
Earth Syst. Dynam., 13, 419–438, 2022
https://doi.org/10.5194/esd-13-419-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Agricultural management effects on mean and
extreme temperature trends

Aine M. Gormley-Gallagher1, Sebastian Sterl1,2,3, Annette L. Hirsch4, Sonia I. Seneviratne5,
Edouard L. Davin5, and Wim Thiery1,5

1Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
2Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

3Center for Development Research, University of Bonn, Bonn, Germany
4ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia

5Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Correspondence: Aine M. Gormley-Gallagher (a.gormley@ulster.ac.uk)

Received: 30 May 2020 – Discussion started: 20 July 2020
Revised: 5 November 2021 – Accepted: 27 November 2021 – Published: 23 February 2022

Abstract. Understanding and quantifying land management impacts on local climate is important for distin-
guishing between the effects of land management and large-scale climate forcings. This study for the first time
explicitly considers the radiative forcing resulting from realistic land management and offers new insights into
the local land surface response to land management. Regression-based trend analysis is applied to observations
and present-day ensemble simulations with the Community Earth System Model (CESM) version 1.2.2 to as-
sess the impact of irrigation and conservation agriculture (CA) on warming trends using an approach that is
less sensitive to temperature extremes. At the regional scale, an irrigation- and CA-induced acceleration of the
annual mean near-surface air temperature (T2m) warming trends and the annual maximum daytime temperature
(TXx) warming trends were evident. Estimation of the impact of irrigation and CA on the spatial average of
the warming trends indicated that irrigation and CA have a pulse cooling effect on T2m and TXx, after which
the warming trends increase at a greater rate than the control simulations. This differed at the local (subgrid)
scale under irrigation where surface temperature cooling and the dampening of warming trends were both evi-
dent. As the local surface warming trends, in contrast to regional trends, do not account for atmospheric (water
vapour) feedbacks, their dampening confirms the importance of atmospheric feedbacks (water vapour forcing)
in explaining the enhanced regional trends. At the land surface, the positive radiative forcing signal arising from
enhanced atmospheric water vapour is too weak to offset the local cooling from the irrigation-induced increase
in the evaporative fraction. Our results underline that agricultural management has complex and non-negligible
impacts on the local climate and highlight the need to evaluate the representation of land management in global
climate models using climate models of higher resolution.

1 Introduction

According to observational and global climate model (GCM)
data, temperatures associated with hot extremes have in-
creased, consistent with global anthropogenic climate change
(Sillmann and Croci-Maspoli, 2009; Donat et al., 2013a, b;
Hartmann et al., 2013; Pendergrass and Hartmann, 2014;
Fischer and Knutti, 2015). However, hot spots of accel-
erated warming in annual maximum daytime temperature

(TXx) relative to local mean temperature (T2m) simulated
by climate models from phase 5 of the World Climate Re-
search Programme’s (WCRP) Coupled Model Intercompar-
ison Project (CMIP5) are spatially inconsistent with obser-
vations (Donat et al., 2017). This is particularly the case
over southeast China, South America, North America, and
parts of Australia and Europe. In these regions, the modelled
TXx warming from the mid-20th century (1951–1980) to the
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late 20th and early 21st century (1981–2010) was greater
than the modelled T2m warming. In contrast to the models,
the observations showed that TXx warmed at a slower rate
than T2m. Further analysis of the CMIP5 ensemble over cen-
tral Europe by Vogel et al. (2018) highlighted that several
GCMs overestimate the observed negative correlation be-
tween summer precipitation and TXx, resulting in too strong
future drying and associated TXx increases under RCP8.5.
This underlines the importance of a correct representation
of land–atmosphere coupling for simulating changes in tem-
perature extremes at regional scales. These discrepancies be-
tween multiple GCMs and observations raise the questions
as to whether (1) these model results can be used to reliably
project changes in local temperature extremes; (2) the dis-
crepancies remain if the rates are examined at which warm-
ing occurs over a time period which is less sensitive to out-
liers common in extreme temperature data than the absolute
temperature difference between two time periods, as used
in Donat et al. (2017); and (3) the inclusion of more pro-
cesses that represent land–atmosphere coupling would en-
hance model skill.

Agricultural land management techniques, including irri-
gation and conservation agriculture, can have a cooling ef-
fect on hot temperature extremes (Davin et al., 2014; Hirsch
et al., 2017; Thiery et al., 2017, 2020; Chen and Dirmeyer,
2019; Hauser et al., 2019; Jia et al., 2019). Irrigation diverts
surface and groundwater resources to agricultural land to in-
crease crop production (Fereres and Soriano, 2007). The ad-
dition of this water to the land surface is balanced by the
loss of water via runoff, deep percolation, soil storage and/or
evapotranspiration (ET) (Fereres and Connor, 2004). Under
drier conditions, less evaporative cooling leads to amplified
warming because the energy budget becomes dominated by
sensible heating instead of latent heating (Donat et al., 2017).
If irrigation water is added to the surface, this increases soil
moisture as well as latent heat flux over the summer months,
leading to more evaporative cooling at the land surface. This
irrigation-induced surface cooling, in turn, challenges the ra-
diative forcing concept, which assumes that as radiative forc-
ing increases (from enhanced atmospheric water vapour) so
too does surface temperature (IPCC, 2001; Boucher et al.,
2004).

Conservation agriculture (CA), which involves crop
residue management, crop rotation (Carrer et al., 2018; Lom-
bardozzi et al., 2018), and minimal or no tillage (Kassam et
al., 2015), can create climate feedbacks due to the presence
of a crop residue over CA land that change both the radia-
tive and hydrological properties at the surface (Davin et al.,
2014). Hirsch et al. (2018) explored whether applying the
no-till component of CA within the Community Earth Sys-
tem Model (CESM) improves the simulation of present-day
climate. They found that the surface temperature response
was influenced by three competing effects: (1) a surface
albedo increase – which reduces the availability of energy
for partitioning between the sensible and latent heat fluxes;

(2) increased surface resistance (e.g. from mulch) – which
reduces soil evaporation; and (3) increased soil moisture re-
tention leading to enhanced transpiration. The local cooling
response to CA was somewhat counteracted by grid-scale
changes in climate over North America, Europe and Asia be-
cause of negative atmospheric feedbacks. Grid-scale changes
in climate counteracting local responses to land use change
have also been demonstrated by Malyshev et al. (2015), who
showed that the subgrid signal of land use change in near-
surface temperature was diminished by the averaging with
undisturbed portions of the pixels. The importance of local-
scale responses to land cover change has also been indicated
in observation-based studies (e.g. Mahmood et al., 2014; Li
et al., 2015), yet few global-scale modelling studies examine
the local land surface response to land management (Paulot
et al., 2018; Meier et al., 2018).

Using GCMs, such as CESM, to simulate land–
atmosphere interactions for investigating the effects of irri-
gation and agricultural conversion has been criticized as in-
sufficient (Niyogi et al., 2002). This is partly because their
coarse resolution (e.g. of order 100 km) hampers their perfor-
mances in describing the present-day climate at the regional
scale (Jiang et al., 2016). Furthermore, economic, societal
and water resource factors are ignored – a void that initi-
ated the so-called “bottom–up” approach to evaluating the
effects of land use change (Douglas et al., 2006). Regarding
the applicability of the knowledge produced by GCMs, they
do not provide the skill required at the spatial scale to of-
fer practical responses at the infrastructure scale (Hossain et
al., 2015) or in terms of water resource management (Mar-
shall et al., 2004). Despite these constraints, GCMs remain a
prime tool for projecting changes in the climate system (Fa-
jardo et al., 2020; Gupta et al., 2020; Hofer et al., 2020).
Examples include the GCMs that are part of the latest Cou-
pled Model Intercomparison Project (CMIP6) and used by
the IPCC in consecutive assessment reports (Yazdandoost et
al., 2021). However, these GCMs largely exclude agricultural
management. In particular, no CMIP5 model incorporates ir-
rigation or CA and only three CMIP6 models include irri-
gation, while none have CA. Pielke et al. (2011) suggested
that landscape change is omitted from the CMIP5 models
because the direct radiative impact of global landscape is a
lower order than the radiative forcing from greenhouse gas
emissions. This constitutes a reason to investigate their inclu-
sion. That is, to distinguish between the effects of land man-
agement and other large-scale forcings such as rising CO2
concentrations (Schultz et al., 2016), it is important to evalu-
ate these processes in the GCMs and ultimately gain insight
into the contrasts of impacts between regions under different
climate regimes.

Considering the potential effects of irrigation and CA on
climate (Thiery et al., 2017), it is possible that the discrepan-
cies between climate models and observations regarding tem-
perature changes (Donat et al., 2017) are because the models
exclude the effect of agricultural management techniques on
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temperature. The goal of this study is thus to test the hypothe-
sis that CESM version 1.2.2 overestimates warming trends in
some regions because irrigation and CA are excluded. That
is, warming rates are hypothesized to increase at a slower
rate, showing signs of cooling, in irrigation- and CA-affected
regions when climate models do account for a theoretical
constant level of these land management practices. To realize
this goal, the following objectives were formulated: (1) deter-
mine spatial warming rates using simulations that account for
irrigation and CA and inspect whether CESM overestimates
warming trends; (2) compare the observed rates of warming
to the modelled rates of warming for irrigated and CA pixels,
as well as non-irrigated and non-CA pixels; and (3) estimate
the impact of irrigation on the spatial average of the warming
rates over time for all land, selected regions, and irrigated and
CA pixels. Within this framework, the novelty of this study
lies in (i) an explicit focus on land management impacts on
trends as opposed to the climatology; (ii) a comparison of the
subgrid versus grid-scale response, offering important new
insights on the local land surface response to land manage-
ment; and (iii) consideration of the radiative forcing resulting
from realistic land management.

2 Materials and methods

2.1 Irrigation and conservation agriculture
implementation in CESM

To assess the influence of a theoretical constant level of either
irrigation or CA on mean and extreme temperatures, we use
the Community Earth System Model (CESM) version 1.2.2,
which has contributed output to CMIP5 (Hurrell et al., 2013).
The CESM atmospheric model was version 5.3 of the Com-
munity Atmosphere Model (CAM5.3), while the land sur-
face model was version 4.0 of the Community Land Model
(CLM4). Sea surface temperatures and sea ice fractions were
prescribed from the dataset described by Hurrell et al. (2008).

We analyse the control (1) and experimental (2) simula-
tions presented in Thiery et al. (2017) for irrigation and in
Hirsch et al. (2018) for CA. This set consists of three five-
member ensembles.

The first ensemble, the control (CTL), was set up to cap-
ture land–atmosphere components within a framework akin
to that of the Atmospheric Model Intercomparison Project
(AMIP). The period 1976–2010 was simulated with a hori-
zontal pixel resolution of 0.9◦ latitude× 1.25◦ longitude. The
first 5 years were discarded as spin-up, with trends evaluated
for the period 1981–2010. On 1 January 1976, small random
perturbations of 10−14 K were applied to the initial atmo-
spheric temperature conditions. To focus on the influence of
land–atmosphere interactions, rather than ocean–atmosphere
feedbacks on the climate system, sea surface temperatures
and sea ice fractions were prescribed from the dataset de-
scribed by Hurrell et al. (2008). Greenhouse gas concentra-
tions were also prescribed from measurements, and satellite-

based observations of vegetation phenology were imposed in
CLM4.

The second ensemble, the irrigation (IRR) ensemble, fol-
lows an identical setup as the CTL experiment except that
the interactive irrigation module in CLM4 was enabled. As
described by Oleson et al. (2013), the irrigation parameteri-
zation in CLM4 divides the cropland area of each grid cell
into non-irrigated and irrigated fractions corresponding to
the portions that are equipped for irrigation – in accordance
with the Siebert et al. (2005) global map of irrigated areas
(Fig. 1a). The area of irrigated cropland in each grid cell is as-
signed as the smaller of the grid cell’s total cropland area and
its area equipped for irrigation. What remains of the cropland
area in the grid cell is regarded as non-irrigated cropland. It is
important to note that implementation of transient irrigation
was technically not possible in the CESM version 1.2, de-
spite transient area equipped for irrigation data being avail-
able (Siebert et al., 2005), and therefore trends in the forcing
are not considered.

The third ensemble, the CA ensemble, also follows the
CTL experiment setup, but in this case the most likely distri-
bution of CA was applied based on the CA dataset developed
by Prestele et al. (2018). By splitting the existing CLM crop
plant functional types (PFTs) into a fraction under conserva-
tion agriculture and a fraction under conventional manage-
ment, both forms of management are possible within a grid
cell. Although the crop residue is assumed present all year,
the implementation ensures that the increased soil albedo ef-
fect on the total surface albedo is dampened during the grow-
ing season by the inclusion of canopy cover (Hirsch et al.,
2018). Implementation of transient CA, however, was not
possible due to data limitation as only a static CA map was
available; hence we study a theoretical constant level of CA.

To examine heterogeneous influences within grid cells,
subgrid tiles that represent local physical, biogeochemical
and ecological characteristics – and therefore local (subgrid)
influences of irrigation and CA – were evaluated against re-
gional (grid-scale) influences. Up to 21 surface tiles may oc-
cur within one grid cell in CLM4, including glacier, wetland,
lake, urban, bare soil and 16 PFTs. For subgrid irrigation in-
fluences, all tiles are placed on one single soil column, ex-
cept for the irrigated crop tile. Separating the soil columns
in this way allows the soils underneath irrigated and rainfed
crop tiles to have individual responses to atmospheric forcing
(Schultz et al., 2016). Therefore, the subgrid-scale difference
is the irrigated crop tile minus the rainfed crop tile. For sub-
grid CA influences, using the PFT-level outputs from CLM,
it is possible to examine the subgrid-scale effect by subtract-
ing the conventionally managed crop tiles from the CA crop
tiles.

In addition, land masks were used to define and anal-
yse (1) all land pixels; (2) irrigated pixels only (where grid
cells have a nonzero irrigated fraction); (3) CA pixels (the
grid cells with a nonzero CA fraction) and (4) those regions
of the Special Report on Managing the Risks of Extreme
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Figure 1. (a) Percentage of each grid cell equipped for irrigation (%) (Siebert et al., 2005). (b) Potential estimate of CA extent mapped to
the CLM crop PFT (Prestele et al., 2018). The red boxes in (a) denote the regional domains where irrigation is extensive and which were thus
examined in greater detail including western North America (WNA), central North America (CNA), south Europe and the Mediterranean
(MED), West Asia (WAS), South Asia (SAS), Southeast Asia (SEA), and East Asia (EAS). The red boxes in (b) denote the regional domains
where CA is extensive and which were thus examined in greater detail including WNA, CNA, MED, southeastern South America (SSA),
central Europe (CEU) and southern Australia (SAU).

Events and Disasters to Advance Climate Change Adapta-
tion (SREX) (IPCC, 2013) where irrigation and CA are ex-
tensive (Fig. 1). The spatial points outside these masks as
well as missing values in the observations were excluded (as
“NaN” values). These masks were applied to the investiga-
tions undertaken in this study. As the observational datasets
(see below) were remapped to the model grid, this meant the
same land masks (excluding Antarctica) could be used for
each dataset.

2.2 Observational datasets

For evaluation purposes, observational datasets for annual
mean T2m with a spatial resolution of 0.5◦× 0.5◦ for the

same time period were obtained from the Climate Research
Unit (CRU) (Harris et al., 2014). Annual mean TXx obser-
vational datasets were obtained from the daily Global His-
torical Climatology Network extremes dataset (GHCNDEX)
(Donat et al., 2013a) and the Hadley Centre extremes dataset
(HadEX2) (Donat et al., 2013b) with a spatial resolution
of 2.5◦× 2.5◦. These observational products were regrid-
ded to the CESM resolution using second-order conservative
remapping (Jones, 1999). Thiery et al. (2017) and Hirsch et
al. (2018) previously evaluated how the IRR and CA experi-
ments alter the skill of CESM simulations (in terms of their
agreement with observations). Thiery et al. (2017) demon-
strated that including irrigation has a small yet robust bene-
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ficial effect on the representation of TXx and T2m in CESM
over irrigated and all land pixels. By including CA, Hirsch
et al. (2018) showed a general improvement in the simula-
tion skill over south Europe and the Mediterranean (MED)
for TXx and T2m and enhanced skill for T2m over western
North America (WNA), central North America (CNA) and
central Europe (CEU).

Observational data for the surface radiative temperature
(TS) at the subgrid scale were obtained from the E-OBS Eu-
ropean dataset for 1981–2010 over MED pixels. As a re-
gional dataset, it has a higher spatial resolution and therefore
enabled a skill of the models with respect to the local effects
of land management. The E-OBS data were regridded to the
CESM resolution using bilinear remapping.

2.3 Statistical analysis

The warming rate β was calculated using Sen’s slope ap-
proach (Sen, 1968) based on the time and temperature values
in each grid cell. This means that at each longitude and lat-
itude point on land, there are 30 time measurements (1981–
2010) with an associated temperature measurement (for each
annual mean T2m and TXx). Therefore, there are 30× 29/2
possible pairs of sample points, rendering 435 pairs for each
location.

Annual TXx and T2m values averaged across all land pix-
els and all irrigated pixels were computed for the CTL, IRR
and CA ensemble means, as well as the GHCNDEX (TXx),
HadEX2 (TXx) and CRU (T2m) observations. A Sen’s slope
regression analysis was then carried out on the spatial mean
temperatures of TXx and T2m change over time (1981–2010)
for (a) all pixels, (b) irrigated pixels and (c) CA pixels only,
for both observations and the model ensembles.

The spatial mean warming rate across all (land or ir-
rigated) pixels was also calculated. Additionally, all pix-
els within the SREX regions where irrigation is extensive
(Thiery et al., 2017) – WNA, CNA, MED, West Asia (WAS),
South Asia (SAS), Southeast Asia (SEA) and East Asia
(EAS) – were selected and their spatial means determined
and examined. The SREX regions where CA is extensive
(Hirsch et al., 2018) were also examined in greater detail.
These include WNA, CNA, MED, southeastern South Amer-
ica (SSA), CEU and southern Australia (SAU) (Fig. 1).

3 Results

3.1 Model evaluation

First, we explore how the existing CESM climate simulation
skill (i.e. how well the simulated and observed trends agree)
is altered in IRR and CA relative to the skill obtained in the
CTL. The model biases and spatial root mean square error
(RMSE) values relative to the warming trends of the T2m
and TXx global observational products are provided in Ta-
ble 1. For the IRR ensemble, T2m warming trends are over-

estimated by ∼ 0.001 K yr−1 across irrigated pixels, whereas
over CA pixels T2m warming trends are overestimated by
∼ 0.002–0.004 K yr−1 in both the CA and CTL ensemble.
On average, the CTL, IRR and CA ensembles overestimate
TXx warming trends by ∼ 0.007–0.03 K yr−1 over all land
pixels. Over irrigated pixels, the CTL and IRR ensemble
overestimate TXx by∼ 0.008–0.013 K yr−1. Over CA pixels,
the CTL and CA ensemble overestimate TXx by ∼ 0.006–
0.013 K yr−1. This means that while T2m warming rates have
a slight low bias on average over all land and partially over
irrigated areas, TXx warming trends are consistently too high
over all land, irrigated and CA areas.

Second, to investigate how the uncertainty between the dif-
ferent irrigation and CA estimates of warming trends influ-
ences simulation skill, we examine the added value of in-
cluding irrigation and CA for TXx and T2m over the regions
where irrigation and/or the CA extent is greatest, as well as
over global land, global irrigated land and global CA land
(Fig. 2). The added value is evaluated by calculating the
absolute change (experiment minus control) in the spatial
RMSE. Accounting for irrigation improves the simulation
skill for trends over MED, WAS and SAS for T2m and over
MED, WAS, SAS and SEA for TXx (with HadEX2 as refer-
ence product). For WNA, CNA and EAS, the added value is
negative or limited for both temperature metrics. Accounting
for CA improves the simulation skill over CNA, CEU and
SAU for the T2m and both TXx observational products and
over MED for the T2m and the TXx HaxEX2 observational
products. For WNA, skill is reduced for all CA estimates. If
we consider the grid cells where the land fraction within the
CESM exceeds 50 % (“all land”) or just the grid cells that
have a nonzero irrigation (“irrigated land”), there is added
value for the T2m observational product over all land and the
grid cells where irrigation has been applied. There is limited
skill improvement for the TXx HadEx2 observational prod-
uct. For the CA simulations, if we consider all land and the
grid cells with a nonzero CA fraction (“CA land”), the model
skill improves for the T2m observational product.

Third, we explore how the CESM climate simulation skill
is altered in the subgrid-scale irrigation (IRRSUB) and CA
crop tiles (CASUB) relative to the skill obtained in the con-
ventionally managed (CM) and rainfed crop tiles (RAIN) in
the MED region. The model biases and spatial RMSE val-
ues relative to the warming trends of the TS observational
product are provided in Table 2. For IRRSUB, TS warming
trends are overestimated by ∼ 0.004 K yr−1 across irrigated
MED pixels, which is an improvement in terms of bias when
compared to the subgrid-scale data that do not account for ir-
rigation (i.e. RAIN). However, according to the change in the
spatial RMSE, accounting for irrigation does not improve the
simulation skill for trends over MED irrigated pixels. This is
likely because RMSE is more sensitive to outliers, whereas
the bias is based on the spatial mean.
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Figure 2. Added value of including irrigation and CA in the simulated warming trends over 1981–2010. Absolute change in spatial root-
mean-square error (RMSE) for the (a) IRR and (b) CA ensemble relative to the CTL ensemble over different regions (x axis) and with
respect to three observational products (y axis). Considered regions are the SREX regions where irrigation is extensive (as highlighted in
Fig. 1a) and where CA is extensive (Fig. 1b), in addition to global land, global irrigated land and global CA land. Observational products
are for near-surface air temperature T2m (CRU) and annual maximum daytime temperature TXx (GHCNDEX and HadEX2). The spatial
RMSEs are computed for the ensemble mean warming trend in every pixel and subsequently averaged over the selected region. Regions with
an observational coverage below 50 % are marked in white.

3.2 Impact of irrigation and conservation agriculture on
mean and extreme warming trends

Neither irrigation nor CA has a cooling effect on T2m and
TXx warming rates in irrigated/CA or non-irrigated/CA re-
gions (Fig. 3 and Table 3). The results suggest a slight
irrigation- and CA-induced acceleration of the annual T2m
and TXx warming trends, rather than the hypothesized
cooling. For instance, irrigation induced an increased T2m
warming rate of 0.0023 K yr−1 on average over land and
0.004 K yr−1 across all irrigated pixels. To put these in-
creases into context, the mean T2m CRU observed warming
trend over irrigated pixels was 0.029 K yr−1.

When the annual T2m and TXx temperatures are spatially
averaged for each ensemble, the IRR and CTL simulations
both overestimate the observed values for irrigated pixels
(Fig. 3a and b), and the CA and CTL simulations both over-
estimate the observed values over CA pixels (Fig. 3c and
d). However, the impact of irrigation and CA on the mod-
elled spatially averaged temperatures improves the closeness
to that of the observations; i.e. there is an overall decrease in
absolute temperature (Fig. 3a–d), which aligns with current
theory (Kueppers et al., 2007; Saeed et al., 2009; Kueppers
and Snyder, 2012; Thiery et al., 2017, 2020; Hirsch et al.,
2018).

What these results show in addition is that, for the IRR
and CA models and for all land, irrigated and CA pixels, the
spatially averaged T2m and TXx warming rates (the slopes)
are higher than those of the CTL model. Therefore, rather
than continuous cooling, there is evidence in Fig. 4 of a pulse
cooling phase during the spin-up years (Smith et al., 1998),
after which the T2m and TXx warming trends increase at a
greater rate than the control simulations.

In the case of CA, because crop residue is more likely
to be applied during the summer/dry season (when TXx is

typically recorded) to reduce evaporation (Figs. 3l and 5f),
energy is shifted to the sensible heat flux (SHF) (Figs. 3h
and 5j), increasing TXx (Fig. 3d). The SHF response is not
always consistent with the decrease in the latent heat flux
(LHF) (Fig. 5h), with some increases over eastern South
America, eastern North America, parts of Europe and south-
east Australia.

In the case of irrigation, the response also suggests two
competing effects: (1) there is more water at the surface, so
the energy budget shifts to the LHF (Figs. 3i, 5g and i), re-
sulting in evaporative cooling (Fig. 3a and b); and (2) because
irrigation globally adds 418 km3 yr−1 of moisture to the at-
mosphere (Thiery et al., 2017) and as water vapour acts as
a greenhouse gas (GHG), it traps outgoing longwave radi-
ation, radiating it back to the Earth’s surface as downward
longwave radiation (Fig. 5e and f), resulting in increased
T2m and TXx warming trends (Fig. 3a and b). The first ef-
fect appears more pronounced than the second due to the net
cooling in Fig. 3a and b. This means that despite the wa-
ter vapour (acting as a GHG) increasing downward radia-
tion and the overall energy budget thus increasing, most of
it still goes to the latent heat flux leading to a net reduc-
tion in temperature (as compared to a situation without ir-
rigation, where the sensible / latent ratio is more in favour of
the latter). The limited warming effect of irrigation on atmo-
spheric temperatures through water vapour forcing is consis-
tent with earlier GCM studies inputting more than twice the
amount of water vapour into the atmosphere through irriga-
tion (32 500 m3 s−1 or 1026 km3 yr−1) and finding limited ra-
diative forcing (Boucher et al., 2004; Sherwood et al., 2018).

We further investigate the potential warming of the
Earth System irrigation-induced enhanced atmospheric wa-
ter vapour by computing the top-of-atmosphere net radi-
ation (Rn,TOA) in the CTL and IRR ensembles over the
1981–2010 period (Fig. 4). As both ensembles employ pre-
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Figure 3.
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Figure 3. Spatial average of the warming rates for T2m (a, c, e), TXx (b, d, f), SHF (g, h), LHF (i, j) and ET (k, l) for the CESM ensembles
and observations. Data points specify the mean T2m and TXx temperatures, SHF, LHF and ET volumes for irrigated pixels (a, b, g, i, k),
CA pixels (c, d, h, j, l) and (e–f) all land pixels. The slope was estimated using Sen’s slope for the CTL (red), IRR (blue), CA (cyan), CRU
(purple), HadEX2 (yellow) and GHCNDEX (black) temperatures.
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Figure 4. Top-of-atmosphere (TOA) net radiation Rn,TOA [W m−2] in (a) the CTL ensemble. (b) Impact of irrigation on Rn,TOA. Difference
map is based on the ensemble mean of each experiment for 1981–2010.

scribed, transient sea surface temperatures, the difference in
Rn,TOA is a measure of irrigation-induced radiative forcing.
The area-weighted global average Rn,TOA is 0.4961 W m−2

for the CTL ensemble (Fig. 4a) and 0.5450 W m−2 for
the IRR ensemble. The radiative forcing from irrigation
is therefore 0.0489 W m−2, at least 1 order of magnitude
smaller compared to other combined anthropogenic forcings
over this period (IPCC, 2013) and consistent with previ-
ous estimates (Boucher et al., 2004; Sherwood et al., 2018).
The positive radiative forcing is mainly located over South
Asia and partially offset by negative forcing over central
Asia, Greenland and Antarctica (Fig. 4b). Breakdown of
the irrigation-induced Rn,TOA change into the shortwave
and longwave components shows that the forcing is dom-
inated by the longwave signal (+0.0583 W m−2), with the
shortwave signal even showing signs of a slight albedo in-
crease (−0.0094 W m−2), presumably from enhanced low-
level cloud cover (Sherwood et al., 2018). The additional wa-

ter vapour in the atmosphere and associated longwave trap-
ping in CESM can thus explain the small, positive radiative
forcing contributing to Earth system warming and associated
enhanced near-surface temperature trends in irrigated regions
(Fig. 3a–b), but at the land surface this signal is too weak to
offset the local pulse cooling from the irrigation-induced in-
crease in evaporative fraction.

3.3 Subgrid-scale impacts

Our results indicate a subgrid-scale cooling effect of ir-
rigation on TS warming trends that is more distinct and
spatially consistent over irrigated pixels than grid-scale ef-
fects (Fig. 5a versus Fig. 6a). TS warming trends on irri-
gated tiles are on average−0.008 K yr−1 (−24 %) lower than
their rainfed counterparts, whereas the trends are on average
0.001 K yr−1 (+11 %) higher on the grid cell level over ir-
rigated land (Table 3). The subgrid-scale influences of irri-
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Figure 5.

gation on ET rates over irrigated tiles were also pronounced
as they increased by 0.653 mm yr−1 in comparison to rain-
fed tiles (Fig. 6c and Table 3). The subgrid-scale influences
of CA on TS warming trends are smaller in comparison to
irrigation, with only a 0.001 K yr−1 (−3 %) dampening of
warming trends and ET rates increased by 0.083 mm yr−1

(46 %), relative to their conventionally managed counterparts
(Fig. 6b and d and Table 3).

The cooler warming trends from irrigation at the subgrid-
scale (Fig. 6a) occur where the ET rate increases (Fig. 6g) as
well as the latent heat flux (Fig. 6e), suggesting the cooling is
due to an increase in the latent heat flux, which is consistent
with Cook et al. (2015) and Thiery et al. (2017). The height-
ened grid-scale TS warming trends (Fig. 5a) generally align

with a greater downward longwave radiation (TMQ) flux
(Fig. 5c) and increased T2m warming trends over irrigated
pixels (Fig. 3a), which signifies the longwave radiation trap-
ping potential of the additional atmospheric water vapour. As
the impact on trends is small (e.g. T2m and Ts warming trends
increased, respectively, by 0.004 and 0.001 K yr−1 across ir-
rigated pixels), the finding is in agreement with Sherwood et
al. (2018), who showed that additional water vapour has a
small impact on global warming potential mainly because it
rains out before reaching the altitudes needed to significantly
contribute to the greenhouse effect. These findings thus sup-
port the concept of radiative forcing and the proviso that, at
the land surface, the water vapour signal does not offset lo-
cal cooling from the irrigation-induced increase in evapora-
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Figure 5. Grid-scale differences between the CTL and IRR ensemble (IRR minus CTL) (a, c,e, g, i) and between the CTL and CA ensemble
(CA minus CTL) (b, d, f, h, j). For Ts (a, b), TMQ (c, d), ET (e, f), LHF (g, h) and SHF (i, j), displayed over irrigated/CA pixels for
comparative purposes. Differences are based on the ensemble mean warming trends of each experiment for 1981–2010. Hatching denotes
less than 10 % change induced by the model on mean warming trends of lumped ensemble members.

tive fraction, as described for Figs. 3 and 4 and previously
proposed by Boucher et al. (2004). However, because the
subgrid-scale Ts trends, in contrast to grid-scale trends, are
computed within the same ensemble and thus do not account
for atmospheric (water vapour) feedbacks, the sign reversal
of irrigation-induced impact on grid-scale and subgrid-scale
Ts trends confirms the importance of atmospheric feedbacks
(water vapour forcing) in explaining the increased grid-scale
Ts and T2m trends.

When spatially averaged, over all pixels, the TS warming
trends at the subgrid-scale show no evidence of a pulse cool-
ing phase due to irrigation (Fig. 7c), which is in contrast with
the results over irrigated pixels, where there is both a cooling
effect on TS and a dampening of TS warming trends (Fig. 7a).
This contrast is likely due to a combination of the remote
effects of irrigation, the larger contribution of natural vari-
ability and an increased relative contribution of other com-
ponents when considering all land pixels (Puma and Cook,
2010; Cook et al., 2015; De Vrese et al., 2016; Thiery et al.,
2017).

Regarding CA, the slight overall warming of TS tempera-
tures (Fig. 7b) as well as the increase in TS warming trends
over CA pixels for the MED region (Fig. 7f) is possibly be-

cause of the decrease in soil evaporation as a result of crop
residue over CA land (Fig. 5f), inhibiting energy partitioning
from the SHF (Table 3). The cooling of TS temperatures over
all land pixels (Fig. 8d) and the slight decline in TS warming
trends over CA pixels (Fig. 7b and Table 3), however, sug-
gests that the effect of increasing surface albedo and thus re-
ducing the solar energy absorbed by the surface is dominant.
Additionally, the close correspondence between CA and CM
(Fig. 7b) may reflect that the temperature response spatially
is both positive and negative depending on which mechanism
dominates and therefore the spatial aggregation for all CA
and all CM pixels globally loses this (Fig. 7d).

4 Discussion

This study examined the hypothesis of whether excluding a
theoretical constant level of irrigation and CA contributes to
the overestimation of warming by an Earth system model. A
Sen’s slope model was built and applied to ensemble sim-
ulations from the Community Earth System Model that in-
clude irrigation parameterization to determine if there are
spatiotemporal patterns and why they exist. This unexpect-
edly showed that warming trends are not dampened due to
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Figure 6. Subgrid-scale differences between the irrigated and rainfed crop tile in the IRR ensemble (irrigated minus rainfed) (a, c, e,
g) and between CA and conventionally managed (CM) crops (CA minus CM) (b, d, f, h). For Ts (a, b), ET (c, d), LHF (e, f) and SHF
(g, h), displayed over irrigated/CA pixels for comparative purposes. Differences are based on the ensemble mean warming trends of each
experiment for 1981–2010. Hatching denotes less than 10 % change induced by the model on mean warming trends of lumped ensemble
members.
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Figure 7. Average of the subgrid-scale warming rates for surface radiative temperature (TS) (a–f), the SHF (g) and LHF (h) over (a, g)
irrigated pixels for the irrigated and rainfed crop tiles; (b, h) CA pixels for the CA and CM crop tiles; (b) all pixels for the irrigated and
rainfed crop tiles; (d) all pixels for the CA and CM crop tiles; (e) irrigated pixels over the MED SREX region; and (f) CA pixels over the
MED SREX region. Data points are the mean TS, LHF and SHF values within the crop tiles and pixels specified. The slope was estimated
using Sen’s slope for the rainfed/CM (red), irrigated/CA (blue) experiments. For (a), (b), (c), (d), (e) and (f) the regions where less than 50 %
of the land pixels did not contain a value were excluded. For all land pixels (g, h), the minimum number of land pixels that needed to contain
a value in order to be retained in the analysis was 15 %.
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Table 3. Impact of irrigation and CA on various climatological values (absolute slope differences calculated as IRR minus CTL and CA
minus CTL for grid-scale, IRRSUB minus RAIN and CASUB minus CM for subgrid-scale) for the years 1981–2010.a

Irrigated land CA land

Physical quantity (units) CTL IRR ABS CTL CA ABS

Grid-scale

T2m (K yr−1) 0.026 0.030 0.004c 0.026 0.028 0.002c

TXx (K yr−1) 0.034 0.038 0.004c 0.039 0.044 0.005c

TS (K yr−1) 0.009 0.010 0.001c 0.016 0.015 −0.001c

LHF (W m−2 yr−1) 0.029 0.041 0.012 0.029 0.053 0.024
SHF (W m−2 yr−1) −0.010 −0.001 0.009 −0.010 0.004 0.014

Physical quantity (units) RAIN IRRSUB ABS CM CASUB ABS

Subgrid-scaleb

TS (K yr−1) 0.038 0.030 −0.008c 0.031 0.030 −0.001c

ET (mm yr−1) 0.286 0.939 0.653c 0.182 0.265 0.083
LHF (W m−2 yr−1) 0.004 0.060 0.056 0.009 0.014 0.005
SHF (W m−2 yr−1) 0.009 0.005 −0.004c 0.056 0.060 0.004

a ABS denotes the absolute change in each given quantity. b Regions with a coverage below 25 % are excluded. For grid-scale calculations, regions
with a coverage below 50 % are excluded. c The changes significant at the 1 % significance level (two-sided Wilcoxon signed rank test on ensemble
mean slopes for irrigated/CA pixels).

either irrigation or CA, except for the subgrid-scale effect of
irrigation on the warming trends of TS.

The key findings of this investigation are a net cooling
effect of irrigation and CA on the modelled spatially aver-
aged T2m and TXx, but, rather than continuous cooling, the
warming trends showed a pulse cooling phase, after which
the sensitivity to climatic change remains. Under irrigation,
the opposing effects are the result of (1) evaporative cooling
and (2) atmospheric water vapour strengthening the green-
house effect. Under CA, the contrasting effects are due to
(1) cooling from a tillage-induced increase in surface albedo
and (2) reduced soil evaporation due to the presence of crop
residue, limiting energy partitioning to the latent heat flux.
At the subgrid-scale, there was both a cooling effect on TS
and in the dampening of warming trends. This implies that
enhanced evaporative cooling is the dominant driver of the
subgrid-scale temperature trends.

Although this study was constructed with great care and
built on a state-of-the-art modelling suite, several future de-
velopments could improve understanding of the impact of
irrigation and CA on climate. Firstly, the quality of the
model(s) could be improved by using transient irrigation and
CA extents and new land cover datasets from the sixth phase
of the Coupled Model Intercomparison Project (CMIP6)
(Lawrence et al., 2016). In this study, a static irrigation map
for the year 2000 was used for the whole simulation pe-
riod. This likely contributes to our results being conserva-
tive. If, for instance, irrigation expands over time, the cool-
ing effect may become stronger and thus affect the warming
trends. Furthermore, the extent to which the increase in sur-
face albedo (i.e. the first competing effect of CA) affects the
sensible and latent heat fluxes partly depends on soil mois-
ture, which too is not static. Also, CMIP6 experiments are

based on annual emissions, whereas CMIP5 was based on
decadal emissions and CMIP6 models were updated with
irrigation-related features and land cover maps that incorpo-
rate irrigation and CA expansion over time (Goddard et al.,
2013; Miao et al., 2014; Boer et al., 2016; Meinshausen et al.,
2017; Stouffer et al., 2017). CMIP6 models may therefore
improve the dynamics between irrigation, CA and climate
change, provided that they represent these land management
techniques in their surface schemes.

The second consideration is that all simulations used in
this study (five control, five irrigation and five CA) were from
a single model. Ensembles completed as such with the same
model but different simulations (i.e. based on different initial
conditions) characterize the uncertainty associated with in-
ternal climate variability only, while multi-model ensembles
also account for the impact of model differences (Tebaldi and
Knutti, 2007; Knutti et al., 2010). This limitation can impact
cloud uncertainties. Hirsch et al. (2017) found that the CESM
tends to produce large cloud feedbacks over central Europe,
central North America, North Asia and South Asia when
more energy is reflected at the surface. Irrigation-induced
increases in latent heat fluxes led to more water vapour in
the lower atmosphere, which generated low-level clouds (see
also Sherwood et al., 2017). This limited shortwave radia-
tion and hence the amount of energy available at the surface
because the increased cloud cover reflected more downward
shortwave radiation above the cloud layer, resulting in sur-
face cooling. This was enhanced by a corresponding decrease
in sensible heat fluxes, reflecting the decrease in the amount
of energy available at the surface and/or the increase in la-
tent heating. The impact of cloud cover combined with land
management change remains challenging to resolve. There-
fore, this study should ideally be repeated with other models.
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Donat et al. (2017), for instance, conducted their study on 20
CMIP5 models, but these models did not incorporate irriga-
tion and CA.

Thirdly, irrigation and CA are the only agricultural man-
agement practices considered in this study (and done so indi-
vidually), whereas other agricultural management practices
have been shown as impactful (Luyssaert et al., 2014; Erb et
al., 2016, 2018). Trend analysis of integrated land manage-
ment practices could affect the outcome if there is a lumped
effect. Building an additional stochastic model could account
for variations in the distribution of the impact of land man-
agement practices on warming trends. This would enable
sensitivity analyses to ascertain the relative importance of ir-
rigation and CA to the total warming trends (based on all land
management practices) as well as the relative contributions of
the uncertainty sources (model input, parameter, structure) to
the total uncertainty in the model output.

The final consideration is whether regression-based mod-
els are suitable for analysing changes in highly variable cli-
mate data, particularly annual extreme temperature data (von
Storch, 2006). Essentially, the regression slope blends forced
temperature change and variability, to provide an estimation
of the temperature variation over time, within which vari-
ance can be lost due to noisy data. Whether the TXx and T2m
temperatures were first spatially averaged and then the slope
retrieved or whether each slope was estimated for each pixel
and then the overall trends examined, the outcome remains.
This is unsurprising considering that in the spatial averaging
the noise contributions are averaged out, while the individ-
ual regression data suffer from the variance loss related to
regression. However, when applied to over 60 years of obser-
vational data, the regression model used in this study showed
similar trends to using the difference between the past and the
present average temperatures (not shown). This implies that
the irrigation and CA-inclusive climate system may require
a longer timeframe (than the 30 years plus a 5-year spin-up
period used) for trends to overtake the natural variability. Ad-
ditionally, rather than aggregating all months, trends during
individual months or seasons could be examined. This can af-
fect, for instance, the influence of irrigation on Ts, which has
a clear seasonal pattern, with more cooling during the driest
and/or hottest months (Thiery et al., 2017). A smaller mag-
nitude in TXx response to CA at the subgrid scale has also
been noted during the summer season due to a larger leaf area
index (LAI) reducing soil surface exposure and thus the con-
trast between CA and conventionally managed crops (Hirsch
et al., 2018). Furthermore, the implementation of CA within
CESM does not capture crop planting and harvesting cycling
(Davin et al., 2014), which would affect the LAI of the crop
and potentially the effect of CA on surface climate.

5 Conclusions

In this study the impact of a theoretical constant level of ir-
rigation and CA on warming trends in global climate and
climate extremes was assessed for the period of 1981–2010
using the Community Earth System Model. A Sen’s slope
regression-based analysis was performed to compute spa-
tially explicit warming trends and spatially averaged warm-
ing trends. Insight into how modelled temperature is affected
in its median by irrigation and CA over time was provided.

An irrigation- and CA-induced acceleration of the annual
T2m and TXx warming trends was evident. Estimating the
impact of irrigation and CA on the spatial average of the
warming trends indicated that irrigation and CA have a pulse
cooling effect on T2m and TXx, after which warming trends
increased at a greater rate than the control simulations. This
differed at the subgrid scale under irrigation where surface
temperature cooling and the dampening of warming trends
were both evident. Therefore, irrigation-induced evaporative
cooling is a more dominant effect at the local level than the
strengthening of the greenhouse effect at regional scales as a
result of enhanced atmospheric water vapour.

A model evaluation demonstrated that the simulations ac-
counting for irrigation and CA satisfactorily reproduce ob-
served warming trends in T2m but not the trends in temper-
ature extremes of TXx. This signifies that the GCMs have
more trouble representing the greater variability in the ex-
treme temperatures, compared to that of the mean annual
temperature, and that the Sen’s slope models are more suited
to the blended variability inherent in annual mean tempera-
tures.

The findings overall provide valuable context on how
model complexity can impact the simulation of trends and
emphasize the need for a more in-depth evaluation of the
sensitivity of future climate projections to irrigation and CA-
induced temperature changes. A sensitivity analysis, using
transient irrigation and CA extents as well as additional
land management techniques, within coupled climate mod-
els based on CMIP6 output, is recommended. In this way,
the variance can be approximated and the relative contribu-
tions of the uncertainty sources to the total uncertainty in
the model output, as well as the relative importance of ir-
rigation and CA to the total warming trends, can be quan-
tified and compared. If the fundamental uncertainties relat-
ing to model structure dominate, then a more detailed anal-
ysis than the regression approach used in this study is sug-
gested. Furthermore, we encourage the community to com-
pare the coarser-resolution results gained in this GCM study
with higher spatial-resolution models and for seasonal and
monthly time periods. This will support decision-making on
the incorporation of agricultural management processes in
future GCM projects.
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