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S.1 Equations for Weighting Schemes  

This section contains the equations for each of the four weighting schemes used in this study. Many of 
these weighting schemes are drawn from prior literature. As such, they are summarized in the 
manuscript text, Section 2.4, but the details of the equations are included here. We refer the authors to 
the prior literature where appropriate for some of the weighting schemes and equations. 5 
 
S.1.1. Historical Skill and Historical Independence Weighting (SI-h) 
The Historical Skill and Historical Independence Weighting (SI-h here and in the main text) is 
described in full by Sanderson et al. (2017). For full details we refer the reader to Sanderson et al. 
(2017) and the process and weighting is described here in brief. The SI-h uses a normalized area-10 
weighted root mean square error (RMSE) matrix. This matrix compares the RMSE of each model 
against the observations (representing the skill) and each model against all other models (representing 
the independence). Sanderson et al. (2017) uses a normalized matrix for each variable to linearly 
combine and produce one set of weights. Since this study focused on singular variables independently, 
and not on a multivariate weighting, we used a single normalized RMSE matrix calculated separately 15 
for pr (annual total precipitation) and tasmax (annual average of daily high temperature). As described 
in Section 2, the weights for each variable are calculated separately.  
 
The normalized area weighted RMSE matrix over the domain is used to calculate separate weights for 
skill and independence. The independence weights are calculated by first computing a similarity score 20 
from the RMSE matrix: 
 

𝑆"𝛿!"$ = 𝑒
#$

%!"
&#

'
$

(𝑆1) 

 
Where S is the similarity score, 𝛿!" is the RMSE between models i and j, and 𝐷( is the radius of 25 
similarity. The radius of similarity (Sanderson et al. 2015) is a free parameter that determines the 
distance over which models are considered similar and are downweighted for co-dependence. For 
simplicity, we retained the same value for 𝐷( used by Sanderson et al. (2017), 𝐷( = 0.48. Given the 
similarity score for a model I, the effective repetition is calculated as: 
 30 
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Where 𝑅((𝑖) is the effective repetition of model i, and n is the total number of models. The 
independence weight, 𝑤(, for model i is the inverse of its effective repetition: 
 35 
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The skill weights are also calculated based on the normalized RMSE matrix, specifically, the 
normalized RMSE of each model against the observations. The skill weight, 𝑤,, for model i is 
calculated as: 40 
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Where 𝐷, is the radius of model quality, set to 0.8 to match Sanderson et al. (2017). Finally, the overall 
weight, w, for model i is calculated as: 45 
 

𝑤(𝑖) = 𝐴𝑤((𝑖)𝑤,(𝑖) (𝑆5) 
 
Where A is a normalization constant such that the overall weights of all models sum to one. 
 50 
S.1.2. Historical Skill and Future Independence Weighting (SI-c) 
One can argue that downscaling nudges every model toward the historical observations during the 
historical period because of the bias correction in the statistical downscaling process. As such, one 
would expect the historical skill of a downscaled ensemble to be high and the independence to be low. 
The Historical Skill and Future Independence Weighting (SI-c here and in the main text) was designed 55 
by Wootten et al. (2020) to account for this feature of statistical downscaling. The SI-c follows the same 
calculations as the SI-h. However, where the SI-h uses the normalized RMSE matrix of each model 
against all models in the historical period to calculate independence weights, the SI-c uses a normalized 
RMSE matrix of the projected change signal of each model against the other. That is, the independence 
weighting in the SI-c focuses on the repetition of the change signal while the SI-h focuses on the 60 
repetition of the historical climatology. This is a key difference between the SI-h and SI-c, but the 
equations are themselves identical between both weighting schemes 
 
 
S.1.3. Historical Skill Weighting (Skill)  65 
Weighting an ensemble for skill is one of the most well-known approaches to multi-model ensemble 
weighting. This study makes uses of the normalized area-weighted root mean square error (RMSE) 
between each model and the observations for the skill weighting. The Skill weighting scheme used here 
is in essence only the skill component of weighting from Sanderson et al. (2015; 2017) also described in 
Section S.1.1. After calculating the skill weight for each model i, the weights are normalized in the 70 
following manner: 
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Where n is the number of models. 75 



3 
 

 
S.1.4. Bayesian Model Averaging 
 
Bayesian Model Averaging (BMA) is different from other model averaging methods because it 
explicitly estimates each model’s weight and its uncertainty by maximizing a likelihood function that 80 
represents the fit to the historical observations. In other words, BMA provides model weights that 
produce model combinations with the maximum likelihood of matching the observed data compared to 
other model combinations. In this study, using the optimized weights, BMA constructs the mean and 
uncertainty distribution of the climate metric of interest. 
 85 
Since the BMA method estimates a distribution of model weights, various model combinations become 
possible, which provides a solution to the model dependence issue. In other words, consider that in the 
BMA framework there is a hypothetical Model A and a Model B that are similar and therefore not 
independent. Model A may have higher weights in some combinations, and conversely, Model B might 
have higher weights in other combinations. Consequently, if both models are rewarded in the same set 90 
of weights, it is very likely that each model receives a reduced weight since both models are providing 
information to the model average. See Supplementary Section 2 of Massoud et al., (2020a) for 
additional details on how dependence is inferred with the BMA method. 
 
The estimated model weights using BMA are as follows: 95 
 

𝑤.,012 = [𝑤(𝑚+), 𝑤(𝑚3), … , 𝑤(𝑚4)] (𝑆7) 
 
where w(mi, i = 1, 2, 3, . . ., k) represents the optimized weights of K models after fitting the 
observations using the likelihood function. The range of w(mi) is between 0 and 1, with a weight of 0 100 
for models that do not contribute any information and a weight of 1 for models that fully contribute to 
the projection. The sum of a given combination of model weights is equal to 1. The final estimates of 
the BMA model weights, or wm,BMA in Eq. (S7), are utilized to constrain the spread of uncertainty in the 
projected end of century climate. 
 105 
Our likelihood function is set up here as: 
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where i, j refers to the longitudinal and latitudinal indices of grids on the map; Y(i, j) is the observed climate metric at grid i, 110 
j; and X(i, j) is the BMA-weighted model ensemble average of the climate metric at grid i, j. We apply heavy sampling on the 
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possible model weight combination in search of model weights that maximize the likelihood function in Eq. (S7), which allows 

for the estimation of the optimized model weights, or wm,BMA in Eq. (S8). 

S.2 Maps from the CMIP5 ensembles - precipitation 

Among the 288 ensemble means created from this experimental setup, there are numerous times when 115 
results are duplicated. For example, applying a given weighting combination created using the full 
domain to Louisiana would have the same value as the same weighting combination created using the 
full domain applied to the full domain and examining only the Louisiana area. As such, the results in 
this and the following sections will focus only on those ensemble means created from the various 
combinations of weighting schemes applied to the full domain for each ensemble. In this way, one can 120 
then examine the effects for the Louisiana and New Mexico domains and other regions of the full 
domain.  
 
The bias for the CMIP5 ensemble means of precipitation are shown in Figure 8, and they depict the 
influence of the different weighting schemes. For reference, the precipitation bias of the unweighted 125 
ensemble mean shows a tendency to overestimate precipitation in the western portion of the domain and 
underestimate in the eastern portion of the full domain (Figure 8, larger map on the left). For those 
ensemble means created with temperature-derived weights (Figure 8, group of maps in the top right), 
the pattern of bias in precipitation remains consistent but changes in magnitude compared to the 
unweighted scheme. When weighted for the full domain (Figure 8, group of maps in the top right, top 130 
row of figures), the bias pattern of precipitation is similar. When weighted for high temperatures in 
Louisiana (Figure 8, group of maps in the top right, middle row of figures), the magnitude of 
underestimation of precipitation in the eastern portion of the domain is smaller. In contrast, when 
weighted for high temperatures in New Mexico (Figure 8, group of maps in the top right, bottom row of 
figures), precipitation is underestimated by a larger amount in the eastern portion of the domain 135 
compared to the full domain temperature weighting. When precipitation is used to derive the weights 
(Figure 8, group of maps in the bottom right), the resulting ensemble mean of precipitation is sensitive 
to the domain used for the weighting. When the full domain precipitation is used for weighting (Figure 
8, group of maps in the bottom right, top row of figures), the ensemble mean shows a consistent pattern 
to the bias of the unweighted ensemble mean. Additionally, the magnitudes of the bias in the full 140 
domain are decreased using the BMA weighting scheme, which agrees with the results from Wootten et 
al. (2020a). When weighted for precipitation in Louisiana (Figure 8, group of maps in the bottom right, 
middle row of figures), the precipitation bias of the ensemble mean is overestimated across much of the 
larger domain with a lower bias in Louisiana. In contrast, when weighted for precipitation in New 
Mexico (Figure 8, group of maps in the bottom right, bottom row of figures), the precipitation bias of 145 
the ensemble mean is underestimated across much of the larger domain, particularly in the eastern 
portion of the domain and when using the BMA weighting. 
 
The future projected change maps of precipitation for the CMIP5 ensemble, shown in Figure 9, are also 
sensitive to the weighting combination used. The unweighted CMIP5 ensemble mean (Figure 9, larger 150 
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map on the left) projects a decrease in precipitation across much of Texas and New Mexico, with 
increases in precipitation projected in the northeast portion of the domain. When weighted for high 
temperature in the full domain (Figure 9, group of maps in the top right, top row of figures), the pattern 
remains consistent for each ensemble mean, with an expansion of projected decreases into the northern 
portion of the domain with the BMA weighting. The area of projected decreases shrinks for three out of 155 
four weighting schemes (all schemes except the BMA method) when high temperatures in Louisiana are 
used to derive the weights (Figure 9, group of maps in the top right, middle row of figures). Using BMA 
and Louisiana high temperatures to derive the ensemble weighting, the ensemble mean has a similar 
pattern and magnitude to the ensemble mean created with BMA weights derived using high 
temperatures in the full domain. In contrast, using New Mexico’s high temperatures to derive ensemble 160 
weights (Figure 9, group of maps in the top right, bottom row of figures) causes the area of projected 
decreases in the ensemble mean to shrink to a region along the Gulf Coast, with projected increases in 
the northeast and northwest corners. Using precipitation in the full domain to derive ensemble weights 
(Figure 9, group of maps in the bottom right, top row of figures), three of the four weighting schemes 
have a similar pattern to the unweighted mean, while the BMA weighted ensemble mean has a much 165 
weaker drying signal and a large increase in precipitation in the northeast corner of the domain. The 
greatest contrast between the CMIP5 ensemble means exists between the means created with weights 
based on Louisiana and New Mexico precipitation (Figure 9, group of maps in the bottom right, middle, 
and bottom row of figures). When Louisiana precipitation is used to derive ensemble weights (Figure 9, 
group of maps in the bottom right, middle row of figures), the ensemble mean shows an increase in 170 
precipitation across the eastern portion of the domain. The greatest increase in precipitation is in the 
northeast corner of the domain for three of four weighting schemes, while the greatest increase in the 
ensemble mean using the BMA weighting derived with Louisiana precipitation is actually in Louisiana. 
The ensemble mean created with weights derived from New Mexico precipitation (Figure 9, group of 
maps in the bottom right, bottom row of figures) projects a decrease in precipitation across New 175 
Mexico, much of Texas, and all of Louisiana with three out of four weighting schemes. When BMA 
weights are derived using New Mexico precipitation, the resulting ensemble mean projects a decrease in 
precipitation across the entire domain, with the greatest magnitude along the Gulf Coast. 

S.3 Maps from CMIP5 ensembles – high temperature 

There is more consistency in the historical bias and future projected changes of the weighted CMIP5 180 
ensembles of high temperatures, shown in Figure 10, compared to that of precipitation, and these 
weighted ensembles are less sensitive to the various weighting combinations. The bias of the 
unweighted CMIP5 ensemble mean high temperature (Figure 10, larger map on the left) shows a 
tendency to underestimate high temperatures in the western portion of the domain except for some 
mountainous regions where the bias is variable. When weights are derived using high temperatures in 185 
either the full domain or Louisiana (Figure 10, group of maps in the top right, top, and middle row of 
figures), the pattern remains similar to the unweighted mean regardless of the weighting scheme used. 
The ensemble means tend to overestimate temperatures east of the Rocky Mountains when the 
ensemble weights are derived using New Mexico high temperatures (Figure 10, group of maps in the 
top right, bottom row of figures). When using precipitation in the full domain to derive the ensemble 190 
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weights (Figure 10, group of maps in the bottom right, top row of figures), the bias for the resulting 
ensemble means is similar to the unweighted mean, but the high temperature is broadly underestimated 
when Louisiana precipitation is used to derive ensemble weights (Figure 10, group of maps in the 
bottom right, middle row of figures). In contrast, when New Mexico precipitation is used to derive 
ensemble weights (Figure 10, group of maps in the bottom right, bottom row of figures), high 195 
temperatures east of the Rocky Mountains are overestimated, particularly in the northeastern portion of 
the region. However, the magnitude of the overestimate is not as large as the overestimate of high 
temperatures when the New Mexico high temperatures are used to derive ensemble weights.  
 
As with the high temperature bias, Figure 11 shows that the future projected changes in high 200 
temperature in the resulting ensemble means are less sensitive than projected changes in precipitation 
with the CMIP5 ensemble (i.e., plots in Figure 9). If the full domain precipitation (Figure 11, group of 
maps in the bottom right, top row of figures) or high temperature (Figure 11, group of maps in the top 
right, top row of figures) are used to derive the ensemble weights, the ensemble mean change from three 
out of four weighting schemes tends to have a similar pattern to the unweighted ensemble mean. The 205 
weighting with BMA using the full domain high temperatures results in a similar pattern of projected 
changes in high temperature but concentrates the greatest changes in the northern portion of the domain. 
Similarly, the weighting with BMA using the full domain precipitation results in a similar pattern of 
projected changes in high temperature but concentrates the greatest changes on the western edge of the 
domain. The projected changes in high temperature are larger, particularly in the northwest corner of the 210 
domain with BMA, when New Mexico high temperatures (Figure 11, group of maps in the top right, 
bottom row of figures) or precipitation (Figure 11, group of maps in the bottom right, bottom row of 
figures) are used to derive ensemble weights. The greatest projected changes in high temperature are in 
the ensemble mean when created using weights derived with New Mexico precipitation and the BMA 
weighting scheme. With regards to the Louisiana domain (Figure 11, group of maps in the bottom right, 215 
middle row of figures), there is a notable difference in the projected change in high temperature. When 
the high temperatures in Louisiana are used to derive ensemble weights, the projected high temperature 
changes follow a similar pattern to the unweighted ensemble mean, however, the projected high 
temperature changes are less than the unweighted mean and the other ensemble means. 

S.4 Maps from the LOCA ensembles – precipitation and high temperature 220 

Previous work by Wootten et al. (2020a) has shown that the future projected changes from a resulting 
ensemble mean can be sensitive to whether or not downscaling was used in the ensemble. In addition, 
downscaling also reduces the bias of the individual members of a GCM. The bias reduction resulting 
from the LOCA downscaling of precipitation projections is demonstrated by the comparison between 
Figure S1 to Figure 8. The bias reduction resulting from the LOCA downscaling of high temperature 225 
projections is demonstrated by the comparison between Figure S2 to Figure 10. For both variables, the 
use of downscaling demonstrably reduces the bias of the ensemble across all three domains (Figures S3-
S6). As such, the results in this section will focus on the projected changes of high temperature and 
precipitation using the downscaled LOCA ensemble.   
 230 
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The precipitation future projected change from the unweighted mean for the LOCA ensemble is shown 
in Figure 12 (larger map on the left) and displays a similar pattern to the unweighted CMIP5 ensemble 
(from Figure 9), with a decrease in precipitation projected along the Gulf Coast and a projected increase 
in the northeast corner of the domain. When weighting is based on high temperature in all three 
domains (Figure 12, group of maps in the top right), the projected change in precipitation is similar to 235 
the unweighted ensemble mean (with some changes in magnitude) for all of the weighting schemes 
except for BMA. When weighting is based on the full domain and Louisiana high temperatures with the 
BMA weighting scheme, the LOCA ensemble mean projects an increase in precipitation across much of 
the eastern and northern portions of the domain, and any area showing a projected decrease is confined 
to southern Texas. When weighting is derived using New Mexico high temperatures and the BMA 240 
weighting scheme, the same region of southern Texas is projected to see decreases in precipitation as 
the unweighted version and with a larger magnitude. However, when looking at this scheme, the 
projected increases in rainfall are primarily in the northern area of the domain with lesser magnitude 
than other BMA weighted means weighted based on high temperature. When using the full domain 
precipitation to derive ensemble weights (Figure 12, group of maps in the bottom right), the resulting 245 
ensemble mean precipitation changes are similar to the unweighted precipitation change, though the 
BMA weighted version also includes a greater increase in precipitation in the northwest corner of the 
domain. When weighted on precipitation in New Mexico or Louisiana with the LOCA ensemble (Figure 
12, group of maps in the bottom right, middle, and bottom row of figures), the ensemble means for three 
of the four weighting schemes have a similar projected change to the unweighted ensemble mean. When 250 
the ensemble weights are derived using Louisiana precipitation with the BMA weighting scheme, the 
resulting LOCA ensemble mean projects an increase in precipitation in the eastern portion of the 
domain, with little to no change in other parts of the domain. The BMA weighted mean of the LOCA 
ensemble projects a decrease in precipitation along the Gulf Coast and Louisiana and an increase across 
much of the rest of the domain when New Mexico precipitation is used to derive weights. 255 
 
The unweighted mean high temperature change for the LOCA ensemble, shown in Figure 13 (larger 
map on the left) is similar to the CMIP5 ensemble (from Figure 11). For three out of four weighting 
schemes (all schemes except BMA), the resulting ensemble mean projected change for high temperature 
tends to be similar to that of the unweighted ensemble mean. However, the resulting LOCA ensemble 260 
mean created with the BMA weighting is sensitive to the domain and variable used to derive weights. 
When the full domain or Louisiana high temperatures are used with BMA to derive model weights 
(Figure 12, group of maps in the top right), the mean projected high temperature changes are 
demonstrably cooler across the entire domain, particularly in the northwest corner of the domain. When 
New Mexico high temperatures are used to derive the BMA weights, the gradient of the projected 265 
change remains consistent except for a cool pocket in southern Colorado and northern New Mexico. In 
contrast, when the full domain or New Mexico precipitation are used with BMA to derive ensemble 
weights for the LOCA ensemble (Figure 13, group of maps in the bottom right), the projected changes 
in high temperature are warmer than the unweighted mean, particularly in the northwest corner of the 
domain. However, when Louisiana precipitation is used to derive ensemble weights with BMA, the 270 
mean change from the LOCA ensemble is cooler than the unweighted mean for much of the domain. 
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Figure S1: Bias of LOCA ensemble mean precipitation (1981-2005) from the unweighted ensemble (left) and each weighted 305 
ensemble mean (right). On the right side, the columns from left to right are for the Skill, SI-h, SI-c, and BMA weighting schemes 
respectively. On the right side, the top group of twelve plots are the results for weights derived using temperature (tmax) and the 
bottom group of twelve plots are the results for weights derived using precipitation (pr). Within a group of twelve on the right-
hand side, the top row is for weights deriving using the full domain, the middle row is for weights derived using the Louisiana 
domain, and the bottom row is for weights derived using the New Mexico domain. 310 
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Figure S2: Same as Figure S1, but for the bias of ensemble mean high temperature of the LOCA ensemble. 
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 315 
Figure S3: Historical RMSE using all 48 weighting schemes, applied to precipitation (pr) to all three domains for the CMIP5 
ensemble. The top row is the results from weighting schemes derived with tmax, and the bottom row is the results from weighting 
schemes derived with pr. The left column is the results for weighting derived using the full domain, the middle column is the 
results for weighting derived using the New Mexico domain, and the right column is the results for weighting derived using the 
Louisiana. Within a given domain and variable, the results are shown from left to right for the domain the weights are applied to. 320 
The boxplots are the results from the 100 BMA posterior weights, with red dots used to represent outliers. 
 



12 
 

 
Figure S4: Same as Figure S3 for the LOCA ensemble precipitation. 
 325 
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Figure S5: Historical RMSE using all 48 weighting schemes, applied to high temperature (tmax) to all three domains for the 
CMIP5 ensemble. The top row is the results from weighting schemes derived with tmax, and the bottom row is the results from 
weighting schemes derived with pr. The left column is the results for weighting derived using the full domain, the middle column is 
the results for weighting derived using the New Mexico domain, and the right column is the results for weighting derived using the 330 
Louisiana. Within a given domain and variable, the results are shown from left to right for the domain the weights are applied to. 
The boxplots are the results from the 100 BMA posterior weights, with red dots used to represent outliers. 
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Figure S6: Same as Figure S5 for the LOCA ensemble high temperature. 335 
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Table S1. Global Climate Models used to create both the CMIP5 and LOCA ensembles (adopted from Wootten et al. 2020a). 350 
Modeling Center or Group Institute ID Model Name 

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of 
Meteorology (BOM), Australia 

CSIRO-
BOM 

ACCESS1-0 

ACCESS1-3 

Beijing Climate Center, China Meteorological Administration BCC bcc-csm1-1-m 

Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2 

National Center for Atmospheric Research NCAR CCSM4 

Community Earth System Model Contributors NSF-DOE-
NCAR 

CESM1-BGC 

CESM1-CAM5 

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC 
CMCC-CM 

CMCC-CMS 

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland 
Climate Change Centre of Excellence 

CSIRO-
QCCCE CSIRO-Mk3-6-0 

EC-EARTH consortium EC-EARTH EC-EARTH 

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua 
University LASG-CESS FGOALS-g2 

NOAA Geophysical Fluid Dynamics Laboratory NOAA 
GFDL 

GFDL-CM3 

GFDL-ESM2G 

GFDL-ESM2M 

NASA Goddard Institute for Space Studies NASS GISS 
GISS-E2-H 

GISS-E2-R 

Institut Pierre-Simon Laplace IPSL 

IPSL-CM5A-LR 

IPSL-CM5A-
MR 

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology MIROC MIROC5 
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Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Institute (The 
University of Tokyo), and National Institute for Environmental Studies MIROC 

MIROC-ESM-
CHEM 

MIROC-ESM 

Max Planck Institute for Meteorology MPI-M 
MPI-ESM-LR 

MPI-ESM-MR 

Meteorological Research Institute MRI MRI-CGCM3 

Norwegian Climate Centre NCC NorESM1-M 

  
 
 
 
 355 
 
 
 
 
 360 
 
 
 
 
 365 
 
 
 
 
 370 
 
 
 
 
 375 
 
Table S2. Weights given to each model in the CMIP5 ensemble derived with the full domain. 

  Weighting scheme 

Variable GCM Skill SI-h SI-c BMA 

tasmax 
ACCESS1-0 0.05644228 0.04514523 0.07074581 0.11363804 

ACCESS1-3 0.04803347 0.05009975 0.02757792 1.52E-08 
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bcc-csm1-1-m 0.05038122 0.04097768 0.0312682 0.02627195 

CanESM2 0.03312554 0.12162953 0.03424021 0.0734613 

CCSM4 0.04616865 0.0337523 0.02425615 0.0013554 

CESM1-BGC 0.04494195 0.03332879 0.02118354 4.50E-08 

CESM1-CAM5 0.04351808 0.03067799 0.03509343 1.59E-05 

CMCC-CM 0.05208671 0.04248304 0.06851263 0.21464608 

CMCC-CMS 0.05416892 0.04566091 0.03869899 5.54E-09 

CSIRO-Mk3-6-0 0.0558371 0.05558022 0.07131232 0.31794803 

EC-EARTH 0.04151551 0.03199337 0.0418087 2.58E-05 

FGOALS-g2 0.01175242 0.01846582 0.01019995 0.00987428 

GFDL-CM3 0.01616687 0.01859855 0.02192631 8.85E-06 

GFDL-ESM2G 0.01341388 0.01749179 0.00792139 2.58E-09 

GFDL-ESM2M 0.01576513 0.01848859 0.01522095 8.97E-12 

GISS-E2-H 0.03919189 0.03129483 0.03664499 0.00235282 

GISS-E2-R 0.03484401 0.03125194 0.0511487 3.42E-06 

IPSL-CM5A-LR 0.02305224 0.02230279 0.03212302 5.31E-09 

IPSL-CM5A-MR 0.03739726 0.02921484 0.05088791 9.11E-09 

MIROC5 0.0525348 0.04913526 0.0641872 1.47E-08 

MIROC-ESM-CHEM 0.04014272 0.05216315 0.05493447 0.0024138 

MIROC-ESM 0.03957272 0.05272626 0.05402526 5.26E-09 

MPI-ESM-LR 0.05077877 0.03756599 0.04265972 3.72E-07 

MPI-ESM-MR 0.05197698 0.04193178 0.04176602 0.23769678 

MRI-CGCM3 0.01952717 0.02120907 0.02865105 0.00019355 

NorESM1-M 0.02766371 0.02683054 0.02300515 9.35E-05 

pr 

ACCESS1-0 0.06045531 0.06070165 0.08307592 0.0072574 

ACCESS1-3 0.05917048 0.11086654 0.05877136 0.36569981 

bcc-csm1-1-m 0.03434178 0.03456922 0.03210624 4.25E-13 

CanESM2 0.04012332 0.04531193 0.02732204 6.18E-13 

CCSM4 0.03560204 0.0229925 0.02513995 4.49E-13 

CESM1-BGC 0.03413256 0.02305947 0.02267914 0.03404851 

CESM1-CAM5 0.03215632 0.02144499 0.02555282 2.94E-16 

CMCC-CM 0.06336952 0.0549192 0.0855987 0.19762237 

CMCC-CMS 0.05111864 0.03916385 0.04457927 0.02658297 

CSIRO-Mk3-6-0 0.04313327 0.03967106 0.0310102 0.02683317 

EC-EARTH 0.07558573 0.08196882 0.06257095 0.22716385 
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FGOALS-g2 0.02824788 0.01996533 0.03655295 0.00022352 

GFDL-CM3 0.01929313 0.02456224 0.02274811 2.18E-07 

GFDL-ESM2G 0.02120832 0.01712085 0.0193851 2.34E-10 

GFDL-ESM2M 0.02809155 0.01920732 0.03652836 0.00080124 

GISS-E2-H 0.04060163 0.04921506 0.05300536 2.80E-13 

GISS-E2-R 0.0425454 0.08016262 0.04268746 0.00409878 

IPSL-CM5A-LR 0.03070306 0.02757702 0.03884151 4.70E-07 

IPSL-CM5A-MR 0.02603609 0.03986775 0.03429029 0.03726354 

MIROC5 0.04701144 0.02917528 0.04639643 0.00165118 

MIROC-ESM-CHEM 0.0233395 0.01905945 0.01679738 1.27E-07 

MIROC-ESM 0.02096021 0.01792438 0.01353104 0.00027861 

MPI-ESM-LR 0.0471387 0.03412552 0.04803859 0.02352033 

MPI-ESM-MR 0.04650432 0.03567428 0.03924693 0.01155125 

MRI-CGCM3 0.03245887 0.03503426 0.03764754 0.03539936 

NorESM1-M 0.01667091 0.0166594 0.01589636 3.31E-06 

 
 
 380 
 
 
 
 
 385 
 
 
 
 
 390 
 
 
Table S3. Weights given to each model in the CMIP5 ensemble derived with the Louisiana domain 

  Weighting Scheme 

Variable GCM Skill SI-h SI-c BMA 

tasmax 

ACCESS1-0 0.09539147 0.070859782 0.149472303 0.002577634 

ACCESS1-3 0.174880947 0.181461856 0.192657216 0.27621102 

bcc-csm1-1-m 0.043355531 0.06547964 0.029101179 0.11705057 

CanESM2 0.000143552 0.000363158 9.41E-05 2.90E-06 

CCSM4 0.084536835 0.062718253 0.044171395 0.003062876 



19 
 

CESM1-BGC 0.089093012 0.062157894 0.044244131 7.03E-05 

CESM1-CAM5 0.058618953 0.05146394 0.066439396 0.000333261 

CMCC-CM 0.0460721 0.093738585 0.050348496 0.30202615 

CMCC-CMS 0.142652184 0.110288875 0.115395471 4.17E-06 

CSIRO-Mk3-6-0 0.032059914 0.036493165 0.023989689 7.11E-08 

EC-EARTH 2.67E-05 7.18E-05 3.18E-05 1.11E-11 

FGOALS-g2 5.97E-11 1.25E-10 1.04E-10 1.26E-20 

GFDL-CM3 9.08E-10 9.11E-10 1.83E-09 0.001832793 

GFDL-ESM2G 5.25E-12 8.78E-12 2.99E-12 0.000254789 

GFDL-ESM2M 6.98E-10 7.83E-10 4.64E-10 1.03E-09 

GISS-E2-H 0.000185671 0.000512926 0.000343065 1.55E-05 

GISS-E2-R 1.45E-09 1.69E-09 2.17E-09 0.032775603 

IPSL-CM5A-LR 0.002876298 0.004814258 0.003355854 0.06681373 

IPSL-CM5A-MR 0.04559663 0.047372655 0.070531696 2.05E-05 

MIROC5 0.001899871 0.006186466 0.002876237 0.19016249 

MIROC-ESM-CHEM 0.000376663 0.000723095 0.000812865 0.00563014 

MIROC-ESM 0.002539795 0.004909342 0.003857348 0.000476253 

MPI-ESM-LR 0.101817678 0.07301403 0.125881564 0.000218828 

MPI-ESM-MR 0.076691645 0.125396124 0.075192409 0.000460369 

MRI-CGCM3 1.02E-09 1.32E-09 1.55E-09 6.45E-15 

NorESM1-M 0.001184554 0.001974168 0.001203786 1.12E-09 

pr 

ACCESS1-0 0.094507226 0.083513755 0.097392677 2.64E-06 

ACCESS1-3 0.334341954 0.356209181 0.299044271 0.26946759 

bcc-csm1-1-m 9.22E-09 4.05E-09 9.82E-09 0.014008402 

CanESM2 2.13E-10 8.63E-11 2.18E-10 0.000247708 

CCSM4 3.35E-06 8.54E-07 2.43E-06 1.55E-06 

CESM1-BGC 9.76E-07 2.49E-07 7.39E-07 6.72E-05 

CESM1-CAM5 8.32E-07 2.63E-07 6.41E-07 7.62E-10 

CMCC-CM 8.72E-05 3.72E-05 8.62E-05 0.009259525 

CMCC-CMS 3.21E-05 1.07E-05 2.27E-05 4.27E-08 

CSIRO-Mk3-6-0 8.16E-08 2.39E-08 8.65E-08 0.000262672 

EC-EARTH 0.192570184 0.200112652 0.203466603 3.20E-10 

FGOALS-g2 2.03E-08 5.29E-09 2.17E-08 7.59E-18 

GFDL-CM3 3.36E-05 1.25E-05 2.56E-05 6.11E-05 

GFDL-ESM2G 3.18E-13 1.79E-13 2.60E-13 0.000759058 
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GFDL-ESM2M 2.84E-09 8.85E-10 3.04E-09 0.006637048 

GISS-E2-H 0.058676084 0.040063901 0.062791018 4.98E-05 

GISS-E2-R 0.267327869 0.285087916 0.286076502 0.65528678 

IPSL-CM5A-LR 6.72E-12 2.49E-12 7.06E-12 2.83E-07 

IPSL-CM5A-MR 3.65E-10 1.51E-10 3.91E-10 0.000154533 

MIROC5 2.51E-05 9.81E-06 2.03E-05 5.23E-15 

MIROC-ESM-CHEM 4.86E-12 1.65E-12 3.86E-12 0.026742395 

MIROC-ESM 3.65E-12 1.24E-12 2.96E-12 9.68E-07 

MPI-ESM-LR 3.91E-07 9.63E-08 4.11E-07 0.00039702 

MPI-ESM-MR 2.12E-08 5.68E-09 2.22E-08 0.016593524 

MRI-CGCM3 0.052393055 0.034940792 0.051069782 2.19E-07 

NorESM1-M 1.31E-09 4.56E-10 1.37E-09 2.07E-11 

 
 395 
 
 
 
 
 400 
 
 
 
 
 405 
 
 
 
Table S4. Weights given to each model in the CMIP5 ensemble derived with the New Mexico domain 

  Weighting Scheme 

Variable GCM Skill SI-h SI-c BMA 

tasmax 

ACCESS1-0 0.09939927 0.06984359 0.08756062 8.71E-05 

ACCESS1-3 0.07152743 0.05473646 0.04899342 1.00E-08 

bcc-csm1-1-m 0.05457664 0.02628373 0.03998063 0.02751101 

CanESM2 0.10754797 0.35175889 0.08728388 0.54658804 

CCSM4 0.02878184 0.0142128 0.02663433 0.00036638 

CESM1-BGC 0.02671602 0.01335277 0.01805697 2.20E-05 

CESM1-CAM5 0.02426858 0.01269948 0.02924927 6.75E-06 

CMCC-CM 0.05521459 0.03162108 0.06875559 2.92E-05 
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CMCC-CMS 0.06509256 0.03665949 0.0655887 0.00654376 

CSIRO-Mk3-6-0 0.10633306 0.15640465 0.11542768 0.29138712 

EC-EARTH 0.01702482 0.00965101 0.01974289 0.02184139 

FGOALS-g2 0.00119852 0.00108409 0.00125317 0.00444444 

GFDL-CM3 0.00125992 0.00100038 0.00159064 0.01005276 

GFDL-ESM2G 0.00029932 0.0003652 0.00034635 0.00801717 

GFDL-ESM2M 0.00061458 0.00062267 0.00073893 0.0013548 

GISS-E2-H 0.01778507 0.0095029 0.02026868 0.00536214 

GISS-E2-R 0.01855788 0.00994391 0.02342929 1.41E-05 

IPSL-CM5A-LR 0.00163974 0.00131537 0.00207017 0.05934004 

IPSL-CM5A-MR 0.00770011 0.00479588 0.00972135 1.53E-13 

MIROC5 0.07250547 0.04730678 0.08723717 0.00020178 

MIROC-ESM-CHEM 0.06188476 0.04569864 0.07812881 0.00855385 

MIROC-ESM 0.06106126 0.04733796 0.07708915 5.06E-08 

MPI-ESM-LR 0.03994754 0.01966853 0.0423591 1.47E-21 

MPI-ESM-MR 0.05044133 0.0260291 0.03826585 0.00788137 

MRI-CGCM3 0.00160389 0.00146294 0.00202491 0.00039472 

NorESM1-M 0.00701784 0.00664171 0.00820246 8.92E-09 

pr 

ACCESS1-0 0.00742511 0.00977952 0.00862007 0.01409884 

ACCESS1-3 0.18535919 0.16072249 0.17455917 0.00463789 

bcc-csm1-1-m 0.00462169 0.00388373 0.00420513 8.42E-07 

CanESM2 0.22271141 0.30465671 0.23385789 0.34198563 

CCSM4 8.17E-10 4.14E-10 5.93E-10 0.00255201 

CESM1-BGC 4.22E-10 2.22E-10 4.54E-10 0.0006526 

CESM1-CAM5 6.93E-10 5.38E-10 5.80E-10 8.16E-07 

CMCC-CM 0.07676102 0.0762634 0.08911065 0.04955513 

CMCC-CMS 0.00390915 0.00257245 0.00248165 3.78E-08 

CSIRO-Mk3-6-0 0.13373349 0.16496307 0.09658888 0.22161446 

EC-EARTH 0.13123493 0.09037766 0.12697972 1.36E-11 

FGOALS-g2 5.86E-07 4.17E-07 5.23E-07 1.00E-09 

GFDL-CM3 2.99E-13 3.32E-13 3.44E-13 0.02764009 

GFDL-ESM2G 7.78E-13 1.04E-12 7.71E-13 0.00162559 

GFDL-ESM2M 1.42E-08 9.28E-09 1.39E-08 0.00035877 

GISS-E2-H 2.35E-06 2.42E-06 2.72E-06 0.00429871 

GISS-E2-R 0.00019241 0.00021432 0.00018154 0.00103039 
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IPSL-CM5A-LR 0.00505714 0.00519675 0.00585064 6.66E-11 

IPSL-CM5A-MR 0.20511241 0.16280282 0.23729592 0.32307108 

MIROC5 3.12E-05 3.46E-05 2.03E-05 2.50E-07 

MIROC-ESM-CHEM 3.02E-07 1.94E-07 2.76E-07 4.63E-10 

MIROC-ESM 2.35E-09 1.52E-09 2.03E-09 0.00203139 

MPI-ESM-LR 0.00162742 0.00117823 0.0017721 0.00059298 

MPI-ESM-MR 0.02222018 0.01735118 0.01847282 0.00049619 

MRI-CGCM3 2.82E-12 3.48E-12 3.28E-12 0.00375236 

NorESM1-M 4.77E-16 5.77E-16 5.20E-16 3.94E-06 

 410 
 
 
 
 
 415 
 
 
 
 
 420 
 
 
 
 
Table S5. Weights given to each model in the LOCA ensemble derived with the full domain. 425 

  Weighting Scheme 

Variable GCM Skill SI-h SI-c BMA 

tasmax 

ACCESS1-0 0.03843002 0.03835969 0.04590839 0.00685415 

ACCESS1-3 0.03845163 0.03840102 0.0230868 0.01370196 

bcc-csm1-1-m 0.03855926 0.03845582 0.02400497 5.50E-09 

CanESM2 0.03867074 0.03863661 0.03850615 0.12487015 

CCSM4 0.03861473 0.0385269 0.02006005 1.08E-05 

CESM1-BGC 0.03868285 0.03866551 0.01842328 0.00799637 

CESM1-CAM5 0.03843966 0.03836553 0.03280679 2.86E-06 

CMCC-CM 0.03831829 0.03826985 0.04709167 0.00275627 

CMCC-CMS 0.0384972 0.03834852 0.02591459 0.00313127 

CSIRO-Mk3-6-0 0.03856268 0.03844201 0.047086 0.0076736 

EC-EARTH 0.03818016 0.03821145 0.03660173 0.00062814 
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FGOALS-g2 0.03811864 0.03818104 0.04899749 0.01718842 

GFDL-CM3 0.03858206 0.03846847 0.05081382 1.82E-05 

GFDL-ESM2G 0.03831407 0.03836043 0.02429695 1.38E-11 

GFDL-ESM2M 0.03848291 0.03845213 0.0353421 0.00121971 

GISS-E2-H 0.03867795 0.03864678 0.03338944 1.02E-12 

GISS-E2-R 0.03851628 0.03842569 0.05367807 0.00190605 

IPSL-CM5A-LR 0.03753834 0.03824003 0.05010429 1.95E-10 

IPSL-CM5A-MR 0.0385945 0.03846255 0.0511938 5.04E-07 

MIROC5 0.03832068 0.03826415 0.04551554 0.00049982 

MIROC-ESM-CHEM 0.03847912 0.03841837 0.05095552 0.00447711 

MIROC-ESM 0.03878386 0.0391118 0.05113012 0.00068839 

MPI-ESM-LR 0.03829208 0.03825354 0.03208248 9.01E-09 

MPI-ESM-MR 0.03843451 0.03832186 0.02608251 1.03E-08 

MRI-CGCM3 0.03884306 0.03920701 0.05403101 0.8063758 

NorESM1-M 0.03861473 0.03850324 0.03289646 4.28E-07 

pr 

ACCESS1-0 0.03868751 0.03845149 0.05538722 0.05701355 

ACCESS1-3 0.03748008 0.03779315 0.02881096 5.15E-06 

bcc-csm1-1-m 0.0385428 0.03826234 0.03502586 1.28E-08 

CanESM2 0.03914891 0.04019539 0.04869883 0.26372065 

CCSM4 0.03910103 0.03907033 0.02509709 0.07630813 

CESM1-BGC 0.03915312 0.0393793 0.0245094 0.23863091 

CESM1-CAM5 0.03866983 0.03830047 0.02880474 0.00185555 

CMCC-CM 0.03888981 0.03873128 0.05428339 0.00045197 

CMCC-CMS 0.03820094 0.03791453 0.02723303 3.79E-05 

CSIRO-Mk3-6-0 0.03815281 0.03785883 0.03146579 1.01E-05 

EC-EARTH 0.03786059 0.03800275 0.03116372 0.00077738 

FGOALS-g2 0.03810924 0.03791663 0.0491427 0.00126907 

GFDL-CM3 0.03865299 0.03829648 0.03417903 0.01501184 

GFDL-ESM2G 0.03836649 0.03855796 0.03071856 0.00195493 

GFDL-ESM2M 0.03860002 0.0390896 0.04583803 0.00049713 

GISS-E2-H 0.03802192 0.03791928 0.04198333 2.87E-08 

GISS-E2-R 0.03860631 0.03907614 0.03709764 0.01370005 

IPSL-CM5A-LR 0.0377017 0.03784103 0.05264404 5.79E-14 

IPSL-CM5A-MR 0.03853391 0.03821201 0.05619112 0.0001892 

MIROC5 0.03794169 0.03774639 0.03259612 0.00032932 
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MIROC-ESM-CHEM 0.03728185 0.03796482 0.04529474 0.00035278 

MIROC-ESM 0.03913399 0.0394354 0.0387394 0.32416294 

MPI-ESM-LR 0.03892274 0.03867247 0.04292192 4.61E-11 

MPI-ESM-MR 0.03879659 0.0384649 0.0408521 3.17E-05 

MRI-CGCM3 0.03853771 0.03816694 0.03334386 0.00367149 

NorESM1-M 0.03890546 0.0386801 0.02797739 1.82E-05 

 
 
 
 
 430 
 
 
 
 
 435 
 
 
 
 
 440 
 
 
 
 
 445 
 
 
 
 
 450 
 
 
 
 
 455 
 
 
 
 
 460 



25 
 

Table S6. Weights given to each model in the LOCA ensemble derived with the Louisiana domain. 
  Weighting Scheme 

Variable GCM Skill SI-h SI-c BMA 

tasmax 

ACCESS1-0 0.03100221 0.02915454 0.040746 6.71E-07 

ACCESS1-3 0.05040064 0.05260764 0.04667151 9.12E-05 

bcc-csm1-1-m 0.04453285 0.04020767 0.03045576 0.00119831 

CanESM2 0.0324218 0.0305315 0.02037736 4.78E-08 

CCSM4 0.04409604 0.03989712 0.01897782 2.84E-06 

CESM1-BGC 0.03866978 0.03390751 0.01748584 2.28E-11 

CESM1-CAM5 0.03803129 0.03346863 0.03574216 0.00037567 

CMCC-CM 0.03195021 0.02961334 0.0283389 3.16E-07 

CMCC-CMS 0.0405695 0.03587539 0.02897122 2.05E-14 

CSIRO-Mk3-6-0 0.03478198 0.03111926 0.0192973 0.03749378 

EC-EARTH 0.0408683 0.03668547 0.0388582 0.00026337 

FGOALS-g2 0.03158036 0.02978617 0.04310589 0.01539686 

GFDL-CM3 0.04461578 0.04045792 0.07244148 0.007909 

GFDL-ESM2G 0.02658537 0.0276331 0.0123474 0.00743341 

GFDL-ESM2M 0.04360985 0.03935089 0.02266463 0.07300591 

GISS-E2-H 0.04184729 0.03719441 0.05484493 0.08217037 

GISS-E2-R 0.0438759 0.04043294 0.06083922 3.42E-09 

IPSL-CM5A-LR 0.01431324 0.02627194 0.0149504 0.00096226 

IPSL-CM5A-MR 0.03787995 0.03322969 0.0464877 5.01E-08 

MIROC5 0.03040706 0.02878095 0.0325194 0.00615986 

MIROC-ESM-CHEM 0.04739619 0.04669298 0.09542163 1.12E-05 

MIROC-ESM 0.05351149 0.0837266 0.06049142 2.27E-08 

MPI-ESM-LR 0.02554219 0.02738016 0.02248943 7.49E-09 

MPI-ESM-MR 0.0382573 0.03348629 0.03069654 2.74E-05 

MRI-CGCM3 0.05464586 0.07874774 0.07465364 0.76382034 

NorESM1-M 0.03860759 0.03376014 0.03012423 0.00367713 

pr 

ACCESS1-0 0.03428467 0.03337926 0.0471579 3.59E-06 

ACCESS1-3 0.03500028 0.0319283 0.02168169 0.00099018 

bcc-csm1-1-m 0.04200078 0.04145073 0.04089891 3.25E-06 

CanESM2 0.04731829 0.06025351 0.03845356 0.00324284 

CCSM4 0.04888984 0.05478434 0.02866901 0.52941953 

CESM1-BGC 0.03951288 0.03666173 0.023805 2.86E-09 
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CESM1-CAM5 0.04484676 0.04309665 0.03032724 1.69E-05 

CMCC-CM 0.03920264 0.03482159 0.03422899 0.00088496 

CMCC-CMS 0.03455911 0.03127403 0.02087831 2.59E-10 

CSIRO-Mk3-6-0 0.03392731 0.03150069 0.03880255 1.97E-05 

EC-EARTH 0.03734051 0.03616185 0.02463845 0.10341634 

FGOALS-g2 0.03853889 0.03398473 0.06759691 4.65E-06 

GFDL-CM3 0.03719562 0.03269489 0.03002907 0.00052307 

GFDL-ESM2G 0.02532499 0.03088774 0.0190383 4.94E-05 

GFDL-ESM2M 0.04803501 0.05030028 0.05839608 7.02E-08 

GISS-E2-H 0.03598987 0.03185216 0.05534456 6.34E-14 

GISS-E2-R 0.04885113 0.06943518 0.09182185 0.30134026 

IPSL-CM5A-LR 0.02606843 0.03087662 0.02707114 0.01675307 

IPSL-CM5A-MR 0.03918806 0.03495953 0.06841608 0.02997501 

MIROC5 0.03332045 0.03072366 0.02642121 0.00620631 

MIROC-ESM-CHEM 0.02447897 0.03103161 0.02652211 4.62E-13 

MIROC-ESM 0.03892406 0.0349099 0.04565354 0.00676324 

MPI-ESM-LR 0.04413614 0.03954262 0.02848804 0.00030145 

MPI-ESM-MR 0.04367644 0.04051209 0.05028874 1.03E-08 

MRI-CGCM3 0.03804345 0.03690593 0.02468679 5.44E-18 

NorESM1-M 0.04134546 0.03607037 0.03068398 8.62E-05 

 
 
 
 465 
 
 
 
 
 470 
 
 
 
 
 475 
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Table S7. Weights given to each model in the LOCA ensemble derived with the New Mexico domain. 480 
  Weighting Scheme 

Variable GCM Skill SI-h SI-c BMA 

tasmax 

ACCESS1-0 0.038672887 0.038579983 0.03426941 0.00541779 

ACCESS1-3 0.038599333 0.038590107 0.02498509 0.00034678 

bcc-csm1-1-m 0.038436478 0.038275525 0.02764994 7.30E-09 

CanESM2 0.038736479 0.038860415 0.02559203 0.00529255 

CCSM4 0.038560894 0.03846669 0.03527624 1.96E-05 

CESM1-BGC 0.038514472 0.038402329 0.02623952 0.00786877 

CESM1-CAM5 0.038760384 0.038747631 0.03708614 2.45E-14 

CMCC-CM 0.038291854 0.038233855 0.04326728 2.71E-05 

CMCC-CMS 0.038562448 0.038367172 0.03360558 0.01306485 

CSIRO-Mk3-6-0 0.038597425 0.038447408 0.02981096 0.00236676 

EC-EARTH 0.038235708 0.038183425 0.03791847 0.01591943 

FGOALS-g2 0.038319082 0.038195221 0.02640804 0.10740954 

GFDL-CM3 0.038572509 0.038443596 0.04979786 0.01498851 

GFDL-ESM2G 0.037892374 0.038199002 0.04289486 0.00120082 

GFDL-ESM2M 0.037941002 0.038069604 0.04354575 0.00034764 

GISS-E2-H 0.038765416 0.038748946 0.03984545 0.00071154 

GISS-E2-R 0.038491206 0.038360979 0.04970111 3.00E-06 

IPSL-CM5A-LR 0.037694462 0.038141813 0.04866371 1.22E-07 

IPSL-CM5A-MR 0.038550197 0.03836664 0.0497601 1.48E-05 

MIROC5 0.038304444 0.038193684 0.03785574 0.00024818 

MIROC-ESM-CHEM 0.038355964 0.038455436 0.0495178 2.76E-06 

MIROC-ESM 0.038802399 0.039455382 0.05009398 0.39150229 

MPI-ESM-LR 0.03854897 0.038370109 0.03560064 4.36E-08 

MPI-ESM-MR 0.038260687 0.038178584 0.0272849 0.01969286 

MRI-CGCM3 0.038829456 0.039091302 0.05013787 0.41355423 

NorESM1-M 0.03870347 0.038575163 0.04319152 6.76E-09 

pr 

ACCESS1-0 0.042228086 0.041620052 0.05132523 0.00011028 

ACCESS1-3 0.035909539 0.0358652 0.03924984 1.78E-09 

bcc-csm1-1-m 0.038770311 0.037541673 0.03977957 0.01118545 

CanESM2 0.043546667 0.044854048 0.05296066 0.54977095 

CCSM4 0.040897988 0.040825631 0.02987004 7.78E-06 

CESM1-BGC 0.040276913 0.039221399 0.02640718 1.02E-08 
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CESM1-CAM5 0.039455422 0.037872859 0.0278062 0.04866509 

CMCC-CM 0.042878762 0.042500047 0.0515471 0.00156692 

CMCC-CMS 0.039816723 0.038480566 0.04326805 0.02204018 

CSIRO-Mk3-6-0 0.033712335 0.033900471 0.02659054 3.27E-05 

EC-EARTH 0.041145403 0.040675815 0.0443557 0.06073666 

FGOALS-g2 0.037283675 0.036121315 0.03434268 0.00021219 

GFDL-CM3 0.041875714 0.041035937 0.04063304 0.00364462 

GFDL-ESM2G 0.040770072 0.039451366 0.03809098 0.00012032 

GFDL-ESM2M 0.028065942 0.033041085 0.02683618 9.66E-07 

GISS-E2-H 0.038398352 0.037218574 0.04660775 0.00208044 

GISS-E2-R 0.034001738 0.03428959 0.02272487 0.00038251 

IPSL-CM5A-LR 0.036190882 0.03680316 0.04402027 7.16E-15 

IPSL-CM5A-MR 0.040312614 0.038755043 0.0490344 2.31E-13 

MIROC5 0.032409579 0.033285867 0.02816095 1.30E-13 

MIROC-ESM-CHEM 0.030363131 0.032907731 0.02966293 9.21E-06 

MIROC-ESM 0.043440225 0.043740774 0.04442732 0.26837324 

MPI-ESM-LR 0.043939628 0.046936707 0.05282253 0.01981132 

MPI-ESM-MR 0.035504772 0.035278711 0.03439191 0.00443399 

MRI-CGCM3 0.036457875 0.035892539 0.03832491 0.00014555 

NorESM1-M 0.042347654 0.04188384 0.03675919 0.00666958 

 


