
Earth Syst. Dynam., 14, 1107–1124, 2023
https://doi.org/10.5194/esd-14-1107-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

MIROC6 Large Ensemble (MIROC6-LE): experimental
design and initial analyses

Hideo Shiogama1, Hiroaki Tatebe2, Michiya Hayashi1, Manabu Abe2, Miki Arai3, Hiroshi Koyama2,
Yukiko Imada3, Yu Kosaka4, Tomoo Ogura1, and Masahiro Watanabe3

1Earth System Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
2Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan

3Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, 277-8564, Japan
4Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 153-8904, Japan

Correspondence: Hideo Shiogama (shiogama.hideo@nies.go.jp)

Received: 14 April 2023 – Discussion started: 25 April 2023
Revised: 10 August 2023 – Accepted: 15 September 2023 – Published: 7 November 2023

Abstract. Single model initial-condition large ensembles (LEs) are a useful approach to understand the roles
of forced responses and internal variability in historical and future climate change. Here, we produce one of
the largest ensembles thus far using the MIROC6 coupled atmosphere–ocean global climate model (MIROC6-
LE). The total experimental period of MIROC6-LE is longer than 76 000 years. MIROC6-LE consists of a long
preindustrial control run, 50-member historical simulations, 8 single forcing historical experiments with 10 or
50 members, 5 future scenario experiments with 50 members and 3 single forcing future experiments with 50
members. Here, we describe the experimental design. The output data of most of the experiments are freely
available to the public. This dataset would be useful to a wide range of research communities.

We also demonstrate some examples of initial analyses. Specifically, we confirm that the linear additivity of
the forcing-response relationship holds for the 1850–2020 trends of the annual mean values and extreme indices
of surface air temperature and precipitation by analyzing historical fully forced runs and the sum of single
forced historical runs. To isolate historical anthropogenic signals of annual mean and extreme temperature for
2000–2020 relative to 1850–1900, ensemble sizes of 4 and 15, respectively, are sufficient in most of the world.
Historical anthropogenic signals of annual mean and extreme precipitation are significant with the 50-member
ensembles in 76 % and 69 % of the world, respectively. Fourteen members are sufficient to examine differences
in changes in annual mean values and extreme indices of temperature and precipitation between the shared
socioeconomic pathways (ssp), ssp585 and ssp126, in most of the world. Ensembles larger than 50 members are
desirable for investigations of differences in annual mean and extreme precipitation changes between ssp126 and
ssp119.

Historical and future changes in internal variability, represented by departures from the ensemble mean, are
analyzed with a focus on the El Niño/Southern Oscillation (ENSO) and global annual mean temperature and pre-
cipitation. An ensemble size of 31 is large enough to detect ENSO intensification from preindustrial conditions
to 1951–2000, from 1951–2000 to 2051–2100 in all future experiments, and from low- to high-emission future
scenario experiments. The single forcing historical experiments with 27 members can isolate ENSO intensifica-
tion due to anthropogenic greenhouse gas and aerosol forcings. Future changes in the global mean temperature
variability are discernible with 23 members under all future experiments, while 50 members are not sufficient for
detecting changes in the global mean precipitation variability in ssp119 and ssp126. We also confirm that these
temperature and precipitation variabilities are not precisely analyzed when detrended anomalies from the long-
term averages are used due to interannual climate responses to the historical natural forcing, which highlights
the importance of large ensembles for assessing internal variability.
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1 Introduction

Internal variability in the climate system is one of the major
sources of uncertainty in future climate change projections,
especially at the near-term and regional scales (Hawkins
and Sutton, 2011; Lehner et al., 2020). Because single
model initial-condition large ensembles (LEs) can provide
climate scientists with useful tools for quantifying and sep-
arating the internal variability of the climate system from
the responses to external forcing, some modeling centers
around the world have recently produced LEs using coupled
atmosphere–ocean global climate models (CGCMs). For ex-
ample, the Community Earth System Model Large Ensem-
ble Project generated a 40-member ensemble simulation of
the historical period (1920–2005) and a representative con-
centration pathway (RCP) 8.5 scenario (2006–2100) using
the CESM1 model (CESM1-LE; Kay et al., 2015). By us-
ing CESM2, Rodgers et al. (2021) ran a 100-member en-
semble for the 1850–2100 period with historical (1850–
2014) and SSP3-7.0 (2015–2100) forcings (CESM2-LE).
The Max Planck Institute Grand Ensemble (MPI-GE) con-
sists of an 800-year preindustrial condition run, 100-member
ensembles over the historical period (1850–2005), 3 RCPs
(RCP2.6, 4.5, and 8.5 for 2006–2099) and simulations with
a 1 % yr−1 CO2 increase (150 years) using the MPI-ESM1.1
model (Maher et al., 2019). The Swedish Meteorological and
Hydrological Institute used the EC-Earth3 model to gener-
ate 50-member ensembles over the historical interval (1970–
2014) and four shared socioeconomic pathway simulations
(2015–2100; SSP1-1.9, SSP3-3.4, SSP5-3.4-OS, and SSP5-
8.5) (SMHI-LENS; Wyser et al., 2021). Lin et al. (2022)
computed 110-member ensemble simulations for the histor-
ical period and SSP5-8.5 scenario using the FGOALS-g3
CGCM.

In addition to historical all forcing runs, single forcing
historical experiments are important for detection and attri-
bution studies of historical climate changes and for under-
standing the role of internal variability in observed historical
climate changes (Gillett et al., 2021; Watanabe et al., 2014,
2021; Shiogama et al., 2016). The CESM1 Single Forcing
Large Ensemble Project produced three “all but one” type en-
sembles, which kept anthropogenic aerosols (20 members),
biomass burning aerosols (15), or greenhouse gases (20)
fixed at the 1920 condition while all other external anthro-
pogenic and natural forcing factors evolved following his-
torical and RCP8.5 scenarios (Deser et al., 2020). To con-
tribute to the Detection and Attribution Model Intercompar-
ison Project (DAMIP; Gillett et al., 2016; 2021), which is
one of the endorsed model intercomparison projects (MIPs)
of Coupled Model Intercomparison Project Phase 6 (CMIP6;
Eyring et al., 2016), the CNRM-CM6-1, CanESM5, GISS-
E2-1-G, IPSL-CM6A-LR, and MIROC6 models have gener-
ated ensembles of single forcing historical experiments con-

sidering changes in the well-mixed greenhouse gas only, the
anthropogenic aerosol emissions only, and the natural forcing
(solar and volcanic activities) only (these are Tier 1 experi-
ments from DAMIP) with ensemble sizes ≥ 10. The other
models provided the outputs of smaller ensembles. (Note
that the minimum ensemble size required by DAMIP is 3.)
Under the auspices of the Lighthouse Activity on Explain-
ing and Predicting Earth System Change (LHA-EPESC)
initiative from the World Climate Research Programme,
Smith et al. (2022) recently proposed the Large Ensemble
Single Forcing Model Intercomparison Project (LESFMIP).
LESFMIP calls on modeling centers around the world to en-
large the ensemble sizes of historical single forcing experi-
ments from DAMIP and to perform several “all but one” type
experiments to improve the understanding of the causes of
past climate changes on multiannual to decadal time scales.

By using the MIROC6 CGCM (Tatebe et al., 2019), we
produced a large ensemble named MIROC6-LE. MIROC6-
LE consists of an 800-year preindustrial condition run, 50-
member historical simulations, 8 single forcing historical
simulations with 10 or 50 members, 5 SSP simulations with
50 members and 3 single forcing ssp245 simulations with 50
members. This is one of the largest LEs currently available.
The aim of this paper is to describe the design of MIROC6-
LE and to show some examples of analyses.

2 Experimental designs

We used the MIROC6 CGCM (Tatebe et al., 2019), which
contributed to CMIP6. The atmospheric component has an
approximate horizontal resolution of 1.4◦ and consists of 81
vertical levels. The ocean component has an approximate
horizontal resolution of 1◦ and 63 vertical levels. We in-
creased the ensemble sizes of the CMIP6 simulations and
performed an experiment recently proposed by Smith et al.
(2022).

We computed 50-member historical simulations (1850–
2014) using the CMIP6 forcing dataset (Table 1). The ini-
tial conditions for the atmosphere, land, and ocean are taken
from the different years (Table 2) of the 800-year stable
preindustrial control run, which was run under the 1850
external forcing conditions (piControl) (Fig. 3 of Tatebe
et al., 2019). To understand historical climate change, we
performed large ensemble simulations of the DAMIP sin-
gle forcing historical experiments (1850–2020; Gillett et al.,
2016). These consist of the 50-member historical simula-
tion experiments that used well-mixed greenhouse gases only
(hist-GHG), natural forcing (solar and volcanic) only (hist-
nat), and anthropogenic aerosol only (hist-aer), which are
Tier 1 in DAMIP; and the 10-member ensembles of volcanic
only (hist-volc), solar only (hist-sol), stratospheric ozone
only (hist-stratO3), and stratospheric and tropospheric ozone
only (hist-totalO3) experiments, which are Tiers 2 or 3 in
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Table 1. List of historical experiments. Note that an 800-year preindustrial control run under the 1850 forcing condition is also included in
MIROC6-LE.

Exp name Forcing Ens. size Start year End year MIP (Tier)

historical Anthropogenic and natural external forcing 50 1850 2014 CMIP6 DECK (1) LESFMIP (3)
hist-nat Natural external forcing only 50 1850 2020 DAMIP (1) LESFMIP (3)
hist-GHG Well-mixed GHG only 50 1850 2020 DAMIP (1) LESFMIP (1)
hist-aer Anthropogenic aerosols only 50 1850 2020 DAMIP (1) LESFMIP (1)
hist-volc Volcanic only 10 1850 2020 DAMIP (3) LESFMIP (1)
hist-sol Solar only 10 1850 2020 DAMIP (3) LESFMIP (1)
hist-stratO3 Stratospheric ozone only 10 1850 2020 DAMIP (2)
hist-totalO3 Stratospheric and tropospheric ozone only 10 1850 2020 DAMIP (3) LESFMIP (1)
hist-lu Land-use and land-cover change only 10 1850 2020 LESFMIP (1)

DAMIP. Although biomass burning aerosol emissions in-
clude both anthropogenic and natural components, anoma-
lies from piControl (involving the 1850 emission of biomass
burning aerosols) can be used to estimate the anthropogenic
component. We computed historical simulations of land-use
and land-cover change only (hist-lu, 10 members) proposed
by LESFMIP.

We performed future projections (2015–2100) with 50 en-
semble members under each of the five SSPs (Table 3):
ssp585, ssp370, ssp245, and ssp126 are the Tier 1 experi-
ments of the Scenario Model Intercomparison Project (Sce-
narioMIP; O’Neill et al., 2016), while ssp119 is Tier 2. Well-
mixed greenhouse gases only (ssp245-GHG), aerosol only
(ssp245-aer), and natural only (ssp245-nat) runs under the
SSP2-4.5 scenario (proposed by DAMIP) and have been ex-
panded to 50 members.

Here, we analyze the annual mean surface air temperature
(T ), annual mean precipitation (P ), annual maximum daily
maximum surface air temperature, (Tx) and annual maxi-
mum daily precipitation (Px). The monthly mean sea surface
temperature (SST) is also analyzed in Sect. 3.3.

3 Results

3.1 Historical experiments

Figure 1 shows the global mean changes in T and Tx for
the historical simulations. Increases in greenhouse gas con-
centrations (hist-GHG) lead to larger degrees of warming
than from the historical runs. Cooling due to anthropogenic
aerosol emissions (hist-aer: sulfate, black carbon, and or-
ganic carbon aerosols are considered) partly compensates for
GHG-induced warming. Although large volcanic activities
can cause significant cooling within a few years, natural forc-
ing does not induce long-term trends (hist-nat, hist-sol, and
hist-volc). Changes in stratospheric and tropospheric ozone
(hist-stratO3 and hist-totalO3) and land use and land cover
(hist-lu) have small effects on the global mean T and Tx :
changes in stratospheric ozone and land use and land cover

have small cooling effects in the second half of the 20th cen-
tury and changes in total ozone have small warming effects.

Figure 2 presents the global mean changes in P and Px for
the historical simulations. Because P is sensitive to aerosols
(Shiogama et al., 2010a, b), decreases in P due to aerosols
(hist-aer in Fig. 2a) mostly compensate for the GHG-induced
increases in P (hist-GHG) (Wu et al., 2013; Shiogama et
al., 2022). Therefore, the P of the historical runs only has
a small trend. In contrast, the magnitude of the decrease
in Px due to anthropogenic aerosols (hist-aer in Fig. 2d) is
less than the increases in Px due to greenhouse gases (hist-
GHG), which results in a positive trend of Px in the his-
torical runs. Large volcanic eruptions cause significant de-
creases in P and Px within a few years (Iles and Hegerl,
2014), but volcanic and solar forcing do not cause long-term
trends (hist-nat, hist-sol, and hist-volc). Changes in P and Px

due to stratospheric and tropospheric ozone are small (hist-
stratO3 and hist-totalO3). It is interesting that changes in land
use and land cover cause slightly negative trends of P (hist-
lu). Global mean annual mean precipitation must be equal to
global mean annual mean evaporation at the surface. Defor-
estation reduces evaporation and thereby precipitation (De-
varaju et al., 2015). Changes in extreme precipitation are not
necessarily controlled by such a balance between precipita-
tion and evaporation (Sugiyama et al., 2010).

Detection and attribution studies have explicitly or im-
plicitly assumed that individual climate responses to indi-
vidual forcing agents can be linearly added to obtain the
total climate response to the combined forcing agents (Sh-
iogama et al., 2013). We test this assumption of the lin-
ear additivity of the forcing-response relationship (Fig. 3).
We examine the 1850–2020 trends (2015–2020 are under
SSP2-4.5) of T , P , Tx , and Px averaged over the world
and the 26 land regions defined by the IPCC (2012). Or-
ange boxes indicate the min–max ranges of 1000 ensem-
ble average values for randomly sampled 50-member his-
torical runs with replacement. We randomly select M en-
semble members from each of the hist-GHG, hist-aer, hist-
totalO3, hist-lu, hist-sol, and hist-volc experiments 1000
times with replacement (M is the ensemble size for each
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Table 2. List of initial conditions for each ensemble member of historical and DAMIP experiments. We took initial conditions at 1 January
of the branch years of the piControl run.

# 1 2 3 4 5 6 7 8 9 10
Branch year 0 30 60 90 120 150 180 210 240 270

# 11 12 13 14 15 16 17 18 19 20
Branch year 300 330 360 390 420 450 480 510 540 570

# 21 22 23 24 25 26 27 28 29 30
Branch year 600 620 640 660 680 700 720 740 760 780

# 31 32 33 34 35 36 37 38 39 40
Branch year 10 20 40 50 70 80 100 110 130 140

# 41 42 43 44 45 46 47 48 49 50
Branch year 610 630 650 670 690 710 730 750 770 790

Figure 1. Changes in global mean T (a–c, ◦C) and Tx (b–f, ◦C) of historical all and single forcing experiments relative to the 1850–1900
averages of the ensemble-mean historical all forcing simulations. Solid lines are the ensemble means. Thin dashed lines denote the minimum
and maximum values of the ensemble members. Numbers in parentheses indicate the ensemble sizes.
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Table 3. List of future experiments.

Exp name Forcing Ens. size Start year End year MIP (Tier)

ssp585 SSP5-8.5 50 2015 2100 ScenarioMIP (1)
ssp370 SSP3-7.0 50 2015 2100 ScenarioMIP (1)
ssp245 SSP2-4.5 50 2015 2100 ScenarioMIP (1)
ssp126 SSP1-2.6 50 2015 2100 ScenarioMIP (1)
ssp119 SSP1-1.9 50 2015 2100 ScenarioMIP (2)
ssp245-nat Natural only of SSP2-4.5 50 2021 2100 DAMIP (3)
ssp245-GHG GHG only of SSP2-4.5 50 2021 2100 DAMIP (2)
ssp245-aer Anthropogenic aerosols only of SSP2-4.5 50 2021 2100 DAMIP (3)

Figure 2. Global mean changes in P (a–c, %) and Px (d–f, %) of historical all and single forcing experiments relative to the 1850–1900
averages of the ensemble-mean historical all forcing simulations. Solid lines are the ensemble means. Thin dashed lines denote the minimum
and maximum values of the ensemble members. Numbers in parentheses indicate the ensemble sizes.

experiment), compute the ensemble averages for each ex-
periment, and then calculate the sum of them. The min–
max ranges of the sum of ensemble averaged single forcing
runs (blue lines, hist-GHG+ hist-aer+ hist-totalO3+ hist-
lu+ hist-sol+ hist-volc) overlap with the ranges of the en-
semble averaged historical runs for all the regions and the

global mean for all four variables, suggesting that linear ad-
ditivity holds for all of these cases, at least within MIROC6-
LE.

Figure 4 shows differences in regional changes in Tx

(2000–2020 minus 1850–1900) and Px (percent changes
from 1850–1900 to 2000–2020) between historical and hist-
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Figure 3. Additivity tests of historical experiments for the 1850–2020 trends of (a) T (◦C), (b) P (%), (c) Tx (◦C), and (d) Px (%). These
trends are calculated for the global mean or regional averages over the 26 regions defined by the IPCC (2012). Orange boxes indicate
the min–max ranges of the 1000 ensemble average values for randomly sampled 50 member historical runs with replacement. Blue lines
show the min–max ranges for 1000 sum values of ensemble averaged random samples from single forcing runs (hist-GHG+ hist-aer+ hist-
totalO3+ hist-lu+ hist-sol+ hist-volc).

nat runs: these differences indicate anthropogenic influences
on Tx and Px changes. When we use only runs 1–3, anthro-
pogenic signals of Tx are statistically significant at±5 % lev-
els of the t test over 73 % of the world but are not significant,
for example, over the United States, Eastern Europe, and
China. As the ensemble size (N ) increases to N = 10 and 50,
the fraction of the area where the anthropogenic Tx signals
are significant rises to 90 % and 96 %, respectively. When
we use only runs 1–3 or 1–10, the fraction of the area where
anthropogenic Px signals are significant are only 19 % and
35 %, respectively. Therefore, the ensemble sizes of N = 3
(the minimum size requested by DAMIP) or 10 (the mini-
mum size requested by LESFMIP) are insufficient for isolat-
ing the historical anthropogenic changes in Px over most of
the world at the grid scale (150 km) using the single model
ensemble. It should be noted that spatial aggregation or mul-
timodel averages possibly improve signal-to-noise ratios.

Figure 5 shows the fractions of the world area (%) with
significant differences (at ±5 % levels of the t test) be-
tween historical and hist-nat (i.e., anthropogenic signals)
(F (historical, hist-nat)) as a function of ensemble size. As
the ensemble size increases, F (historical, hist-nat) becomes
larger. Area fractions are larger for temperature than for pre-
cipitation and greater for mean changes than for extremes.
F (historical, hist-nat) are nearly saturated for N = 4 and 15
for T and Tx , respectively. In contrast, F (historical, hist-nat)
is not saturated and rapidly increases with larger ensemble
sizes for P and Px . F (historical, hist-nat) of P and Px reach
76 % and 69 % at N = 50, respectively. Therefore, an ensem-
ble size of 50 is insufficient for isolating anthropogenic sig-
nals of P and Px from the natural variability over 24 % and
31 % of the world’s area (mainly in the subtropical ocean;
Fig. 4f). In the rest of the world, anthropogenic signals of P

and Px are significant with the 50 member ensembles.

Earth Syst. Dynam., 14, 1107–1124, 2023 https://doi.org/10.5194/esd-14-1107-2023
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Figure 4. Panels (a–c) show the differences in changes in Tx (◦C, 2000–2020 minus 1850–1900) between historical and hist-nat runs.
Shading shows the ensemble mean of (a) runs 1–3, (b) runs 1–10, and (c) runs 1–50. Hatching denotes the regions where the differences are
significant at 5 % levels of the t test. Parentheses indicate the fraction of the area with significant differences. Panels (d–f)show the same as
the top panels but for differences in changes in Px (percent changes of 2000–2020 relative to 1850–1900) between historical and hist-nat
runs.

3.2 Future experiments

Single forcing experiments under the SSP2-4.5 scenario en-
able us to separate future climate responses to GHG, anthro-
pogenic aerosols, and natural forcing factors (Fig. 6). For
future simulations from 2015, volcanic forcing is increased
from the value at the end of the historical simulation pe-
riod (2015) over 10 years to the same constant value pre-
scribed for the preindustrial control simulations and then is
kept fixed (O’Neill et al., 2016). Although the future total
solar irradiance is assumed to have a small negative long-
term trend (Matthes et al., 2017), the effects on the long-term
trends of T , Tx , P , and Px are minimal. Positive responses
of T , Tx , P , and Px to the GHG forcing are partly compen-
sated by the negative responses to the aerosol forcing. Be-
cause aerosol emissions gradually decrease under SSP2-4.5
(Rao, 2017; Lund, 2019), the negative responses of T , Tx ,
and Px significantly decrease. Although negative responses
of P to aerosol forcing also decrease, apparent differences
of P changes between ssp245 and ssp245-GHG remain un-
til 2100 mainly due to the large sensitivity of P to aerosol
forcing (Shiogama et al., 2010a, b).

Figure 7 shows changes in global mean T , Tx , P

and Px under the five SSP scenarios. For T , Tx , and
Px , the differences between the scenarios are small until
2040, and after that, ssp runs with larger radiative forcing
(ssp585 > ssp370 > ssp245 > ssp126 > ssp119) have greater
positive anomalies. Changes in P are different from the other
variables. At the end of the 21st century, the positive P

anomalies from ssp370 are similar to those from ssp245, al-

Figure 5. Fraction of the world area (%) with significant differences
(at 5 % levels of the t test) between historical and hist-nat (2000–
2020 minus 1850–1900) as a function of ensemble size.

though the T anomalies from ssp370 are larger than those
from ssp245. Aerosol emissions do not decrease under the
SSP3-7.0 scenario but decline in the other SSP scenarios
(Rao, 2017; Lund, 2019). It is likely that greater negative re-
sponses of P to the larger aerosol emissions compensate sub-
stantially for the positive responses of P to the GHG forcing
in ssp370. Differences in aerosol emissions between SSPs
(O’Neil, 2014; Rao et al., 2017; Lund, 2019) also induce im-
portant differences in P anomalies until the middle of the
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Figure 6. Future changes in global mean (a) T (◦C), (b) P (%), (c) Tx (◦C), and (d) Px (%) relative to the 1850–1900 averages due to single
forcing factors. Solid lines are the ensemble averages of ssp245 (black), ssp245-GHG (red), ssp245-aer (green), and ssp245-nat (blue). Thin
dashed lines denote the minimum and maximum values of the ensemble members. Numbers in parentheses indicate the ensemble sizes.

Figure 7. Future changes in global mean (a) T (◦C), (b) P (%), (c) Tx (◦C), and (d) Px (%) relative to the 1850–1900 averages. Solid lines
are the ensemble averages of ssp585 (black), ssp370 (red), ssp245 (orange), ssp126 (green), and ssp119 (blue). Thin dashed lines denote the
minimum and maximum values of the ensemble members. Numbers in parentheses indicate the ensemble sizes.
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21st century. It seems that rapid decreases in aerosol emis-
sions due to aggressive reductions in fossil fuel consump-
tion cause larger increases in P in ssp119 and ssp126 than in
ssp585 (the fossil-fueled development scenario). The larger
aerosol emissions in ssp370 (due to weak pollution control
policies) would cause smaller increases in P in ssp370 than
in the other ssp runs. Single forcing runs under all SSP sce-
narios (especially SSP3-7.0) would be useful for further anal-
yses, but this remains the focus of future work.

The top panels of Fig. 8 show differences in changes in Px

(percent changes from 1850–1900 to 2050–2100) between
ssp585 and ssp126. When we use only runs 1–3, differences
in Px are statistically significant over 49 % of the world’s
area but are not, for example, significant over the United
States and Europe. As the ensemble size increases to 10 and
50, the fractions of areas with significant differences rise to
77 % and 90 %, respectively. When we analyze the differ-
ences in changes in Px between ssp126 and ssp119 (the bot-
tom panels of Fig. 8), only 38 % of the globe shows signifi-
cant differences even when we have 50 member ensembles.
When the ensemble size is limited to 10 or 3, the areas where
differences are significant cover only 11 % and 7 %, respec-
tively.

Figure 9 shows the fractions of areas with significant
differences in T , Tx , P , and Px changes (changes from
1850–1900 to 2050–2100) between the SSP experiments
as a function of ensemble sizes (F (sspXXX, sspYYY)).
It is expected that larger ensembles are necessary to iden-
tify differences in climate response for smaller differences
of forcing. For T , F (ssp126, ssp119), F (ssp245, ssp126),
F (ssp370, ssp126), and F (ssp585, ssp126) exceeded 80 %,
even when only three members were available. For Tx , when
F (ssp126, ssp119), F (ssp245, ssp126), F (ssp370, ssp126),
and F (ssp585, ssp126) have 10 ensemble members, the areas
are 84 %, 94 %, 97 %, and 99 %, respectively. Therefore, 10
members are sufficient to examine differences in T and Tx

changes over most of the world. Fourteen and 13 members
are necessary for F (ssp585, ssp126) of P and Px to exceed
80 %, respectively. With N = 25, the F (ssp370, ssp126) of P

and Px reach 80 %. For the F (ssp245, ssp126) of P and Px ,
N ≥ 38 and 46 are necessary to exceed 70 %. The F (ssp126,
ssp119) of P and Px are less than 50 % for N = 50. There-
fore, larger ensembles are desirable to investigate the differ-
ences in mean and extreme precipitation changes between
ssp126 and ssp119, which were designed as experiments rel-
evant to the 2 ◦C and 1.5 ◦C goals of the Paris Agreement
(O’Neill et al., 2016).

3.3 Changes in internal variability

The internal variability in the historical (1951–2000) and
future (2051–2100) experiments of MIROC6-LE are exam-
ined. Climate variability consists of externally forced change
and internal variability, and isolating internal variability un-
der transient forced changes with low errors requires large

ensembles (Maher et al., 2018; Milinski et al., 2020; Lee
et al., 2021) or spatiotemporal analysis methods (e.g., Wills
et al., 2020). In this section, two conventional methods are
compared for determining the internal variability component
of an area-averaged variable: (1) a single-member-trend re-
moved (SMTR) estimate using linearly detrended anomalies
relative to the seasonal climatology over 50 years and (2) a
multi-member-mean removed (MMMR) estimate using de-
partures from the ensemble mean changing with time in re-
sponse to external forcing. Hereafter, we represent the inter-
nal variability components of the first and second methods
with “a” and “i”: for instance, Xa and Xi for a variable X, re-
spectively. While the first method is often used to analyze ob-
servational datasets and climate model outputs (e.g., Kim et
al., 2014; Capotondi et al., 2020), the second method, which
requires a large ensemble, is more appropriate for determin-
ing the internal variability component since it is not contam-
inated by residuals from detrending methods. The standard
deviation is derived across time for each member and then
averaged across ensemble members. We term the 50-member
averages of the standard deviations derived by the MMMR
estimate “the best estimate” in this study. As the reference
state for the forced responses, the 800-year piControl is also
analyzed, where Xi is the departure from the seasonal cli-
matology over 800 years as the external forcing is constant
for the year 1850, while the 50 members of Xa are derived
from randomly selected 50-year segments. To focus on the
interannual timescale, a 10-year high-pass Butterworth filter
is applied.

The amplitude of the El Niño/Southern Oscillation
(ENSO; Timmermann et al., 2018), the dominant interannual
SST variability in the tropical Pacific Ocean, is examined
based on the standard deviations of SSTa and SSTi averaged
over the Niño-3.4 region (170–120◦W, 5◦ S–5◦ N; Trenberth,
1997) in boreal winter (December to February). It has been
reported that MIROC6 is one of the CMIP6 climate mod-
els that better simulates various key ENSO properties, such
as spatial structure, global teleconnections, nonlinearity, and
ENSO dynamics (Tatebe et al., 2019; Hayashi et al., 2020;
Fasullo, 2020; Planton et al., 2021). In each MIROC6-LE
experiment (Fig. 10a), the Niño-3.4 SSTa standard deviation
varies among the ensemble members depending on the initial
condition, but its 50-member ensemble average (shown with
an open circle) approximates the best estimate (shown with a
cross mark), implying that the forced response of the Niño-
3.4 SST is not sensitive to interannual external forcing, such
as volcanoes. Thus, the SMTR estimate can decompose the
internal ENSO variability properly. Figure 10a also shows
that the ENSO amplitude increases from the piControl to the
historical (1951–2000) experiments and is further enhanced
in all the future projections (ssp119, ssp126, ssp245, ssp370,
and ssp585) for 2051–2100. The increased amplitude from
the preindustrial condition of 1850 to 1951–2000 is consis-
tent with the past ENSO changes inferred by McGregor et
al. (2013). The future strengthening of ENSO SST variabil-
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Figure 8. Panels (a–c)show the differences in changes in Px (percent changes of 2050–2100 relative to 1850–1900) between ssp585 and
ssp126 runs. Shading shows the ensemble mean of (a) runs 1–3, (b) runs 1–10, and (c) runs 1–50. Hatching denotes the regions where the
differences are significant at 5 % levels of the t test. Numbers in parentheses indicate the fraction of the areas with significant differences.
(d–f) The same as the top panels but for differences between ssp126 and ssp119.

Figure 9. Fraction of the world area (%) with significant differences (at 5 % levels of the t test) between (a) ssp126 and ssp119, (b) ssp245
and ssp126, (c) ssp370 and ssp126, and (d) ssp585 and ssp126 as a function of ensemble size. Black, red, green, and blue lines are T , Tx , P ,
and Px , respectively.

ity agrees with the majority of CMIP6 climate models under
transient warming scenarios (Fredriksen et al., 2020; Cai et
al., 2022), while equilibrated warmer climates may weaken
ENSO (Callahan et al., 2021). The DAMIP experiments in-

dicate that the increased GHG forcing contributes to ENSO
amplification in the historical and ssp245 experiments, while
the aerosol forcing also enhances ENSO in the historical ex-
periment in MIROC6, as noted by Maher et al. (2023).
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Figure 10. The standard deviations of the 10-year high-pass filtered Niño-3.4 SSTa and SSTi averaged during December to February.
Panel (a)shows the best estimates derived from the 50 members of SSTi (cross marks) and the single-member-trend removed estimates
derived from each member of SSTa (box-whisker plots for the ensemble medians, interquartile ranges, and minimum–maximum ranges;
open circles for the ensemble mean; shadings for probability density functions). The ensemble-size (N ) dependence of the 95 % ranges
for (b–d) the ensemble means of randomly selected SSTa from the 50 members and for (e–g) the SSTi defined as the departures from the
ensemble means of randomly selected members. The cross marks indicate the best estimates. The vertical bars outside of each panel show
the 95 % ranges at N = 50.

How many ensemble members are needed for approximat-
ing the best estimate? In Fig. 10a, the 50-member ensemble
averages (opened circles) correspond well to the best esti-
mates (cross marks), but such a large ensemble requires sig-
nificant computing resources and thus is not available for
many climate models. To provide an efficient way to ana-
lyze internal variability in practice, the accuracy of ensem-
ble averages with smaller ensemble sizes (e.g., 10 members)
is evaluated. Here, the robustness of the ENSO amplitude

differences among the MIROC6-LE experiments is tested
with respect to the ensemble size (N ). The uncertainty in
the SMTR estimate is shown in Fig. 10b–d, where the 95 %
ranges between the 2.5th and 97.5th percentiles are calcu-
lated from 1000 pseudoensembles, which are produced for
each N from 1 to 50 by resampling the 50 Niño-3.4 SSTa
standard deviations randomly with replacement (Lee et al.,
2021). The uncertainty range becomes larger with smaller
values for N , and then two ranges in different experiments
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may overlap at a specific small N , where the difference be-
tween two ensemble averages is possibly due to a lack of en-
semble members. The minimum sizes of N needed for sep-
arating the two experiments beyond their 95 % ranges are
summarized in Sect. S1 in the Supplement. To separate the
historical from piControl experiments, N = 3 is at least re-
quired. The amplitude differences from historical to ssp370
and to ssp245 and ssp585 are detectable with N ≥ 3 and N ≥

4, respectively, while much larger ensembles are required for
ssp126 (N ≥ 20) and ssp119 (N ≥ 33). An ensemble with
N ≥ 46 can distinguish ssp370 from ssp245. However, the
differences between ssp119 and ssp126, and among ssp245,
ssp370, and ssp585, are not clearly obtained by N = 50; thus,
a larger ensemble is required. In the DAMIP experiments,
strengthening of ENSO from piControl can be detected with
N ≥ 2 for ssp245-GHG, N ≥ 7 for hist-GHG, and N ≥ 23
for hist-aer. The ENSO amplitude increase is also robustly
detected from hist-GHG to the historical runs with N ≥ 22
and from ssp245-GHG to ssp245 with N ≥ 37, implying that
external forcings other than GHG (e.g., aerosols) and the
nonlinear relationship of forced responses may contribute to
strengthening ENSO.

The ENSO amplitude uncertainty in the MMMR estimate
with N is also shown in Fig. 10e–g, where the Niño-3.4 SSTi
is defined as the departure from the ensemble mean of N

members (3≤N ≤ 50) randomly resampled with replace-
ment. In general, a small N (e.g., N = 3) results in under-
estimating the internal variability amplitude, as the ensemble
mean includes a higher residual variability (Milinski et al.,
2020). For the ENSO amplitude, the results are basically the
same as the SMTR estimate case (Fig. 10b–d), except for the
detailed numbers. For example, N ≥ 5 is required for sepa-
rating historical runs from the piControl run, and N = 8 is
large enough to detect the differences from historical runs
to ssp245 (N ≥ 7), ssp370 (N ≥ 6), and ssp585 (N ≥ 8). A
larger N is required to identify differences among historical
runs and ssp126 (N ≥ 19) and ssp119 (N ≥ 31). The ENSO
strengthening from piControl to hist-GHG and hist-aer are
detectable with N ≥ 8 and N ≥ 27, respectively. Importantly,
a smaller ensemble size (e.g., N = 10) results in a higher
probability of the underestimated standard deviation by the
MMMR estimate, demonstrating the necessity of a large en-
semble to evaluate the internal variability amplitude.

The internal variability in the global annual mean sur-
face air temperature (Ta and Ti) and precipitation (Pa and
Pi) shown in Sects. 3.1 and 3.2 are analyzed in the same
manner as the ENSO amplitude. Figures 11a and 12a pro-
vide the amplitude dependence on the experiments. The vari-
ability is lower in the piControl experiment and higher in
the high-emission scenarios (ssp245, ssp370, and ssp585). It
also increases from piControl to hist-GHG and ssp245-GHG.
Note that the SMTR estimates (Figs. 11b–d and 12b–d) over-
estimate the global mean T and P variabilities compared
with the best estimates in the historical and hist-nat runs, in
contrast to the ENSO amplitude. This is because the exter-

nally forced change at the interannual and decadal timescales
driven by natural forcing, such as volcanic eruptions (Figs. 1a
and 2a), cannot be separated from the internal variability and
thus contaminates the Ta and Pa variabilities. Therefore, the
MMMR estimate (Ti and Pi) is necessary for distinguishing
the internal variability components from the forced responses
in the global mean T and P of the historical and hist-nat ex-
periments (Figs. 11e–g and 12e–g).

Based on the MMMR estimate, the minimum ensemble
size for detecting the increase in the global mean Ti stan-
dard deviation is N = 6 for the piControl to historical runs,
N = 7 for the historical to ssp370 runs, N = 8 for the his-
torical to ssp245 and ssp585 runs, and N = 23 for the his-
torical to ssp119 and ssp126 runs. The differences between
ssp119 and ssp126, and among ssp245, ssp370, and ssp585,
are not significant even for N = 50. Interestingly, the global
mean Ti standard deviations tend to be higher in ssp370 than
in ssp585, similarly to ENSO, indicating the critical role of
ENSO variability on the global mean air temperature vari-
ance (e.g., Thompson et al., 2009; Hu and Fedorov, 2017). In
contrast, the global mean Pi standard deviations overlap with
each other for about 95 % of their ranges such that the differ-
ences among historical, ssp119, and ssp126 runs are not ro-
bust even for N = 50. However, when N ≥ 16 is greater than
or equal to 16, the increase is significant from historical sce-
narios to the high-emission scenarios (ssp245, ssp370, and
ssp585), for N = 50 from ssp126 to ssp245, and for N = 47
and 33 for ssp245 to ssp370 and ssp585, respectively. Un-
like the global mean Ti and ENSO variabilities, the Pi vari-
ability is higher in ssp370 and ssp585 than in ssp245. It is
significant for N ≥ 10 that the increased variability in both
the global mean Ti and Pi is driven by GHG (hist-GHG and
ssp245-GHG), but the amplitudes of that variability in the
other DAMIP experiments remain indistinguishable in the
piControl run, even with N = 50. Thus, a larger ensemble
and longer piControl simulation are desirable for detecting
changes in the global mean T and P internal variability am-
plitude from the piControl to hist-aer, hist-nat, ssp245-aer,
and ssp245-nat simulations.

In summary, MIROC6-LE with N = 50 is useful for de-
tecting changes in the internal variability of ENSO and global
mean T and P anomalies between historical and future ex-
periments and between high- and low-emission scenarios.
The impact of aerosols on ENSO amplitude is also detectable
in MIROC6. However, it is still challenging to distinguish
these changes between high-emission scenarios or between
low-emission scenarios, implying the importance of imple-
menting spatiotemporal analysis methods (e.g., Wills et al.,
2020) or generating larger ensembles (e.g., Maher et al.,
2019; Rodgers et al., 2021; Lin et al., 2022). The mecha-
nisms underlying the clearly detected changes in this study
and the changes in other internal variability will be reported
in future works.
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Figure 11. Same as Fig. 10 but for the 10-year high-pass-filtered global annual mean T (◦C).

4 Discussion and conclusion

Here, we have explained how MIROC6-LE was designed.
We have also shown the results of the initial analyses.
Specifically, we find that the linear additivity of the forcing-
response relationship holds for the 1850–2020 trends of T ,
Tx , P , and Px by analyzing the historical all forcing runs
and the sum of single forcing historical runs. The ensem-
ble sizes of 4 and 15 are enough to isolate historical an-
thropogenic signals (differences between historical and hist-
nat runs) of T and Tx in most of the world. Although his-
torical anthropogenic signals of P and Px are significant
with the 50-member ensembles in approximately 70 % of the
world, larger ensembles are necessary in other areas (mainly
in the subtropics). The 50-member simulations of MIROC6-

LE are sufficient to analyze differences in regional T and Tx

changes between ssp126 and ssp119 (scenarios relevant to
the 2 ◦C and 1.5 ◦C goals of the Paris Agreement) but not suf-
ficient to obtain significant differences in P and Px changes
over more than half of the world. Atmospheric global cli-
mate models (AGCMs) are more cost-effective tools to pro-
duce large ensembles (e.g., 100 members) for future cli-
mate change projections at given warming levels and for
event attribution studies than CGCMs, while AGCM simula-
tions can only inform projections and attribution statements
conditionally with respect to prescribed SST patterns (Sh-
iogama et al., 2016, 2020; Mizuta et al., 2017; Mitchell et
al., 2017; Imada et al., 2017; Stone et al., 2019; Fujita et al.,
2020; Nosaka et al., 2021). Combined analyses of AGCM
LEs (e.g., Mitchell et al., 2017; Shiogama et al., 2019b) and
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Figure 12. Same as Fig. 10 but for the 10-year high-pass-filtered global annual mean P (0.01 mm d−1).

CGCM LEs could be useful for discussions of differences in
precipitation changes between the 2 ◦C and 1.5 ◦C warmer
climates, but it should be noted that climate change pro-
jections can be significantly different between AGCM and
CGCM simulations (Uhe et al., 2021).

We also analyzed the historical and future changes in
ENSO variability and the internal components of interan-
nual global mean T and P variabilities using MIROC6-
LE. The interannual variabilities are the 10-year high-pass-
filtered components of departures from the ensemble mean
so that interannual and decadal responses to the natural forc-
ing can be eliminated, and they are compared with detrended

anomalies relative to the long-term mean. The future ENSO
intensification over the 50-year window of 2051–2100 is de-
tectable with ensemble sizes of 6 for ssp370 (minimum of
the five scenarios examined) and 31 for ssp119 (maximum),
and the ensemble size of 27 can isolate the contributions of
the historical GHG and aerosol forcings to the ENSO intensi-
fication during the historical period. For detecting the future
amplification in the interannual T variability, the ensemble
sizes of 8 and 23 are sufficient in the high-emission scenar-
ios (ssp245, ssp370, and ssp585) and in the low-emission
scenarios (ssp119 and ssp126), respectively, but the differ-
ences between the low- and high-emission scenarios cannot
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be isolated even with 50 members. As these unforced global
mean T variability changes basically follow the ENSO am-
plitude changes (cf. Thompson et al., 2009), a better under-
standing of ENSO projections is key for reducing the uncer-
tainty of global temperature projections. The P variability
amplification from the historical runs can be detected in the
high-emission scenarios with 16 members, but 50 members
are not sufficient in the low-emission scenarios. It is worth
noting that a large ensemble is necessary to avoid underes-
timating the amplitude of internal variability relative to the
ensemble mean. Furthermore, the historical natural forcing
results in an overestimation of the global mean T and P

variabilities for interannual timescales when the detrended
anomalies are used, highlighting the importance of using the
departures from the ensemble mean for discussing changes
in the internal variability.

MIROC6-LE is one of the largest LEs to date. The total
simulation length of MIROC6-LE is 76 750 years, which is
much larger than that of other LEs, e.g., CESM2-LE (32 675
years), MPI-GE (58 800 years), and SMHI-LENS (19 450
years), and is comparable to the DAMIP experiments of
CanESM5 (72 515 years, https://pcmdi.llnl.gov/CMIP6/
ArchiveStatistics/esgf_data_holdings/DAMIP/index.html,
last access: 13 October 2023). Because MIROC6-LE is an
evolving ensemble, additional experiments will be included
in the future. We are publishing the output data of MIROC6-
LE via the Earth System Grid Federation. When this paper
was submitted, the output data of all the experiments, except
for runs 1–10 of hist-lu and runs 11–50 of hist-aer and
ssp245-aer, had been published. Because the experimental
designs of MIROC6-LE are consistent with those of the
other MIPs, it is easy to compare the outputs of MIROC6-LE
with the other models. We hope that the publicly available
output data of MIROC6-LE facilitate research in a broad
range of communities.

Code and data availability. The output data of all the ex-
periments, except for runs 1–10 of hist-lu and runs 11–50
of hist-aer and ssp245-aer, are available via the Earth Sys-
tem Grid Federation (https://esgf-node.llnl.gov/search/cmip6/):
https://doi.org/10.22033/ESGF/CMIP6.894 (Shiogama, 2019);
https://doi.org/10.22033/ESGF/CMIP6.898 (Shiogama et
al., 2019a); https://doi.org/10.22033/ESGF/CMIP6.5711
(Tatebe and Watanabe, 2018a); and
https://doi.org/10.22033/ESGF/CMIP6.5603 (Tatebe and Watan-
abe, 2018b). The output data of runs 1–10 of hist-lu and runs 11–50
of hist-aer and ssp245-aer are expected to be published in the year
2024. Before such publication, those data are available from the
corresponding author upon reasonable request. The codes are also
available from the corresponding author.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-14-1107-2023-supplement.
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