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Abstract. Given the increasing use of climate projections and multi-model ensemble weighting for a diverse ar-
ray of applications, this project assesses the sensitivities of climate model weighting strategies and their resulting
ensemble means to multiple components, such as the weighting schemes, climate variables, or spatial domains
of interest. The purpose of this study is to assess the sensitivities associated with multi-model weighting strate-
gies. The analysis makes use of global climate models from the Coupled Model Intercomparison Project Phase 5
(CMIP5) and their statistically downscaled counterparts created with the localized constructed analogs (LOCA)
method. This work focuses on historical and projected future mean precipitation and daily high temperatures of
the south-central United States. Results suggest that the model weights and the corresponding weighted model
means can be sensitive to the weighting strategy that is applied. For instance, when estimating model weights
based on Louisiana precipitation, the weighted projections show a wetter and cooler south-central domain in the
future compared to other weighting strategies. Alternatively, for example, when estimating model weights based
on New Mexico temperature, the weighted projections show a drier and warmer south-central domain in the fu-
ture. However, when considering the entire south-central domain in estimating the model weights, the weighted
future projections show a compromise in the precipitation and temperature estimates. As for uncertainty, our
matrix of results provided a more certain picture of future climate compared to the spread in the original model
ensemble. If future impact assessments utilize weighting strategies, then our findings suggest that how the spe-
cific weighting strategy is used with climate projections may depend on the needs of an impact assessment or
adaptation plan.

1 Introduction

The simulation output from climate models has traditionally
been used for research into characterizing and understand-
ing the climate system across multiple spatial scales. In re-
cent years, ensembles of climate projections have increas-
ingly been used for impact and vulnerability assessments
(e.g., Allstadt et al., 2015; Basso et al., 2015; Pourmoktharian
et al., 2016; Gergel et al., 2017; Massoud et al., 2018, 2019,
2020a, b; Wootten et al., 2020a, b). These include large-

scale assessments, such as the National Climate Assessment
(NCA, Wuebbles et al., 2017), and local and regional assess-
ments for individual areas of the United States. Large- and
local-scale assessments can make use of the entire ensemble
of climate projections (composed of global climate models
– GCMs) or make use of the unweighted ensemble mean.
For these assessments, using the ensemble mean provides a
useful and convenient way to assess projected changes in
a region. Given the coarse resolution of GCMs (typically
> 100 km2), many of these assessments make use of down-
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scaled climate projections to translate larger-scale changes to
local scales.

Alongside the use of climate modeling and downscaling
for climate research and increased use for impact and vul-
nerability assessments, there has also been a transition in
the last 20 years toward using weighted multi-model means.
Projections based on model weights derived from historical
skill have been shown to have greater accuracy than an arith-
metic multi-model mean in many cases, provided that there
is enough information to determine a weight for each model
(Knutti et al., 2010; Weigel et al., 2008; Peña and Van den
Dool, 2008; Min and Hense, 2006). More recently, weight-
ing based solely on skill has given way to weighting based
upon both skill and independence in recognition of differ-
ences in skill between regions and variables and the lack of
independence between GCMs resulting from common bases
in model structure (Massoud et al., 2019, 2020a; Sander-
son et al., 2015b, 2017; Knutti, 2010; Knutti et al., 2017).
In acknowledgment of studies indicating that global climate
models are not fully independent, the Fourth National Cli-
mate Assessment (NCA4) was the first major climate assess-
ment in the United States to use skill- and independence-
based model weighting for the ensemble of climate models
(Sanderson and Wehner, 2017).

Several studies have examined the effect of model weight-
ing on the outcome of climate change projections from mul-
tiple ensembles. For example, in Massoud et al. (2019),
the authors utilized information from various model averag-
ing approaches to evaluate an ensemble from the Coupled
Model Intercomparison Project Phase 5 (CMIP5; Taylor et
al., 2012), finding that Bayesian model averaging (BMA) re-
duced the error by one-third and constrained the uncertainty
to 20 %–25 % of the raw ensemble for projections of atmo-
spheric river frequency. Massoud et al. (2020a) found that
BMA constrained the uncertainty in precipitation projections
over the contiguous United States (CONUS) to a third of that
in the original ensemble. In Wootten et al. (2020a), the au-
thors found that ensemble weighting can change dramatically
when weighting schemes are applied to statistically down-
scaled ensembles compared to a raw GCM ensemble.

Other studies have applied model weighting to a certain
variable or to multiple variables and gone on to investigate
climate change impacts for other variables (e.g., energy and
hydrologic cycles). For example, Knutti et al. (2017) ex-
tended the weighting scheme of Sanderson et al. (2015a,
2017) to projections of Arctic September temperatures and
sea ice, finding that the uncertainty could be constrained by
the scheme while noting that the proposed weighting scheme
is one of several that could be used for multiple applications.
The National Climate Assessment had previously considered
weighting based only on commonly used climate variables
(e.g., precipitation and temperature, Wuebbles et al., 2017),
but discussions to use additional variables, such as equilib-
rium climate sensitivity, are currently ongoing. Other stud-
ies have calculated weights based on metrics in one domain

(e.g., globally) and then applied them to projections for an-
other domain (e.g., North America or Europe) (Massoud et
al., 2019). However, these studies are rare, as are studies
providing comparisons of various weighting schemes. Ex-
amples of these studies include Shin et al. (2020), Brunner
et al. (2020a), and Kolosu et al. (2021). Shin et al. (2020)
suggested that researchers may provide results from several
weighted ensembles to capture the uncertainties of future
changes but did not explore weighting strategies beyond dif-
ferent weighting schemes. Brunner et al. (2020a) found that
the region can influence the agreement between approaches
to constrain uncertainty in the CMIP5 multi-model ensem-
ble. Finally, Kolusu et al. (2021), focusing on a water-related
decision context in Africa, find that projected risk profiles
were less sensitive to the weighting schemes used. Such stud-
ies as in these examples tend to focus on the sensitivity as-
sociated with one to a few components of a multi-model
weighting strategy. No prior study (to the authors’ knowl-
edge) offers a comprehensive cross-comparison of the sen-
sitivity resulting from the choices of the domain, variable,
weighting scheme, and ensemble that comprise multi-model
weighting strategies. In addition, the primary focus of these
studies is continental regions, although climate projections
are now being used by regional and local organizations for
climate impacts assessments and climate adaptation with ad-
ditional modeling efforts.

Taking these points into consideration, we assess the
choices involved with using model weighting strategies by
developing and investigating a multidimensional sensitivity
matrix to apply model averaging for the south-central region
of the US. To this end, we look at mean precipitation and
high temperatures as our climate variables of interest. Fur-
thermore, we use two sub-domains, the states of Louisiana
and New Mexico, alongside the south-central US study re-
gion. Overall, we created and applied various sets of model
weights based on several choices that are typically involved
in creating a model weighting strategy: (a) the choice of the
ensemble (CMIP5 or downscaled), (b) the choice of model
weighting scheme, (c) the choice of climate variable of in-
terest (precipitation vs. temperature), and (d) the choice of
the domain used to derive weighting (entire south-central re-
gion vs. smaller sub-domain). Therefore, one example of a
strategy that we apply to estimate a set of weights uses the
BMA weighting method on the CMIP5 ensemble projections
of the precipitation variable for the Louisiana domain. To
our knowledge, there has not been a model weighting study
that included as many dimensions in the experimental ma-
trix as this study: again, these are model ensemble, domain,
variable, and, importantly, the weighting scheme itself. Prior
studies have examined some of these dimensions individu-
ally, but the comprehensive experimental matrix used here
allows the comparison of modeling weighting results based
on all dimensions. This is important because there could be
high sensitivities in the estimated model weights based on
how the weighting strategy is formulated.
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Weighted multi-model means have primarily been focused
on GCMs and continental scales (Brunner et al., 2019; Pick-
ler and Mölg, 2021; Sperna Weiland et al., 2021). However,
the use of climate projections has extended to regional, state,
local, and tribal uses for climate impact assessments and
adaptation planning. In these regional to local efforts, the
raw projection data have been used but also provided to im-
pact models (such as hydrology or crop models). Currently,
impact assessments outside the traditional venues of climate
modeling tend not to use weighted multi-model means but
tend to use unweighted means created using downscaled
GCM ensembles. Whether to use model weighting or not
is currently a hot topic in the climate modeling community,
and the current study aims to comprehensively assess the
sensitivity associated with multi-model ensemble weighting
schemes and strategies to add further context to this debate.
For reference for the reader, we define weighting schemes
to refer to the numerical approach to weighting alone, such
as Bayesian model averaging (BMA) or the approach defined
by Sanderson et al. (2015, 2017). We define a weighting strat-
egy as the weighting scheme and other choices made when
using the weighting scheme to derive model weights. For ex-
ample, a weighting strategy would be using the BMA weight-
ing scheme to derive weights using the continental United
States and daily high temperature alone, and another weight-
ing strategy would be using the BMA weighting scheme to
derive weights using the Southern Great Plains of the United
States and daily precipitation alone. Both examples use the
BMA weighting scheme, but with different choices made to
derive weights, making the two examples different weighting
strategies.

Our analysis results in a wide array of possible future out-
comes, which comes with high uncertainties regarding what
to expect in the future in this domain. The main question we
are after is whether or not some variables or domains have
projected climate change signals that have high certainty, and
alternatively, we would like to find out whether or not there
are climate variables in any of the regions that have highly
uncertain climate change projections and if the use of model
weighting can provide a better sense of this uncertainty. We
aim to address these uncertainties by applying the multidi-
mensional experimental matrix of model weighting strate-
gies and hope to inform the scientific community of these
sensitivities for the benefit of future stakeholders, including
climate modelers and boundary organizations providing cli-
mate services. Our purpose in this study is not to address the
skill of the multi-model weighting strategies in future pro-
jections, but rather to assess under what circumstances the
projections are sensitive to multi-model weighting strategies
and why.

2 Methods and data

2.1 Study domain and variables

The south-central United States (from about 26◦ N 108.5◦W
to 40◦ N 91◦W) has a varied topography with a sharp gra-
dient in mean annual precipitation from the east (humid) to
the west (arid) and a generally warm climate: the Mississippi
River Valley and the Ozark Mountains in the eastern portion
of the region (elevations of 200–800 m), the Rocky Moun-
tains in the west (1500–4400 m), and the Gulf of Mexico in
the southeast (near sea level). Average annual precipitation
in the southeast portion of the domain can be 8 times higher
than drier western locations, and average daily high temper-
atures can reach 40 ◦C (Fig. 1).

2.2 Climate projection datasets

We use one member each from 26 GCMs in the CMIP5
archive to form the GCM multi-model ensemble. To form
the downscaled ensemble, the same 26 GCMs are used from
the downscaled projections created with the localized con-
structed analogs (LOCA) method (Pierce et al., 2014). The
LOCA-downscaled projections have been used in other stud-
ies, including the NCA4 (USGCRP, 2017) and Wootten et
al. (2020a). CMIP5 GCMs are used in this study because
LOCA downscaling with CMIP6 was not available at the
time of writing. That said, the weighting schemes used here
are applicable also to other ensembles such as CMIP6 and
CMIP3. Therefore, the findings of this study are generaliz-
able to other ensembles. Table S1 in the Supplement lists the
GCMs used for both the GCM ensemble (hereafter CMIP5
ensemble) and downscaled ensemble (hereafter LOCA en-
semble). See Wootten et al. (2020a) for more details on the
climate projection datasets.

To facilitate analysis, the data for each ensemble member
and the gridded observations are interpolated from their na-
tive resolution to a common 10 km grid using a bilinear inter-
polation similar to that described in Wootten et al. (2020b).
We examine projected daily precipitation (pr) and daily high
temperature (tmax) changes from 1981–2005 to 2070–2099
under the RCP8.5 scenario, which ramps the anthropogenic
radiative forcing to 8.5 W m−2 by 2100. We chose RCP
(Representative Concentration Pathway) 8.5 to maximize the
change signals and allow us to analyze greater differences
between weight schemes and downscaling techniques. The
historical period (1981–2005) is used for both the historical
simulations and observations to facilitate comparisons with
other studies (Wootten et al., 2020b) and because the histor-
ical period of the CMIP5 archive ends in 2005 (Taylor et al.,
2012).
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Figure 1. Topographical map for the study domain: the elevation map of the south-central United States with major rivers overlaid on it.
(a) Elevation (in units of m), with the rivers outlined in blue. Topography, bathymetry, and shoreline data are obtained from the National
Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center’s ETOPO1 Global Relief Model (Amante and Eakins,
2009). This is a 1 arcmin model of the Earth’s surface developed from diverse global and regional digital datasets and then shifted to a
common horizontal and vertical datum. River shapefiles are obtained from the Global Runoff Data Centre’s Major River Basins of the World
(GRDC, 2020). (b) Study domain overlaid with annual average precipitation (mm) from Livneh v. 1.2 (Livneh et al., 2013). (c) Study domain
overlaid with annual high temperatures (◦C) from Livneh v. 1.2 (Livneh et al., 2013).

2.3 Observation data

Many publicly available downscaled projections (including
LOCA) are created using gridded observation-based data for
training. Gridded observations are based largely on station
data that are adjusted and interpolated to a grid in a manner
that attempts to account for biases, temporal–spatial incoher-
ence, and missing station data (Behnke et al., 2016; Wootten
et al., 2020b; Karl et al., 1986; Abatzoglou, 2013). In this
study, we use Livneh version 1.2 (hereafter Livneh, Livneh
et al., 2013), interpolated to the same 10 km grid using bi-
linear interpolation, as the gridded observation data used for
comparison to the ensembles. Livneh is used in part to facil-
itate any comparisons between this study and the results of
Wootten et al. (2020a). The LOCA ensemble used the Livneh
data as the training data, so it is expected that LOCA will be
more accurate than the CMIP ensemble when compared to
the Livneh dataset. While we recognize that different grid-
ded observations and downscaling techniques influence pro-
jections of precipitation variables (e.g., number of days with
rain, heavy rain events), the effect is minimal on the mean an-
nual precipitation (Wootten et al., 2020b). Therefore, we find
it is appropriate to make use of only one statistical downscal-
ing method and one gridded observation dataset.

2.4 Weighting schemes

In this analysis, we make use of model weighting schemes
detailed in Wootten et al. (2020a) and similar to the weight-
ing schemes applied in Massoud et al. (2020a). The result-
ing weighting schemes are applied multiple times to com-
plete an experimental matrix of weighting strategies allow-
ing for in-depth comparisons of the sensitivity of the en-
semble mean to various approaches to deriving and applying

the multi-model weights. These weighting methods include
the unweighted model mean, the historical skill weighting
(hereafter Skill), the historical skill and historical indepen-
dence weighting (SI-h), the historical skill and future inde-
pendence weighting (SI-c), and the Bayesian model averag-
ing (BMA) method. All of the methods are calculated in the
same manner as in Wootten et al. (2020a). In essence, the un-
weighted strategy takes the simple mean of the entire ensem-
ble. The Skill scheme utilizes each model’s skill in represent-
ing the historical observations via the root mean square er-
ror (RMSE) of the model against the historical observations.
The SI-h scheme is the same weighting scheme as shown in
Sanderson et al. (2017), creating an independence and skill
weight using the historical simulations of each model in an
ensemble. To briefly summarize the SI-h (Sanderson et al.,
2017) approach, an intermodel distance matrix is calculated
using the area-weighted RMSE of each model with the other
models and with observations. This distance matrix is used to
calculate independence and skill weights, whereby the dis-
tances between one model and every other model are used
to calculate the independence weight and the distance be-
tween one model and the observations is used to calculate
the skill weight. The overall weight given to each model is
the product of the skill and independence weights normal-
ized such that all the overall weights for each model sum
to 1. The SI-c scheme is unique to Wootten et al. (2020a)
and modifies the Sanderson et al. (2017) approach to use his-
torical skill to derive the skill component of the weighting
and the climate change signal (i.e., the future projections)
to derive the independence component of the weighting. To
achieve this, the SI-c uses two distance matrices; the first dis-
tance matrix (used to calculate the skill weight) is the same as
the SI-h, while the second distance matrix (used to calculate
the independence weight) is the area-weighted RMSE of the
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change signals between the models. The overall weights are
then calculated in the same way as the overall weights from
SI-c. The BMA scheme employs a probabilistic search algo-
rithm to find an optimal set of model weights that produces a
model average that has high skill and low uncertainty when
compared to the observation and its uncertainty. BMA is an
approach that produces a multi-model average created from
optimized model weights, which correspond to a distribu-
tion of weights for each model, such that the BMA-weighted
model ensemble average for the historical simulation closely
matches the observational reference constraint. In essence,
the close fit to observations is a consequence of applying
higher weights to more skillful models. Furthermore, since
the BMA method estimates a distribution of model weights,
various model combinations become possible, which explic-
itly takes care of the model dependence issue. The equations
for all the weighting schemes used in this study are provided
in the Supplement, and readers are referred to Wootten et
al. (2020a) and Massoud et al. (2019, 2020a) for more de-
tails on each method.

2.5 Experimental matrix

Each weighting scheme (Skill, SI-h, SI-c, and BMA) is ap-
plied to both ensembles (CMIP5 and LOCA) and three do-
mains (south-central US, Louisiana, New Mexico) to fill out
an experimental matrix of weights, representing a collec-
tion of weighting strategies. As a result, for each weighting
scheme (skill, SI-h, SI-c, and BMA) and ensemble (CMIP5
and LOCA), there are six sets of weights produced (i.e.,
three regions and two variables). One example of a weight-
ing strategy would be the BMA weighting scheme used
for the CMIP5 ensemble trained on tmax for the entire
domain. Another weighting strategy example would be a
skill-based weighting scheme used for the LOCA ensemble
trained on precipitation in Louisiana. There are a total of 48
such model weighting strategies (ensemble choice× variable
choice×weighting scheme choice× domain choice = 2×
2× 3× 4= 48) and corresponding multi-model weights. In
addition to the set of 48 weighting strategies, an unweighted
ensemble mean is also used. The unweighted strategy effec-
tively has equal weights for all models regardless of variable,
domain, or ensemble. As such, including an unweighted en-
semble mean represents only one additional modeling strat-
egy, which brings the total to 49 model averaging strategies
in our experimental matrix.

The various model weights from each strategy are calcu-
lated, and the derived sets of weights are then applied to cre-
ate ensemble means for the three domains and two variables.
In other words, a certain set of weights can be used to deter-
mine projected changes in either tmax or pr and can be used
for any of the domains, the full domain, Louisiana, or New
Mexico. There are a total of 288 such maps that can be cre-
ated to investigate future climate change. These are 48 model
averaging choices described above, applied to two different

variables in three different domains, or 48×2×3= 288 com-
binations of maps. This collection of 288 is in addition to the
results from unweighted means of temperature and precipita-
tion. Including these unweighted means, there are 290 com-
binations of maps from this project. This explains the highly
dimensional experimental matrix applied in this study, which
provides the total uncertainty that is estimated with our future
change projections. See Fig. 2 for a schematic describing the
various choices made to create each model weighting strat-
egy and the choices made regarding how each of these model
weights can be applied. However, we also note that there will
be several duplicates in the experiment. For example, when
using the same weighting strategy, the resulting ensemble
mean in a sub-domain will be the same as the resulting en-
semble mean in the same portion of the full domain.

3 Results

This section will first consider the sensitivity of the model
weighting schemes to the ensembles, variables, and domains
used. This section will then focus on the bias and change
signal from the resulting combinations of ensemble means.

3.1 Ensemble weights – results from various model
weighting strategies

The resulting sets of model weights for the CMIP5 ensem-
ble for each weighting strategy are shown in Fig. 3. The
24 sets of model weights for the LOCA ensemble for each
weighting strategy are shown in Fig. 4. Alongside the best-
estimated weight from strategies using the BMA weighting
scheme, the box–whisker plots in the image show the spread
of weights from the 100 iterations of BMA for each ensem-
ble, variable, and domain for which BMA was used to derive
model weights. The red dots in these figures depict the out-
liers from the BMA distributions of weights.

One observation is that the weighting schemes themselves
are all sensitive to the ensemble, variable, and domain for
which they are derived in terms of which GCMs are given the
highest weight. This is reflected further when one considers
which models from each ensemble are given the strongest
weights by each model weighting scheme (Table 1). From
Table 1, no model appears in the top three for all weighting
strategies. The model most consistently in the top three is
the CanESM2, which is in the top three for 35.4 % of the 48
weighting strategies.

Although the weighting schemes are sensitive to ensem-
ble, variable, and domain, the weights produced by Skill, SI-
h, and SI-c are similar to each other, while the BMA weight-
ing tends to be different. This is particularly true for precipi-
tation and follows what was shown by Wootten et al. (2020a)
and Massoud et al. (2020a). The BMA approach provides a
distribution of weights for each model, and this distribution
of weights overlaps the weights of the Skill, SI-h, and SI-
c approaches. This distribution of weights covers a broader
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Figure 2. Flowchart showing the process of analysis with weighting schemes. Each version of the model average is constructed based on
several choices: (a) the choice of the ensemble (CMIP vs. LOCA), (b) the choice of model weighting strategy (unweighted, Skill, SI-h, SI-c,
or BMA), (c) the choice of climate variable of interest (precipitation or temperature), and (d) the choice of the domain used for the ensemble
averaging (entire south-central region, Louisiana, or New Mexico). These various choices add up to 48, plus the unweighted version, so
there are 49 overall choices of model weighting strategies. Then, once the model average is constructed and trained, there is a choice to be
made regarding which variable and which domain to apply this model average to. Therefore, this results in 48× 2× 3= 288 possible future
outcomes in our experimental matrix plus two unweighted outcomes for a total of 290 combinations.

region of the model weight space, but the best BMA combi-
nation (marked as orange squares in Figs. 3 and 4) is notice-
ably different from the other schemes. The BMA best com-
bination is the single set of model weights from the BMA
posterior that creates a weighted model average that has the
best fit to the observations. Although all the samples of model
weights from the BMA posterior have an improved fit com-
pared to the original ensemble mean and provide a range of
model weights as shown in the BMA distributions in Figs. 3
and 4, the BMA best combination is considered the best of
all these samples.

The pattern of the weights, shown in Figs. 3 and 4,
changes significantly between weighting strategies, partic-
ularly among the BMA weights and in the CMIP ensem-
ble. Among the BMA and CMIP5 ensemble combinations
(Fig. 3), there are no common patterns to the model weights
based on domain or variable. However, while the patterns be-
tween Skill, SI-h, and SI-c are similar to each other, their
magnitude is consistently smaller than BMA. This indicates
that when applying different weighting schemes, different
models are given higher weights when applying the CMIP5
ensemble for different domains or variables.

When using the LOCA ensemble (Fig. 4), there is more
consistency in which models are given higher weights, par-
ticularly for weighting strategies using high temperature
(tmax). For the LOCA ensemble, the distribution of the BMA

weights has a similar pattern across all three domains for
the tmax-derived weights, and the best-weighted models are
also somewhat consistent between domains. Similar to the
CMIP5 ensemble in Fig. 3, the BMA weights tend to be
larger for the highest weighted models in the LOCA ensem-
ble compared to those derived with the Skill, SI-h, and SI-
c schemes. We speculate that the reason for this is because
the Skill, SI-h, and SI-c schemes involve the “skill” of each
model when estimating weights, and since the LOCA down-
scaled ensemble is bias-corrected, most models have similar
skill and therefore similar weights. For weights derived with
tmax, the Skill, SI-h, and SI-c have very similar patterns for
both the full and New Mexico domains. The Skill and SI-h
weighting schemes, which focus entirely on the historical pe-
riod, created nearly identical weights for the 26 models when
weights are derived based on tmax in the full and New Mex-
ico domains. While the weights from Skill and SI-h are not
identical when derived using tmax in the Louisiana domain,
the weights for the LOCA ensemble in Louisiana generally
range from 0.025 to 0.050. The SI-c weights derived using
tmax in the LOCA ensemble have a similar pattern between
the full and New Mexico domains but a very different pat-
tern in the Louisiana domain (Fig. 4). In addition, the SI-c
also tends to have a different pattern from the Skill and SI-h
weights when tmax and LOCA are used for derivation. There
is much more sensitivity to domains when using precipita-
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Figure 3. Model weights for each of the four weighting schemes using the CMIP5 ensemble. Panels (a, c, e) show weights based on
precipitation (pr) alone, and panels (b, d, f) show weights based on high temperature (tmax) alone. Panels (a, b) show weights based on the
full domain, (c, d) weights based on Louisiana alone, and (e, f) weights based on New Mexico alone. The box plots are the spread of weights
from the 100 iterations of the BMA weighting scheme. The red dots depict the outliers from the BMA distributions of weights.

tion and the LOCA ensemble to derive weights compared to
that of tmax. Regardless of the weighting scheme, there is no
common pattern in the weights between domains when the
LOCA ensemble and precipitation are used to derive weights.
Again, the BMA scheme applies much larger weights to the
top models for precipitation-based LOCA weighting com-
pared to the Skill, SI-h, and SI-c weighting schemes.

The LOCA statistical downscaling method, like most sta-
tistical downscaling methods, incorporates a bias correction
approach, which inherently improves the historical skill. In

addition, the Skill, SI-h, and SI-c methods focus primarily
on the first moment of the ensemble distribution when de-
riving weights, which limits the ability to penalize for co-
dependence between models in an ensemble. Finally, the
BMA considers multiple moments of the ensemble distri-
bution using multiple samples via Markov chain Monte
Carlo (MCMC), rewarding skillful models and penalizing
co-dependency. Of the weighting combinations used here,
the BMA tends to be the most sensitive to the ensemble, vari-
able, and domain used to determine weights. Given that the
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Figure 4. Same a Fig. 3, but for the LOCA ensemble.

BMA focuses on multiple moments of the distribution and is
most sensitive to the different choices considered here (en-
semble, variable, and domain) it is plausible that the BMA
approach responds to and captures the changes in skill and
co-dependence among the ensemble members resulting from
these various choices.

3.2 Size of the experimental matrix of model weights
and how to apply them

One can apply the 48 weighting strategies described above
in a manner similar to the way the weighting strategies them-
selves are created. For example, one could apply the weights

derived from the CMIP5 ensemble precipitation for the full
domain using BMA to create a weighted ensemble mean of
CMIP5 precipitation for Louisiana. As shown in Fig. 2, each
weighting strategy is applied to the variables (high temper-
ature and precipitation) and domains (full, Louisiana, and
New Mexico) to produce a set of ensemble means. Alto-
gether, the maximum number of weighted ensemble means
produced with these 48 weighting strategies is 48× 2× 3=
288. However, this maximum number of ensemble means re-
sulting from the experiment contains several duplicates. For
example, when using the same set of weights, the resulting
ensemble mean in a sub-domain will be the same as the re-
sulting ensemble mean from the same portion of the full do-
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Table 1. Top three highest weighted models from each of the 48 weighting combinations.

Domain Variable Ensemble Skill SI-h SI-c BMA
weighting weighting
is based on is based on

Full tmax CMIP5 ACCESS1-0 CanESM2 CSIRO-Mk3-6-0 CSIRO-Mk3-6-0
CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 ACCESS1-0 MPI-ESM-MR
CMCC-CMS MIROC-ESM CMCC-CM CMCC-CM

LOCA MRI-CGCM3 MRI-CGCM3 MRI-CGCM3 MRI-CGCM3
MIROC-ESM MIROC-ESM GISS-E2-R CanESM2
CESM1-BGC CESM1-BGC IPSL-CM5A-MR FGOALS-g2

pr CMIP5 EC-EARTH ACCESS1-3 CMCC-CM ACCESS1-3
CMCC-CM EC-EARTH ACCESS1-0 EC-EARTH
ACCESS1-0 GISS-E2-R EC-EARTH CMCC-CM

LOCA CESM1-BGC CanESM2 IPSL-CM5A-MR MIROC-ESM
CanESM2 MIROC-ESM ACCESS1-0 CanESM2
MIROC-ESM CESM1-BGC CMCC-CM CESM1-BGC

Louisiana tmax CMIP5 ACCESS1-3 ACCESS1-3 ACCESS1-3 CMCC-CM
CMCC-CMS MPI-ESM-MR ACCESS1-0 ACCESS1-3
MPI-ESM-LR CMCC-CMS MPI-ESM-LR MIROC5

LOCA MRI-CGCM3 MIROC-ESM MIROC-ESM-CHEM MRI-CGCM3
MIROC-ESM MRI-CGCM3 MRI-CGCM3 GISS-E2-H
ACCESS1-3 ACCESS1-3 GFDL-CM3 GFDL-ESM2M

pr CMIP5 ACCESS1-3 ACCESS1-3 ACCESS1-3 GISS-E2-R
GISS-E2-R GISS-E2-R GISS-E2-R ACCESS1-3
EC-EARTH EC-EARTH EC-EARTH MIROC-ESM-CHEM

LOCA CCSM4 GISS-E2-R GISS-E2-R CCSM4
GISS-E2-R CanESM2 IPSL-CM5A-MR GISS-E2-R
GFDL-ESM2M CCSM4 FGOALS-g2 EC-EARTH

New Mexico tmax CMIP5 CanESM2 CanESM2 CSIRO-Mk3-6-0 CanESM2
CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 ACCESS1-0 CSIRO-Mk3-6-0
ACCESS1-0 ACCESS1-0 CanESM2 IPSL-CM5A-LR

LOCA MRI-CGCM3 MIROC-ESM MRI-CGCM3 MRI-CGCM3
MIROC-ESM MRI-CGCM3 MIROC-ESM MIROC-ESM
GISS-E2-H CanESM2 GFDL-CM3 FGOALS-g2

pr CMIP5 CanESM2 CanESM2 IPSL-CM5A-MR CanESM2
IPSL-CM5A-MR CSIRO-Mk3-6-0 CanESM2 IPSL-CM5A-MR
ACCESS1-3 IPSL-CM5A-MR ACCESS1-3 CSIRO-Mk3-6-0

LOCA MPI-ESM-LR MPI-ESM-LR CanESM2 CanESM2
CanESM2 CanESM2 MPI-ESM-LR MIROC-ESM
MIROC-ESM MIROC-ESM CMCC-CM EC-EARTH

main. As such, the actual number of ensemble means in this
experiment is smaller than 288.

3.3 Historical bias and future projected changes in
unweighted model ensembles

The figures shown in later sections focus on the ensemble
means from the 48 weighting strategies applied to the full do-
main. The discussion surrounding bias and projected changes

represented by the ensemble means in the following subsec-
tion will be compared to the unweighted ensemble means
of high temperature and precipitation from the CMIP5 and
LOCA ensembles. For this reason, we first show the histor-
ical ranges and the ranges of the future projected changes
using the unweighted model ensemble (Fig. 5) before report-
ing on the results using the weighted ensembles. The un-
weighted CMIP5 ensemble as a whole tends to underestimate
high temperatures in the historical period, overestimate pre-
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Figure 5. The unweighted model values across each of the three domains. Panels (a, c) show results during the historical period (1981–2005),
and the raw ensemble is compared to the same values from the Livneh observations. Panels (b, d) show the 2070–2099 projected changes
under RCP8.5 from both ensembles. Panels (a, b) are for precipitation, and (c, d) are for high temperature.

cipitation in New Mexico, and underestimate precipitation in
Louisiana (top left panel of Fig. 5). The LOCA ensemble is
much closer to the Livneh observations, which is expected
given the bias correction applied in statistical downscaling.
Yet, for the unweighted LOCA ensemble, there is a tendency
to underestimate precipitation in the whole domain and the
New Mexico sub-domain and to overestimate temperature in
all of the domains (bottom left panel of Fig. 5). For the fu-
ture projected changes in the unweighted CMIP and LOCA
ensembles, the projected high temperature changes are con-
sistent between ensembles (bottom right panel of Fig. 5), and
the projected changes in precipitation are less variable in the
LOCA ensemble for the New Mexico domain and more vari-
able for the Louisiana domain (top right panel of Fig. 5). In

addition, the right-hand panels of Fig. 5 show that the pro-
jected changes around the mean from the raw ensemble are
significantly larger than the reduced spread in Fig. 6 (particu-
larly from the BMA results) in the weighted ensembles. This
suggests that the raw ensemble has less confidence for both
variables, both ensembles, and all three regions compared to
the weighted ensembles. Given this baseline information, the
following subsections discuss and compare the unweighted
and weighted ensemble means for each ensemble (CMIP5
and LOCA). The weights for each model from each multi-
model weighting strategy are given in Tables S2–S7.
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Figure 6. Mean projected changes in temperature and precipitation using all 48 weighting schemes, applied to all three domains and both
variables (tmax and pr). Panels (a, b) focus on pr, panels (c, d) focus on Tmax, (a, c) on the CMIP5 ensemble, and (b, d) on the LOCA
ensemble. In an individual group, the top row shows the results from weighting schemes derived with tmax, and the bottom row shows the
results from weighting schemes derived with pr. In addition, within an individual group, the left column shows the results for weighting
derived using the full domain, the middle column shows the results for weighting derived using the New Mexico domain, and the right
column shows the results for weighting derived using the Louisiana domain. Within a given domain and variable, the results are shown from
left to right for the domain the weights are applied to. The box plots are the results from the 100 BMA posterior weights.

3.4 Historical bias and future projected changes using
the weighted ensembles

The 48 weighting strategies are then applied across three do-
mains and two variables to produce 288 ensemble means.
The mean projected changes can be sensitive to the weight-

ing scheme, domain, and variable used. The future projected
changes from the different ensemble means are summarized
in Fig. 6, where the box plots represent the range of the en-
semble mean change from the 100 BMA posterior weights.
When the weighting strategy uses tmax, the resulting CMIP5
mean projected change predominantly shows a decrease in
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precipitation for all domains (top left group of panels in
Fig. 6, top row of figures). For the weighting strategies us-
ing tmax with the LOCA ensemble (top right group of panels
in Fig. 6, top row of figures), the mean precipitation projec-
tions are more variable concerning the domain to which the
weighting is applied.

Using weighting strategies with precipitation and the
CMIP5 ensemble, the mean projected precipitation increases
or decreases when Louisiana or New Mexico is used to derive
weights across all three applied domains (top left group of
panels in Fig. 6, bottom row of figures). For weighting strate-
gies using precipitation in the LOCA ensemble, the mean
projected precipitation generally decreases for most weight-
ing schemes (top right group of panels in Fig. 6, bottom row
of figures), except for the resulting means for Louisiana with
the BMA weighting scheme. In contrast to precipitation, the
ensemble mean changes for tmax are fairly consistent for
both CMIP and LOCA ensembles (bottom groups of pan-
els in Fig. 6, all rows of figures), with all model weighting
strategies indicating a consistent increase in temperature for
all domains.

As for the uncertainty in the results, we find in our ma-
trix of results a reduction in the overall uncertainty com-
pared to the spread in the original ensemble. This can be seen
when comparing the results of the unweighted (Fig. 5) and
weighted ensembles (Fig. 6). Although the maps of future
change and the results from Fig. 6 show that the weighted en-
semble means have different results based on the weighting
strategy used, the overall uncertainty is still reduced when
applying model weighting even when considering the many
strategies implemented in this study. This is particularly ev-
ident when examining the results for those strategies using
the BMA weighting scheme (Fig. 6).

Aside from the comparisons of the weighted mean change
to the raw ensemble change and unweighted mean change,
one can consider the magnitude of these means compared
to the internal variability of the climate models and inter-
model spread of the projected change. The intermodel spread
calculated here is represented by the unweighted standard
deviation of the projected change in ensemble members.
The internal variability of the historical and future period
is represented by the ensemble average of the standard de-
viation of each variable from each ensemble member over
time (per Hawkins and Sutton, 2009, 2011; Maher et al.,
2020) for each of the three domains (full, Louisiana, and
New Mexico). However, we note that the forcing response
is not removed given that the temporal period is not con-
tinuous, which is a caveat for this analysis. In the case of
tmax, the projected changes from each ensemble mean are
greater than the internal variability of the models and the
intermodel spread regardless of the weighting scheme, en-
semble, domain used to derive the weights, or the variable
used to derive the weights (Fig. 7). In contrast, the differ-
ences between weighting strategies do result in some dif-
ferences in weighted means for the projected change in pre-

cipitation that are comparable to the internal variability and
intermodel spread. For example, for the CMIP5 ensemble
means weighted for Louisiana precipitation and applied to
Louisiana precipitation, the difference between the BMA en-
semble mean and the unweighted mean is comparable to
the intermodel spread and internal variability. In addition,
the difference between the BMA ensemble mean created
based on Louisiana precipitation and all the weighted ensem-
ble means created based on full domain precipitation is also
comparable to the intermodel spread and internal variability.
Overall, results in Fig. 7 suggest that, in general, the pro-
jected changes in temperature are larger than the ensemble
spread and the internal variability of temperature, whereas
for precipitation, the projected changes are not as great as the
original ensemble spread or the internal variability of precip-
itation.

The following section and corresponding figures compare
the results from the various weighting strategies applied in
this study. Figure 8 looks at historical biases and Fig. 9 shows
the projected future change signals in precipitation for the
for strategies using the CMIP5 ensemble. Figures 10 and 11
look at historical bias and projected future change signals in
high temperature for CMIP5. Figure 12 looks at the projected
future change signal in precipitation for weighting strategies
using the LOCA ensemble, and Fig. 13 looks at the projected
future change signal in high temperature for weighting strate-
gies using the LOCA ensemble. For an in-depth analysis of
how the model weighting strategies impact the resulting his-
torical bias and climate change signals shown in Figs. 8–13,
readers are referred to the Supplement, with a discussion on
the main findings reported in the next section. For additional
results that complete the analysis, readers are referred to the
Supplement (Figs. S1–S6), which includes bias maps from
the LOCA ensemble (Figs. S1–S2) as well as error distri-
butions from the historical simulations of both ensembles
(Figs. S3–S6). Figures S3–S6 indicate that all the weighting
strategies used in this study resulted in higher skill for both
high temperature and precipitation in all three domains. To
summarize the results for skill, the RMSE of each weighting
strategy is shown for all three domains for precipitation and
high temperature in Tables 2 and 3, and the RMSEs for the
unweighted cases are in Table 4. Of the weighting strategies
using the CMIP5 ensemble 92 %, 92 %, and 75 % have lower
RMSE for precipitation than their unweighted counterparts
for the full, New Mexico, and Louisiana domains. Similarly
for the high temperature, 96 %, 100 %, and 79 % of weight-
ing strategies have lower RMSE than their unweighted coun-
terparts for the full, New Mexico, and Louisiana domains.
Therefore, most weighting strategies have higher skill than
the unweighted CMIP5 ensemble. However, there is a similar
pattern for weighting strategies using the LOCA ensemble.
For precipitation, 79 %, 58 %, and 67 % of weighting strate-
gies using the LOCA ensemble have a lower RMSE than
their unweighted counterparts for the full, New Mexico, and
Louisiana domains. Similarly for high temperature, 88 %,
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Figure 7. Absolute value of mean projected changes in temperature and precipitation using all 48 weighting schemes, applied to all three
domains and both variables (tmax and pr), the standard deviation of the projected changes from the CMIP5 and LOCA ensembles for both
variables, and ensemble average standard deviation of annual precipitation and temperature for both the historical and future periods (no
weighting is used to calculate any standard deviations). Panels (a, b) focus on pr, the bottom row focuses on tmax, panels (a, c) focus on the
CMIP5 ensemble, and panels (b, d) focus on the LOCA ensemble. In an individual group, the top row is the results from weighting schemes
derived with tmax, and the bottom row is the results from weighting schemes derived with pr. In addition, within an individual group, the left
column shows the results for weighting derived using the full domain, the middle column shows the results for weighting derived using the
New Mexico domain, and the right column shows the results for weighting derived using the Louisiana domain. Within a given domain and
variable, the results are shown from left to right for the domain the weights are applied to.

88 %, and 83 % of weighting strategies using the LOCA en-
semble have a lower RMSE than their unweighted counter-
parts. It is important to note that this analysis of RMSE and
bias is for the historical period only. Prior studies have noted
that reducing historical biases does not mean better perfor-
mance during the future period (Dixon et al., 2016; Sander-
son et al., 2017). Therefore, historical skill alone does not
justify the use of any weighting strategy. In what follows,

we do not recommend using any specific weighting strategy
based on the historical skill. Rather, we focus on the sensitiv-
ity of the projected changes to the various weighting strate-
gies.
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Table 2. RMSE (mm) of daily precipitation for each weighting strategy applied in all three domains. Weighting strategies include the
weighting scheme and the ensemble, variable, and domain used to derive model weights.

Weighting strategy Applied domain

Ensemble Variable Domain Weighting scheme Full New Mexico Louisiana

CMIP5 pr Full Skill 212.10 232.01 399.03
SI-h 196.04 217.24 346.87
SI-c 209.86 231.81 387.89
BMA 138.18 144.07 197.90

New Mexico Skill 188.21 403.07 109.52
SI-h 198.05 106.89 436.66
SI-c 192.07 109.17 412.74
BMA 262.49 109.67 573.99

Louisiana Skill 179.65 182.57 91.68
SI-h 177.40 175.26 89.30
SI-c 180.19 186.10 92.42
BMA 220.92 212.44 109.47

tmax Full Skill 223.77 240.32 431.97
SI-h 226.69 225.97 458.80
SI-c 222.72 233.96 431.94
BMA 205.24 136.17 477.53

New Mexico Skill 212.83 438.97 197.46
SI-h 219.89 145.69 498.12
SI-c 219.94 207.25 450.48
BMA 255.59 109.41 586.54

Louisiana Skill 196.94 211.71 373.35
SI-h 191.86 195.90 381.33
SI-c 180.19 193.73 351.64
BMA 167.19 171.51 313.55

LOCA pr Full Skill 66.67 79.58 60.58
SI-h 66.66 60.59 79.54
SI-c 66.81 60.61 80.10
BMA 55.87 55.02 69.31

New Mexico Skill 66.26 59.94 79.54
SI-h 66.24 60.04 79.37
SI-c 66.53 59.60 80.56
BMA 56.76 53.94 62.77

Louisiana Skill 65.72 60.43 76.29
SI-h 65.49 60.66 75.04
SI-c 66.15 61.31 75.34
BMA 61.77 60.30 55.27

tmax Full Skill 66.77 60.63 79.71
SI-h 66.77 60.63 79.74
SI-c 67.32 60.98 80.82
BMA 66.78 62.76 80.40

New Mexico Skill 66.77 60.62 79.72
SI-h 66.77 60.62 79.74
SI-c 66.94 60.76 80.59
BMA 63.02 59.10 81.92

Louisiana Skill 66.69 60.89 78.65
SI-h 66.54 60.74 79.56
SI-c 68.39 61.41 81.79
BMA 69.53 65.02 83.67
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Figure 8. Bias of CMIP5 ensemble mean precipitation (1981–2005) from the unweighted ensemble (a) and each weighted ensemble
mean (b, c). On the right side, the columns from left to right are for the Skill, SI-h, SI-c, and BMA weighting schemes, respectively.
The plots in panel (b) show the results for weights derived using temperature (tmax), and the plots in panel (c) show the results for weights
derived using precipitation (pr). Within a group of 12 on the right-hand side, the top row is for weights derived using the full domain, the
middle row is for weights derived using the Louisiana domain, and the bottom row is for weights derived using the New Mexico domain.

4 Discussion

Among climate scientists and the climate modeling commu-
nity, there is a debate regarding the weighting of multi-model
ensembles and, if one does apply weighting, how to do so.
This debate includes scientists involved in the development
of climate projections for the United States’ Fifth National
Climate Assessment (US 5th NCA report), as well as other
national and international assessments. The authors of this
study are involved in the development of climate projections
for the US 5th NCA report via group discussions on climate
modeling, downscaling, and model weighting, and these dis-
cussions include the same questions of interest in this study.
The debate over climate model weighing, particularly as con-
nected with the NCA, is a main reason that this study investi-
gates an extensive and comprehensive research matrix. Previ-
ous studies, such as those of Sanderson et al. (2015 and 2017)
and Knutti (2017), have focused on the evaluation and appli-
cation of singular weighting strategies, while other studies
have begun to consider the added components of bias correc-
tion (Shin et al., 2020), additional approaches to weighting
(Brunner et al., 2020b), and the sensitivities of multi-model
ensemble weighting in small regions (Kolusu et al., 2021).

This is the first study, to the authors’ knowledge, to com-
prehensively assess the sensitivities of the model weights

and resulting ensemble means to the combinations of vari-
ables, domains, ensemble types (raw or downscaled), and
weighting schemes used for a large and complex region of the
United States. The specific weighting schemes used include
the Sanderson et al. (2017) approach and Bayesian model
averaging (BMA; Massoud et al., 2019, 2020a; Wootten et
al., 2020a). The former approach is a prominent weight-
ing scheme used in the Fourth National Climate Assess-
ment, while the BMA is an increasingly prominent tech-
nique that will be used to create the projections in the Fifth
National Climate Assessment (NCA). The remaining two
weighting schemes used are a variation of the Sanderson
et al. (2017) method proposed by Wootten et al. (2020a)
and a common skill weighting approach. These weighting
schemes are compared alongside the resulting values from
an unweighted ensemble mean, which is the most commonly
used from of multi-model ensemble averaging in the litera-
ture. Therefore, this study quantifies multiple weighting sen-
sitivities to inform the larger discussion on multi-model en-
semble weighting. Our study assesses the sensitivities associ-
ated with multi-model weighting strategies but does not con-
sider the skill of the model weighting strategies in the future
projections. This latter aspect is the subject of future work.
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Figure 9. CMIP5 ensemble mean projected precipitation change (2070–2099, RCP8.5) from the unweighted ensemble (a) and each weighted
ensemble mean (b, c). On the right side, the columns from left to right are for the Skill, SI-h, SI-c, and BMA weighting schemes, respectively.
The plots in panel (b) show the results for weights derived using temperature (tmax), and the plots in panel (c) show the results for weights
derived using precipitation (pr). Within a group of 12 on the right-hand side, the top row is for weights derived using the full domain, the
middle row is for weights derived using the Louisiana domain, and the bottom row is for weights derived using the New Mexico domain.

4.1 Sensitivities of the results to the experimental
design

The results from individual weighting schemes are sensitive
to the choice of domain and variable of interest, regardless
of whether the ensemble is downscaled or not. However,
one can also note that the BMA weighting scheme tends to
be more sensitive than the others. As noted by Wootten et
al. (2020a) and Massoud et al. (2019, 2020a), the Skill, SI-
h, and SI-c weighting schemes focus on the first moment of
the distribution of a variable, while the BMA approach fo-
cuses on multiple moments of the distribution of weights.
The BMA weighting can therefore produce weights that are
significantly different from the other weighting schemes. In
addition, the BMA will also be more sensitive to the differ-
ences between domains and variables that are provided to
derive model weighting. This is particularly the case with re-
gards to the CMIP5 ensemble results for both variables but
is also evident in the LOCA ensemble results for precipita-
tion. The ensemble weights are most sensitive to the variable
and domain using the CMIP5 ensemble, and the weights cre-
ated with the LOCA ensemble are less sensitive. A statis-
tical downscaling procedure reduces the bias of the ensem-
ble members compared to the raw CMIP5 ensemble, which
likely results in there being less sensitivity when the LOCA
ensemble is used. This is particularly likely for high temper-

atures, which is traditionally much less challenging for both
global models and downscaling techniques to capture.

We find that, for precipitation, the ensemble mean pro-
jected change from a multi-model ensemble is sensitive to
the various choices associated with the derivation of model
weighting. In contrast, for high temperature, the ensemble
mean projected change is less sensitive. We also find that,
while a weighting strategy offers greater skill than an un-
weighted ensemble mean, there are distinct differences based
on the ensemble, variable, and domain of interest. The larger
domain of the south-central region contains multiple climatic
regions. The western portion of the domain includes arid and
mountainous New Mexico and southern Colorado. The east-
ern portion of the domain is the much wetter and less moun-
tainous area of Louisiana, Arkansas, and southern Missouri.
The complexity of the region presents a challenge to GCM
representation of precipitation and temperature. Deriving en-
semble weights based on Louisiana precipitation favors mod-
els which are wetter, while deriving ensemble weights based
on New Mexico precipitation favors models which are drier.
This effect translates into the projected changes for precip-
itation in the CMIP5 ensemble that can reverse the change
signal in the domain (Fig. 9). The sensitivity for precipitation
is evident when precipitation is the focus for deriving model
weights, but it is also present to a lesser degree when high
temperature is the focus for deriving model weights. The
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Table 3. RMSE (◦C) of daily precipitation for each weighting strategy applied in all three domains. Weighting strategies include the weight-
ing scheme and the ensemble, variable, and domain used to derive model weights.

Weighting strategy Applied domain

Ensemble Variable Domain Weighting scheme Full New Mexico Louisiana

CMIP5 pr Full Skill 2.19 3.67 0.86
SI-h 2.19 3.64 0.93
SI-c 2.29 3.80 0.93
BMA 2.04 3.37 0.80

New Mexico Skill 1.79 2.78 0.71
SI-h 1.76 2.48 0.75
SI-c 1.81 2.86 0.71
BMA 1.83 2.58 0.81

Louisiana Skill 2.29 3.61 1.36
SI-h 2.27 3.57 1.34
SI-c 2.33 3.66 1.42
BMA 2.47 3.75 1.79

tmax Full Skill 2.09 3.50 0.70
SI-h 1.96 3.24 0.71
SI-c 2.09 3.48 0.74
BMA 1.58 2.51 0.61

New Mexico Skill 1.77 2.72 0.66
SI-h 1.87 2.21 0.92
SI-c 1.78 2.77 0.66
BMA 2.10 2.07 1.08

Louisiana Skill 1.92 3.21 0.49
SI-h 1.90 3.19 0.48
SI-c 1.91 3.17 0.49
BMA 1.86 3.15 0.40

LOCA pr Full Skill 0.43 0.49 0.40
SI-h 0.43 0.49 0.40
SI-c 0.44 0.49 0.41
BMA 0.34 0.44 0.33

New Mexico Skill 0.43 0.49 0.40
SI-h 0.43 0.49 0.40
SI-c 0.44 0.49 0.40
BMA 0.36 0.44 0.37

Louisiana Skill 0.43 0.49 0.39
SI-h 0.43 0.49 0.39
SI-c 0.43 0.49 0.39
BMA 0.42 0.49 0.35

tmax Full Skill 0.43 0.49 0.40
SI-h 0.43 0.49 0.40
SI-c 0.43 0.49 0.39
BMA 0.28 0.43 0.21

New Mexico Skill 0.43 0.49 0.40
SI-h 0.43 0.49 0.40
SI-c 0.43 0.49 0.39
BMA 0.31 0.43 0.21

Louisiana Skill 0.42 0.48 0.37
SI-h 0.41 0.48 0.36
SI-c 0.42 0.48 0.35
BMA 0.29 0.44 0.21
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Figure 10. Same as Fig. 8, but for the bias of high temperature of the CMIP5 ensemble.

Table 4. RMSE of precipitation (mm) and high temperature (◦C)
for unweighted ensembles.

Domain

Variable Ensemble Full New Mexico Louisiana

pr CMIP5 239.25 266.19 449.79
LOCA 66.79 60.63 79.76

tmax CMIP5 2.39 3.95 0.96
LOCA 0.43 0.49 0.40

high temperature changes are also sensitive to the domain
when precipitation weighting is used because precipitation-
based weighting favors wetter or drier models (Fig. 11). In
contrast, the high temperature change from the CMIP5 en-
semble is much less sensitive when calculated with weights
derived from high temperatures. The sensitivity present us-
ing the CMIP5 ensemble is less apparent for the projected
changes with the LOCA ensemble. LOCA ensemble means
derived using the BMA weighting are more sensitive to the
variable and domain used to derive weights. The LOCA
downscaling, like most statistical downscaling methods, cor-
rects the bias of the CMIP5 ensemble, pushing all mod-
els to have similar historical skill. It follows that the BMA
weighting is more sensitive to the different choices consid-
ered here (ensemble, variable, and domain) and that the BMA
weighting responds to and captures changes in skill and co-
dependence resulting from the different options of ensemble,
variable, and domain. One caveat in this study is that the sub-

domains of New Mexico and Louisiana are small compared
to the resolution of the GCMs in CMIP5. This suggests that
natural variability may have had some effect on the results.
In future work, the authors will repeat this analysis using the
larger regions of the United States used in the National Cli-
mate Assessment.

4.2 Consideration of weighting scheme, variables of
interest, and domain choice

This study finds that mean projections of temperature are
much less sensitive to the weighting scheme used, while
mean projections of precipitation are more sensitive, partic-
ularly if the domain is very humid or very arid (Figs. 8–13).
The use of multiple weighting strategies would allow the sen-
sitivities associated with model weighting to be captured and
considered.

The results from this study also suggest that weighting
on specific variables could be used to address the large bi-
ases and co-dependencies with respect to that variable among
the models and produce ensemble means that reflect the ap-
propriate confidence with regards to that variable. However,
temperature, precipitation, and multiple other variables have
strong physical relationships and are thus not fully indepen-
dent themselves. As such, creating separate weights for vari-
ables independently may break the physical relationships be-
tween variables in resulting ensemble means. In addition,
this study did not examine multivariate weighting strategies
such as the implementation of SI-h in the Fourth National
Climate Assessment (Sanderson and Wehner, 2017). A mul-
tivariate weighting strategy (a weighting scheme used with
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Figure 11. Same as Fig. 9, but for the mean projected change in high temperature from the CMIP5 ensemble.

multiple variables in a given domain) will likely retain phys-
ical relationships between variables when used to calculate a
multi-model ensemble mean. However, this was not explored
in this study. In addition (to our knowledge), the sensitivity
of multivariate weighting strategies has not been explored in
prior literature. Future work will explore multivariate ensem-
ble weighting in greater depth.

Climate model evaluations and national and international
assessments typically focus global or continental areas. How-
ever, the individual National Climate Assessment (NCA) re-
gions are climatically very different from each other. The in-
dividual GCMs in the CMIP ensemble likely do not have
the same performance across all regions, and an individual
downscaling technique can be evaluated in one of these re-
gions but applied to the entire continental United States or
North America. In addition, the regions of Alaska, the US Pa-
cific Islands, and the US Caribbean Islands have vastly differ-
ent climates than the continental United States. In this study,
we have found that the weighting for precipitation in particu-
lar can be very sensitive to the domain and weighting scheme
used. This is also found to be the case to a lesser degree with
temperature. Based on this study, the model weighting for
each of the NCA regions will likely be vastly different than
the weighting for the continental United States as a whole.

At the time of writing, discussion surrounding the use of
weighted multi-model ensembles has been traditionally lim-
ited to climate model developers and the production of na-
tional or international climate assessments but is beginning

to be used in impact assessments. Among climate model
developers, Knutti et al. (2017) argue that model weight-
ing is a necessity in part to account for situations in which
the model spread in the present-day climatology is massive,
resulting in some models having biases so large that using
an unweighted mean is difficult to justify. In other situa-
tions, model interdependence becomes increasingly relevant,
with the increased use of common code bases across institu-
tions causing unweighted means to be overconfident (Brun-
ner et al., 2020b). This concern was also shared by Wootten
et al. (2020a) with respect to the common modeling code
base applied in the statistical downscaling process. Based
on expert discussions surrounding downscaling and model
weighting, the NCA is now considering weighting based on
model climate sensitivity as opposed to traditional model
weighting approaches (Nijsse et al., 2020; Hausfather et al.,
2022). This study demonstrates that the weights and result-
ing ensemble means (particularly for precipitation) are sensi-
tive to the ensemble (CMIP or LOCA), variable, and domain
used. However, nothing done in this study negates the con-
cerns of Knutti et al. (2017) and Wootten et al. (2020a). An
unweighted mean will allow models with large biases and
co-dependencies, regardless of the domain or variable of in-
terest, to have a larger influence in either climate models or
impact assessments. Therefore, although this study demon-
strates that resulting ensemble means for variables of interest
are sensitive to the choice of weighting strategy, a weighting
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Figure 12. Same as Fig. 9, but for the mean projected change in precipitation from the LOCA ensemble.

strategy should still be used, with careful consideration given
to domain, variable, and weighting scheme.

4.3 Challenges and future work

In this study, we showed that the weighting schemes and the
resulting weighted ensemble means are sensitive to the do-
main and variable used. We have several findings from this
analysis. Firstly, we find that the model weights themselves
are sensitive to the weighting scheme used, with BMA be-
ing the most sensitive owing to the ability to capture multiple
moments of the distribution of the ensemble. Second, we find
that precipitation can be highly sensitive to the domain used
in the weighting strategy. We also find that temperature can
also be sensitive to a lesser degree.

Our findings are somewhat different from those of Befort
et al. (2022), which suggests the impact of model weight-
ing strategy to be minor. However, we note that Befort
et al. (2022) focused on decadal climate prediction with
a smaller ensemble than the one presented in this study.
At the time of writing, some intercomparisons of weight-
ing schemes have been attempted in smaller regions with a
smaller number of weighting strategies. Balhane et al. (2022)
found that resulting model weights are sensitive to the quan-
tity of interest used in derivation, while also finding that
model weights are less sensitive to spatial domain. This
agrees in part with our study, showing that the model weight-
ing and resulting means are sensitive to both the domain and
variable of interest used with the model weighting scheme.

A future application of this analysis may incorporate addi-
tional concerns or new approaches to ensemble weighting
associated with emergent constraints. The relationship be-
tween interannual variability and long-term trends has led to
new consideration of weighting an ensemble by the ability
of individual models to represent observed variability for the
quantities of interest (Wenzel et al., 2014; Nijsse et al., 2020;
Balhane et al., 2022). As described here, this reflects chang-
ing the variable of interest in a weighting strategy to reduce
the uncertainty in the ensemble by constraining it to the ob-
served variability. While the emergent constraints approach
is potentially useful, it depends upon having reliable obser-
vations of each variable and thorough understanding of the
physical process alongside multiple other limitations (Kuepp
et al., 2019; Caldwell et al., 2018). In addition, the emergent
constraints approach focus on observed variability may not
address the “hot model” problem identified by Hausfather et
al. (2022), wherein models with overly high climate sensi-
tivity result in overly large projected increases in global tem-
peratures. While neither approach was the focus of this study,
future research should consider the impacts of using one or
both (observed variability or climate sensitivity) in weighting
strategies to constrain climate model ensembles and reduce
uncertainty. In this study, we focused on the sensitivity un-
der RCP8.5 to maximize the effects observed from different
weighting strategies. Given the smaller change signals under
other RCPs it is possible that the sensitivities observed here
have a lesser magnitude under other RCPs. Considering this
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Figure 13. Same as Fig. 11, but for the mean projected change in high temperature from the LOCA ensemble.

component is another aspect that could be explored in future
work.

Finally, the authors recognize that the climate modeling
community and connected stakeholders are incorporating cli-
mate model simulations as inputs to additional modeling ef-
forts such as hydrology modeling or crop modeling for use
in impact assessments. While most impact assessments have
not incorporated model weighting directly, some studies are
beginning to do so (e.g., Skahill et al., 2021; Amos et al.,
2020; Sperna Weiland et al., 2021; Schäfer Rodrigues Silva
et al., 2022; Elshall et al., 2022). There are known nonlin-
ear relationships between climate and impact modeling (such
as hydrology or crop modeling). Would a weighting strat-
egy that used climate model inputs produce the same result
as multi-model weighting based on, for example, streamflow
output using an ensemble of climate projections as inputs?
Given the sensitivities associated with weighting schemes,
variables, domains, and ensembles (identified in this study),
we suspect that the weighting strategy would not be the same
when using the output of an impact model (such as stream-
flow) and that the translation of error and co-dependencies
from climate model projections to impact models may result
in a higher degree of sensitivity with respect to stakeholder-
specific variables (such as streamflow). Therefore, the ques-
tions of sensitivity of weighting strategies and ensemble
means bear increasing relevance as the number of users of
climate projection output continues to increase.

5 Conclusions

This study examines the sensitivity of the multi-model en-
semble weighting process and resulting ensemble means to
the choices of variable, domain, ensemble, and weighting
scheme for the south-central region of the US. In general,
we see that weighting for Louisiana makes the future wet-
ter and less hot, weighting for New Mexico makes the future
drier and hotter, and accounting for the whole domain pro-
vides a compromise between the two. In addition, we see
that ensemble mean projections for precipitation are more
sensitive to the various aspects tested in this study, while en-
semble mean projections for high temperature are less sensi-
tive. As such, some domains and/or variables have uncertain
outcomes regardless of the weighting method. But for other
domains and/or variables, the uncertainty is dramatically re-
duced, which can be helpful for the assessment of climate
models and climate adaptation planning. The sensitivity of
precipitation and temperature projections is reduced when
LOCA is used, which is likely the result of the bias correc-
tion associated with the LOCA downscaling method. In addi-
tion, the BMA weighting scheme is more sensitive than the
other weighting schemes. BMA’s sensitivity is the result of
the BMA approach focusing on multiple moments of the dis-
tribution to account for model biases and co-dependencies.

Although there is sensitivity associated with the model
weighting, efforts using a multi-model ensemble of cli-
mate projections should incorporate model weighting. Model
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weighting still accounts for issues of bias and co-dependence
that preclude a model democracy approach to crafting multi-
model ensemble means. Incorporating multiple weighting
schemes allows for assessing and capturing the sensitivity
associated with model weighting to the benefit of both cli-
mate modeling efforts and climate adaptation efforts. Given
the sensitivity associated with weighting for different vari-
ables and domains, one may also consider crafting weighting
schemes with a focus on the domains or variables of interest
to an application. In addition, since some impact assessments
or adaptation planning efforts make use of climate projec-
tions as inputs to impacts models (such as hydrology or crop
models) there is a need to consider research similar to this
study with regards to the direct outputs of impact models us-
ing climate projections.

There are a couple of caveats for suggested future re-
search. First, this study makes use of domains that are fairly
small where the spatially aggregated internal climate vari-
ability is larger than that of a large domain. Second, this
study focused on the south-central United States. Future ef-
forts should consider this analysis using larger regions, such
as the continental United States and the NCA subregions.
Future efforts should also consider examining multivariate
weighting to account for the physical relationships between
variables. Third, this study assumes stationarity in the multi-
model ensemble weights and resulting weighted means. Fu-
ture research will examine the accuracy and sensitivity us-
ing a perfect model exercise (such as what is described by
Dixon et al., 2016, and Sanderson et al., 2017) to test the
stationarity assumption associated with ensemble weighting.
This is important since studies like Sanderson et al. (2017)
show that a more skillful representation of the present-day
state does not necessarily translate to a more skillful projec-
tion in the future. Our study does not consider the skill of the
multi-model weighting strategies in future projections, but
rather it assesses the sensitivity of future projections to the
various multi-model weighting strategies. Fourth, this study
did not consider an emergent constraints approach for either
observed variability or climate sensitivity, which should be
considered in future research. Finally, given the increasing
use of climate model ensembles in impact models, future ef-
forts should consider an investigation similar to this study
using an impact model. Such future efforts will answer mul-
tiple questions regarding the appropriate model weighting
schemes, but also provide potential guidance to boundary or-
ganizations building capacity to assist in regional and local
climate adaptation planning and impact assessments.
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