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Abstract. A semi-analytical solution to an advection–diffusion equation is coupled with a nonlinear wavemaker
model to investigate the effect of strong nonlinearity on wave-induced mixing. The comparisons with weakly
nonlinear model predictions reveal that in the case of waves of higher steepness, enhanced mixing affects the
subsurface layer of the water column. A fully nonlinear model captures the neglected higher-order terms from
a weakly nonlinear solution and provides a reliable estimation of the time-mean velocity field. The corrected
wave-induced mass-transport velocity leads to improved estimates of subsurface mixing intensity and ocean
surface temperature.

1 Introduction

Mass-transport processes associated with the propagation of
non-breaking ocean surface waves strongly affect the mix-
ing of oceanic waters and the global exchange of heat at the
air–water interface. Surface waves transfer energy into tur-
bulence, modifying the mixing intensity of the upper ocean
(Qiao et al., 2004, 2010, 2013). Therefore, the correct iden-
tification and quantification of mass-transport processes as-
sociated with water waves leading to mixing of subsurface
ocean waters is of practical importance for short-term and
long-term weather forecasts.

Small-scale and large-scale climate modelling equally
benefits from including the wave-induced mixing predic-
tions into the general ocean circulation simulations (e.g. Qiao
et al., 2004; Xia et al., 2006). Including the parameterized
wave-induced mixing in ocean circulation models confirms
that its contribution qualitatively improves the reliability of
numerical results (e.g. Song et al., 2007; Shu et al., 2011).
Despite the fact that some field measurements lead to the
conclusion that surface waves contribute to heat exchange of
the upper ocean (Matsuno et al., 2006), it is difficult to col-
lect reliable in situ data confirming the role of non-breaking

surface waves in vertical mixing processes. An alternative
approach to the problem is to investigate the wave-induced
mixing based on the physical tests in a wave flume or a wave
basin.

Laboratory experiments are the source of valuable infor-
mation on wave-induced mixing processes as they provide
data enabling the evaluation of wave-induced mixing coeffi-
cient (e.g. Babanin and Haus, 2009; Dai et al., 2010; Sulisz
and Paprota, 2015). In a wave flume, the mixing originated
from breaking and non-breaking waves may be investigated
to evaluate the real contribution from the non-breaking sur-
face waves to general ocean circulation, which is of funda-
mental importance for calibration of wave-induced mixing
models (Sulisz and Paprota, 2019). It should be noted that
the experimental data are affected by undesirable spurious
laboratory effects requiring special attention when analysing
the results of mass-transport processes driven by waves (e.g.
Paprota and Sulisz, 2018; Paprota, 2020).

The study extends the analysis of wave-induced vertical
mixing performed by Sulisz and Paprota (2019), which used
a weakly nonlinear theory applied to mechanically gener-
ated water waves. The improvements cover the more exact
calculations of the wave velocity field using a fully non-
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linear wavemaker model, which was successfully verified
with respect to kinematics of regular waves against labo-
ratory measurements collected in the flume (Paprota and
Sulisz, 2018; Paprota, 2020). This method allows modelling
of non-breaking waves with strong nonlinearities and admits
amplitude dispersion, nonlinear wave–wave interactions in
deep and intermediate waters, and solitary wave propagation,
which go beyond the applicability of weakly nonlinear ap-
proaches. The model belongs to a family of wave solutions
based on a pseudo-spectral approach, which consider highly
nonlinear non-breaking waves and originate from methods
derived by Dommermuth and Yue (1987) and West et al.
(1987) (see also Paprota and Sulisz, 2019, for a review).

The application of the fully nonlinear model should lead to
the more accurate estimation of the phase-averaged wave ve-
locity field and, hopefully, the more reliable evaluation of the
evolving water temperature field under regular waves. Since
the numerical model provides a full description of the evolu-
tion of the velocity field, it is possible to separate the Stokes
drift from Lagrangian and Eulerian mean velocities (see Pa-
prota et al., 2016; Paprota and Sulisz, 2018; Paprota, 2020).
Hence, the results presented in this study may improve sim-
ple models based on Stokes drift applicable to ocean waves
of random (spectral) nature (Myrhaug et al., 2018), while
the derived modelling framework may be modified to cover
open-ocean hydrodynamics with other forms of introducing
waves (Paprota, 2019).

New contributions are also presented with regard to meth-
ods of calculations of time-mean flows, which are essential
for the present analyses. Namely, a new Eulerian procedure is
reported, which is different to the Lagrangian-based method
applied in earlier studies (Paprota et al., 2016; Paprota and
Sulisz, 2018; Paprota, 2020). The study also highlights the
differences between two methods of calculation of velocity
distribution of time-mean wave-induced flows based on ei-
ther Lagrangian particle tracking or approximated Eulerian
averaging. In the case of the former, an improved and more
accurate procedure of estimating the phase-averaged velocity
is developed.

This study presents the methods of an analysis of wave-
induced vertical mixing from the wavemaker perspective.
The derived mathematical modelling approach may be di-
rectly applied to experimental activities aiming at recogniz-
ing, quantifying and parameterizing wave-induced vertical
mixing effects (see e.g. Dai et al., 2010; Sulisz and Paprota,
2015) for a better design of physical model set-up and a wave
parameter selection in the laboratory. The awareness of the
influence of laboratory side effects on the experimental out-
come is essential for the correct interpretation of the results.
This issue was raised in earlier studies (Sulisz and Paprota,
2015, 2019).

The paper is composed as follows. First, an outline of the
coupled theoretical model describing the mixing processes
under mechanically induced water waves is presented. Then,
a comprehensive comparison between weakly and fully non-

Figure 1. Schematic view of mechanically generated waves and the
coordinate system.

linear approaches is given using numerical results to evalu-
ate the effects of strong nonlinearity on vertical mixing pro-
cesses. Finally, a discussion on the major results is provided
together with remarks on accuracy and reliability of mathe-
matical and numerical methods together with further discus-
sions on putting the results of the study in a broader con-
text of earth system modelling with respect to general ocean
circulation. The paper is then completed by a summary and
conclusions.

2 Materials and methods

The considered numerical approach to the modelling of ver-
tical mixing induced by mechanically generated waves is re-
alized through a procedure involving two fundamental steps
referring to the solution of the wavemaker problem and
advection–diffusion balance, respectively.

2.1 Particle kinematics of mechanically generated
waves

First, the problem of the generation of waves in a numerical
wave flume is formulated and solved. In the present study,
a potential flow wave theory is used to obtain the solution
within the Eulerian frame of reference. Weakly nonlinear an-
alytical and higher-order numerical methods are employed
to determine the wave fields in the rectangular domain, in
which the water elements are defined by the horizontal x and
vertical z coordinates of the Cartesian system. The origin of
the system is located at the intersection of the wavemaker
zero position and free-surface level corresponding to the hy-
drostatic conditions. The mechanically driven oscillation of
the free surface represented by elevation function η(x, t) is
induced by the piston-like motion of the wavemaker paddle
according to the displacement function χ (t). The flume bot-
tom is assumed horizontal, and the water depth is h= const.
The general presentation of the computational domain and
the location of the coordinate system are depicted in Fig. 1.

According to the potential flow assumptions, the motion
of an inviscid and incompressible fluid is irrotational. More-
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over, the solid boundaries are impervious. The scalar veloc-
ity potential function φ(x,z, t) may be introduced to deter-
mine the velocity vector field v(x,z, t) such that v =∇φ. The
wavemaker boundary-value problem is then formulated as

∇
2φ = 0, −h≤ z ≤ η, (1)

ηt +φxηx −φz = 0, z= η, (2)

φt +
1
2

(φ2
x +φ

2
z )+ gη = 0, z= η, (3)

φz = 0, z=−h, (4)
χt −φx = 0, x = χ, (5)

where g is the acceleration due to gravity.
The first part of a pseudo-spectral solution involves ex-

panding the kinematic free-surface boundary condition (2),
the dynamic free-surface boundary condition (3) and the
kinematic wavemaker boundary condition (5) in a Taylor se-
ries about a mean position corresponding to the still water
level (z= 0) for Eqs. (2)–(3) and wavemaker paddle zero po-
sition (x = 0) for Eq. (5):∑
m=0

ηm

m!

∂m

∂zm
(ηt +φxηx −φz)= 0, z= 0, (6)

∑
m=0

ηm

m!

∂m

∂zm

(
φt +

1
2

(φ2
x +φ

2
z )+ gη

)
= 0, z= 0, (7)

∑
m=0

χm

m!

∂m

∂zm
(χt −φx)= 0, x = 0. (8)

In this way, a simple rectangular form of the computational
domain is preserved, and the solution procedure is advanced
further using either the perturbation or spectral approach. In
the present study both weakly nonlinear (perturbation expan-
sions) and fully nonlinear (spectral expansions) solutions are
briefly presented and applied to calculate the velocity field
for wave-induced mixing calculations. The order of nonlin-
earity depends on the order of nonlinear terms of Taylor se-
ries expansions of boundary conditions. Second-order terms
are retained for weakly nonlinear solutions, while the fully
nonlinear solution is provided with no upper limit (arbitrary
order).

2.1.1 Weakly nonlinear solution

The perturbation expansion is first applied to solve the wave-
maker problem defined by Eqs. (1)–(5) according to the so-
lution derived by Hudspeth and Sulisz (1991) and Sulisz
and Hudspeth (1993). The monochromatic wavemaker pad-
dle displacement of amplitude s is assumed to be

χ (t)= s sin(σ t +ϕ), (9)

which generates periodic waves of the first-order amplitude
of a, the angular frequency of σ and the phase ϕ in the semi-
infinite flume domain. Due to the fact that x goes to infin-
ity, the radiation condition (outward propagating waves) is

imposed at the far-end lateral boundary of the domain (Hud-
speth and Sulisz, 1991).

Using the expansions of the boundary conditions Eqs. (6)–
(8) and retaining the terms up to the second order, the weakly
nonlinear boundary conditions become

ηt −φz+φxηx − ηφzz = 0, z= 0, (10)

φt +
1
2

(φ2
x +φ

2
z )+ ηφzt + gη = 0, z= 0, (11)

χt −φx −χφxx = 0, x = 0. (12)

Additionally, the following small steepness parameter ε =
ak (where k is the first-harmonic wave number) perturbation
expansions of the angular frequency ω (σ = ω0), the free-
surface elevation and the velocity potential functions are used
(Hudspeth and Sulisz, 1991):

ω =
∑
n=0
εnωn, (13)

φ(x,z, t)=
∑
n=0
εnφn+1, (14)

η(x, t)=
∑
n=0
εnηn+1. (15)

Substituting the perturbation forms Eqs. (13)–(15) into
the boundary conditions correct up to the second order,
Eqs. (10)–(12), leads to the final weakly nonlinear solution
to the velocity potential and free-surface elevation functions
(Hudspeth and Sulisz, 1991). The formulas for the horizon-
tal U (x,y) and vertical W (x,y) components of the time-
independent mass-transport velocity V(x,y) for the case of
the piston-type wavemaker of full-depth draught are calcu-
lated from nondimensional forms reported as Eqs. (50a) and
(50b) by Hudspeth and Sulisz (1991). In order to get dimen-
sional values, the results calculated by Eqs. (50a) and (50b)
in the work of Hudspeth and Sulisz (1991) are multiplied by
a
√
gk.

Far away from the wavemaker paddle (x > 3h), the ver-
tical component of the time-independent velocity vanishes,
and the time-independent horizontal velocity profile along
the water depth UL converges to the sum of the Stokes drift
US and return current UE velocities (Longuet-Higgins, 1953;
Dean and Dalrymple, 1984), i.e.

UL(z)= US(z)+UE, (16)

where the Stokes drift profile is calculated as

US(z)=
kσa2 cosh(2k(z+h))

2sinh2(kh)
, (17)

and the return current value takes the form

UE =−
kσa2 sinh(2kh)

4khsinh2(kh)
=−

a2kg

2σh
. (18)
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2.1.2 Fully nonlinear solution

An alternative approach, which admits higher-order wave
components, is based on the spectral method applied to the
wavemaker problem (Paprota and Sulisz, 2018). Contrary to
the presented perturbation approach, the waves are generated
by an arbitrary function χ (t) in a finite domain of length b,
which is sufficiently large to exclude the effect of wave re-
flection from the far-end wall of the flume. In this regard,
only progressive waves are considered to facilitate the com-
parisons with the weakly nonlinear solution.

The free-surface elevation function is expanded in a
Fourier cosine series as

η(x, t)=
∑
i=0
ai cos(λix), (19)

while the corresponding expansion of the velocity potential
function is coupled with an additional term satisfying the
wavemaker boundary condition (5) to give

φ(x,z, t)=
∑
i=0
Ai

cosh(λi(z+h))
cosh(λih)

cos(λix)

+B0((x− b)2
− (z+h)2)

+

∑
j=1
Bj

cosh(µj (x− b))
cosh(µjb)

cos(µj (z+h)), (20)

where λi = iπ/b and µj = jπ/h are the eigenvalues of the
expansions, and the solution coefficients are the functions of
time (ai(t),Ai(t) andBj (t)). TheBj coefficients are (Paprota
and Sulisz, 2018)

B0 =

χth+
M∑
m=1

χm

m!
sin mπ2

∑
i=0
λmi Ai tanh(λih)

2h(χ − b)
, (21)

Bj =

−2cos(µjh)
∑M
m=1

χm

m!
sin(mπ2 )

·
∑
i=0

λm+2
i

λ2
i+µ

2
j

Ai tanh(λih)

h
M∑
m=0

µm+1
j

χm

m!
cos(mπ ) tanh(µjb)|cos mπ2 |

,

j > 0. (22)

The coefficients Ai , Bj and ai are determined in an it-
erative solution procedure from the kinematic free-surface
boundary condition (6), the dynamic free-surface boundary
condition (7) and the kinematic wavemaker boundary condi-
tion (8). For a given time t , the unknown coefficients ai and
Ai are calculated using a Fourier transform of η and φ as

ai =
2
b

b∫
0

η(x, t)cos(λix)dx,

Ai =
2
b

b∫
0

φ(x,0, t)cos(λix)dx, (23)

while Bj values are determined using Eqs. (21) and (22).
The coefficients are then used to calculate free-surface and
velocity potential values using inverse Fourier transforms to
advance the solution in time. Hence, time stepping is ap-
plied in a physical domain to obtain values of φ and η at
a new time level. A fourth-order Adams–Bashforth–Moulton
predictor–corrector approach is preferred as a time-marching
scheme (see e.g. Press et al., 1988), with initial values of
φ(x,0,0)= 0 and η(x,0)= 0. The wavemaker model used
in the present study is reported in the work of Paprota and
Sulisz (2018).

The instantaneous wave velocity field is derived by ex-
pressing the horizontal u and vertical w velocity components
in terms of the spatial derivatives of the velocity potential φx
and φz, respectively, as

u(x,z, t)=−
∑
i=0
λiAi

cosh(λi(z+h))
cosh(λih)

sin(λix)

+ 2B0(x− b)

+

∑
j=1
µjBj

sinh(µj (x− b))
cosh(µjb)

cos(µj (z+h)), (24)

w(x,z, t)=
∑
i=0
λiAi

sinh(λi(z+h))
cosh(λih)

cos(λix)

− 2B0(z+h)

−

∑
j=1
µjBj

cosh(µj (x− b))
cosh(µjb)

sin(µj (z+h)). (25)

After a fully developed wave motion is achieved, the time-
independent wave velocity field may be approximated by
time averaging of the instantaneous wave velocity (see Hud-
speth and Sulisz, 1991) within the range limited by two in-
phase states of regular wave motion (over one wave period,
which is either given or calculated from the dispersion rela-
tion) as

U (x,z)=
〈
ux

∫
udt + uz

∫
wdt

+ 0.5uxx

(∫
udt

)2

+ 0.5uzz

(∫
wdt

)2〉
+〈u〉, (26)

W (x,z)=
〈
wx

∫
udt +wz

∫
wdt

+ 0.5wxx

(∫
udt

)2

+ 0.5wzz

(∫
wdt

)2〉
+〈w〉 (27)

and is referred to here and after as the Eulerian-mean trans-
port velocity (EMTV). The pair of triangle brackets 〈 〉 de-
notes the operator of time averaging over one wave period.
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The velocities u and w are calculated using Eqs. (24) and
(25), while their derivatives are evaluated analytically. The
integrals of u and w are determined directly from Eqs. (24)
and (25) upon replacing the time-dependent coefficients Ai
and Bj with their integrals

∫
Aidt and

∫
Bjdt . The integra-

tion is achieved by expanding Ai and Bj into a Fourier series
with respect to time and integrating the resulting Fourier ex-
pansions analytically.

An alternative approach, which leads to the time-
independent wave velocity field, is the procedure involving
the Lagrangian particle tracking: Lagrangian-mean transport
velocity (LMTV). The time-averaged velocity is calculated
based on the displacement of a water particle moving be-
tween its two successive in-phase positions along the particle
trajectory (Paprota et al., 2016). The trajectory of a water par-
ticle is determined by numerical integration of the system of
differential equations,

dx
dt
= u(x,z, t), (28)

dz
dt
= w(x,z, t), (29)

for the set of initial particle locations.
In the present study, the improvements to the method

of evaluation of mass-transport velocity based on the La-
grangian particle tracking (Paprota and Sulisz, 2018) are in-
troduced. In the previous works (Paprota et al., 2016; Paprota
and Sulisz, 2018; Paprota, 2020), the procedure relied on
distributing artificial tracers in a water column under fully
developed regular waves. Initially, the tracers are uniformly
distributed along the water depth, and they coincide with
the zero down-crossing phase of the wave for a given dis-
tance from the wavemaker. After one Lagrangian wave pe-
riod (see e.g. Longuet-Higgins, 1986; Chen et al., 2009), the
tracers move from their original position due to mass trans-
port. The particle tracking procedure is employed to deter-
mine the mass-transport velocity profile. The procedure is
repeated for subsequent longitudinal positions to cover the
accepted region of interest.

Here, in order to get the better estimation of the time-
independent velocity field, the two hydrodynamic states cor-
responding to both zero up- and down-crossings of the reg-
ular wave are used to start up the tracking procedure –
contrary to the previous method based only on the zero
down-crossings (e.g. Paprota et al., 2016; Paprota and Sulisz,
2018). The procedure is analogous but involves more tracers
and covers two phase positions. The resulting LMTV is cal-
culated as the mean of the time-independent velocity fields
corresponding to both zero-crossing initial states.

2.2 Wave-induced vertical mixing intensity

The numerical solution to a two-dimensional advection–
diffusion equation with relevant boundary conditions is used

to predict the evolution of the temperature field under me-
chanically generated regular waves in the flume. Assum-
ing that the changes in temperature are solely due to wave-
induced and diffusion processes, the following boundary-
value problem is formulated as in the work of Sulisz and
Paprota (2019):

Tt +UTx +WTz = ∂x(κTx)+ ∂z(κTz), (30)
Tz = 0, z= 0, (31)
Tx = 0, x = 0, (32)
Tz = 0, z=−h, (33)
Tx = 0, x = b, (34)

where T is the water temperature, and κ is the diffusion coef-
ficient represented as a sum of the molecular (κm) and wave-
induced (κv) diffusivities.

κ = κm+ κv (35)

In the advection–diffusion equation (30) the velocities U
an W are, in fact, Lagrangian velocities which describe the
mean transport velocity field (the Stokes drift and a return
current in this case). The inclusion of the Stokes drift (with-
out return current) to the advection equation was discussed
explicitly for the case of ocean waves by McWilliams and
Sullivan (2000).

The molecular diffusivity κm = 1.4× 10−7 m s−2, while
the wave-induced diffusivity is calculated by the formula re-
ported by Sulisz and Paprota (2015) as

κv(z)= αa3kσ
sinh2(k(z+h))cosh(k(z+h))

sinh3(kh)
, (36)

where α = 0.002 is the dimensionless coefficient, which
is evaluated based on measurements (Sulisz and Paprota,
2015). The derivation of κv is based on the weakly non-
linear theory. More information is provided in the work of
Sulisz and Paprota (2015), where the comparison between
the weakly nonlinear and more general forms is provided.
The parameter α was estimated based on the experiments
only for the presented form of κv. In order to use a more
general formula, new values of α must be determined using
experimental data from a wider range of wave conditions.

The advection–diffusion equation (Eq. 30) holds in the en-
tire fluid domain, while the heat radiation is assumed zero at
the water surface (Eq. 31), the bottom (Eq. 33) and the lateral
boundaries (Eqs. 32 and 34). The length b is sufficiently long
in order to reduce the effect of the finite domain on the results
in the area of interest, which is limited to the region of sev-
eral water depths from the wavemaker paddle. The omitted
procedure of incorporating the non-zero heat radiation at the
water surface is discussed in the paper by Sulisz and Paprota
(2019).

The solution of the advection–diffusion equation (Eq. 30)
is achieved by employing a similar methodology to that used
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to solve the wavemaker problem admitting higher-order non-
linearities presented in the previous section. Accordingly, the
scalar temperature field function is expanded into a double
Fourier series of the form (Sulisz and Paprota, 2019)

T (x,z, t)=
∑
i=1

∑
j=1
dij cos(λi(x− b))cos(µj (z+h)). (37)

Again, the solution of Eq. (30) is achieved by a time-
stepping procedure, which, in this case, consists of an ap-
plication of the spectral expansion method to describe T and
the Runge–Kutta formulas to proceed in time (see e.g. Press
et al., 1988). Accordingly, the wave-induced diffusivity is de-
termined using Eq. (36), while the velocity field is calculated
by means of either the weakly nonlinear solution (Hudspeth
and Sulisz, 1991) or a higher-order approach (Paprota and
Sulisz, 2018) for selected wave parameters. The initial condi-
tion of given vertical temperature distribution T0(z) is used to
start up the time-stepping procedure. The time derivative of
temperature T is calculated from Eq. (30) with the aid of the
expansion Eq. (37) after the coefficients dij are determined
by applying a two-dimensional cosine fast Fourier transform.
The implementation of this procedure is freely available in
Paprota (2023).

3 Results and discussion

The evaluation of temperature evolution of an oscillating wa-
ter body is analysed in a numerical wave flume environment.
This approach provides a basis for the straightforward ver-
ification of the major outcome of the modelling procedures,
which are presented in the previous section, against measure-
ments in the real laboratory. On the other hand, the numer-
ical model may be modified to cover pseudo-random ocean
waves in a large periodic domain (see e.g. Paprota, 2019) to
analyse the wave-induced vertical mixing processes in off-
shore conditions.

3.1 Numerical test cases

The waves are generated by a monochromatic wavemaker
motion in a numerical flume. The transitional and shallow
water wave cases are considered for three values of the depth-
relative dimensionless parameter kh of 0.5, 1 and 2. The ef-
fect of wave height H is also studied and corresponds to the
dimensionless steepness parameterH/h of 0.05, 0.1 and 0.2.
In the case of the higher-order solution, the waves are gener-
ated starting from rest with the ramp function applied to the
stroke of the wavemaker motion for the first five wave peri-
ods. As previously stated, the longitudinal size of the flume b
is sufficiently large to exclude wave reflections from the anal-
ysis, and it corresponds to 10 wavelengths (L) for kh= 2 and
20L in the remaining longer wave cases. The selected pro-
gressive wave parameters are the same as in previous studies
on the modelling of wave-induced mixing in wave flumes
(Sulisz and Paprota, 2019). After the fully developed state is

Table 1. Basic dimensionless parameters of mechanically generated
regular waves.

Depth Height–depth Steepness Wave-induced Ursell
parameter ratio parameter diffusivity number
kh H/h Ak κv(0)/κm HL2/h3

0.5 0.05 0.0125 0.36 7.9
0.5 0.1 0.025 2.91 15.8
0.5 0.2 0.05 23.3 31.6
1 0.05 0.025 0.8 1.97
1 0.1 0.05 6.4 3.95
1 0.2 0.1 51.3 7.9
2 0.05 0.05 2.01 0.49
2 0.1 0.1 16.1 0.99
2 0.2 0.2 128.9 1.97

achieved, the time-independent wave velocity field is deter-
mined. The resulting horizontal and vertical velocity compo-
nents U and W are then substituted in Eq. (30), and the tem-
perature field evolution is predicted. A summary of wave pa-
rameters is provided in Table 1 together with wave-induced
diffusivity values at the surface in relation to its molecular
counterpart.

It should be noted that the model may be applied to deep-
water as well as shallow-water conditions, which are pre-
sented in the work of Sulisz and Paprota (2015). Here, the
cases correspond to a limited range of kh from 0.5 to 2.0. In
this way, the results from the previous work (Sulisz and Pa-
prota, 2019) may be directly compared. Moreover, for deep-
water conditions corresponding to kh > π , the mixing would
completely sweep away the warmer water from the analysed
part of the fluid domain for the selected time frame, and this
case was omitted in the present study.

3.2 Phase-averaged velocity distribution

The accurate assessment of the time-independent velocity
field is of significant importance in the modelling of tempera-
ture changes under an undulating water surface. The increas-
ing steepness of generated waves intensifies wave-induced
mixing processes but also changes the structure of heat flux
distribution in the region occupied by the fluid. The analysis
of phase-averaged velocity distribution in the direct vicinity
of the wavemaker paddle helps to identify the effect of advec-
tion terms of Eq. (30) on the temperature evolution driven by
waves.

In Figs. 2–4, time-independent velocity fields calculated
by weakly nonlinear and higher-order methods are presented.
The arrows represent the vectors of a phase-averaged veloc-
ity corresponding to mass transport induced by waves. Black
arrows correspond to a weakly nonlinear solution, while
green and blue arrows correspond to a higher-order solution
and two methods of averaging – EMTV and LMTV, respec-
tively (Figs. 2–4). The way the results are presented is in line
with the expected velocity vector field pattern in the part of
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Figure 2. Time-independent velocity field under mechanically generated regular waves characterized by kh= 0.5, (a) H/h= 0.05,
(b) H/h= 0.1 and (c) H/h= 0.2. Weakly nonlinear theory – black arrows and line, higher-order-theory EMTV – green arrows, LMTV –
blue arrows. Higher-order vectors are shifted upwards for convenience of comparison.

the fluid domain adjacent to the wavemaker (see Paprota and
Sulisz, 2018, for a more detailed description). The fluid flow
forms half of the circulation cell limited by the air–water in-
terface (z/h= 0), the wavemaker paddle (x/h= 0) and the
bottom (z/h=−1). The water mass flows with the direction
of wave propagation near the surface, while the adverse flow
pushes the water to the wavemaker paddle in the lower part of
the water column. At the wavemaker paddle, the water flows
vertically, forming the lateral boundary of the general circu-
lation in the flume. Far away from the paddle, the vertical
velocity components vanish, and the typical mass-transport
velocity profile over depth emerges as a sum of the Stokes
drift Eq. (17) and the return current velocity Eq. (18). Thus,
the figures are complemented by the weakly nonlinear hor-

izontal mass-transport velocity profile UL(z) calculated out-
side the direct vicinity of the wavemaker paddle Eq. (16),
where the effect of evanescent standing waves generated by
the wavemaker (see e.g. Dean and Dalrymple, 1984) may be
neglected (x > 3h). UL(z) is plotted at the right outer edge
of the graph at x = 3h for convenience of comparison. Vec-
tor plots are complemented by bubble charts of relative dif-
ferences between corresponding vector magnitudes as pre-
sented in Figs. 5–7, where black circles denote the differ-
ences between LMTV and weakly nonlinear results, while
filled green circles refer to the differences between LMTV
and EMTV.

The results presented in Fig. 2 provide information on the
time-independent velocity field predicted in the direct vicin-
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Figure 3. Time-independent velocity field under mechanically generated regular waves characterized by kh= 1, (a)H/h= 0.05, (b)H/h=
0.1 and (c) H/h= 0.2. Weakly nonlinear theory – black arrows and line, higher-order-theory EMTV – green arrows, LMTV – blue arrows.
Higher-order vectors are shifted upwards for convenience of comparison.

ity of the wavemaker paddle and the differences between
the weakly nonlinear approach and the solution admitting
higher-order terms in the most extreme nonlinear regime of
shallow water (kh= 0.5). Due to the fact that the consid-
ered wave cases are characterized by the highest values of
the Ursell number, the differences between the two wave-
maker models immediately appear even for the lowest am-
plitude of free-surface oscillations of H/h= 0.05 (Fig. 2a).
The highest differences in the range between 10 % and 20 %
correspond to the velocities near the wavemaker paddle and
the surface, respectively (Fig. 5a). By increasing the magni-
tude of the surface oscillations toH/h= 0.1 andH/h= 0.2
(Fig. 2b and c), the differences become higher in the larger
area of the wavemaker paddle vicinity. The higher-order
model predicts more intensive mass transport near the bot-

tom and the surface. The increase in the subsurface velocity
and the magnitude of the current near the bottom may even
reach from 15 % to 30 % for H/h= 0.1 and from 20 % to
40 % for H/h= 0.2 (Fig. 5b and c, respectively).

Some important information may also be acquired from
the comparison between two methods of averaging corre-
sponding to either Lagrangian particle tracking (LMTV) or
Eulerian averaging (EMTV) based on Eqs. (26) and (27), re-
spectively. Although both methods of averaging provide con-
sistent results for lower wave heights of the generated waves,
EMTV results are less reliable in the case of the highest
waves H/h= 0.2 (Fig. 2c). It can be seen that the veloc-
ity vectors near the corner point determined by the intersec-
tion of the wavemaker paddle mean position and the surface
(x/h= 0, z/h= 0) are unnaturally large as the velocity in
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Figure 4. Time-independent velocity field under mechanically generated regular waves characterized by kh= 2, (a)H/h= 0.05, (b)H/h=
0.1 and (c) H/h= 0.2. Weakly nonlinear theory – black arrows and line, higher-order-theory EMTV – green arrows, LMTV – blue arrows.
Higher-order vectors are shifted upwards for convenience of comparison.

this area (green arrows around the point (0,0) in Figs. 2c and
3c) is expected to vanish (see Grilli and Svendsen, 1990, for a
comprehensive discussion on numerical methods’ inaccuracy
at corner points of a fluid domain with moving boundaries).
The problem still persists when considering the subsurface
velocity at some distance away from the wavemaker. The
differences between the LMTV and EMTV may even reach
20 % in the velocity magnitude near the intersection between
the wavemaker and the surface, while an even greater dis-
crepancy is visible at corner points in most extreme longer-
wave cases (Fig. 5c).

With increasing relative water depth (Figs. 3 and 4), the
differences between weakly nonlinear and higher-order time-
independent velocity are less pronounced but still significant

for steeper waves. In the case characterized by kh= 1, the
discrepancies are generally less then 10 % for H/h= 0.05
and 0.1, ranging from 10 % to 20 % for the highest waves
(Fig. 6). Again the more intensive mass circulation is appar-
ent when higher-order terms are taken into account for the
case of kh= 1 andH/h= 0.2 (Fig. 3c). Similar conclusions
may be drawn for the deeper water kh= 2 (Fig. 4). How-
ever, in the case of the mass-transport velocity profile rela-
tively far away from the wavemaker paddle (x = 3h) the dif-
ferences are twice as high as in the wave cases corresponding
to kh= 1. It should be noted that, for higher kh (Fig. 7), the
results corresponding to two methods of averaging are more
consistent; however the highest difference may still reach
20 % as in the case of longer waves (Fig. 5c).
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Figure 5. Relative differences for time-independent velocity field under mechanically generated regular waves characterized by kh= 0.5,
(a) H/h= 0.05, (b) H/h= 0.1 and (c) H/h= 0.2. LMTV vs. weakly nonlinear theory – black circles, LMTV vs. EMTV – filled green
circles.

Putting aside the problems with averaging of the velocity
field, the general conclusion from the analysis of the results
depicted in Figs. 2–7 is that admitting higher-order terms of
the Taylor series expansions of the boundary conditions im-
posed at the moving boundaries leads to more accurate pre-
diction of the time-independent velocity near the wavemaker
as expected. This is of significant importance especially for
the modelling of wave-induced mixing and the evolution of
the water temperature field as the higher-order approach pre-
dicts enhanced streaming in layers adjacent to the bottom and
the surface. This leads to more intense mixing processes and
heat exchange.

3.3 Evolution of a temperature field

The modelling of wave-induced vertical mixing in terms of
the temperature redistribution in the water column relies on
the solution to the two-dimensional boundary-value problem
defined by Eqs. (30)–(34). The input parameters being intro-
duced to the governing advection–diffusion equation (Eq. 30)
are the diffusion coefficient κv calculated using Eqs. (35) and
(36) and the time-independent wave velocity field (U , W ).
The modelling procedure remains in accordance with previ-
ously published results (Sulisz and Paprota, 2019) with dif-
ferent velocity field input. The temperature T0(z) determines
the initial thermal state of the fluid (Fig. 8).
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Figure 6. Relative differences for time-independent velocity field under mechanically generated regular waves characterized by kh= 1,
(a) H/h= 0.05, (b) H/h= 0.1 and (c) H/h= 0.2. LMTV vs. weakly nonlinear theory – black circles, LMTV vs. EMTV – filled green
circles.

In Figs. 9–11, the temperature spatial distributions repre-
senting the thermal states of the undulating water body after
100 s is provided for the test cases listed in Table 1. The re-
sults in the plots correspond to a weakly nonlinear solution
and higher-order model predictions of the time-independent
wave velocity field. Both methods are compared in order to
highlight the effects of nonlinearity on vertical mixing due to
waves.

In the direct vicinity of the wavemaker paddle, the initial
state of the water temperature is uniformly stratified accord-
ing to T0. The moving wavemaker paddle generates regular
waves, and the layers of water of equal temperature are de-

formed by the oscillatory motion of the water body according
to the time-independent velocity field presented in Figs. 2–4.
Advection plays an important role in wave-induced mixing
processes as even small changes in the velocity strongly af-
fect the evolution of the temperature field. This implies major
differences between weakly nonlinear and higher-order pre-
dictions of the resultant temperature when the steepness of
waves increases. This effect is clearly seen in Figs. 9–11. As
previously stated, the discrepancy between weakly nonlinear
velocities and the velocity predictions admitting higher-order
terms in the free-surface boundary conditions grows with in-
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Figure 7. Relative differences for time-independent velocity field under mechanically generated regular waves characterized by kh= 2,
(a) H/h= 0.05, (b) H/h= 0.1 and (c) H/h= 0.2. LMTV vs. weakly nonlinear theory – black circles, LMTV vs. EMTV – filled green
circles.

Figure 8. Initial temperature in the fluid domain. (a) Spatial distribution, (b) vertical profile.
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Figure 9. Changes in the temperature field due to waves after 100 s for kh= 0.5, (a, b)H/h= 0.05, (c, d)H/h= 0.1 and (e, f)H/h= 0.2.
Weakly nonlinear theory (a, c, e; left), higher-order theory (b, d, f; right).

Figure 10. Changes in the temperature field due to waves after 100 s for kh= 1, (a, b) H/h= 0.05, (c, d) H/h= 0.1 and (e, f) H/h= 0.2.
Weakly nonlinear theory (a, c, e; left), higher-order theory (b, d, f; right).

creasing steepness and wave nonlinearity (Ursell number)
and may even reach 40 % in the subsurface layer.

Although the highest relative differences are relevant for
the longest waves, the effect of including higher-order terms
is most apparent for waves of the largest kh characterized
by the highest time-independent velocities. It may be seen
in Fig. 9 that after 100 s the colder water is moved to the
surface close to the wavemaker only for the steepest waves
(Fig. 9f) when predicted by the higher-order model, while
for the corresponding weakly nonlinear temperature field this
process is less intensive (Fig. 9e). Additionally, the higher-
order results exhibit some variation in mixing along the flume
(Fig. 9f).

In the case of waves characterized by kh= 1, the wave-
induced mixing is more intensive (see Table 1), and for the
steepest waves (Fig. 10e, f) the warmer water is moved away
from the wavemaker. It should be noted that the higher-
order solution predicts enhanced streaming near the surface
(Fig. 10f). In this way, the decreased water surface tempera-
ture affects regions located further away from the wavemaker
when compared to weakly nonlinear results (Fig. 10). The
similar temperature field modification affects the waves of
kh= 2, but for the lower analysed height (cf. Figs. 10e, f
and 11c, d). In the case of the highest waves of kh= 2, the
warmer water is almost completely swept away from the re-
gion of direct wavemaker action (Fig. 11e, f).
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Figure 11. Changes in the temperature field due to waves after 100 s for kh= 2, (a, b) H/h= 0.05, (c, d) H/h= 0.1 and (e, f) H/h= 0.2.
Weakly nonlinear theory (a, c, e; left), higher-order theory (b, d, f; right).

3.4 Further discussions

Energy input from wind to ocean surface waves is tremen-
dous and exceeds 60 TW (Wang and Huang, 2004). A large
amount of energy dissipates, which implies stirring and mix-
ing processes in the oceanic mixed layer. A parameteriza-
tion scheme for surface wave-induced mixing was proposed,
and numerical experiments indicate that this parameteriza-
tion affects the performance and outcome of ocean circula-
tion models (Qiao et al., 2004, 2010; Xia et al., 2006) as well
as climate predictions (Song et al., 2007; Huang et al., 2008).
Although field observations suggest that surface waves can
generate vertical mixing (Matsuno et al., 2006), it is still
difficult to distinguish the mixing originating from the va-
riety of processes that accompanied ocean waves. Although
the problem of wave-induced vertical mixing is of signifi-
cant importance for physical oceanographers and climatolo-
gists, the research on this subject is still in its infancy. Wave-
induced mixing is a very important process from a practical
point of view and is a challenging problem for theoretical in-
vestigations. The understanding of wave-induced mixing is
of fundamental importance for the modelling and accurate
prediction of ocean transport processes and climate changes.
The problem is that the parameterization scheme applied in
the modelling and prediction of ocean surface wave-induced
mixing is based on drastic simplifications. Wave models de-
rived using simplifying assumptions cannot be applied to
predict ocean surface wave-induced mixing with sufficient
accuracy. The present studies clearly show that it is necessary
to apply at least a weakly nonlinear wave theory to obtain
reasonable results (no wave-induced mass transport in linear
theory means no heat exchange along the direction of wave
propagation), while an increased accuracy is possible using
advanced nonlinear wave models admitting higher-order ef-

fects. It should also be noted that in the present studies the ef-
fects of turbulence and the development of viscous boundary
layers are neglected, while these processes may have some
impact on larger timescales. For example, the mass-transport
velocity profile changes due to the effects of viscosity near
the boundaries (the undulating free surface and the bottom)
for a sufficiently long time interval, which was studied the-
oretically by Longuet-Higgins (1953) and also investigated
experimentally in a wave flume (see e.g. Swan, 1990; Grue
and Kolaas, 2017).

There is one more critical outcome from the point of
view of engineers and scientists working on the modelling of
ocean transport processes, wave-induced mixing and climate
changes. Namely, since it is difficult to distinguish the mix-
ing that accompanied ocean waves, the only chance to pro-
vide reliable insight into the wave-induced mixing processes
is to conduct laboratory experiments in a wave flume. The re-
peatable experiments in the well-controlled environment of a
wave flume enable us to perform an accurate investigation
that is essential in the analysis of the physics of the wave-
induced mixing phenomenon. Moreover, laboratory investi-
gations provide useful data for the analysis of the correla-
tions between spectral and statistical characteristics of wave
regimes and wave-induced mixing processes. Finally, labora-
tory experiments enable us to avoid various side effects and
separate the mixing from other processes that accompanied
ocean waves such as wave breaking. This is of fundamental
importance for understanding of mixing and accurate cali-
bration and verification of numerical models. The problem is
that, in addition to progressive laboratory waves, the moving
wavemaker represented by the kinematic wavemaker bound-
ary condition enforces the return current that affects transport
processes and wave-induced mixing.
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It is the idea behind the present study, which employs a
numerical wave flume model, to thoroughly analyse wave-
induced mixing effects using the derived numerical approach
and assist further works on experimental fluid mechanics
aiming at better understanding of transport processes in the
open ocean. To the best of the authors’ knowledge, the de-
rived wave-induced mixing approach is the only available
numerical solution that, in addition to nonlinear free-surface
boundary conditions, also satisfies the kinematic wavemaker
boundary condition. Accordingly, the wavemaker model ad-
mits a return current and may be applied to quantify and sep-
arate the effects of the return flow on wave-induced mixing
processes. The presented results should hopefully improve
simple models based on the Stokes drift applicable to ran-
dom ocean waves (Myrhaug et al., 2018). As previously men-
tioned, the derived modelling framework may be modified to
cover open-ocean conditions for the periodic domains and
quasi-random sea states using other forms of wave excitation
(Paprota, 2019).

4 Conclusions

The applicability of the wave-induced mixing model for
waves generated in a wave flume is validated based on the
solution admitting higher-order nonlinearities. In the range
of wave conditions covering transitional and shallow wa-
ters, the weakly nonlinear results are in reasonable agreement
with the more accurate pseudo-spectral solution in the case of
waves of low to moderate steepness. The general discrepancy
grows by increasing the wave height and the wavelength. Un-
like the weakly nonlinear approach, the higher-order model
is able to predict enhanced subsurface streaming affecting
the evolution of the surface temperature for more severe sea
states. It is due to the fact that the time-independent velocity
field predicted by both methods differs especially in the sub-
surface and near-bottom layers of the oscillating water body.

General ocean circulation models admitting wave-induced
vertical mixing but relying on simplified assumptions cannot
predict input from mixing with sufficient accuracy. It is nec-
essary to apply at least a weakly nonlinear correction to ob-
tain reasonable approximation. For improved predictions, ad-
vanced highly nonlinear models are preferred, which is con-
firmed by the present study. Moreover, the derived method al-
lows a return current to be correctly quantified in experimen-
tal investigations on wave-induced vertical mixing for better
interpretation of laboratory results, giving more information
for further improvements to parametrization schemes.
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