of carbon that re-
mains in the atmosphere is linked to the choice of scenario.
The higher-emission scenarios have higher atmospheric frac-
tions at the same warming level. This is likely due to sce-
narios with higher carbon concentrations reaching the global
warming levels sooner and with proportionally less carbon
allocated to the ocean and land surface at that time. In such
cases, the ocean and the land have not caught up with the
emissions or the warming associated with that CO2 concen-
tration. This implies that the carbon allocation between the
three major sinks is likely impacted by the rate of warming at
the GWL, and there may be some delay between CO2 emis-
sions and the CO2 atmospheric fraction reaching an equilib-
rium value since the excess CO2 is absorbed more slowly by
the terrestrial and oceanic sinks.

In the land surface at the 4 ◦C GWL, the multi-model-
mean land vegetation carbon increases by 384 and 436 PgC
relative to 1850 in SSP5-8.5 and SSP3-7.0, respectively, as
shown in Fig. 2. In CMIP5, the range relative to the years
1971–1999 was 52–477 PgC, with a mean of 224 PgC, and
was attributed mainly to CO2 fertilisation of photosynthesis
(Friend et al., 2014). While our CMIP6 multi-model mean is
compatible with Friend et al. (2014), we do not see any indi-
vidual model with only 52 PgC carbon allocated to the land
at the 4 ◦C GWL in Fig. 4. This absence is more likely to
be attributed to the difference in the anomaly period (1850
vs. 1971) rather than due to the significant changes between
CMIP5 and CMIP6 land surface models. The land compo-
nent model which contributed the value of 52 PgC to the
CMIP5 analysis of Friend et al. (2014) was VISIT, which
is part of the MIROC-ES2L ESM in CMIP6 (Hajima et al.,
2020). However, MIROC-ES2L did not reach the 4 ◦C GWL
in any scenario presented here. In all aspects of this analysis,
the land carbon allocation has a much wider range of vari-
ability than the ocean. This reflects the significant challenge
and uncertainty inherent in modelling the land surface carbon
cycle (Friend et al., 2014; Jiang et al., 2019).

When comparing the same model at the same GWL across
scenarios, the differences between scenarios becomes even
more apparent, as shown in Fig. 4. This is especially true for
low-ECS models. For instance, the minimum and maximum
carbon allocation in MIROC-ES2L at 2 ◦C GWL is 1225 PgC
in SSP5-8.5 and 1361 PgC in SSP3-7.0. The difference be-
tween these two projections of the same model with the same
warming level is 136 PgC. For the decade 2008–2017, the
mean annual emissions were 9.4± 0.5 PgC yr−1, so this dif-
ference alone is approximately equivalent to 14 years of the
current total global emissions.

The ocean maintains similar allocation percentages across
the GWLs, but in Fig. 3 there is a small decline in ocean car-
bon allocation percentage at the highest-CO2-concentration
scenarios towards the end of the 21st century. This is likely

because much of the ocean is forecast to become increas-
ingly stratified in the coming century, which would reduce
downwards mixing of CO2 (Li et al., 2020; Muilwijk et al.,
2023). This reduction in downward mixing combined with
the decline in solubility with rising sea surface temperature
causes the overall absorption rate of CO2 into the ocean to be
reduced. The increase in stratification is caused by warmer
surface layers combined with gradual decline in overturning
rates and overall circulation (Thibodeau et al., 2018; Li et al.,
2020; Caesar et al., 2021; Sallée et al., 2021). Ocean acidifi-
cation may also be playing a role in reducing the rate of the
chemical transition of dissolved CO2, thereby slowing uptake
(Zeebe, 2012). In combination, these effects act to reduce
the rate at which absorbed CO2 is removed from the surface
layer. In the ocean, enhanced ocean acidification has a range
of effects but has been shown to decrease survival, calcifica-
tion, growth, development, and abundance for a broad range
of marine organisms (Kroeker et al., 2013).

While the ocean fraction is more or less consistent
throughout the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios
at the GWLs, Fig. 3 shows that the land fraction declines
over the coming century, from 35 % at the end of the his-
torical period to 25 % in SSP2-4.5, 22 % in SSP3-7.0, and
17 % in SSP5-8.5 in the year 2100. The land fraction is fore-
cast to decline over the coming century in the higher-CO2-
concentration scenarios, although the total land carbon al-
location increases. There are several possible explanations
for this slowdown of uptake. Land ecosystems have been
shown to become progressively less efficient at absorbing
carbon as levels of atmospheric CO2 concentrations increase
(Wang et al., 2020). Some reasons for this could be that the
soil respiration could increase due to warming more than
any carbon uptake increases due to photosynthesis (Nyberg
and Hovenden, 2020), or alternatively the nitrogen limitation
could progressively limit photosynthetic uptake (Ågren et al.,
2012). The changing climate may impact vegetation growth
and photosynthetic uptake via droughts and warming, which
changes the temperature of plant-growing regions, thus de-
creasing the efficiency of photosynthesis. However, it is still
not clear which of these factors have the largest impact.

The differences in carbon allocations seen here have con-
sequences for the Earth’s climate. For example, global warm-
ing and higher CO2 increase the regional and temporal vari-
ability in precipitation (Tebaldi et al., 2021). There is also
the direct effect of increasing atmospheric CO2 on radiative
cooling rates. This impacts the vertical thermal structure of
the atmosphere and thus tropical overturning circulations and
regional precipitation. This direct effect of atmospheric CO2
is independent of the level of warming (Bony et al., 2013).
This means that models or scenarios that have a greater at-
mospheric fraction of CO2 at a given GWL will be more
prone to this regional response to changed atmospheric ra-
diative cooling, stability, and circulation change than models
or scenarios with a smaller CO2 fraction in the atmosphere.
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4.1 Impact of ECS

The ensemble of CMIP6 models has a wide range of ECS
values, and this impacts several aspects of carbon allocation.
We have shown that the GWL exceedance year and the to-
tal carbon change are both inversely correlated with ECS.
Similarly, we found that the carbon in the atmosphere and al-
located to the ocean are both inversely correlated with ECS.
The ECS does not appear to be consistently correlated with
the total land carbon allocation or the land carbon fraction
in any scenarios or GWL. The wider uncertainty and chal-
lenging nature of land surface carbon modelling is reflected
in a broader range of behaviours in land carbon models in
CMIP6.

In Fig. 4, when comparing individual models between dif-
ferent GWLs, the highest total carbon allocation at the 2 ◦C
GWL is 1521 PgC in the SSP3-7.0 scenario in NorESM2-
LM, which has an ECS of 2.56 ◦C. This is more carbon
than several models emitted at higher GWLs: the lowest
carbon emitted at 4 ◦C GWL was 1220 PgC for CanESM5-
CanOE in the SSP3-7.0 scenario, which has an ECS of
5.64 ◦C. In addition, both CanESM5 models (ECS: 5.64 ◦C)
and the UKESM1-0-LL model (ECS: 5.36 ◦C) reached 4 ◦C
of warming in three different scenarios with less atmospheric
carbon than NorESM2-LM had when it reached the 2 ◦C
GWL. This highlights the significant role that ECS plays in
the uncertainty in warming projections. A model’s sensitivity
to CO2 concentration significantly impacts its projection of
the total carbon allocation at global warming levels, as well
as the absolute values of the individual carbon sinks in the
ocean and land.

The ECS impacts the GWL exceedance year, but this en-
semble is also affected by survivor bias. While we hesitate
to draw conclusions from extrapolating the lines of best fit
of Fig. 5, the line of best fit for the 2 ◦C GWL exceedance
year for the SSP1-2.6 scenario crosses the year 2100 at an
ECS equivalent to 3.1 ◦C. As the likely range of ECS values
could be as low as 2.5 ◦C, this means that a non-trivial part of
the ECS space could be excluded by the ScenarioMIP limit
of forecasting to the year 2100. While we could extend the
analysis with some longer-term simulations, very few models
and scenarios are available beyond the year 2100. To address
this issue, the next round of ScenarioMIP in CMIP7 could
extend its standard cutoff beyond the year 2100. This would
reduce survivor bias at 2 ◦C GWL and allow the inclusion of
models having a low but still feasible ECS value of 2.5◦C.

Hausfather et al. (2022) outline a few analysis strategies
for addressing the “hot model” problem in CMIP6. The first
strategy is to use the GWL methodology as we have in this
work. One of the alternative recommendations is to perform
analysis of CMIP6 ensembles without the contributions of
models that fall outside the likely ECS range of 2.5–4 ◦C.
In our case, this would remove 7 of the 13 models from the
analysis, leaving 6 or fewer models contributing to each sce-
nario. Based on our investigations in this paper, we believe

that this would be an unnecessarily harsh requirement as we
have already demonstrated that using GWL methodology can
reduce the impact of the range of ECS relative to the “target
year” methodology. In addition, uncertainties in cloud feed-
backs have been identified as the main cause of the large
range of ECS (Ceppi and Nowack, 2021), and it is unlikely
that there is a direct link between a model’s ability to repro-
duce cloud feedback behaviour and its ability to reproduce
the carbon allocation, as these are independently modelled
systems.

We have used the terms equilibrium climate sensitivity
(ECS) and effective climate sensitivity (EffCS) interchange-
ably. However, they are not the same. Gjermundsen et al.
(2021) compared two Earth system models, NorESM2 and
CESM2, that had the same atmospheric model but different
ocean components. These two models had very different Ef-
fCS values but were otherwise very similar: NorESM2’s Ef-
fCS is 2.56 ◦C, and CESM2’s EffCS is 5.15 ◦C. In that work,
they found that the greater heat storage at depth in NorESM2
delayed the Southern Ocean’s surface warming and associ-
ated cloud responses, which in turn delayed the global-mean
surface warming. This effect appeared in the 4×CO2 simu-
lation several centuries after the 150-year cutoff used to cal-
culate climate sensitivity with the Gregory method (Gregory
et al., 2004). After a sufficient number of simulated years,
the same cloud feedback eventually occurs in both models,
the same warming is realised, and the two models show sim-
ilar equilibrium climate sensitivities. The Gregory method
for calculating the effective climate sensitivity applied by
Zelinka et al. (2020) to generate the ECS values used here
does not capture all the details of the way a given cumula-
tive emission produces a GWL because it is not fully com-
patible with the true equilibrium climate sensitivity. It may
be possible to take this effect into account in future works,
for instance, by replacing the surface atmospheric warming
anomaly with some measure of the global volume-weighted
mean ocean heat anomaly.

4.2 Anomalous behaviour in SSP3-7.0

The SSP3-7.0 scenario is often an outlier throughout this
analysis. For instance, in Figs. 2 and 4, it does not conform to
the pattern of the other scenarios. In addition, SSP3-7.0 is the
scenario showing the widest range of carbon allocation be-
haviours at both the 2 ◦C and 3 ◦C GWLs in Fig. 4. A possible
reason for this is because the SSP3-7.0 scenario has the high-
est methane concentration and air pollution precursor emis-
sions forcing, levels which are even higher than those of the
SSP5-8.5 scenario (Meinshausen et al., 2017, 2020). In the
other scenarios, the methane and aerosol precursors scale ap-
proximately in proportion to the CO2 concentration. Methane
is a strong greenhouse gas and has a warming effect, but pol-
lution precursor emissions are linked to aerosols and cloud
formation, which generally have a cooling effect (Twomey,
1977; Meinshausen et al., 2017). In CMIP6, methane warm-
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ing can overwhelm, be overwhelmed by, or balance with
aerosol cooling, and the relative strengths of these effects
depend strongly on the model parameterisation choices and
their relative strengths in the scenario forcing. The relative
strength of the warming methane emissions and the cool-
ing aerosol precursors determines the impact on the warm-
ing rate and hence the GWL timing. This is why the warm-
ing in SSP3-7.0 is not as tightly bound to the atmospheric
CO2 concentration as in other scenarios. Even though warm-
ing is still correlated with total cumulative emissions, SSP3
scenarios may reach the GWLs relatively earlier or later than
other scenarios at the same CO2 concentration. This effect
could be investigated in detail if for instance the SSP3-8.5 or
SSP5-7.0 scenarios were simulated.

The impact of different methane and aerosol precursor
emissions on the climate response remains highly uncertain
in CMIP6 models. The overall warming impact of methane is
not further considered in this work as it is secondary to CO2
warming, but it could be examined in future extensions.

4.3 Limitations and possible extensions

While the CMIP6 experiments start their historical simula-
tions in 1850 from a pre-industrial control, clearly this is not
the starting point for the anthropogenic impact on the land
surface or the carbon cycle. The human impact on the envi-
ronment began much earlier, and this has implications for on-
going carbon partitioning (Bronselaer et al., 2017; Le Quéré
et al., 2018; Friedlingstein et al., 2022). For instance, be-
tween 1765 and 1850, atmospheric CO2 rose by approxi-
mately 10 ppm, and accounting for this era resulted in a 4.5 %
change in ocean uptake in CMIP5 models (Bronselaer et al.,
2017).

Similarly, the representation of dynamic vegetation, soil
carbon, and fire response is most likely undersampled in this
ensemble (Arora et al., 2020; Koch et al., 2021). Notably,
CMIP6 models do not capture present-day tropical forest car-
bon dynamics: the multi-model-mean estimate of the pan-
tropical carbon sink is half that of the observational estimate
(Koch et al., 2021). These uncertainties in the strength of car-
bon concentration and carbon–climate feedbacks over land
are well established (Cox et al., 2000; Friedlingstein et al.,
2006; Arora et al., 2013).

The global ocean carbon inventory is also affected by
the land-to-ocean carbon flux from river runoff and the car-
bon burial in ocean sediments, which is not represented in
our ensemble (Arora et al., 2020). The flux of land car-
bon into the ocean via rivers is between 0.45± 0.18 and
0.78± 0.41 PgC yr−1 and is generally not considered in
ESMs (Jacobson et al., 2007; Resplandy et al., 2018; Hauck
et al., 2020). Including the riverine flux of particulate and
dissolved organic carbon would require models to represent
both estuarine and shallow shelf processes. This would most
likely require higher model resolutions and computational
costs.

One of the limitations of the GWL methodology is that it
focuses on the realised warming at a specific point in time.
This is the transient warming, and it is unlikely that this
warming includes the full effect of all cumulative CO2 emis-
sions. In effect, the CO2 emissions have not yet played out to
equilibrium at the GWL, and there is likely to be a continued
delay in their warming effect.

Not all scenarios are expected to reach these warming
thresholds before the year 2100. For instance, while it is
highly likely that all SSP5-8.5 simulations will reach 2 ◦C
of warming, it is unlikely that any SSP1-1.9 simulations will
reach 4 ◦C of warming. On the other hand, only some of the
models reach the threshold in certain combinations of sce-
nario and GWL. For instance, three of the six considered
SSP1-1.9 models do not reach the 2 ◦C GWL. These miss-
ing models would most likely reach the thresholds at some
point after the year 2100 if allowed to run for enough addi-
tional years with positive net CO2 emissions. Future studies
could potentially include the long-timeline simulations be-
yond the year 2100. The method that we used to populate
Fig. 2 took the multi-model mean first with all models con-
tributing equally, then used that ensemble mean to calculate
the GWL exceedance years. An alternative method could first
calculate the GWL exceedance years for individual ensem-
ble members, then take the mean of only those that reach the
threshold. However, this alternative method would implicitly
include survivor bias, causing the overall weighting and con-
clusions to be biased towards high-ECS models.

In this work, we used concentration-driven scenarios in-
stead of emission-driven scenarios. Emission-driven scenar-
ios allow significantly more flexibility in the behaviour of
the atmospheric carbon. In practice, this would add a third
degree of freedom into the total carbon allocation calcula-
tion. Although a limited set of emission-driven runs exist,
it was found that there are actually very few differences
in simulated temperature or atmospheric CO2 concentration
between concentration-driven and emission-driven scenarios
(Lee et al., 2021, Sect. 4.3.1.1). In any case, several key
datasets required for the calculation of the land use emissions
(LUEs in Eq. 1) were not available in the emission-driven ex-
periments at the time of writing.

In Fig. 3, the multi-model mean of both SSP1 scenar-
ios shows signs of recovery and carbon drawdown, but no
datasets in this analysis drop below the 2 ◦C GWL ex-
ceedance. In future studies, it would be interesting to exam-
ine the reversibility of carbon allocation with negative emis-
sion forcing scenarios. More generally, extension simulations
beyond 2100 would be valuable for studying how patterns
of carbon allocation change as emissions decline below net
zero, when carbon emissions become outpaced by carbon
sinks.

In Fig. 5, we generated a fit to each dataset against the
ECS. This fit is built on the assumption that these behaviours
are linear and that the straight line fit is a reasonable approx-
imation of their behaviour. However, as can be seen in this
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figure, this is not true in all cases. Several of the datasets
have non-linear behaviours with regards to ECS. It may be
possible to expand upon this work and generate more com-
plex fits to these datasets to estimate the behaviour of these
models within the likely ECS range of 2.5–4 ◦C.

In this work, although we attempt to maximise the number
of models, ScenarioMIP’s flexible specifications mean that
each scenario’s ensemble is composed of a different set of
models, as shown in Table 1. This diversity results in a dif-
ferent mean ECS for each scenario. We were fortunate that
the range of the mean ECS values was only 0.21 ◦C, despite
for instance SSP1-1.9 containing significantly fewer models
than the other scenarios. A different set of models could con-
ceivably result in a wider range of mean ECS values across
scenarios, which would impact the warming rates at the same
CO2 concentrations, making interpretation more challeng-
ing and potentially introducing bias in the conclusions. In
future investigations of CMIP multi-model means using the
GWL methodology, the mean equilibrium climate sensitivity
of each ensemble should be included alongside the analysis
as two ensembles consisting of differing sets of models may
not always be directly comparable.

5 Conclusions

Using an ensemble of CMIP6 model simulations, we have
quantified how the carbon allocation across Earth system
components differs across scenarios after warming to the
same global-mean surface temperature anomaly. Scenarios
with higher carbon concentrations reach these global warm-
ing levels sooner and have proportionally less carbon allo-
cated to the ocean and land surface at that time than scenar-
ios with lower emissions. The differences in estimated car-
bon emissions between scenarios vary even at the same GWL
and can be equivalent to several years’ worth of global total
emissions. While these results arise as a direct consequence
of using the GWL methodology, our conclusions are never-
theless compatible with previous works, and we do not claim
to refute previous target year analyses.

A model’s sensitivity to CO2 concentration significantly
affects its total carbon allocation between the atmosphere,
ocean, and land at all global warming levels. However, our
CMIP6 ensemble contains many models that fall outside the
likely ECS range of 2.5–4 ◦C. By using the GWL method-
ology, we can exploit the full CMIP6 ensemble and weight
each model equally, without excluding the so-called “hot
models”. We did not find a consistent relationship between
ECS and any of the fractional carbon allocations, although
we did demonstrate that ECS and total carbon allocation
are related. Models with lower sensitivity to carbon reach
the GWL with more carbon in the individual reservoirs and
more carbon overall. This is because it takes low-ECS mod-
els longer to reach the same warming level, allowing more
time for carbon to accumulate in the Earth system.

In addition to the impacts of ECS and total atmo-
spheric carbon concentration, the distinct characteristics of
each scenario pathway also influence the carbon alloca-
tion. The SSP3-7.0 scenario includes both high methane-
induced warming and high pollution precursor cooling, and
the strength of these effects is model-specific and not di-
rectly related to ECS. These environmental forcers in SSP3-
7.0 can generate a very different warming response, GWL
exceedance year, and carbon allocation compared to scenar-
ios where CO2, methane, and pollution precursors all scale
with historical values.

Ultimately, across all model simulations, a significant rise
in global-mean surface temperature is projected over the 21st
century. This underscores the need for an accelerating tran-
sition to low-carbon technologies to reduce the risk of the
worst effects of climate change.

Code and data availability. This analysis was performed
using ESMValTool; the software tools used in this paper are
available via Zenodo: https://doi.org/10.5281/zenodo.8335060
(de Mora, 2023). The main ESMValTool recipe
is in the esmvaltool/recipes directory:
recipe_gwt_time_series_CMIP6_2022_all.yml. The
main diagnostic script is diagnostic_gwt_timeseries.py
in the esmvaltool/diag_scripts/ocean directory.
ESMValTool v2.0 is fully described in Righi et al. (2020),
and the base version of ESMValTool is available from
https://doi.org/10.5281/zenodo.6359405 (Andela et al., 2022)
and https://doi.org/10.5281/zenodo.7764022 (Andela et al., 2023).
This includes up-to-date code, documentation, and tutorials.
CMIP6 climate model data used in this paper were obtained
from the ESGF node at the Centre for Environmental Data
Analysis (CEDA) and are widely available via Earth System
Grid Federation (ESGF) (Williams, 2011) portals, such as
https://esgf-index1.ceda.ac.uk/ (last access: 23 November 2023)
or https://esgf-node.llnl.gov/search/cmip6/, (last access: 23
November 2023). The full list of ESGF nodes can be found here:
https://wcrp-cmip.org/map/ (last access: 23 November 2023).
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