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Abstract. We produce climate projections through the 21st century using the fractional energy balance equa-
tion (FEBE): a generalization of the standard energy balance equation (EBE). The FEBE can be derived from
Budyko–Sellers models or phenomenologically through the application of the scaling symmetry to energy stor-
age processes, easily implemented by changing the integer order of the storage (derivative) term in the EBE to a
fractional value.

The FEBE is defined by three parameters: a fundamental shape parameter, a timescale and an amplitude,
corresponding to, respectively, the scaling exponent h, the relaxation time τ and the equilibrium climate sensi-
tivity (ECS). Two additional parameters were needed for the forcing: an aerosol recalibration factor α to account
for the large aerosol uncertainty and a volcanic intermittency correction exponent ν. A Bayesian framework
based on historical temperatures and natural and anthropogenic forcing series was used for parameter estima-
tion. Significantly, the error model was not ad hoc but rather predicted by the model itself: the internal variability
response to white noise internal forcing.

The 90 % credible interval (CI) of the exponent and relaxation time were h= [0.33, 0.44] (median= 0.38)
and τ = [2.4, 7.0] (median= 4.7) years compared to the usual EBE h= 1, and literature values of τ typically
in the range 2–8 years. Aerosol forcings were too strong, requiring a decrease by an average factor α = [0.2,
1.0] (median= 0.6); the volcanic intermittency correction exponent was ν = [0.15, 0.41] (median= 0.28) com-
pared to standard values α = ν = 1. The overpowered aerosols support a revision of the global modern (2005)
aerosol forcing 90 % CI to a narrower range [−1.0, −0.2] W m−2. The key parameter ECS in comparison to
IPCC AR5 (and to the CMIP6 MME), the 90 % CI range is reduced from [1.5, 4.5] K ([2.0, 5.5] K) to [1.6, 2.4] K
([1.5, 2.2] K), with median value lowered from 3.0 K (3.7 K) to 2.0 K (1.8 K). Similarly we found for the transient
climate response (TCR), the 90 % CI range shrinks from [1.0, 2.5] K ([1.2, 2.8] K) to [1.2, 1.8] K ([1.1, 1.6] K)
and the median estimate decreases from 1.8 K (2.0 K) to 1.5 K (1.4 K). As often seen in other observational-based
studies, the FEBE values for climate sensitivities are therefore somewhat lower but still consistent with those in
IPCC AR5 and the CMIP6 MME.

Using these parameters, we made projections to 2100 using both the Representative Concentration Path-
way (RCP) and Shared Socioeconomic Pathway (SSP) scenarios, and compared them to the corresponding
CMIP5 and CMIP6 multi-model ensembles (MMEs). The FEBE historical reconstructions (1880–2020) closely
follow observations, notably during the 1998–2014 slowdown (“hiatus”). We also reproduce the internal vari-
ability with the FEBE and statistically validate this against centennial-scale temperature observations. Overall,
the FEBE projections were 10 %–15 % lower but due to their smaller uncertainties, their 90 % CIs lie completely
within the GCM 90 % CIs. This agreement means that the FEBE validates the MME, and vice versa.
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1 Introduction

The Earth is a complex, heterogenous system with turbu-
lent atmospheric and oceanic processes operating over scales
ranging from millimetres up to planetary scales. When con-
sidered by timescale, there are three main regimes: the
weather, macroweather and climate (Lovejoy and Schertzer,
2013; Lovejoy, 2013). From dissipation times up until the
scale of 10 d (days) – the lifetime of planetary structures –
fluctuations in the temperature and other atmospheric quan-
tities increase with timescale: this is the weather regime.
Beyond this – in macroweather – fluctuations generally
decrease with scale: averaging anomalies over longer and
longer times decrease their average. Eventually, this is re-
versed and fluctuations again tend to increase, marking the
beginning of the climate regime. In the industrial epoch,
this occurs at a scale of ≈ 20 years, while in the pre-
industrial epoch the transition is at centuries or millennia
and the regime continues up to Milankovitch scales (Love-
joy, 2015b, 2019).

A major challenge is to determine the Earth’s decadal and
centennial response to anthropogenic and natural perturba-
tions. At the moment, projection uncertainties – famously
exemplified in the range 1.5–4.5 K for a CO2 doubling –
are so large that for many purposes, including the develop-
ment of mitigation policies, the development of complemen-
tary approaches are needed. When considering alternatives,
although perturbations to the Earth system can be quite var-
ied, when compared to the mean solar radiation, over the past
and future decades, those of interest are of the order of only a
few percent. This allows diverse forcings to be conveniently
approximated by their equivalent radiative forcings. It also
explains why – in spite of their highly non-linear weather
dynamics – that to a good approximation, general circulation
model (GCM) macroweather and climate responses to deter-
ministic external perturbations are typically linear (as quan-
tified for CMIP5 models in Hébert and Lovejoy, 2018) but
with stochastic internal variability.

In order to construct macroweather and climate mod-
els, beyond linearity and stochasticity, we require additional
model constraints, the classical one being energy balance.
Starting with the first energy balance models (EBMs) pro-
posed by Budyko (1969) and Sellers (1969), EBMs and
stochastic climate models have been extensively used for
understanding the climate (North, 1975; Hasselmann, 1976;
North et al., 1981; Imkeller and Von Storch, 2001; Trenberth
et al., 2014; North and Kim, 2017; Proistosescu et al., 2018;
Ziegler and Rehfeld, 2021). In this paper, we will only con-
sider EBMs for the globally averaged temperature. The re-
sulting “zero-dimensional” energy balance equation (EBE) is
a first-order linear differential equation; it can be obtained by
considering the Earth to be a uniform slab of material (“box”)
radiatively exchanging heat with outer space. Such box mod-

els usually involve at least two boxes and they assume New-
ton’s law of cooling as well as ad hoc assumptions relating
surface temperature gradients to the rate of heat exchange.

Energy conservation is an important symmetry principle,
yet when implemented in box-type models, it violates an-
other symmetry: scale invariance. This is because box mod-
els are integer ordered differential equations whose response
functions (Green’s functions) are exponentials (see Ghil and
Lucarini, 2020, for a discussion on the exponential decay of
Green’s function in the climate context). In order to respect
the scaling, these “climate response functions” (CRFs) have
therefore been postulated to be scaling (power law). How-
ever, the use of pure power-law CRFs (e.g. Rypdal, 2012;
Myrvoll-Nilsen et al., 2020) leads to divergences: the “run-
away Green’s function effect” (Hébert and Lovejoy, 2015)
which states that if the Earth is perturbed by even an infinites-
imal step function forcing, its temperature monotonically in-
creases without ever attaining thermodynamic equilibrium:
its equilibrium climate sensitivity (ECS) is infinite. Whereas
the classical EBMs conserve energy but violate scaling, the
pure scaling CRF models are scaling but violate energy con-
servation. Such models can only make projections by using
forcings that start and then return to zero.

Hébert et al. (2021) proposed taming the divergences by
cutting off the power-law CRFs at small scales. The re-
sulting model was scaling at long times and, when forced
by step functions, reaches thermodynamic equilibrium. With
this truncated power-law CRF and using Bayesian tech-
niques, Hébert et al. (2021) were able to make climate pro-
jections through 2100 with the Intergovernmental Panel on
Climate Change (IPCC) Representative Concentration Path-
way (RCP) scenario forcings that were coherent with the
multi-model ensemble (MME) 90 % credible interval (CI).
Furthermore, using the historical part of each GCM simula-
tion, the corresponding GCM climate projections were accu-
rately reproduced, meaning (in regards to the Earth’s glob-
ally averaged temperature) that both models were effectively
equivalent. The caveat was that the CRF model truncation
was somewhat ad hoc and therefore only useful at decadal or
longer scales.

To make more realistic models, the key issue is energy
storage. Storage is a consequence of imbalances in incom-
ing short wave and outgoing long wave radiation and it must
be accounted for in applications of the energy balance prin-
ciple (Trenberth et al., 2009). As pointed out in Lovejoy
(2019, 2022) and developed in Lovejoy et al. (2021), it is
sufficient that the scaling principle not be applied to the CRF
but rather to the storage term in the EBE. In lieu of the en-
ergy being stored by uniformly heating a box, energy is in-
stead stored in a hierarchy of structures from small to large,
each with time constants that are power laws of their sizes.
This conceptual shift can be implemented simply by chang-
ing the integer order of the storage (derivative) term in the
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EBE to a fractional value: the fractional energy balance equa-
tion (FEBE). While Lovejoy et al. (2021) derived the FEBE
in a phenomenological manner, Lovejoy (2021a, b) showed
how it could instead be derived from the classical continuum
mechanics heat equation used in the Budyko–Sellers models.
Indeed, by extending Budyko–Sellers models from 2-D to 3-
D (i.e. to include the vertical) and imposing the (correct) con-
ductive – radiative surface boundary conditions, one immedi-
ately obtains fractional-order equations for the surface tem-
perature. In other words, nonclassical fractional equations
and long memories turn out to be necessary consequences
of the classical Budyko–Sellers approach.

To understand the FEBE’s key new features, recall that lin-
ear differential equations can be solved with Green’s func-
tions; in the classical integer-ordered case, these are based
on exponentials. However, in the general case where one or
more terms are of fractional order, they are instead based
on “generalized exponentials”, themselves based on power
laws. In the FEBE, there are two distinct power-law regimes
with a transition at the relaxation time (estimated to be of the
order of a few years; see below). While the low-frequency
Green’s function can be very close to Hébert et al. (2021)’s
truncated power-law CRF, the high-frequency regime is able
to produce internal variability coherent with the observed
scaling and fractional Gaussian noise used for skilfully fore-
casting the stochastic (internal) variability at monthly, sea-
sonal and interannual (macroweather) scales (Lovejoy et al.,
2015; Del Rio Amador and Lovejoy, 2019, 2021a). In short,
there are theoretical arguments as well as empirical evi-
dence that the FEBE accurately models the Earth’s tem-
perature response to both internal and external forcing over
macroweather and climate timescales.

The following text introduces the FEBE (Sect. 2.1), de-
scribes the radiative forcing, temperature and GCM simu-
lations that are used (Sect. 2.2), and introduces Bayesian
inference for determining the model and forcing parame-
ters (Sect. 2.3). Using these, we present the probability dis-
tribution functions for the parameters (Sect. 3.1 and 3.2)
and estimate the ECS and transient climate response (TCR)
(Sect. 3.3). Using our parameters, we discuss the model reli-
ability and statistically analyse the FEBE (Sect. 4), produce
global projections to 2100 using the RCPs and Shared So-
cioeconomic Pathways (SSPs), and estimate the probabil-
ity of exceeding various warming thresholds all of which
we compare to the corresponding CMIP5 and CMIP6 GCM
MMEs (readers only wanting results can skip to Sect. 5).

2 Methods and material

2.1 The FEBE

The zero-dimensional FEBE may be written as

τh−∞D
h
t T + T = sF, F(t)= F (t)+ f (t), 0≤ h≤ 1 (1)

(Lovejoy, 2022; Lovejoy et al., 2021), where T (t) is the Earth
temperature anomaly with respect to a reference temperature
(limt→−∞T (t)= 0), τ is the relaxation time, s is the climate
sensitivity, F(t) is the anomalous external radiative forcing
which is the sum of stochastic f (t) and deterministic F (t)
components, and h is the order of the Weyl fractional deriva-
tive (see, e.g. Podlubny, 1999):

−∞D
h
t T =

1
0(1−h)

t∫
−∞

(t − u)−hT ′(u)du, T ′(u)=
dT
du
, (2)

where 0 is the gamma function. If this derivative is integrated
by parts and the limit h→ 1 is taken, using limt→−∞T (t)=
0, −∞Dht T =

dT
dt so that we recover the standard box EBE

(Lovejoy et al., 2021).
If we solve the FEBE using Green’s functions, we obtain

T (t)= s

t∫
−∞

G0,h(t − u)F(u)du, (3)

whereG0,h is the impulse (Dirac) response Green’s function.
For the FEBE, it is given by

G0,h(t)=

{
τ−1( t

τ

)h−1
Eh,h

(
−
(
t
τ

)h)
; t ≥ 0

0; t < 0,
(4)

where

Eα,β (z)=
∞∑
k

zk

0(αk+β)
(5)

is the “α, β-order Mittag–Leffler function” (these and most
of the following results are in the notation of Podlubny,
1999). The condition G0,h(t)= 0 for t < 0 is needed to re-
spect causality; in what follows, this is implicitly assumed for
all Green’s functions. The Mittag–Leffler functions are of-
ten called “generalized exponentials”; the classical h= 1 box
model is the (exceptional) ordinary exponential: E1,1(z)=
ez.

Mathematically, when 0< h < 1, the FEBE is a “frac-
tional relaxation equation” where τ quantifies the slow,
power-law approach to a new thermodynamic equilibrium.
Rather than express solutions in terms of the impulse re-
sponse G0,h, it is often more convenient to use the step re-
sponse G1,h:

G1,h(t)=

t∫
0

G0,h(u)du=
(
t

τ

)h
Eh,h+1

(
−

(
t

τ

)h)
, (6)

such that the temperature response can be written as

T (t)= s

t∫
−∞

G1,h(t − u)F ′(u)du, F ′(u)=
dF
du
. (7)
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G1,h has the advantage of being dimensionless, and it also
has a simple interpretation as being the response to a step
forcing such as that found in numerical CO2 doubling exper-
iments. At high frequencies (t � τ ), important for modelling
and predicting the internal variability, we have

G0,h,high(t)=
1

τ0(h)

(
t

τ

)h−1

,

G1,h,high(t)=
1

0(h+ 1)

(
t

τ

)h
; t � τ. (8)

These correspond to taking the first terms in the series ex-
pansions for the Mittag–Leffler functions in Eqs. (4) and (6).
If we consider the response to Gaussian white noise forc-
ing, γ (t), then G0,h(t)∝ th−1 implies that T (t) is approxi-
mately a fractional Gaussian noise (fGn) with statistical scal-
ing exponent h− 1/2 (when forced by a Gaussian white
noise, the FEBE response is exactly a fractional Relaxation
noise, see Lovejoy, 2022). In Lovejoy et al. (2015); Lovejoy
(2015a), the high-frequency approximation with an exponent
corresponding to h= 0.3 was used; in Del Rio Amador and
Lovejoy (2019), forecasts with the more accurate estimate
h≈ 0.4± 0.05 (see below) were used.

To see if this is compatible with the value estimated from
the low-frequency response to external forcings, consider the
low-frequency behaviour (t � τ ) important for modelling
and projecting the multidecadal responses to external forc-
ing:

G0,h,low(t)=
−1

τ0(−h)

(
t

τ

)−1−h

,

G1,h,low(t)= 1−
1

0(1−h)

(
t

τ

)−h
; t � τ (9)

(note 0(−h)< 0 for 0< h < 1). In the box model case,
h= 1, we have exactly G1,1(t)= 1− e−t/τ , whereas when
h < 1, the exponential approach to equilibrium is replaced by
a power law. Hébert et al. (2021) usedG1(t)= 1−

(
1+ t

τ

)HF

with HF ≈−0.5+0.4
−0.5 corresponding for t � τ to h=−HF ≈

0.5, which is thus (within the uncertainty) the same h value as
that corresponding to the internal forcing. It is thus plausible
that the FEBE models both high- and low-frequency regimes
with the unique exponent h≈ 0.4. Indeed, it was this empir-
ical finding that predated and motivated the discovery of the
FEBE.

2.2 Data

2.2.1 Radiative forcing data

We consider natural and anthropogenic sources of ex-
ternal forcing: solar and volcanic, greenhouse gases and
aerosols. We use the standard semi-empirical carbon-
dioxide-concentration-to-forcing relationship (Myhre et al.,
1998):

FCO2 (ρ)= 3.71Wm−2 log
ρ

ρ0
(10)

where FCO2 is the forcing due to carbon dioxide, ρ is the con-
centration of carbon dioxide, and ρ0 is the pre-industrial con-
centration of carbon dioxide, which we take to be 277 ppm
(Solomon, 2007).

We follow the CMIP5 recommendations for anthro-
pogenic and solar forcing, while volcanic forcing is unpre-
scribed (Taylor et al., 2012). The anthropogenic CMIP6 ra-
diative forcings follow C. J. Smith et al. (2018).

2.2.2 Greenhouse gas forcing

The global climate is warming and most of the observed
changes are due to increases in the concentration of anthro-
pogenic greenhouse gases (GHGs) (IPCC, 2013). Future an-
thropogenic forcing is prescribed in the Representative Con-
centration Pathways (RCPs), established by the IPCC for
CMIP5 simulations: we considered RCP2.6, RCP4.5 and
RCP8.5 (Meinshausen et al., 2011b). RCP6.0 was omitted in
this study since fewer CMIP5 modelling groups performed
the associated run. In the CMIP6 simulations, the anthro-
pogenic forcings are prescribed in the Shared Socioeconomic
Pathways (SSPs) (Meinshausen et al., 2020); we investigate
the SSP1-26 (strong mitigation), SSP2-45 (middle of the
road) and SSP5-85 (strong emission) scenarios, designated
as high priority for IPCC AR6 and counterparts to the previ-
ous RCP scenarios above.

The RCP scenarios are derived from estimates of emis-
sions computed by a set of integrated assessment mod-
els (IAMs); these emissions are converted to concentra-
tions using the Model for the Assessment of Greenhouse-
gas Induced Climate Change (MAGICC, Meinshausen et al.,
2011a), while for the SSP scenarios the emissions are con-
verted to forcings using the Finite Amplitude Impulse Re-
sponse model (FAIR, C. J. Smith et al., 2018). These scenar-
ios will allow us to compare our results from the FEBE with
CMIP5/6 simulations.

The wide spread between the scenarios allows for the in-
vestigation of the consequences of various future policies,
from strong mitigation (RCP2.6, SSP1-26) to no-policy ref-
erence (RCP8.5, SSP5-85) shown in Fig. 1a. For RCP2.6 and
SSP1-26, the strongest mitigation scenarios, the total radia-
tive forcing has a peak at approximately 3 W m−2 around the
year 2050 and declines thereafter due to large-scale deploy-
ment of negative emission technologies. RCP4.5 and SSP2-
45 are stabilization scenarios, with the total radiative forcing
rising until the year 2070 and with stable concentrations after
the year 2070. In contrast, RCP8.5 and SSP5-85 are contin-
uously rising radiative forcing pathways in which the radia-
tive forcing levels by the end of the 21st century reach ap-
proximately 8.5 W m−2. Current emissions fall somewhere
between the 4.5 and 8.5 W m−2 scenarios.
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Figure 1. (a) The anthropogenic forcing series, the sum of the
greenhouse gas forcing FGHG and respective aerosol forcing se-
ries FAerRCP (black) or FAerSSP (blue) are shown over the histor-
ical period and projection period until 2100 for RCP2.6/SSP1-26
(solid), RCP4.5/SSP2-45 (dashed) and RCP8.5/SSP5-85 (dotted).
(b) The anthropogenic aerosol forcing series used, FAerRCP (blue)
and FAerSSP (black), following the same scheme as above. Updated
from Hébert et al. (2021).

In this paper, we use the forcing due to carbon dioxide
equivalent, FCO2eq , as the measure of our anthropogenic forc-
ing, FAnt, given in the RCP and SSP scenarios. The anthro-
pogenic forcing from gases corresponds to the effective ra-
diative forcing produced by long-lived GHGs FGHG: carbon
dioxide, methane, nitrous oxide and fluorinated gases, con-
trolled under the Kyoto Protocol, and ozone-depleting sub-
stances, controlled under the Montreal Protocol. We show
the anthropogenic forcings for each RCP and SSP scenario
in Fig. 1.

2.2.3 Aerosol forcing

Aerosols are a strong component of radiative forcing associ-
ated with anthropogenic emissions, resulting from a combi-
nation of direct and indirect aerosol effects. There exists high
uncertainty of the aerosol forcing, arising from a poor un-
derstanding of how clouds respond to aerosol perturbations
(Penner et al., 2001; Ramaswamy et al., 2001), compared to
the fairly well-constrained GHG forcing. We therefore fol-
low Forest et al. (2002), Harvey and Kaufmann (2002), For-
est et al. (2006), Padilla et al. (2011) and Hébert et al. (2021);
we introduce the aerosol linear scaling factor α to account for
our poor knowledge of aerosol forcing.

We obtained the CMIP5 aerosol forcing from the to-
tal CO2eq forcing by subtracting the combined effective ra-
diative forcing of the gases controlled by the Kyoto proto-
col, FKyt, and from those controlled under the Montreal pro-
tocol, FMtl. FMtl is given in CFC-12 equivalent concentration
and we use the relation from Ramaswamy et al. (2001) to
convert this to W m−2.

The total amount of aerosol forcing in 2005 given at
the 90 % CI in the IPCC Fifth Assessment Report (AR5) is
[−1.9, −0.1] W m−2. However, since then, attempts have
been made to better constrain this value; Stevens (2015)
argues that extreme aerosol forcings (more negative than
−1 W m−2) are implausible. Using results from Murphy
et al. (2009), Stevens (2015) supports tightening the up-
per and lower bounds of the aerosol forcing, revising it to
[−1.0, −0.3] W m−2, although the wider range from the
IPCC’s AR5 is still supported by the more comprehensive
study by Bellouin et al. (2020).

The prescribed CMIP6 SSP aerosol forcing, FAerSSP , con-
tains contributions from aerosol–radiation interactions and
from aerosol–cloud interactions: Fari and Faci (C. J. Smith
et al., 2018). Fari includes the direct radiative effect of
aerosols, in addition to rapid adjustments due to changes in
the atmospheric temperature, humidity and cloud profile (for-
merly the “semi-direct effect”), and is calculated using multi-
model results from AeroCom (Myhre et al., 2013). Faci de-
scribes how aerosols affect clouds in the radiation budget
and is calculated from the aerosol model of Stevens (2015),
which includes a logarithmic dependence of Faci on sul-
fates, black carbon and organic carbon emissions – the source
of the difference in aerosol forcing shapes between FAerRCP

and FAerSSP shown in Fig. 1b.

2.2.4 Solar forcing

The other external forcings considered are solar and volcanic.
Although there exist other natural forcings such as mineral
dust and sea salt, they are small and will be implicitly in-
cluded with the internal variability. We use the CMIP5 rec-
ommendation for solar forcing, FSol, a reconstruction ob-
tained by regressing sunspot and faculae time series with
total solar irradiance (TSI) (Wang et al., 2005), shown in
Fig. 2. Following Meinshausen et al. (2011b), the solar forc-
ing anomaly is calculated as the change in solar constant over
the average value of the two 11-year solar cycles from 1882
to 1904 divided by 4 (the effective fraction of the surface of
the Earth which is exposed to the Sun) and multiplied by 0.7
(representing planetary co-albedo). To extend solar forcing
to the future, we follow CMIP5 and reproduce solar cycle 23
(the last one prior to 2008) as the assumed future solar forc-
ing.
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Figure 2. Volcanic forcing FVol1 (blue) is shown alongside two
transformed versions: linearly damped by a constant 0.5 coefficient
(black) and non-linearly transformed using Eq. (11) with ν = 0.3
(red). The solar forcing FSol (orange) has been shifted down by −9
and amplified by a factor of 10 for clarity. The figure has been
adapted from Hébert et al. (2021).

2.2.5 Volcanic forcing

The volcanic forcing series, FVol, used in this study was
generated from the volcanic optical depths, τV. Over the
1850 to 2012 period, we use the approximate relation:
FVol ≈−27 W m−2τV, obtained from the Goddard Institute
for Space Science (GISS) website (Sato et al., 1993). We fol-
low Hébert et al. (2021), extending the series to 1765 using
the optical depth reconstruction of Crowley et al. (2008) and
setting volcanic forcing to zero for the future.

It is well established that volcanic forcing must be scaled
down by 40 %–50 % in order to produce a comparable effect
on surface temperature, and thus most EBMs linearly scale
volcanic forcing (Tomassini et al., 2007; Ring et al., 2012;
Lewis and Curry, 2015; Gregory and Andrews, 2016). How-
ever, the amplitude of the volcanic forcing is not the only
issue; volcanic forcings are highly intermittent (spiky). The
intermittency can be quantified in a multifractal framework
(Lovejoy and Schertzer, 2013; Lovejoy and Varotsos, 2016)
by the intermittency parameter C1 which corresponds to the
fractal codimension (i.e. 1-D, where D is the fractal dimen-
sion of the part of series that gives the dominant contribution
to the mean of the series) characterizing the sparseness of
volcanic “spikes” of mean amplitude. There is also a mul-
tifractal index αMF that describes how quickly the intermit-
tency changes as we move away from the mean. Since linear
response models do not alter the intermittency, the volcanic
series must first be non-linearly transformed before being in-
troduced into a linear response framework. With the effective
volcanic forcing FVolν , the volcanic intermittency correction
exponent ν and the mean of the whole volcanic series 〈FVol〉,
we follow Hébert et al. (2021) using a non-linear relation to
change the intermittency so that the transformed signal can
be linearly related to the temperature:

FVolν

〈FVol〉
=

F νVol
〈F νVol〉

. (11)

The normalization is such that the mean is unchanged:
〈FVolν 〉 = 〈FVol〉; the average volcanic forcing is conserved
– this was done for simplicity and if needed future work
could include another scaling parameter (this is slightly dif-
ferent than the normalization used in Hébert et al., 2021).
The volcanic intermittency correction exponent, ν, required
to reduce the intermittency parameter of the volcanic forc-
ing, C1,FV , to equal the corresponding parameter of the tem-
perature response, C1,TV , can be calculated theoretically us-
ing:

C1,FVν
αMF = C1,TV , (12)

where αMF is the multifractality index of the volcanic forc-
ing and C1 is the codimension of the mean (see Chapter 4,
Lovejoy and Schertzer, 2013).

The volcanic response appears to be non-linear as the in-
termittency (“spikiness”, sparseness of the spikes) parame-
ter C1 changes from about C1,FV ≈ 0.16 for the input vol-
canic forcing to C1,T ≈ 0.03 for the temperature response:
the latter is therefore much less intermittent than the for-
mer, although it is possible that the estimated C1 changes
slightly due to finite size effects and internal variability. As-
suming αMF ≈ 1.5 (Lovejoy and Schertzer, 2013; Lovejoy
and Varotsos, 2016), we find an approximate but plausible
theoretical estimate of the volcanic intermittency correction
exponent ν ≈ 0.3.

2.2.6 Internal stochastic forcing

We consider the standard assumption about internal variabil-
ity that it is forced by a Gaussian “delta-correlated” white
noise (Hasselmann, 1976):

f (t)= σγ (t); 〈γ (t)〉 = 0; 〈γ (t)γ (u)〉 = δ(t − u), (13)

where f (t) is the noise at infinite resolution, γ (t) is a “unit”
white noise and σ is its amplitude. When averaged to res-
olution τr = 1 month, the average forcing has amplitude
〈f 2
τr
〉
1/2
= στ =

σ
√
τr

. In comparison, the internal variability
of the mean observational temperature series is equal to the
observed series with the forced temperature response re-
moved. We take the global annually averaged monthly tem-
perature anomaly to be σT ,τr ≈±0.14 ◦C, where τr is the res-
olution (taken to be monthly in this case).

Using Lovejoy et al. (2021) and Lovejoy (2022) and σT ,τr ,
we can relate σT ,τr and σf,τr :

σf,τr =
σT ,τrKh

s

(
τ

τr

)h
, (14)

Kh =

√√√√ π

2cos
(
π
(
h− 1

2

))
0(−1− 2h)

, (15)

whereKh is a standard normalization constant, τ is the relax-
ation time, and s is the climate sensitivity parameter; Eq. (14)
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is an approximation to the FEBE response to white noise
forcing valid at short timescales τr� τ . If we introduce a
white noise forcing, with the standard deviation calculated
using Eq. (14), the FEBE response will correspond to an in-
ternal variability term with realistic amplitude and autocor-
relation structure.

Working in a linear framework, we write the forcing se-
ries, F , as the sum of the deterministic forcings, F , (GHG,
aerosol, solar and volcanic) and the white noise forcing:

F(α,ν; t)= FGHG(t)+αFAer(t)+FSol(t)+FVolν (t)

+ σf,τrγτr (t);

F (t)= 〈F(t)〉 = FGHG(t)+αFAer(t)+FSol(t)

+FVolν (t), (16)

where γτr (t) is a unit of white noise at resolution τr and
“〈 〉” is the mean ensemble (statistical) average.

2.2.7 Surface air temperature data and CMIP5/6
simulations

We used five historical records of surface air temperature for
our analysis each spanning the period 1880–2020, with me-
dian monthly temperature anomalies in relation to the refer-
ence period of 1880–1910: Hadley Centre/Climatic Research
Unit Temperature version 4 (HadCrut4, Morice et al., 2012),
the Cowtan and Way reconstruction version 2.0 (C&W, Cow-
tan and Way, 2014a, b; Cowtan et al., 2015), GISS Sur-
face Temperature Analysis (GISTEMP, Lenssen et al., 2019),
NOAA Merged Land Ocean Global Surface Temperature
Analysis Dataset (NOAAGlobalTemp, Zhang et al., 2019;
Huang et al., 2020) and Berkeley Earth Surface Temperature
(BEST, Rohde and Hausfather, 2020).

The HadCRUT4 dataset is a combination of the sea-
surface temperature records: HadSST3 was compiled by the
Hadley Centre of the UK Met Office along with land surface
station records: CRUTEM4 from the Climate Research Unit
in East Anglia; the Cowtan and Way dataset uses HadCRUT4
as raw data but interpolates missing data that would lead to
bias especially at high latitudes by infilling missing data us-
ing an optimal interpolation algorithm (kriging); we use the
dataset with land air temperature anomalies interpolated over
sea ice. The GISTEMP dataset combines the Global Histori-
cal Climate Network version 3 (GHCNv3) land surface air
temperature records with the Extended Reconstructed Sea
Surface Temperature version 4 (ERSST) along with the tem-
perature dataset from the Scientific Community on Antarctic
Research (SCAR) and is compiled by the Goddard Institute
for Space Studies; the NOAA National Climate Data Center
uses GHCNv3 and ERSST but applies different quality con-
trols and bias adjustments. The final dataset, BEST, makes
use of its own land surface air temperature product along
with a modified version of HadSST.

The selected CMIP5 models have monthly historical sim-
ulation outputs available over the 1860 to 2005 period
along with outputs of scenario runs from 2005 to 2100 for
RCP2.6, RCP4.5 and RCP8.5, summarized in Table A1. The
CMIP6 model outputs have monthly historical simulations
from 1860 to 2014 and future projections based on the SSP
scenarios 1-26, 2-45 and 5-85 (Forster et al., 2020) and the
climate sensitivity of models are summarized in Table A2
(Flynn and Mauritsen, 2020).

2.3 Bayesian parameter estimation

In this section, we establish a procedure to estimate the prob-
ability distribution associated with the climate sensitivity: s,
model parameters: τ , h and forcing parameters: α, ν. To es-
timate them, we relate the forcing to surface air temperature
data using the FEBE with a multi-parameter Bayesian tech-
nique. To apply Bayesian inference, we require temperature
observations, a statistical model that relates forcing data to
temperature and prior information about the model parame-
ters (priors). Bayesian inference is chosen due to its ability to
better constrain model parameters by using information from
different sources including data and models.

Through this framework, each parameter combination (h,
τ for G0,h and α, ν for F as well as s) produces a time-
dependent forced response which is associated with a likeli-
hood that depends on how well the corresponding model out-
put matches the observational temperature records over the
historic period. To see how this works, recall that the FEBE
describes the temperature response to the sum of the exter-
nal deterministic forcing F (t) and an amplitude σ internal
stochastic forcing σγ (t):

T (t)= Text(t)+ Tint(t);
Text(t)= sG0,h(t) ∗F (t)
Tint(t)= sG0,h(t) ∗ σγ (t) , (17)

where Text, Tint indicates the responses, and ∗ indicates con-
volution (Eq. 3). Any given set of parameters defines a forced
temperature response Text(t), and when removed from the ob-
servation temperature series, they define a series of residuals:

Tres(t)= T (t)− Text(t)= Tint(t)= sG0,h(t) ∗ σγ (t). (18)

The residuals are thus equal to the internal temperature
variability, i.e. the response to the internal forcing σγ (t).
Here, we make the usual assumption that γ (t) is a Gaus-
sian white noise so that Tres(t)= Tint(t) is a fractional re-
laxation noise process (fRn, Lovejoy, 2022). However, for
scales shorter than the relaxation time τ (of the order of
years), the fRn process is very close to a fGn process (due to
the approximationG0,h ≈G0,high,h, Eq. 8). Thus, rather than
making an ad hoc assumption about the statistics of the resid-
uals, in our approach the statistics are given by the model
itself (a key improvement from Hébert et al., 2021). The
fGn approximation takes into account the strong power-law
correlations induced by the fractional derivative term in the
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FEBE and it is generally valid except at the low frequencies
that only weakly influence the likelihood function. An fGn
model for the residuals is more realistic with respect to the
autocorrelation function of temperature data (Lovejoy et al.,
2015) and thus produces more conservative credible inter-
vals in comparison to other exponential decorrelation models
such as an AR(1) since the latter underestimate the decorre-
lation time and thus overestimate the effective sample size.

To calibrate the FEBE, we take the time-dependent forced
response calculated for each parameter combination and re-
move it from the temperature series to obtain a series of resid-
uals which represent an estimator of the historical internal
variability. The likelihood function (L) corresponds to the
probability (“Pr”) of observing the series T (t) conditioned
on the parameters: s, h, τ , α, ν (right-hand side), assuming
the residuals are a fGn process with parameter h, and zero
mean:

L(s,h,τ,α,ν|T (t))= Pr(T (t)|s,h,τ,α,ν). (19)

Using Bayes’ rule, we can obtain the posterior probability
density function (PDF) for our parameters using the likeli-
hood function (an a priori probability) and the prior distribu-
tion for the parameters, π (s,h,τ,α,ν):

Pr(s,h,τ,α,ν|T (t))=
Pr(T (t)|s,h,τ,α,ν)π (s,h,τ,α,ν)

Pr(T (t))
. (20)

We use the following Mathematica 12.2 (Wolfram Re-
search, Inc., 2020) functions: LogLikelihood[proc, data],
FractionalGaussianNoiseProcess[µ, σ ′, h′] and Estimated-
Process[data, proc] to calculate the maximum likelihood of
those residuals to be a fGn corresponding to our error model.
Note that the Hurst exponent h′ used within Mathemat-
ica 12.2 describes the scaling behaviour of the associated
fractional Brownian motion obtained by integrating the fGn
so that h= h′− 1. The notation H = h−1/2 corresponds to
the associated exponent in Lovejoy et al. (2015), which di-
rectly describes the scaling associated with the fluctuations
of the fGn itself.

The priors chosen here are intended to reflect knowl-
edge about the historical climate system. Following Del Rio
Amador and Lovejoy (2019), who estimated h from the
statistics of the response of the internal forcing, the prior
distribution for the scaling parameter is taken to be a nor-
mal distribution centred around 0.4 with a standard deviation
of 0.1 (twice that of Del Rio Amador and Lovejoy, 2019,
i.e. N (0.4, 0.1)). For the relaxation time τ , we use the nor-
mal distribution of the fast time response of the “two-box”
exponential model that corresponds to h= 1, found by Geof-
froy et al. (2013) for a suite of 12 CMIP5 GCMs: N (4, 2 yr),
with the standard deviation doubled of the original work so
as to be a weakly informative prior. When considering the
aerosol scaling parameter, α, we take the prior distribution to
be a normal distribution, N (1.00, 0.55), which has a 90 % CI
and mean coherent with the IPCC AR5 best range for the

modern value of aerosol forcing, FAer ≈−1.0 W m−2, in the
series we used. For the remaining two parameters, s and ν,
we assume non-informative uniform priors over the range of
parameters; s ∈ [1.0,4.0] and ν ∈ [0.0,1.0]. All prior distri-
butions are independent.

Using Bayes, Eq. (20), we then fit a multivariate Gaussian
distribution to our five-dimensional parameter space, poste-
rior distribution Pr(s,h,τ,α,ν|T (t)), which will be used to
draw sets of parameters to generate future forced temperature
projections. The multivariate Gaussian approximation is built
by using the means and variances of all parameters through
integrating the joint probability to obtain five marginal prob-
abilities and calculating the covariance between all pairwise
parameters using their “joint” marginal distributions as to
take into account potentially large correlations between pa-
rameters. The five-dimensional posterior parameter space, (s,
h, τ , α, ν) is thus defined by a multivariate normal distribu-
tion:

P (x;µ,6)=
1

(2π )
5
2 |6|

1
2
e−(x−µ)T6−1(x−µ)/2, (21)

where x = {s,τ,h,α,ν}, the vector of the means is µ and the
5× 5 covariance matrix 6.

3 Results

Using Bayes’ theorem as described above, we derive PDFs
for the model and forcing parameters of the FEBE from the
mean likelihood functions of the five observational datasets.
The different observational datasets are treated as dependent
due to the use of overlapping raw data, with the differences
between series coming partly from the different processing of
the raw data by different teams. This corresponds to putting
the datasets into a Bayesian framework where each has equal
a priori probability: HadCRUTv4, C&W, GISTEMP, NOAA-
GlobalTemp and BEST (n= 5).

Pr(s,h,τ,α,ν|T (t))=
1
n

n∑
i=1

Pr(s,h,τ,α,ν|Ti(t)) (22)

Following IPCC methodologies, we report the “very
likely” credible interval at the 90 % credible level throughout
this work along with median estimates for the all ensemble
spreads. The complete suite of model and forcing parameters
and climate sensitivities are summarized in Tables 1 and 2. In
addition, we include a comparison of the same parameters for
the half-order EBE (HEBE) (h= 1/2) that is a consequence
of the classical continuum heat equation (Lovejoy, 2021a, b),
as well as with the precursor scaling climate response func-
tion (SCRF) model (Hébert et al., 2021) which differs pri-
marily in the treatment of high frequencies in Table 3. The
FEBE value of h is slightly less than 0.5 and corresponds to
energy balance with the fractional heat equation.

Earth Syst. Dynam., 13, 81–107, 2022 https://doi.org/10.5194/esd-13-81-2022



R. Procyk et al.: The fractional energy balance equation for climate projections through 2100 89

Table 1. Model and forcing parameter medians for FEBE calibrated over the historical period (1880–2020) using FAerRCP and FAerSSP , along
with their corresponding 90 % credible intervals.

Median h Median τ Median α Median ν Median s

h 90 % CI τ 90 % CI α 90 % CI ν 90 % CI s 90 % CI
range [years] range range range K[W m−2

]
−1 range

[years] K[W m−2
]
−1

FAerRCP 0.38 [0.33, 0.44] 4.7 [2.4, 7.0] 0.60 [0.2, 1.0] 0.28 [0.15, 0.41] 0.56 [0.45, 0.67]
FAerSSP 0.38 [0.32, 0.44] 4.7 [2.4, 7.0] 0.33 [0.05, 0.61] 0.28 [0.16, 0.40] 0.52 [0.43, 0.61]

Table 2. The calculated ECS and TCR medians using both parameters corresponding to FAerRCP and FAerSSP , along with their corresponding
90 % credible intervals.

Median TCR Median ECS Median TCR /ECS ratio
TCR 90 % CI ECS 90 % CI TCR /ECS 90 % CI range
[K] range [K] [K] range [K] ratio

FAerRCP 1.5 [1.2, 1.8] 2.0 [1.6, 2.4] 0.73 [0.70, 0.78]
FAerSSP 1.4 [1.1, 1.6] 1.8 [1.5, 2.2] 0.74 [0.71, 0.79]

3.1 The model: Green’s function parameters: h, τ

3.1.1 The scaling exponent h

The model is characterized by h and τ , where the expo-
nent h of the FEBE is the most fundamental. For h, we found
a 90 % CI of [0.33, 0.44] shown in Fig. 3a, with a median
value of 0.38 when using FAerRCP , and while using FAerSSP we
found a similar median of 0.38 with 90 % CI of [0.32, 0.44].
We can already note that it is close to the HEBE value h= 1

2
and other empirical estimates for power-law impulse Green’s
functions (G(t)≈ t−HF−1) with h=−HF ≈ 0.5−0.4

+0.5 (Love-
joy et al., 2017; Hébert et al., 2021). The NOAA dataset dif-
fers the most from all others; the exact cause of the difference
is not clear, although it arises from the Merged Land–Ocean
Surface Temperature Analysis (MLOST) dataset’s use of a
complex algorithm with low-frequency tuning (Smith et al.,
2008). This low-frequency tuning along with the spatiotem-
poral smoothing applied in the MLOST dataset is likely the
cause of a slightly higher h (i.e. a smoother temperature se-
ries).

3.1.2 The relaxation time τ

The second model parameter is the relaxation time τ that
characterizes the approach to equilibrium. From the point of
view of parameter estimation, τ is a difficult parameter to de-
termine since it is inversely correlated with s: a large τ can
be somewhat compensated by a smaller s, and vice versa.
As shown in Fig. 3b, we obtained the a posteriori median
value of 4.7 years and 90 % CI of [2.4, 7.0] years when us-
ing FAerRCP and nearly identical results using FAerSSP .

Presented in Fig. 4a is the step-response Green’s func-
tion, G1(h,τ ; t), of the FEBE with the parameters h and τ
along with its 90 % CI, shown alongside the IPCC two-box-

model Green’s function (Held et al., 2010; Geoffroy et al.,
2013; IPCC, 2013). ConsideringG1 (blue), at scales below a
few years where the box models or the Hébert et al. (2021)
truncated scaling model are smooth, the FEBE has a singular
response. This enables it to reproduce the statistics of the in-
ternal variability as well as to be more sensitive to volcanic
forcings. Even at scales of up to 25 years, the G1 (blue) re-
sponds much faster than the IPCC (black), yet the approach
to the asymptotic value of 1 corresponding to energy bal-
ance is substantially slower. This can also be seen in the
ramp-response Green’s functions (Fig. 4b), G2, the integral
of G1. For comparison, each was normalized by the value at
70 years – the standard ramp time for TCR (Collins et al.,
2013). At multi-year resolution (ignoring the high-frequency
variability), over the scale of the Anthropocene, there is lit-
tle difference between the FEBE and IPCC, with FEBE hav-
ing a more gradual response. This contributes to the some-
what cooler FEBE centennial-scale projections when com-
pared with those from the two-box model.

3.2 Characterizing the forcing

3.2.1 Aerosol linear scaling factor α

The aerosol linear scaling factor α that effectively recali-
brates the aerosol forcing (Fig. 5a, solid line) was found to
have a median value of 0.6 with a 90 % CI of [0.2, 1.0] for
the CMIP5 FAerRCP series. However, when using the CMIP6
sulfate-emissions-based aerosol forcing series, FAerSSP , we
find support for a weaker and better-constrained aerosol
forcing, recalibration α with a median of 0.33 and 90 % CI
of [0.05, 0.61] (Fig. 5a, dashed line). In both cases, an aerosol
recalibration factor of 1 corresponds to the modern (2005)
aerosol forcing value of about −1.0 W m−2, but we find
in both cases that α < 1. The result from two independent
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Table 3. Model and forcing parameter medians using FAerRCP for FEBE, the classical continuum mechanics HEBE (h= 1
2 ) and the SCRF

model (Hébert et al., 2021) calibrated over the historical period, along with their corresponding 90 % credible intervals.

Median h Median τ Median α Median ν Median ECS
h 90 % CI τ 90 % CI α 90 % CI ν 90 % CI ECS 90 % CI

range [years] range range range [K] range
[years] [K]

FEBE 0.38 [0.33, 0.44] 4.7 [2.4, 7.0] 0.6 [0.2, 1.0] 0.28 [0.15, 0.41] 2.0 [1.6, 2.4]
HEBE 1/2 – 4.7 [2.4, 7.0] 0.48 [0.10, 0.86] 0.33 [0.16, 0.51] 1.8 [1.4, 2.3]
SCRF 0.5 [0.3, 0.7] 2.0 – 0.8 [0.1, 1.3] 0.55 [0.25, 0.85] 2.3 [1.8, 3.7]

Figure 3. For each observational dataset and their average, PDFs are shown for the model parameters: the scaling parameter h (a) and the
transition time τ (b). Shown are the PDFs for parameter estimation based on both FAerRCP (solid) and FAerSSP (dashed). The average PDF
of the five observation datasets using FAerRCP is shown as the main result with shading, with darker 5 % tails.

aerosol forcing series again shows that the forcing associ-
ated with aerosols is still widely uncertain and overpowered,
supporting post-AR5 studies that found aerosol forcings sim-
ulated by GCMs were unrealistic (Zhou and Penner, 2017;
Sato et al., 2018; Bellouin et al., 2020) and that aerosol
forcing was weaker when climate feedbacks were allowed
(Nazarenko et al., 2017).

3.2.2 Volcanic intermittency correction exponent ν

The volcanic intermittency correction exponent ν was found
to have a posterior median value of 0.28 with 90 % CI
of [0.15, 0.41] when using FAerRCP and similar median
value 0.28 with 90 % CI of [0.16, 0.40] when using FAerSSP

(recall ν = 0 implies a constant mean forcing and the original
series is recovered with ν = 1). Both contain the theoretically
calculated ν within their 90 % CI (ν = 0.32). This result con-
firms that volcanic forcing is generally overpowered since
ν = 1 has nearly null probability as seen in Fig. 5b. Thus,
the original volcanic series described without the intermit-
tency correction does not reproduce well, within the FEBE
model presented, the cooling events observed in instrumen-
tal records following eruptions: volcanic cooling would be
overestimated. As noted in the case for the exponent, h,
the NOAA dataset noticeably differs from the others; the
spatiotemporal smoothing applied in the MLOST dataset is

likely the cause of a lower ν (i.e. a smoother volcanic forc-
ing).

In Fig. 6, we compare the total forcing series,
FTot(t) (black), IPCC AR5, Eq. (16), where α = ν = 1, with
the adjusted forcing series, FTot(α,ν; t) (blue). During the
historical period, the intermittency and strength of the strong
volcanic events are greatly reduced, and in the recent past the
median-adjusted forcing series is higher than the unadjusted
forcing due to the reduced aerosol forcing strength. This ad-
justed forcing series consequently contributes to a lower cli-
mate sensitivity, presented in the following section, due to
the historic negative forcings of volcanoes and aerosols being
adjusted to closer match historical observations, eliminating
the need for a high climate sensitivity to compensate.

3.3 Climate sensitivity

3.3.1 Climate sensitivity parameter, s

The climate sensitivity parameter s refers to the equilib-
rium change in the annual global mean surface temper-
ature (GMST) following a unit change in radiative forc-
ing. Its inverse is the climate feedback parameter, the in-
crease in radiation to space per unit of global warming.
We find s to have a median value of 0.56 K(W m−2)−1

with 90 % CI [0.45, 0.67] K(W m−2)−1 using FAerRCP , and
when using FAerSSP we find median 0.52 K (W m−2)−1 with
90 % CI [0.43, 0.61] K(W m−2)−1 (Fig. 7), both on the lower
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Figure 4. (a) The median and 90 % CI of the FEBE step-response
Green’s function, G1(h,τ ; t), compared to the IPCC two-box-
model Green’s function (black). (b) The median and 90 % CI of
the FEBE normalized ramp-response Green’s function, G2(h,τ ; t),
compared to the IPCC two-box-model Green’s function (black).

end of the CMIP5 MME climate sensitivity parameter of me-
dian 1 K(W m−2)−1 and 90 % CI [0.5, 1.5] K(W m−2)−1 but
within the 90 % CI. However, both estimates are below the
CMIP6 MME 90 % CI [0.63, 1.50] K(W m−2)−1, with a me-
dian of 0.92 K(W m−2)−1, which has been criticized as being
too high (Zelinka et al., 2020; Tokarska et al., 2020; Flynn
and Mauritsen, 2020).

3.3.2 Equilibrium climate sensitivity

Two standard types of climate sensitivity used for inter-
model comparisons: ECS and TCR – our results are sum-
marized in Table 2.

If atmospheric CO2 was increased to double pre-industrial
concentrations and then held there, the planet would only
slowly reach a new equilibrium. This delay is largely be-
cause the world’s oceans take a long time to heat up in re-
sponse to the enhanced greenhouse effect. The ECS is the
amount of warming achieved when the entire climate sys-
tem reaches “equilibrium” or the steady-state temperature
response to a doubling of CO2. By the definition of the tem-

perature response to external forcings in Eq. (7), the climate
sensitivity parameter is the equilibrium climate sensitivity.
The two are equivalent to within a constant factor: the num-
ber of W m−2 per CO2 doubling, the standard value being
3.71 W m−2/(CO2 doubling) (IPCC, 2013).

The PDF for ECS shown in Fig. 8a, for both aerosols se-
ries, was found to have a 90 % CI of [1.6, 2.4] K and a median
value of 2.0 K when using FAerRCP , and median of 1.8 K and
90 % CI [1.5, 2.2] using FAerSSP (see Table 2). These results
are lower than those found in the CMIP5 MME which had
a best value of 3.2 K, but our 90 % CI bounds are more nar-
row, laying within the CMIP5 MME range of [1.9, 4.5] K.
Although when we consider the expanded ECS 90 % CI of
[1.5, 4.5] K considered in IPCC (2013), which takes into ac-
count both the CMIP5 MME and historical estimates, we
see that the FEBE estimates are wholly within this range
and much less uncertain. For the CMIP6 MME which has
a 90 % CI of [2.0, 5.5] K and mean estimate 3.7 K, our best
estimate using the corresponding FAerSSP is slightly below the
lower credible interval due to the upward shift of ECS esti-
mates seen in CMIP6 models (Zelinka et al., 2020) but again
has a more narrow CI.

3.3.3 Transient climate response

Conventionally, TCR quantifies the temperature change that
would occur if CO2 levels increase by 1 % (compounded) per
year until they double (≈ 70 years). Since the CO2 forcing is
logarithmically dependent on CO2 concentration, the TCR is
then simply the global temperature increase that has occurred
at the point in time that a linearly increasing forcing reaches
double pre-industrial levels.

The derived PDFs for TCR are shown in Fig. 8b and sum-
marized in Table 2. Our TCR was found to have a 90 % CI of
[1.2, 1.8] K with a median of 1.5 K when using FAerRCP , while
when using FAerSSP we find a median 1.4 K and 90 % CI of
[1.1, 1.6] K. Both estimates are lower and more constrained
but within the 90 % CI given by the CMIP5 MME: a 90 % CI
of [1.2, 2.4] K and a best value of 1.8 K, and by the CMIP6
MME: 90 % CI of [1.2, 2.8] K with best value of 2.0 K.

The ECS and TCR estimates using the SSP scenarios with
the FEBE are lower than those using RCPs due to the overly
strong aerosols over the historical period in the SSPs which
require a lower aerosol linear factor along with lower ECS to
best match the historical temperature record. The difference
between the shape of the RCP and SSP aerosol forcing can
also account for this.

The TCR-to-ECS ratio is a non-dimensional measure of
the fraction of committed warming already realized after a
steady increase in radiative forcing; in this case, with a dou-
bling of CO2, this quantity is generally referred to as re-
alized warming fraction (RWF) (Stouffer, 2004; Solomon
et al., 2009; Millar et al., 2015); it is a non-dimensional mem-
ory parameter. A model with a low RWF will indicate that
global warming may continue for centuries after emissions
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Figure 5. For each observational dataset and their average, PDFs are shown for the forcing parameters: the aerosol scaling factor α (a) and
the volcanic intermittency correction exponent ν (b). Again, shown are the PDFs for parameter estimation based on both FAerRCP (solid) and
FAerSSP (dashed). The average PDF of the five observation datasets using FAerRCP is shown as the main result with shading, with darker 5 %
tails.

Figure 6. The total historical (1880–2020) forcing series prescribed by the IPCC using, FAerRCP (black) compared to the adjusted forcing,
FTot(α,ν; t) (blue), which takes into account aerosol and volcanic corrections, shown with 90 % CI.

Figure 7. For each observational dataset and their average, PDFs
are shown for the climate sensitivity parameter s (the ECS, here in
units of K (W m−2)−1), FAerRCP (solid) and FAerSSP (dashed).

have stopped. We present the TCR-to-ECS ratio in Fig. 8c,
with a 90 % CI [0.70, 0.78] and median 0.73 using FRCP pa-
rameters. Similar results are found using FSSP parameters, a
median of 0.72 and 90 % CI [0.71, 0.79]. From Fig. 8 and Ta-
ble 2, we see that the TCR-to-ECS ratio is higher than both
generations of MME 90 % CI, a consequence of lower ECS
and TCR values, and similar uncertainty.

In the next section, we show that with a lower and more
constrained climate sensitivity parameter (Figs. 7 and 8), the
adjusted forcings (Fig. 6) and long memory process of the
FEBE produce future projections that tend to be cooler than
the CMIP5/6 projections, yet remain within their 90 % CI.
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Figure 8. The PDFs for ECS (a), TCR (b) and the TCR-to-ECS ratio (c) are derived using FAerRCP (solid) and FAerSSP (dashed). The
associated 90 % CI (bars under the axis), the CMIP5 MME 90 % CI (dark grey shading) and the CMIP6 MME 90 % CI (light grey shading)
are shown.

4 Discussion

4.1 Uncertainties

With the above collection of model and forcing parameter
probability distributions, the FEBE was used to reconstruct
the temperature over the historical period, as well as make
projections of the forced temperature response for the com-
ing century using forcings prescribed by the RCP and SSP
scenarios.

The CI provided for the MME corresponds to the spread
between the different GCMs, “structural uncertainty”, while
for the FEBE it is parametric uncertainty (Bretherton, 2012).
In both cases, the projections are deterministic but with un-
certainty limits due to their respective model uncertainties.
Both yield an estimate of the forced response but with quali-
tatively different uncertainty bounds.

For the FEBE, the spread of the forced projections is
purely from the uncertainty in the parameters: the contribu-
tion to uncertainty from internal variability has been aver-
aged out (it is effectively the average over an infinite ensem-
ble of realizations of internal variability). In order to make
projections, we therefore draw samples of parameters from
the (correlated) multidimensional parameter space (approx-
imated by the multivariate normal distribution in Eq. 21),
by using a Monte Carlo method. Once a random set of pa-
rameters has been chosen, realizations of the forced temper-
ature response are generated using Eq. (3) and a numerical
convolution. It should be noted this Monte Carlo sampling
is simply a convenient numerical technique for perform-
ing high-dimensional probability space integrals; it does not
imply any stochasticity in the projections which, although
parametrically uncertain, are nevertheless deterministic re-
sponses to purely deterministic forcing. However, the Monte
Carlo methods do introduce standard Monte Carlo numerical
uncertainty, but this was made quite small by using a large
number (500) of Monte Carlo realizations. Once we have our
ensemble of projections, we remove the pre-industrial base-
line (such that the temperature anomaly over 1880–1910 is
zero) and calculate the desired credible intervals of the forced
response. We consider the historical period coinciding with
the range of observation temperature records (1880–2020)
and make all comparisons to this period, acknowledging that

the CMIP5 GCM historical reconstruction ended in 2005 and
for the CMIP6 GCMs in 2014.

4.2 Reliability and historical reconstructions: 1880–2020

In this section, we present the full historical reconstruction
using the FEBE observation-based projections with those
from the GCMs in the CMIP5/6 MME. In order to make
a proper comparison with data, we must include both the
forced deterministic temperature response, with its purely
parametric uncertainty, as well as the internal variability
of the mean observational temperature series, estimated to
be ≈±0.14 ◦C (monthly resolution). The two uncertainties
were combined assuming the statistical independence of the
internal forcing and the parametric uncertainty: the errors
therefore add in quadrature.

An important characteristic of probabilistic forecasts is
their reliability that quantifies the difference between the
forecast and actual probability distributions. Consider for ex-
ample, a set of predictions derived from ensemble forecasts.
In some realizations, it is predicted that the chance of above-
average seasonal-mean temperature for the coming season
will be 70 %. If the probabilistic forecast system is reliable,
then one can expect that in 70 % of these predictions the ac-
tual seasonal-mean temperature will be above average (An-
nan and Hargreaves, 2010; Weisheimer and Palmer, 2014).
In Fig. 9, we can verify the reliability of the FEBE. We see
that as expected, the temperature observations fall closely
within the 90 % CI of the FEBE historical reconstruction
(i.e. the ensemble average of the response to both internal
and external forcing). More precisely, at the monthly res-
olution in Fig. 9, the historical mean temperature (red) is
within the 90 % CI of the FEBE-forced response (with inter-
nal variability added) 89.9 % of the months using the RCP
scenario (Fig. 9a) or 90.2 % of the months using the SSP
scenario (Fig. 9b). The accuracy of this uncertainty verifies
both the underlying model and Bayesian parameter estima-
tion method.

This is expected for a reliable model and is an analogous
validation of probabilistic aspects of the projection as unlike
weather forecasts where we have many past test cases; cli-
mate change projections cannot be calibrated in the same
manner (Stainforth et al., 2007; Tebaldi and Knutti, 2007;
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Figure 9. (a) The historical reconstruction (forced temperature response and internal variability) of the FEBE, with parameters calibrated
using FAerRCP (blue) alongside mean of five observational temperature series (red) at monthly resolution; 90 % CIs (due to parametric
uncertainty and internal variability) are indicated (shaded). (b) Same as left except using FAerSSP parameters and forcing.

Knutti et al., 2010). Note that in both reconstructions, it is
possible that the end of the second World War (1945) tem-
perature spike which lies outside of the FEBE 90 % CI may
be explained due to biases associated with bucket and engine
room intake measurements (Chan and Huybers, 2021).

4.3 The amplitude of the internal forcing

The small-scale limit of the validity of the FEBE is not
known, although it is likely to be ∼ 1 month (roughly
the weather–macroweather transition timescale). Justifica-
tion comes from the success of the high-frequency FEBE
limit that successfully forecasts monthly and seasonal tem-
peratures (Del Rio Amador and Lovejoy, 2019, 2021a;
Del Rio Amador and Lovejoy, 2021b). As discussed earlier
(Eq. 14), the FEBE predicts the (stochastic) response to the
internal forcing. The standard deviation σf,τr of f (t) is the
amplitude of the internal forcing assumed to be Gaussian
white noise, which can be estimated using Eqs. (14) and (15),
and σf,τr ≈±0.14 ◦C. Using our FRCP (and FSSP) parameter
estimates, we find a mean estimate of the forcing standard
deviation, σf, to be 3.2 W m−2 (3.3 W m−2) and 90 % CI of
[2,1, 4.2] W m−2 ([2.3, 4.3] W m−2) (at a monthly resolu-
tion: τr = 1 month). If we introduce a white noise forcing
with σf,τr amplitude, the FEBE recreates the amplitude of the
internal temperature variability response and its change as a
function of timescale/resolution.

This estimate of the internal variability forcing can be
compared with that of Harries and Belotti (2010), who
examine the net energy flux balance at the top of at-
mosphere (TOA) measured using observations from polar-
orbiting spacecraft (at monthly scale). The early observa-
tions, using the Nimbus experiments, show an internal vari-
ability of the 4.1±4.0 W m−2, while more modern measure-
ments (CERES) in the 2000s show variability of between
±2 and ±4 W m−2. Thus, our estimate of the internal forc-
ing variability is within estimates of the TOA net energy flux
balance.

4.4 Statistical evaluation of the FEBE

As with GCMs, the FEBE predicts the forced determinis-
tic response as well as the statistical properties of the inter-
nally driven stochastic part. We can therefore evaluate the
accuracy of the stochastic part by comparing the FEBE tem-
perature statistics with those from observational time series.
It was already shown in Lovejoy et al. (2021) that using a
simple “ramp” model that included the deterministic exter-
nal and stochastic internal variabilities the FEBE roughly
predicts both high- and low-frequency scaling regimes. In
Fig. 10a, we show one realization of the full FEBE, in-
cluding the deterministic and stochastic forcings, with me-
dian parameters calibrated earlier using FAerRCP (blue) and
FAerSSP (light blue); the five observation temperature series
are shown alongside (grey – shifted up). We compare the
model statistics with the five globally averaged tempera-
ture series using their root mean square Haar fluctuations,
shown in Fig. 10b. The Haar fluctuation for a series T (t),
1T (1t) is the difference between the average of the first and
second halves of the interval 1t . This is a convenient way
to characterize variability as a function of timescale in real
space, valid for increasing or decreasing average fluctuations.
By applying global-scale Haar fluctuation analyses, Del Rio
Amador and Lovejoy (2019) foundH ≈−0.1 corresponding
to h=H + 1/2≈ 0.4.

Below Milankovitch timescales, there are three main scal-
ing regimes observed in the atmosphere: the weather,
macroweather and climate (Lovejoy, 2013). In the
macroweather regime, longer than the lifetime of plan-
etary structures (∼ 10 d), temperature fluctuations decrease
with scale until a transition probably occurs to the climate
regime where fluctuations begin to increase. In the industrial
epoch, this scale is ∼ 20 years, while in the pre-industrial
epoch this scale’s transition occurs at centuries or millennia
(Lovejoy, 2015b). Over the scale of 1 year to about 10 years
(the macroweather regime), the FEBE and the observational
temperature series have an approximate slope (indicated
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Figure 10. (a) The historical reconstruction (forced and internal temperature response) of the FEBE, with parameters calibrated using
FAerRCP (blue) and FAerSSP (light blue) alongside the five observational temperature series (grey – shifted up) at monthly resolution. (b) The

root mean square Haar fluctuation structure function S(1t)= 〈1T (1t)2
〉

1
2 for FEBE reconstruction using FAerRCP (blue) and FAerSSP (light

blue), and the five globally averaged monthly resolution temperature time series (grey; mean is shown in dashed black). The reference
(red) line has the slope of the approximate median estimate of the scaling exponent h≈ 0.4 (H = h− 1

2 ≈−
1

10 ). The stochastic (internal
variability) is not expected to be identical; only its statistical character (correlations) and amplitude are expected to be the same as the data.

by the straight reference line in Fig. 10b) of h≈ 0.4. We
see a transition in both the FEBE and observations at
1t'10 years: the transition to the climate regime where
fluctuations begin to increase with scale. The fact that
the FEBE’s fluctuations at the climate regime track the
observational data strongly supports the realism of the FEBE
for multidecadal projections.

4.5 Evaluating the FEBE using hindprojections including
the slowdown

We have shown that the FEBE hindcasts are reliable
(Sect. 4.2), that they have realistic internal forcings
(Sect. 4.3) and realistic statistical variability (Sect. 4.4).
Here, we evaluate their deterministic responses using hind-
projections.

Unlike the comparison in Fig. 10 that included the inter-
nal variability in order to evaluate the reliability, the follow-
ing figures are estimates of the ensemble averaged hindpro-
jections, i.e. with the internal variability averaged out com-
pletely. This is not a reliability check at 1-year resolution, as
shown in the prior section, so we do not expect the FEBE to
be in the data range 90 % of the time. Rather, the percent-
age of the time that the FEBE is in the data range is a mea-
sure of hindprojection–data agreement about the determinis-
tic forced response part. It is therefore appropriate to com-
pare this with the MME. In Fig. 11, we compare the 90 % CI
of the historical temperature observations with the median-
forced response of both the FEBE using the RCP (Fig. 11a)
and SSP (Fig. 11b) historical forcing compared to both the
CMIP5 (Fig. 11a) and CMIP6 (Fig. 11b) MMEs. In the inset
of Fig. 11, we show the slowdown (“hiatus”) period (1998–
2014).

Throughout the historical period, the hindprojection of
the FEBE and the median of the CMIP5/6 MME are close.
Between 1915–1960, the CMIP5/6 MME is consistently
warmer than the FEBE hindprojection and historical tem-
perature records, although generally by less than 0.05 K.
The slowdown in global warming during the first decade of
the 21st century, termed as the slowdown (“hiatus”) (Kauf-
mann et al., 2011; Meehl et al., 2011; Medhaug et al., 2017),
is tracked closely by the FEBE hindprojection, while the
CMIP5/6 MME overshoot (by 0.1 to 0.2 K), a well-studied
divergence between GCMs and observations, is shown in
Fig. 11 (insets). This supports Lovejoy (2015a) and Love-
joy (2015b), which found that the slowdown (“hiatus”) could
be well predicted by a stochastic fGn model (comparable
with the present hindprojection) and concluded the issue to
be GCM overprojection.

Following the monthly resolution reliability confirmation
in Sect. 4.2, we can now perform a quantitative comparison
between the amount of time the FEBE and CMIP5/6 MME
median response is within the bounds of the observational
temperature series 90 % CI performed with annual resolu-
tion data. The median FEBE hindprojection using FAerRCP

is within the 90 % CI of the observational temperature series
over the whole historic period 47 % of the years and over the
slowdown is within 70 % in comparison to the CMIP5 MME
median which is within the whole historic period only 39 %
and over the slowdown it is 17 %. While with the median
FEBE hindprojection using FAerSSP similar results are found,
over the whole period 45 % and over the slowdown 35 %, in
comparison to the CMIP6 MME median which is within the
whole historic period 39 % and over the slowdown it is 30 %.
In can be seen in both cases that the CMIP MME is gener-
ally warmer than the FEBE-forced component, notably over
the period of the slowdown. We see that indeed the FEBE-
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Figure 11. (a) The median historical forced component of the FEBE, with parameters calibrated using FAerRCP (blue) and the median of the
CMIP5 MME (black) alongside mean of five observational temperature series (red) with their 90 % CI indicated (shaded). (b) The median
historical forced component of the FEBE, with parameters calibrated using FAerSSP (blue), and the median of the CMIP6 MME (black)
alongside the mean of five observational temperature series (red) with the 90 % CI indicated (shaded).

Table 4. The 90 % CI of projected warming relative to the pre-industrial reference period (1880–1910) for the RCP scenarios analysed in
this study based on the FEBE and the CMIP5 MME. Summary of Fig. 12a–c.

RCP2.6 RCP4.5 RCP8.5

FEBE CMIP5 FEBE CMIP5 FEBE CMIP5

2020–2040 [1.1, 1.5]K [1.2, 1.9]K [1.1, 1.5]K [1.3, 1.9]K [1.2, 1.6]K [1.4, 2.0]K
2040–2060 [1.2, 1.6]K [1.3, 2.2]K [1.4, 1.9]K [1.6, 2.6]K [1.7, 2.3]K [2.0, 3.0]K
2060–2080 [1.2, 1.6]K [1.2, 2.3]K [1.6, 2.2]K [1.8, 3.0]K [2.2, 3.1]K [2.6, 4.3]K
2080–2100 [1.2, 1.6]K [1.1, 2.4]K [1.6, 2.3]K [1.8, 3.2]K [2.7, 3.8]K [3.3, 5.3]K

median-forced component in both cases captures the slow-
down rather accurately.

5 Projections through to 2100

5.1 The FEBE and GCM MME comparisons

We now consider the deterministic (infinite ensemble) FEBE
projections to 2100. At first, the temperature increase in each
case is nearly identical; the future pathways only diverging
into their respective scenarios roughly two decades after their
beginning (RCPs begin in 2005; SSPs begin in 2014). Further
into the future, the warming rate begins to depend more on
the specified scenario, the highest being in RCP8.5/SSP5-
85 (Fig. 12c and f), while they are significantly lower in
RCP2.6/SSP1-26 (Fig. 12a and d; Tables 4 and 5), partic-
ularly after about 2050 when the global surface tempera-
ture response stabilizes (and declines thereafter). Of partic-
ular interest are the low-emission scenarios, RCP2.6/SSP1-
26, demonstrating the potential of strong mitigation policies
and speculative negative emission technologies where an-
thropogenic forcing starts decreasing around the mid-2040s.
In this scenario, the CMIP5 MME temperature stays below
2 K throughout the 21st century, whereas the corresponding
median FEBE temperature projection never exceeds 1.5 K.
Comparing projected warming in 2100 for the RCP2.6/SSP1-

26 scenario, the FEBE projection reaches a median warm-
ing of 1.2 K with 90 % CI of [1.1, 1.4] K, while the CMIP5
MME has a 90 % CI of [0.9, 2.4] K and median warming of
1.7 K. When considering the CMIP6 projections for SSP1-
26 (Fig. 12d), the median temperature exceeds 2 K begin-
ning near 2050, whereas the corresponding FEBE projec-
tion is consistently lower, only crossing the 1.5 K threshold
briefly. In 2100, the CMIP6-projected temperature reaches
2.2 K with 90 % CI of [1.5, 2.8] K, while the FEBE projects
a median temperature of 1.5 K and a narrower spread of
[1.3, 1.8] K.

While the forcing of the (perhaps most realistic) mid-
dle scenario, RCP4.5/SSP2-45, stabilizes in the mid 2060s,
the temperature projections continue rising throughout the
21st century for both FEBE and the CMIP5/6 MME (Fig. 12b
and e). In 2100, the FEBE and CMIP5 MME project the tem-
perature reaching 1.9 K [1.6, 2.2] K and 2.6 K [1.8, 3.2] K,
respectively, shown in Fig. 12b. A key point to note is that
the FEBE RCP4.5 projection remains below 2.5 K warm-
ing by 2100, while the CMIP5 MME is well beyond this
threshold. Looking at the CMIP6 projections for SSP2-45
(Fig. 12e), the median temperature exceeds 2 K beginning
near 2050, whereas the corresponding FEBE projection is
consistently lower and begins to diverge after 2050. In 2100,
the CMIP6 projected temperature reaches 3 K with 90 % CI
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Table 5. The 90 % CI of projected warming relative to the pre-industrial reference period (1880–1910) for the SSP scenarios analysed in this
study based on the FEBE and the CMIP6 MME. Summary of Fig. 12d–f.

SSP1-26 SSP2-45 SSP5-85

FEBE CMIP6 FEBE CMIP6 FEBE CMIP6

2020–2040 [1.2, 1.6]K [1.2, 1.9]K [1.2, 1.6]K [1.2, 2.0]K [1.2, 1.7]K [1.2, 2.0]K
2040–2060 [1.3, 1.8]K [1.4, 2.3]K [1.5, 2.0]K [1.6, 2.7]K [1.7, 2.3]K [1.9, 3.0]K
2060–2080 [1.4, 1.9]K [1.5, 2.6]K [1.8, 2.4]K [1.9, 3.2]K [2.3, 3.2]K [2.8, 4.4]K
2080–2100 [1.3, 1.8]K [1.4, 2.8]K [1.9, 2.6]K [2.2, 3.8]K [3.0, 4.2]K [3.6, 6.0]K

Figure 12. The deterministic forced temperature response projected using the FEBE (blue), with parameters calibrated using FAerRCP (a–c)
and FAerSSP (d–f) compared with the CMIP5/6 MME projection (grey); 90 % CIs from the parametric uncertainty are indicated (shaded).
The projections until 2100, for RCP2.6/SSP1-26 (a, d), RCP4.5/SSP2-45 (b, e) and RCP8.5/SSP5-85 (c, f), are shown.

of [2.1, 4.2] K, while the FEBE projects a median tempera-
ture of 2.3 K and a narrower spread of [1.8, 2.8] K.

The projections of both the FEBE and the CMIP5 MME
for the strong emission scenario, RCP8.5, show alarming
warming rates of 3.5 K with 90 % CI [2.9, 4.1] K and 4.8 K

with 90 % CI [3.5, 6.0] K in 2100 shown in Fig. 12c and f.
The same quickly increasing trend is seen in the CMIP6
SSP5-85 scenario, with temperatures in 2100 reaching a stag-
gering 6.2 K with 90 % CI [4.5, 7.0] K, while the FEBE pro-
jection, although lower at 3.8 K and having a tighter bound
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of [3.5, 4.5] K, shows the dire consequences of no mitiga-
tion. All results shown in Fig. 12 are summarized in Tables 4
and 5.

Whereas the CMIP5 projections differ from the CMIP6
projections due to both model and forcing series changes,
the FEBE projections differ only because of the changes in
the forcing series. By comparing the left and right columns
of Fig. 12, we can quantify the difference in projected warm-
ing caused by the changing of the forcing series and between
CMIP model generations. In the year 2100, we see the FEBE
is 1.4 K above pre-industrial levels in the RCP2.6 scenario,
whereas in the SSP1-26 scenario it is 1.5 K above this (a
difference of 0.1 K). In comparison, for the same two sce-
narios, the CMIP5 MME is 1.6 K and the CMIP6 MME is
2.0 K above pre-industrial levels, respectively (a difference
of 0.4 K). The same can be done for the other two scenar-
ios: for the RCP4.5/SSP2-45 scenarios, the FEBE is found
to have warming in 2100 of 2.1 and 2.3 K (a difference of
0.2 K) above pre-industrial levels, while the CMIP5/6 MMEs
have warming of 2.6 and 3.0 K (a difference of 0.4 K); in
the RCP8.5/SSP5-85 scenarios, the FEBE projects warming
of 3.6 and 4.0 K (a difference of 0.4 K), with the CMIP5/6
MMEs projecting temperatures of 4.8 and 5.4 K (a difference
of 0.6 K) above pre-industrial levels. This analysis confirms
that both the CMIP6 forcings and models are warmer. There-
fore, we can attribute the difference in warming that comes
from the changing of the forcings and the changing of the
model generation using the FEBE; the same attribution could
be done if the CMIP6 models were rerun using the older RCP
scenarios, or vice versa.

Although the FEBE projections are consistently about
15 % cooler than the CMIP5 MME, due to the its smaller
uncertainty the FEBE 90 % CI lies entirely within the cor-
responding CMIP5 CI. Both projection methods support
each other and are thus complementary. When compared to
CMIP6 projections, although most of 90 % CIs overlap, the
median CMIP6 temperatures are nearly 65 % warmer than
the corresponding FEBE median, mainly caused by their
overpowered aerosols (Zelinka et al., 2020; Flynn and Mau-
ritsen, 2020) and the previously mentioned discrepancy in
the future aerosol removal as compared to the RCPs.

5.2 Probabilities of exceeding critical warming
thresholds

We can also use the FEBE to estimate the probability of
exceeding various warming thresholds. Important tipping
points have been established which could lead to irreversible
changes in major ecosystems and the planetary climate if
certain thresholds in warming are exceeded (Schurer et al.,
2017; D. M. Smith et al., 2018; Iseri et al., 2018). Using the
FEBE and CMIP5 and/or 6 MME, we calculate the proba-
bility of temperature exceeding 1.5 and 2.0 K (Fig. 13).

According to the FEBE for the low-emission scenario,
RCP2.6, it is unlikely to exceed the 1.5 K threshold in 2100

(< 10 %), while it is much more likely to exceed this thresh-
old according to CMIP5 MME (67 %). The FEBE has a neg-
ligible probability of exceeding 2 K, while the CMIP5 MME
has a 26 % probability. In the SSP1-26 scenario, the FEBE
peaks below 50 % probability of exceeding 1.5 K and has a
negligible probability of exceeding 2 K as before; in compar-
ison, according to the CMIP6 MME, it is nearly certain that
it will cross the 1.5 K threshold, while the probability of the
2 K threshold being exceeded hovers around 60 % even under
strong mitigation.

In the RCP4.5 scenario, the probability of the FEBE ex-
ceeding the 1.5 K threshold is extremely likely (> 95 %) al-
though it occurs in 2070 – about 22 years later than that pro-
jected by the CMIP5 MME. For the SSP2-45 scenario, we
see the FEBE trails the CMIP6 MME until around 2035,
after which exceeding 1.5 K becomes very likely for both
(near 2045). Similarly, the 2 K overshoot, as projected by the
FEBE, will be avoided with a probability of < 40 % but will
most likely not be avoided according to the CMIP5 MME
(89 % probability). Again, we see the FEBE lags behind the
CMIP6 MME, before they begin to converge around 2080,
approaching a very likely probability to exceed the thresh-
old.

For the final high-emission, business-as-usual, RCP8.5
and SSP5-85 scenarios; both the FEBE and CMIP5/6 MME
project that exceeding the 1.5 K threshold is virtually in-
evitable by 2100, although in the FEBE projection, it is ex-
tremely likely that this threshold is exceeded nearly 15 years
after the CMIP5/6 MME projections of 2040. The same
is found for the 2 K threshold, with both the FEBE and
CMIP5/6 MME exceeding the threshold about 15 years af-
ter the 1.5 K threshold. These results are all summarized in
Table 6.

6 Summary

In the following section, we summarize the key results pre-
sented earlier in the paper: model and forcing parameters (see
Table 1), the climate sensitivities (see Table 2), the projected
warming in 2100 (see Tables 4 and 5) and the probabilities of
exceeding warming thresholds of 1.5 and 2.5 K (see Table 6).

6.1 Parameter estimates

The two parameters that characterize the model, h and τ ,
were estimated. The fundamental scaling exponent h,
was found to have a median value of 0.38 and 90 % CI
of [0.33, 0.44] using FAerRCP and similar median value 0.38
and 90 % CI of [0.32, 0.44] for FAerSSP . Both estimates are
near h estimated for the scaling climate response func-
tion (Hébert et al., 2021) and the phenomenological HEBE
(Lovejoy, 2021a, b). The relaxation timescale τ , characteriz-
ing the approach to equilibrium, was found to have a median
value of 4.7 years and 90 % CI of [2.4, 7.0] years when us-
ing FAerRCP , and nearly identical results were seen when us-
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Figure 13. The probability for the global mean surface temperature of exceeding a 1.5 K threshold (a, c) and a 2 K (b, c) are given as a
function of years for the FEBE (blue), using FAerRCP (a, b) or FAerSSP (c, d) and for the CMIP5/6 MME (grey). The three scenarios are
considered for each case: RCP2.6/SSP1-26 (solid), RCP4.5/SSP2-45 (dashed) and RCP8.5/SSP5-85 (circles).

Table 6. List of RCP and SSP scenarios analysed in this study and the probabilities of exceeding 1.5 or 2 K based on the FEBE and the
CMIP5/6 MME. Summary of Fig. 13.

Probability of exceeding Probability of exceeding
1.5 K in 2100 2 K in 2100

FEBE CMIP5 CMIP6 FEBE CMIP5 CMIP6

RCP2.6 0.1 % 67.0 % – 0.0 % 25.8 % –
RCP4.5 96.9 % 98.4 % – 37.8 % 87.1 % –
RCP8.5 100 % 100 % – 100 % 100 % –

SSP1-26 47.1 % – 81.2 % 0.0 % – 47.0 %
SSP2-45 99.5 % – 99.0 % 82.1 % – 94.3 %
SSP5-85 100 % – 100 % 100 % – 99.9 %

ing FAerSSP . The estimated relaxation time is comparable to
other box model fast relaxation times (Schwartz, 2008; Held
et al., 2010; Geoffroy et al., 2013; Rypdal and Rypdal, 2014)
as the one-box (EBE) model is a special case of the FEBE
with h= 1.

The FEBE model also adjusts the deterministic forcings,
notably the aerosol and volcanic forcing series which must
be scaled (the former linearly and the latter non-linearly)
for the temperature response to best match historical tem-
perature records. From our analysis, we find a more con-
strained aerosol forcing. For the FAerRCP , we found a me-
dian recalibration factor α of 0.6 with 90 % CI [0.2, 1.0]. Fol-
lowing Stevens (2015), this supports a revision of the global
modern (2005) aerosol forcing 90 % CI to a narrower range

[−1.0,−0.2] W m−2. Using the CMIP6 aerosols, FAerSSP , we
found a median α value of 0.33 and 90 % [0.05, 0.61] imply-
ing a weaker and more tightly constrained modern (2005)
aerosol forcing of [−0.9, −0.1] W m−2. For volcanism, the
non-linear intermittency exponent, ν, was found have me-
dian value of 0.28 with 90 % CI of [0.15, 0.41] using FAerRCP

and a median 0.28 with similar 90 % CI of [0.16, 0.40] us-
ing FAerSSP .

In comparison to IPCC AR5 and to the CMIP6 MME,
we find lower likely ranges for the climate sensitivity pa-
rameter, ECS and TCR when using the FEBE with FAerRCP

(or FAerSSP ). For projections, perhaps the most important pa-
rameter is s, the climate sensitivity parameter that determines
the temperature response following an increase in forcing.
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We find s to have a median value of 0.56 K(W m−2)−1

with 90 % CI [0.45, 0.67] K(Wm−2)−1 using FAerRCP , and
when using FAerSSP we find median 0.52 K(W m−2)−1 with
90 % CI [0.43, 0.61] K(W m−2)−1. Again, we see a lower
median for the ECS in comparison to the IPCC AR5 (and
CMIP6 MME) estimates for their corresponding forcings,
the 90 % CI range is reduced from [1.5, 4.5] K ([2.0, 5.5] K)
to [1.6, 2.4] K ([1.5, 2.2] K), and the median value is low-
ered from 3.0 K (3.7 K) to 2.0 K (1.8 K). Several recent
observation-based studies (Otto et al., 2013; Skeie et al.,
2014; Johansson et al., 2015; Lewis and Curry, 2015, 2018)
have also reported lower ECS upper bounds. We also es-
timated the derived quantity, the TCR, the temperature in-
crease following a linear doubling in forcing over 70 years.
For the TCR, the 90 % CI range shrinks from [1.0, 2.5] K
([1.2, 2.8] K) to [1.2, 1.8] K ([1.1, 1.6] K) and the median
estimate decreases from 1.8 K (2.0 K) to 1.5 K (1.4 K).

6.2 Hindcasts

With all necessary parameters of the FEBE calibrated on ob-
servational temperature series, we evaluated the FEBE reli-
ability, showing that it is able to reconstruct the historical
temperatures (Sect. 4.2), and it can reproduce the response
amplitude to a internal white noise forcing (Sect. 4.3) and
produces realistic temperature fluctuations over a wide range
of scales (Sect. 4.4). Having shown that the FEBE repro-
duces historical temperatures and their statistics, we then
produced deterministic temperature projections to 2100 us-
ing the RCP2.6, 4.5, 8.5 and SSP1-26, 2-45, 5-85 comparing
them to their respective CMIP5 and CMIP6 MMEs relative
to the pre-industrial baseline of 1880–1910.

6.3 Projections

In the low-emission scenario, RCP2.6 (SSP1-26), the
FEBE projects the 90 % CI of the temperature in 2100
to be [1.2, 1.6] K ([1.3, 1.8] K) as compared to the
CMIP5 (CMIP6) MME of [1.1, 2.4] K ([1.4, 2.8] K). In
the middle scenario, RCP4.5 (SSP2-45), the FEBE projects
warming reaching [1.6, 2.3] K ([1.9, 2.6] K), narrower
than the CMIP5 (CMIP6) MME warming of [1.8, 3.2] K
([2.2, 3.8] K), while in the high-emission scenario, RCP8.5
(SSP5-85), both the FEBE and CMIP5 (CMIP6) MME
project extreme temperature increases of [2.7, 3.6] K
([3.0, 4.2] K) and [3.3, 5.3] K ([3.6, 6.0] K), highlighting the
need for strong emission mitigation.

During the Paris Conference in 2015 (COP21), nations
of the world strengthened the United Nations Framework
Convention on Climate Change by agreeing to hold the in-
crease in the global average temperature to well below 2 K
above pre-industrial levels and pursuing efforts to limit the
temperature increase to 1.5 K. According to our projections,
crossing either of these thresholds is delayed with respect
to the CMIP5/6 MME projections but will eventually hap-

pen if strong mitigation is not implemented. To avert a 1.5 K
warming, drastic cuts would have to be made to global green-
house emissions, similar to that in RCP2.6 (and SSP1-26),
for which we found < 10 % (< 50 %) probability of ex-
ceeding 1.5 K in comparison to the CMIP5 (CMIP6) MME,
which projects a 67 % (> 80 %) increase. Both the FEBE and
CMIP5/6 projections have temperatures surpassing 1.5 K in
scenarios with weak or no mitigation: RCP4.5/SSP2-45 and
RCP8.5/SSP5-85, albeit the FEBE projects this occurring
nearly two decades later than the GCMs. The 2 K threshold
is projected to be avoided by both the FEBE and CMIP5/6
MME if we follow low-emission scenarios of RCP2.6 and
SSP1-26. The opposite is true for any other emission sce-
narios; exceeding the 2 K threshold will almost occur be-
fore 2100. Thus, our model reinforces the conclusion that
only strong mitigation scenarios such as RCP2.6 and SSP1-
26, will avoid exceeding the 1.5 and 2 K thresholds. It re-
mains to be seen whether negative emission technologies
are feasible and whether the appropriate policies are imple-
mented.

7 Conclusions

Ever since the first climate models in the 1970s, multidecadal
projections have had large uncertainties with the wide ECS
uncertainty limits of 1.5–4.5 K essentially unchanged. For
policymakers, the most deleterious consequence of large un-
certainties is that projections emanating from quite diverse
future scenarios have significant overlap. For example, up
until 2050, the RCP2.6 and 8.5 scenarios can both claim to
respect the 2 K threshold – albeit with rather different prob-
abilities (Fig. 13). Large overlaps imply a disconnection be-
tween policies (mitigation scenarios) and outcomes (temper-
atures). Now that governments have committed themselves
to keeping industrial epoch temperature increases to below
2 K (and aim at 1.5 K), we face an uncertainty crisis (Love-
joy, 2019).

One way of reducing this uncertainty is by develop-
ing complementary types of models. In this paper, we di-
rectly constructed such a model in the macroweather regime
(roughly 1 month and up) based on the physically prin-
ciples of energy conservation and scaling: the fractional
energy balance equation (FEBE). Although originally de-
rived phenomenologically, it was recently discovered (Love-
joy, 2021a, b) that the FEBE could be derived as a con-
sequence of classical (Budyko, 1969; Sellers, 1969) EBMs
that have been regularly used to determine the Earth’s lat-
itudinal temperature variations and its stability with pertur-
bations, and to study past and future climate states. The key
was to introduce a vertical coordinate that allows for the ap-
plication of the correct conductive–radiative surface bound-
ary condition, needed for correctly determining the energy
storage. A surprising consequence is that even the classical
(integer-ordered) continuum mechanics heat equation used
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by Budyko and Sellers implies that the surface tempera-
ture obeys a fractional ordered energy balance equation. The
FEBE’s fractional storage terms imply that the system has a
long memory so that when calibrated by observational data,
its responses to past forcings are constrained to respect the
historical climate.

The FEBE is a parsimonious model with only two shape
parameters: an exponent h and relaxation timescale τ ; the
classical EBE (box model) is the h= 1 special case. In or-
der to make FEBE projections, we use a Bayesian parame-
ter estimation approach similar to that used in Hébert et al.
(2021). A climate response function was used by Hébert et al.
(2021) that at long times (> τ ) was close to the correspond-
ing low-frequency part of the FEBE Green’s function but that
rather than being truncated at high frequencies was a dif-
ferent power law. While the Hébert et al. (2021) CRF was
justified only on the basis of scale invariance and linearity,
the FEBE has a stronger physical basis since it respects both
scaling as well as energy conservation, and the long memory
is explicitly situated in energy storage mechanisms. Beyond
its stronger theoretical basis, from the practical (projection)
point of view, the main advantage is that the FEBE directly
handles the short timescales (down to a month or less). This
allows the FEBE to directly take into account the internal
variability: a stochastic white noise forcing and the FEBE
response. The ability to model the forced response to both
external and internal forcing improves the FEBE parameter
estimates and contributes to lowering the corresponding pro-
jection uncertainties. It also allowed us to demonstrate the
projections were reliable (in the technical sense).

Bayesian inference allows for a robust probabilistic pa-
rameter characterization. The basic external forcings were
those prescribed for the historical part of the CMIP5/6 GCMs
and these were constrained by five monthly, global resolution
empirical temperature series (since 1880). The internal forc-
ing was assumed to be a Gaussian white noise and, since to
a good approximation, the FEBE white noise response is a
fractional Gaussian noise (fGn), the latter was taken as the
Bayesian inference error model.

In order to estimate the parameters, the forcing series re-
quired two adjustments. The most important was the aerosol
recalibration parameter α which linearly scales the aerosol
forcing to take into account the increasing evidence that the
CMIP5 and CMIP6 aerosol cooling was too strong (Padilla
et al., 2011; Hébert et al., 2021; Zelinka et al., 2020; Tokarska
et al., 2020; Flynn and Mauritsen, 2020). The former aerosol
series (FAerRCP ) was based on uncertain data but also on un-
certain modelling assumptions, especially about the direct
and indirect effects of aerosols, whereas the latter (FAerSSP )
is based on global sulfate production and derived from an
alternative model than that in CMIP5.

The forcings and parameters combined with the RCP
and SSP scenarios allow us to make projections through
to 2100; we did this for RCP2.6 (SSP1-26), 4.5 (SSP2-45)
and 8.5 (SSP5-85). Overall, the observational-based FEBE

projections had uncertainties that are smaller by more than
a factor of 2 in comparison to the CMIP5/6 MME uncer-
tainties. However, the two modelling approaches have quite
different sources of uncertainty. Whereas the CMIP5/6 un-
certainty is purely due to differences in the climates of the
GCMs (“structural uncertainties”), the FEBE uncertainty is
“parametric” and it depends largely on the uncertainty of the
historical forcings and temperatures, in particular those asso-
ciated with aerosols. In fact, a byproduct of the model and
Bayesian framework is that we are able to more tightly con-
strain aerosol forcing, supporting recent literature findings
of weaker historical aerosol cooling. As a consequence, the
FEBE projections are consistently a little cooler than those of
the CMIP5/6 MME, but with uncertainties about half of those
of the MME, it still lies within the MME uncertainty bounds.
By comparing the FEBE with the CMIP5 and CMIP6 MMEs,
we were also able to separately quantify the contribution of
changing the RCP to SSP forcing scenarios from that of the
difference in the models. The qualitatively different FEBE
thus effectively complements the GCMs.

There is a long history – starting with the four-thirds law
of turbulent diffusion (Richardson, 1926) – of attempts to di-
rectly stochastically model the collective behaviour of huge
numbers of interacting structures and processes. Just as ther-
modynamics and continuum mechanics are themselves high-
level laws with respect to statistical mechanics, stochastic
turbulence laws are “high level” with respect to the usual de-
terministic laws of fluid mechanics. In both cases, the idea is
to ignore most of the “details” that turn out to be irrelevant
and model only the relevant ones. The FEBE, based on the
basic scale and energy symmetries, is a specific contribution
to this tradition. It comes at a moment when there is grow-
ing interest in stochastic and other alternative approaches to
climate modelling and projections (see, e.g. Irrgang et al.,
2021).

In addition, whereas the regional (horizontally vary-
ing) FEBE has already been derived from the heat equa-
tion (Lovejoy, 2021a, b), here it is the greatly simpli-
fied “zero-dimensional” (globally averaged) model that is
considered (for some early regional FEBE results see
e.g. Del Rio Amador and Lovejoy, 2021b; Procyk, 2021).
In addition, for simplicity, we restricted the FEBE to the
linear case, but it is quite easy to include non-linear model
feedbacks – for example, temperature–albedo feedbacks (for
glacial–interglacial modelling) or feedbacks such as those
from temperature–permafrost emissions relevant to potential
tipping points.

In the future, time-varying parameters may also be con-
sidered: for example, the climate sensitivity multiplied by
the forcing constitutes an “effective forcing” so that time-
varying sensitivities are trivial to include – they essentially
just change the forcing. Less trivial is the inclusion of time-
varying relaxation times, and at the moment it is not ob-
vious that it is possible to even mathematically define a
time-varying order of temporal differentiation (i.e. a time-
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varying h). However, it is possible to use spatially varying
h exponents for regional modelling, and this is apparently
necessary for regional applications (work in progress and see
Del Rio Amador and Lovejoy, 2021a). Other possible direc-
tions for generalizing the FEBE include coupling the temper-
ature field with other fields such as precipitation, ice cover,
land use and carbon cycle. Finally, it could also be mentioned
that various FEBE foundational issues need to be resolved –
such as the relationship between top-of-the-atmosphere and
surface radiative fluxes – and there also nontrivial practical
issues for estimating regional FEBE parameters.

The FEBE, which is an observational model based on en-
ergy and scaling symmetries, and its projections to 2100, are
complementary to the GCMs. Future work will explore the
full (regional, 2-D) FEBE model (Lovejoy, 2021b), which
hopefully will constrain and improve future projections. In
Lovejoy et al. (2021) and Lovejoy (2021a), the FEBE is
shown to plausibly reproduce the annual cycle at monthly
resolution, in particular to explain the lag between the tem-
perature maximum and the maximum in the radiative forc-
ing. We can also calibrate the FEBE on the historical runs
of the CMIP models in order to perform a feedback analy-
sis to investigate the differences between how models treat
their volcanic and aerosol forcings through the parameters ν
and α. Updating our parameter estimates from calibrations
on GCMs allows for GCM–FEBE hybrid projections. Ex-
tensions to precipitation may also be possible at global and
regional scales since the FEBE model is consistent with
space–time scaling processes in historical precipitation data
(de Lima and Lovejoy, 2015). With tighter constraints on
ECS and TCR from the FEBE, we can better estimate future
warming when bringing together multiple lines of evidence
as was done in Sherwood et al. (2020). The FEBE, once ex-
panded spatially, provides a flexible framework which can be
calibrated directly on observations, providing a direct repre-
sentation of forcing to response relationships.

Appendix A

Table A1. List of CMIP6 models and model climate parameters.

Model ECS TCR TCR-to-
[K] [K] ECS ratio

MIROC6 2.60 1.58 0.61
IPSL-CM6A-LR 4.50 2.39 0.53
CNRM-CM6-1 4.82 2.23 0.46
BCC-CSM2-MR 3.07 1.60 0.52
MRI-ESM2 3.11 1.67 0.54
CanESM5 5.58 2.75 0.49
CESM2 5.15 1.99 0.39
GISS-E2-1-H 2.99 1.81 0.61
GISS-E2-1-G 2.60 1.66 0.64
SAM0-UNICON 3.30 2.08 0.63
E3SM-1-0 5.09 2.91 0.57
UKESM1-0-LL 5.31 2.79 0.53
CNRM-ESM2-1 4.75 1.82 0.38
BCC-ESM1 3.29 1.77 0.54
CESM2-WACCM 4.65 1.92 0.41
MIROC-ES2L 2.66 1.51 0.57
EC-EARTH3-VEG 3.93 2.76 0.70
HADGEM3-GC31-LL 5.46 2.47 0.45
NORCPM-1 2.78 1.55 0.56
GFDL-CM4 3.79 – –
GFDL-ESM4 2.56 – –
NESM3 4.50 – –
NORESM2-LM 2.49 1.48 0.59
NORESM2-LM 2.49 1.48 0.59
MPI-ESM1-2-HR 2.84 1.57 0.55
INM-CM4-8 1.81 1.30 0.72

Ensemble mean±SD 3.74± 1.11 1.98± 0.48 0.55± 0.09

Table A2. List of CMIP5 models and climate sensitivity parame-
ters.

Model ECS TCR TCR-to-
[K] [K] ECS ratio

MPI-ESM-LR 3.48 1.94 0.56
MPI-ESM-MR 3.31 1.93 0.58
MPI-ESM-P 3.31 1.96 0.59
MIROC5 2.70 1.49 0.55
MIROC-ESM 4.68 2.15 0.46
IPSL-CM5B-LR 2.58 1.44 0.56
IPSL-CM5A-MR 4.03 1.96 0.49
IPSL-CM5A-LR 3.97 1.94 0.49
ISM-CM4 2.01 1.22 0.61
CSIRO-Mk3.6.0 4.05 1.76 0.43
CNRM-CM5 3.21 2.04 0.64
CNRM-CM5-2 3.40 1.63 0.48
BNU 3.98 2.58 0.65
BCC-CSM1.1 2.81 1.74 0.62
BCC-CSM1.1(m) 2.77 2.00 0.72
BCC-GCCM3 2.65 1.58 0.60
NORESM1-M 2.75 1.34 0.49
ACCESS1.0 3.76 1.72 0.46
CanESM2 3.71 2.37 0.64
GFDL-ESM2M 2.33 1.23 0.53
GFDL-CM3 3.85 1.85 0.48
CCSM4 2.90 1.64 0.57
FGOALS-g2 3.39 1.42 0.41
GISS-E2-H 2.33 1.69 0.73
GISS-E2-R 2.06 1.41 0.68
HADGEM2-ES 3.96 2.38 0.60

Ensemble mean±SD 3.20± 0.70 1.75± 0.38 0.56± 0.09
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