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Abstract. Stratospheric aerosol injection (SAI), as a possible supplement to emission reduction, has the poten-
tial to reduce some of the risks associated with climate change. Adding aerosols to the lower stratosphere would
result in temporary global cooling. However, different choices for the aerosol injection latitude(s) and season(s)
have been shown to lead to significant differences in regional surface climate, introducing a design aspect to
SAI. Past research has shown that there are at least three independent degrees of freedom (DOFs) that can be
used to simultaneously manage three different climate goals. Knowing how many more DOFs there are, and thus
how many independent climate goals can be simultaneously managed, is essential to understanding fundamen-
tal limits of how well SAI might compensate for anthropogenic climate change, and evaluating any underlying
trade-offs between different climate goals. Here, we quantify the number of meaningfully independent DOFs of
the SAI design space. This number of meaningfully independent DOFs depends on both the amount of cooling
and the climate variables used for quantifying the changes in surface climate. At low levels of global cooling,
only a small set of injection choices yield detectably different surface climate responses. For a cooling level
of 1–1.5 ◦C, we find that there are likely between six and eight meaningfully independent DOFs. This narrows
down the range of available DOFs and also reveals new opportunities for exploring alternate SAI designs with
different distributions of climate impacts.

1 Introduction

Reducing emissions of CO2 and other greenhouse
gases (GHGs) may not be enough by itself to avoid
significant risks associated with climate change. As a
supplement to emission reduction, climate interventions
such as stratospheric aerosol injection (SAI) may be able
to temporarily reduce some of these risks. SAI involves
adding aerosols or their precursors to the lower stratosphere,
which would increase the stratospheric aerosol optical
depth (AOD); as a result, more solar radiation would be
reflected away before reaching the surface. Most climate
model simulations inject SO2, which results in increased
sulfate aerosols. While injecting aerosols (or a precursor gas

such as SO2) into the stratosphere can offset the change in
global mean temperature, the resulting climate would not
be the same as the climate with the same temperature but
without either the excess atmospheric CO2 or SAI. These
residual changes depend on injection choices that could be
made. As suggested in previous research, injecting aerosols
at different latitudes, altitudes, and seasons would result
in different spatiotemporal patterns of AOD, which in turn
would lead to different regional surface climate responses
(MacMartin et al., 2017; Tilmes et al., 2017, 2018a; Dai
et al., 2018; Kravitz et al., 2019; Visioni et al., 2019, 2020c;
Lee et al., 2020a, 2021). Understanding the global and
spatiotemporal impacts of SAI and even the governance
challenges requires that we not treat SAI as a single strategy

Published by Copernicus Publications on behalf of the European Geosciences Union.



202 Y. Zhang et al.: SAI design space

but rather understand the range of outcomes across different
strategies, the fundamental limits of how well SAI can com-
pensate for GHG-driven climate change, and any underlying
trade-offs among SAI strategies.

Choosing where and when to inject aerosols can be
thought of as a design problem (Ban-Weiss and Caldeira,
2010; Kravitz et al., 2016; MacMartin and Kravitz, 2019); for
a given choice of global cooling, the design space describes
the range of all possible such injection strategies. Some
strategies produce very different surface climate responses,
while others can be relatively similar. Here, we only consider
possible injection choices in a finite set of different latitudes
and seasons. We validate in Sect. 7 that different choices for
injection altitude do not produce meaningfully independent
patterns of AOD. The injection longitude would not be ex-
pected to matter due to the rapid zonal mixing relative to
the aerosol lifetime. Time-varying injection locations are also
not considered here as their primary benefits are found over
relatively short timescales compared with the aerosol lifetime
in the stratosphere (Aksamit et al., 2021). The climate re-
sponse to an injection strategy can be quantified by different
metrics, such as surface air temperature, precipitation, and
Arctic sea ice. In this study, we use surface air temperature
and precipitation to quantify the climate response. We use the
term “degrees of freedom” (DOFs) to describe how many in-
dependent injection choices there are in the design space and
thus how many meaningfully different climate responses ex-
ist. Assuming that the climate response can reasonably be
approximated as linear, the ability to independently combine
n patterns of climate response allows n independent climate
goals to be managed. Thus, the number of independent in-
jection choices is equivalent to the number of independent
climate goals that can be managed by SAI simultaneously.
Most studies have only explored a single degree of free-
dom: injecting SO2 at one location (often the Equator) ei-
ther at a fixed rate or to meet one climate objective (often
global mean temperature – T0) (e.g., Robock et al., 2008;
Rasch et al., 2008; Kravitz et al., 2011, 2015). Kravitz et al.
(2016, 2017) demonstrated a strategy in which three DOFs
were used to manage three temperature goals: T0, interhemi-
spheric temperature gradient (T1), and Equator-to-pole tem-
perature gradient (T2); the same strategy was then used in the
Geoengineering Large Ensemble Project (GLENS) (Tilmes
et al., 2018a). Additional studies have explored variations on
these DOFs, such as Visioni et al. (2020c), who injected SO2
in only one season to meet the same set of climate goals,
or Lee et al. (2020a), who used the same set of DOFs as in
Tilmes et al. (2018a) to meet different sets of climate goals,
including T0, the latitude of the Intertropical Convergence
Zone (ITCZ), the amount of Arctic September sea ice (SSI),
and global mean precipitation (P0). Higher-latitude injec-
tions in different seasons have been shown to have differ-
ent efficacies in preserving SSI; e.g., spring-only injection
at 60◦ N restores twice the amount of SSI compared to an-
nually constant injection at that latitude (Lee et al., 2021).

A key open question from these design studies is how many
other strategies are unexplored (e.g., MacMartin and Kravitz,
2019); in other words, how many independent degrees of
freedom are there?

In this study, we estimate the number of DOFs of the de-
sign space for SAI. Knowing how many DOFs there are in
the design space quantifies the number of independent cli-
mate goals that can be managed simultaneously by a SAI
strategy. In order to be managed simultaneously, those inde-
pendent climate goals cannot conflict. (For example, T0 and
P0 are conflicting and cannot be managed simultaneously;
see, e.g., Bala et al., 2008; Tilmes et al., 2013; Lee et al.,
2020a.) Knowing the number of DOFs also helps understand
the full range of possible climate outcomes and what climate
outcomes cannot be achieved by SAI strategies. In this study,
we focus only on SO2 injections and evaluate the range only
in one model. However, the results will depend primarily on
the constraints imposed by stratospheric circulation and the
lifetime of the aerosols in the stratosphere (Tilmes et al.,
2017; MacMartin et al., 2017; Dai et al., 2018); as such,
many of the conclusions can be expected to be applicable
regardless of aerosol choice.

The aerosols will primarily stay in the same hemisphere
where they are injected and be transported mostly poleward
by the stratospheric Brewer–Dobson circulation (Tilmes
et al., 2017; MacMartin et al., 2017). Thus, injecting in one
hemisphere preferentially increases AOD in that hemisphere;
injecting further poleward increases the AOD burden fur-
ther poleward. Injecting above the Equator produces an AOD
peak in the tropics (Kravitz et al., 2019). More generally, dif-
ferent choices of injection latitude, altitude, and season lead
to different spatiotemporal AOD patterns as a result of the
seasonally varying stratospheric circulation. However, not
all choices contribute the same level of “uniqueness” (Mac-
Martin et al., 2017; Visioni et al., 2019, 2020c). For example,
injecting at the Equator would produce very different pat-
terns of AOD compared to injecting at 30◦ N, but the patterns
of AOD produced by injecting at 31◦ N should not be ex-
pected to be very different from injecting at 30◦ N. As more
choices of injection latitude are considered, there exists a di-
minishing return on the “uniqueness” contributed by addi-
tional choices of injection latitude. That leads to the question
of how many meaningfully independent patterns of AOD are
possible given the constraints imposed by stratospheric cir-
culation.

There are two distinct steps in the analysis herein. The first
step is to consider how different the spatiotemporal AOD
patterns are for different injection choices. And second, to
know whether the AOD patterns from two different injection
choices are sufficiently similar to treat them as effectively
equivalent, or sufficiently distinct to treat them as two sepa-
rate DOFs, one needs to relate how similar or dissimilar the
patterns of AOD are to how similar or dissimilar the result-
ing climate responses are. Identifying the number of DOFs
only needs to consider injections that produce meaningfully
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different climates; herein, we define “meaningfully differ-
ent” based on the ability to detect the difference in climate
after 20 years, given natural variability – and this threshold
clearly depends on the choice of climate variables to be con-
sidered and the amount of cooling desired. For example, in-
jecting aerosols at 30◦ N only in the summer or only in the
fall would yield different patterns of AOD. The difference in
resulting climate could be distinguishable against the back-
ground climate variability if the desired amount of cooling is
high. However, by reducing the level of cooling, the differ-
ence would become indistinguishable.

The next section describes the climate model and simula-
tions used. Section 3 assesses the differences in spatiotem-
poral AOD patterns from 29 different injection choices, sam-
pling different latitudes and seasons of injection, and quanti-
fies the size of design spaces with different numbers of DOFs
using a metric based on the angle between different patterns
of AOD. Section 4 identifies a relationship between how sim-
ilar or dissimilar AOD patterns are and how similar or dis-
similar the corresponding climate responses are, using exist-
ing simulations that were conducted with various different
choices for climate goals and/or different DOFs. Section 5
then quantifies how large the difference in surface climates
needs to be in order to be meaningfully different at different
levels of cooling. Finally, we combine these pieces of analy-
sis in Sect. 6 to show that for a cooling level of 1–1.5 ◦C, for
example, there are between 6 and 8 DOFs.

2 Model and simulations

All simulations in this study were conducted using the Com-
munity Earth System Model version 1 with the Whole At-
mosphere Community Climate Model as the atmospheric
component, CESM1(WACCM). CESM1(WACCM) is a fully
coupled Earth system model which includes atmosphere,
ocean, land, and sea ice components (Mills et al., 2017).
The model has a horizontal resolution of 0.95◦ latitude by
1.25◦ longitude, with 70 vertical levels that extend from
the Earth’s surface to 140 km in altitude, and stratospheric
aerosols have been shown to reasonably match observations
after the Mt. Pinatubo eruption (Mills et al., 2017). With the
exception of a few cases noted below, we use existing output
from previous simulations for our analysis.

To assess the range of possible spatiotemporal patterns
of AOD arising from different injection choices, we sam-
ple 29 possible choices in the AOD design space, includ-
ing injections at low and middle latitudes as described by
Visioni et al. (2019), and high-latitude injections as de-
scribed by Lee et al. (2021); the set of 29 possible choices
is illustrated in Fig. 1. Visioni et al. (2019) include injec-
tions at five different latitudes: 30, 15◦ N, Equator, 15, and
30◦ S, as in Tilmes et al. (2017). For each latitude, injections
are simulated both annually constant and restricted to each
season: December–January–February (DJF), March–April–

Figure 1. The 29 injection choices that we considered in our anal-
ysis for AOD patterns are shown in light green. The vertical axis
shows the injection season of each injection choice, either inject-
ing in only one season (DJF, MAM, JJA, or SON) or constantly
throughout the year (ANN). The horizontal axis shows the injection
latitude: from left to right, they are 60, 45, 30, 15◦ N, Equator, 15,
30, 45, and 60◦ S.

May (MAM), June–July–August (JJA), and September–
October–November (SON). In each simulation, 6 Tg yr−1 of
SO2 are injected into the lower stratosphere, approximately
6–7 km above the tropopause at 180◦ E (about 25 km for
Equator and 15◦ N/S, 23 km for 30◦ N/S, 16 km for 45◦ N/S,
and 15 km for 60◦ N/S). Simulations were conducted for
5 years (2040–2044), which is sufficient for estimating the
steady-state AOD pattern (Visioni et al., 2019), though of
course not for estimating the climate response to this forc-
ing. The high-latitude injections included here are not exactly
the same as those described in Lee et al. (2021), which have
a higher injection rate of 12 Tg yr−1 and only consider in-
jecting at 60◦ N and further poleward. To be consistent with
simulations performed by Visioni et al. (2019), we conducted
additional simulations of spring (MAM or SON) injection at
45◦ N, 45◦ S, 60◦ N, and 60◦ S for 5 years from 2040 to 2044
with an injection rate of 6 Tg yr−1 to complete the sample
set. Following Lee et al. (2021), the other seasons of injec-
tion at high latitudes are not expected to be particularly effec-
tive. In addition, Lee et al. (2021) have pointed out that the
spatiotemporal distribution of AOD arising from injection at
75◦ N is similar to that arising from injection at 60◦ N, and
injecting at latitudes north of 75◦ N provides diminishing re-
turns in terms of albedo enhancement; thus, injections at lat-
itudes higher than 60◦ N/S are not included in this sample
set. Figure 2 shows the spatiotemporal patterns of AOD in
each of these four spring injections at high latitudes (see Vi-
sioni et al., 2019, for the remaining cases). This gives us a
total of 29 different injection cases and associated spatiotem-
poral patterns of AOD. In Sect. 3, we rank the 29 injec-
tion cases based on the uniqueness of their AOD patterns,
which are then used to identify the number of meaningfully
independent injection choices. In Sect. 7, we show that the
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Table 1. Injection design of the five existing SAI simulations analyzed in this study.

Name of Injection Injection season Number of Objectives Reference
simulation latitude ensemble

members

GLENS 30, 15◦ N, annually constant 21 T0, T1, T2 Tilmes et al. (2018a)
15, 30◦ S

iSpring 30, 15◦ N, MAM at 30 and 15◦ N; 3 T0, T1, T2 Visioni et al. (2020c)
15, 30◦ S SON at 15 and 30◦ S

iAutumn 30, 15◦ N, SON at 30 and 15◦ N; 3 T0, T1, T2 Visioni et al. (2020c)
15, 30◦ S MAM at 15 and 30◦ S

Equatorial Equator annually constant 3 T0 Kravitz et al. (2019)
(EQ)

PREC (first 30, 15◦ N, annually constant 1 T0, ITCZ, Lee et al. (2020a)
simulation 15, 30◦ S SSI
in Lee et al., 2020a)

Figure 2. Spatiotemporal AOD patterns of spring injections at
(a) 60◦ N, (b) 45◦ N, (c) 60◦ S, and (d) 45◦ S. The AOD patterns of
spring injections in the same hemisphere are similar to each other,
while the injections in the opposite hemispheres produce very dif-
ferent AOD patterns.

uniqueness of stratospheric AOD patterns does not depend on
the altitude of injection, using simulation data from Tilmes
et al. (2017) that include SO2 injection either 1 km above the
tropopause or 6–7 km above the tropopause.

In addition to these shorter simulations that we use to
assess the range of possible spatiotemporal AOD patterns
from different injection choices, five sets of solar geoengi-
neering simulations from existing studies (Tilmes et al.,
2018a; Kravitz et al., 2019; Visioni et al., 2020c; Lee
et al., 2020a) are used to analyze the connection between
the patterns of stratospheric AOD and surface climate re-
sponses (see Table 1). These five sets were all performed in
CESM1(WACCM), with Representative Concentration Path-

way 8.5 (RCP8.5) as the background emissions scenario, and
used a feedback algorithm (Kravitz et al., 2017) to adjust SO2
injection rates to maintain one or more climate objectives.
Each simulation takes the 20-year average of annual-mean
temperature from 2010–2029 in the RCP8.5 emissions sce-
nario as the target value for T0. Maintaining T0 constant at
the 2010–2029 average results in 4 ◦C of global mean cool-
ing in each of these simulations by 2070–2089. The equato-
rial case adjusts the single SO2 injection rate to meet T0. The
other simulations adjust SO2 injection rates at multiple lati-
tudes to simultaneously meet T0 and additional climate ob-
jectives (see Table 1); these additional objectives include T1,
T2, ITCZ (using the centroid of precipitation between 20◦ S
and 20◦ N as a proxy), and SSI. Table 1 lists the injection
seasons and latitudes, the number of ensemble members, and
the design objectives of the five sets of simulations.

3 Diminishing returns on the number of degrees of
freedom

In this section, we consider 29 different injection choices,
sampling from different latitudes and seasons of injection,
as well as three additional cases that we use to verify that
the set of 29 is sufficiently complete. The AOD pattern from
a given injection choice (a given latitude and season of in-
jection) is largely determined by the stratospheric circulation
and aerosol lifetime, which constrains what spatiotemporal
patterns are achievable (Tilmes et al., 2017; MacMartin et al.,
2017). The AOD pattern resulting from any particular choice
of latitude and season can be approximated by a linear com-
bination of other choices. Our goal in this paper is to deter-
mine how many distinct injection choices are needed to ade-
quately approximate all of the possible AOD patterns. What
constitutes “adequacy” is determined in subsequent sections.
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To describe any pattern of AOD, we consider the zonal-
mean pattern as a function of both latitude and time of year.
In order to treat these two dimensions consistently and yield
AOD patterns independent of our sampling resolution in each
dimension, we weight the monthly mean zonal mean AOD at
each latitude and month by the corresponding incoming so-
lar energy (petajoules) at the top of the atmosphere (TOA).
We then represent the weighted spatiotemporal AOD pattern
from each injection choice as a vector a, a = [a1,a2, . . ., a`],
the length of which is `= `lat×`month, where `lat = 192 (the
resolution of the model we used), and `month = 12. One way
of quantifying how similar or dissimilar two patterns of AOD
are is to consider the angle θAOD = 6 (ai,aj ) between their
vector representations ai and aj . This implicitly assumes
that the patterns of AOD are sufficiently linear for 1–4 ◦C
of cooling, although nonlinearities will become increasingly
important at higher forcing levels (MacMartin et al., 2017;
Visioni et al., 2020b). Thus, the angle between two vec-
tors ai and aj that represent the AOD patterns of the same
injection choice with different injection rates is negligible,
while only the magnitudes of those vectors are different. Two
AOD patterns that are different only in magnitude can thus be
matched by adjusting injection rates, and thus are not consid-
ered as meaningfully different. Therefore, the angle between
two vectors ai and aj describes how meaningfully different
these two AOD patterns are. We can illustrate this using the
AOD patterns shown in Fig. 2. The AOD patterns of injection
at 60◦ N and 60◦ S are very dissimilar; the angle between the
vector representations of these two AOD patterns is 84◦. By
contrast, the AOD patterns of injection at 60 and 45◦ N are
similar; the angle between these two AOD patterns is only
12◦.

With the vector representation explained above, our goal
is to select a subset from the set of 29 injection choices such
that any possible AOD pattern can be adequately represented
by a linear combination of injection choices from this subset.
Any given subset of linearly independent injection choices
does not produce an orthogonal set but could be orthogonal-
ized if needed. Determining the dimension of the set neces-
sary to meet this goal is equivalent to determining the number
of DOFs of SAI.

First, we need to verify that our set of 29 injection choices
sufficiently describes all of the possible AOD patterns of
other injection choices that we have not simulated. To do so,
we choose three additional verification cases, which are an-
nual injections at 7.5, 22.5, and 37.5◦ N, and quantify how
well each of these can be represented by a linear combina-
tion of the 29 injection choices.

Mathematically, the linear combination that is most sim-
ilar to the simulated pattern of AOD is the projection of its
vector representation onto the space formed by the 29 injec-
tion choices. Solving the best approximation of the pattern
of AOD can be formed as a constrained linear least-square
problem of finding the projection onto the set of 29 injection
choices:

argminx̂ ||d̂(x̂)− d|| (1)

sbj to d̂(x̂)=Q29x̂ (2)
x̂i ≥ 0, i = 1, . . ., 29, (3)

where d is the vector representation of the AOD pat-
tern of each verification case, which is obtained from
CESM1(WACCM) simulation, d̂ is the best approximation
of d, Q29 is the set of vector representations of the AOD
patterns of the 29 injection choices, and x̂ is the vector of
best-approximating linear coefficients. All linear coefficients
x̂i are constrained to be non-negative numbers, as injection
rates cannot be negative.

By calculating the angle between the vector representation
of the simulated AOD pattern and the vector representation
of the approximated AOD pattern, we can assess how similar
the simulated and approximated AOD patterns are. For annu-
ally constant injections at 7.5, 22.5, and 37.5◦ N, the angles
between simulated and approximated AOD patterns are 7.6,
5.9, and 6.1◦, respectively. The AOD from injection at 7.5◦ N
is roughly a linear combination of injections at the Equator
and 15◦ N, with a little over half of SO2 injected at 15◦ N.
Similarly, the AOD from injection at 22.5◦ N is roughly a lin-
ear combination of injections at 15 and 30◦ N, and the AOD
from injection at 37.5◦ N is roughly a linear combination of
injections at 30 and 45◦ N. The simulated and approximated
spatiotemporal AOD patterns of these three verification cases
are shown in Fig. 3. Although we do not verify the AOD pat-
terns for an injection on the Southern Hemisphere, we expect
to see a similar linear combination of injections in the same
hemisphere at some latitudes lower and higher than its in-
jecting latitude. Based on this comparison, the approximated
AOD patterns are adequately similar to the simulated AOD
patterns, as long as the threshold for an “adequate” approxi-
mation of the AOD is larger than 7.6◦ (which it will be here,
as shown in subsequent sections). Allowing this small differ-
ence between the approximated and simulated AOD patterns,
the set of 29 injection choices thus adequately describes other
possible AOD patterns that we have not simulated.

With the set of 29 choices of injection locations and times,
we can evaluate a wide range of possible selections of injec-
tion choices. Sets with different numbers of injection choices
as well as different selections of the same number of injection
choices will do a better or worse job at spanning the space of
possible AOD patterns. One way to quantify how well the
overall space of possible AOD patterns can be approximated
by a particular subset of n injection choices is to compute the
maximum angle, θmax, that can be formed between the subset
of n choices and any other injection choices that are not se-
lected. That is, how well can the AOD pattern from any other
choice be represented by a linear combination of the n ele-
ments in the subset? The smaller θmax is, the better the AOD
pattern from any other possible injection choice can be equiv-
alently obtained by only choosing injections from the subset
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Figure 3. Comparison of simulated AOD patterns and the best approximation to these AOD patterns obtained from a linear combination of
other injection choices within the set of 29 cases considered here. From top to bottom are the spatiotemporal AOD patterns for injections
at 7.5, 22.5, and 37.5◦ N, respectively. In each horizontal panel, plots from left to right are the AOD pattern obtained from CESM1(WACCM)
simulations, the AOD pattern approximated using the set of 29 injection choices, and the difference between these two patterns. The angles
between the simulated AOD pattern and the AOD pattern approximated using the set of 29 injection choices are 7.6, 5.9, and 6.1◦, respec-
tively.

of selected injection choices. This provides a way to quantify
how well the overall space is approximated by a particular
subset of n injection choices. By optimizing over θmax, we
can determine both what the “best” subset is of any given di-
mension (number of DOFs or injection choices), and equally
important, how much error there would be in trying to cap-
ture any achievable AOD pattern with only a relatively few
different injection choices.

In choosing subsets, we enforce hemispheric symmetry
such that if an injection choice in one hemisphere is included,
then the corresponding choice in the opposite hemisphere is
also included (e.g., MAM in the Northern Hemisphere and
SON in the Southern Hemisphere). While the seasonal circu-
lation patterns are not exactly symmetric between the hemi-
spheres, they are sufficiently similar that this is a reasonable
simplification that reduces the number of sets to search over.
For injections at the Equator, we similarly either include or
do not include opposite seasons (e.g., DJF and JJA, or MAM
and SON). With hemispheric symmetry, the only way to have
a set with an odd number of DOFs is to include annually con-
stant equatorial injection; we revisit this case in the discus-
sion.

Mathematically, the steps above can be described as fol-
lows. First, for each subset Qj of n injection choices, we

identify the maximum angle that can be formed between that
subset and any other injection choices in the set of 29 that are
not selected:

θmax
(
Qj

)
=max1≤i≤k 6

(
ai,Qj

)
, ai ∈

[
Q29 rQj

]
, (4)

where k = 29− n, the total number of injection choices that
are not selected by the set Qj .

Taking n= 4 as an example, we can identify all possible
combinations of four injection choices from the set of 29.
With the enforced constraint of hemispheric symmetry, there
are a total of 91 different combinations. For each of these
possible combinations, we calculate the angle formed be-
tween each of the unselected injection choices and the se-
lected set of four and find the maximum angle. For illustra-
tion, Fig. 4 shows an example (sub-optimal) set of four injec-
tion choices: summer injection at 30, 15◦ N, 15, and 30◦ S,
and lists the angles formed between each of the unselected
injection choices and the example set of four.

Among all possible subsets of n injection choices (Qj ∈

Q), we identify which subset has the smallest maximum
angle and denote the “best” subset that minimizes θmax
as Q∗(n):

Q∗(n)= argminQj∈Qθmax
(
Qj

)
. (5)
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Figure 4. Angles (in degrees) between each unselected injection
choice and a set of four injection choices (in orange): summer in-
jection at 30, 15◦ N, 15, and 30◦ S. The x axis is the injection lati-
tude and the y axis is the injection season. The maximum angle is
46◦ (highlighted by a red circle), formed between spring injection
at 60◦ N and this set of four.

Q∗(n) is the subset of size n that best approximates any
achievable pattern of AOD. The angle θmax of the “best” set
of n is denoted as θ∗(n).

Still using n= 4 as an example, we calculate the maxi-
mum angle for all possible combinations of four injection
choices. The set of spring injections at 45◦ N and 45◦ S and
autumn injections at 15◦ N and 15◦ S has the smallest maxi-
mum angle, which is 26◦ (Fig. 5).

For each possible value of n, we find the “best” set and cor-
responding angle θ∗(n), plotted in Fig. 6. Strictly speaking,
because we only sampled 29 possible injection choices (out
of an infinite theoretical space), θ∗(n) is simply our best esti-
mate for the maximum angle between a subspace of n DOFs
and any possible AOD pattern of injection choices that does
not fall into this subspace.

4 Comparing AOD and surface climate

Figure 6 shows that there are diminishing marginal returns
for how many degrees of freedom are included. However,
the analysis in Sect. 3 does not indicate what degree of ap-
proximation is sufficient. The next step in our analysis is to
evaluate the relationship between how similar or dissimilar
two AOD patterns are, and how similar or dissimilar the cor-
responding surface climate responses are. This relationship is
crucial for determining a threshold for whether two patterns
of AOD from different injection choices are sufficiently dif-
ferent to count as two independent degrees of freedom, or
sufficiently similar to be effectively the same choice.

To estimate this relationship, we consider the different
strategies described in Table 1. Each of these uses either dif-
ferent injection choices or has different climate goals, lead-
ing to different patterns of AOD and corresponding different
surface climate responses. By comparing the difference in

AOD patterns and surface climate responses, we can derive a
function that describes how the similarity in surface climate
responses relates to the similarity in the AOD patterns that
they arise from.

The AOD pattern and corresponding surface climate re-
sponses are obtained by averaging over all available ensem-
ble members for each strategy in Table 1 and taking the
difference between the 2070–2089 average and the 2010–
2029 average in the RCP8.5 emissions scenario. As ex-
plained in Sect. 3, the monthly mean zonal-mean AOD is
weighted by the TOA incoming solar energy as a function
of latitude and time of year. For the climate response, this
establishes the changes from a climate with neither SAI nor
increased greenhouse gases to a climate with both. To eval-
uate how the surface climate varies for different strategies,
herein we only consider annual-mean surface air tempera-
ture and precipitation; this assumes that if these two variables
are similar, then changes in other surface climate variables,
such as precipitation minus evaporation (P −E), will also
be sufficiently similar, and also ignores shifts in the seasonal
cycle (Jiang et al., 2019) as these tend to be smaller than the
annual-mean changes.

To estimate how large a change in the spatiotemporal pat-
tern of AOD is needed to obtain a detectably different pat-
tern of surface climate response, we consider detectability
over a 20-year period. Therefore, we normalize the surface
temperature and precipitation changes by the variability in
20-year averages, calculated from the across-ensemble vari-
ability from 2010–2029 in the RCP8.5 emissions scenario,
where 21 ensemble members are available. If the variability
were uncorrelated from year to year, this value would simply
be a factor of

√
20 smaller than the interannual variability;

this would be a reasonable approximation for precipitation
but not for temperature. Normalizing by variability also al-
lows temperature and precipitation changes to be compared
in consistent units (Ricke et al., 2010).

To analyze the differences in AOD and surface climate
for different strategies, we define the AOD space, tempera-
ture space, and precipitation space. In Sect. 3, we define the
vector representation of AOD patterns as a. a represents an
achievable spatiotemporal AOD pattern produced by a pos-
sible injection choice. The AOD space A is a `-dimensional
space, A⊂ R`, that includes all possible values of a. Simi-
larly, the temperature space T and the precipitation space P
are bothm-dimensional spaces, T ⊂ Rm and P ⊂ Rm, where
m is equal to the number of latitudes multiplied by the num-
ber of longitudes, m=mlat×mlon, where mlat = 192, and
mlon = 288 (the resolution of the model we used). Any vec-
tor T in T represents a possible surface air temperature re-
sponse to a possible injection choice, and any vector P in P
represents a possible precipitation response to a possible in-
jection choice:

T = [T1,T2, . . ., Tm]T , T ∈ T (6)
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Figure 5. A schematic diagram showing how to find the smallest maximum angle θ∗(4) for a set of four injection choices. We first look
through all possible combinations of four injection choices and calculate the maximum angle θmax, and then identify which set has the
smallest value of θmax. The “best” set of four includes spring injections at 45◦ N and 45◦ S and autumn injections at 15◦ N and 15◦ S. The
maximum angle for this “best” set of 4 is 26◦ (highlighted by a red circle), formed between this set and summer injection at 30◦ N; this is
much smaller than 46◦, the maximum angle found in the example in Fig. 4.

Figure 6. The maximum angle θ∗(n) formed between a subspace
of n DOFs and any other injection choices outside this subspace
decreases as the number of DOFs increases.

P = [P1,P2, . . ., Pm]T , P ∈ P, (7)

where T1, . . . , Tm are temperature responses, and P1, . . . ,Pm
are precipitation responses, both in dimensionless units of
standard deviations.

In the AOD space, temperature space, and precipitation
space defined above, we evaluate the differences between
each possible pair of the five SAI strategies described in Ta-
ble 1, i.e., 10 pairwise comparisons. As in Sect. 3, the differ-
ence between AOD patterns for different pairs of strategies
is evaluated by computing the angle between them, θAOD.
For temperature and precipitation, the difference between
two strategies is evaluated by computing the temperature
distance, dt , or the precipitation distance, dp. The tempera-
ture distance is defined as the area-weighted L2 norm (root
mean square; rms) of the difference between the two vec-

tor representations of surface air temperature responses, to
count all areas on the Earth equally. Similarly, the precip-
itation distance is defined as the area-weighted L2 norm
(rms) of the difference between the two vector represen-
tations of precipitation responses. Among the 10 pairwise
comparisons, GLENS and EQ have the largest temperature
distance, though it is still an order of magnitude smaller
than the temperature distance between GLENS and the pro-
jected 20-year average (2070–2089) climate response under
RCP8.5 (Fig. 7a and b). The precipitation distance between
GLENS and EQ is also smaller than that between GLENS
and RCP8.5 (Fig. 7c and d). Among all 10 pairwise com-
parisons, the temperature distances are always larger than
the corresponding precipitation distance. That is, the changes
in temperature, compared to variability, are larger than the
changes in precipitation. To conclude, a small angle between
the vector representations of AOD patterns indicates the two
compared SAI strategies yield similar AOD patterns, and a
small value of dt or dp indicates that the two compared SAI
strategies have similar surface air temperature responses or
precipitation responses. Likewise, a larger AOD angle, tem-
perature distance, or precipitation distance implies less simi-
lar AOD patterns, surface air temperature, or precipitation.

To estimate the relationships between θAOD and dt and be-
tween θAOD and dp, we perform linear regressions on the data
points obtained from the 10 pairwise comparisons among the
five different SAI strategies in Table 1 (Fig. 8). We constrain
the linear regressions to go through zero because an identi-
cal AOD pattern should yield an identical temperature and
precipitation response. The linear functions are obtained as

θAOD = 6.1dt (8)
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Figure 7. (a) The temperature distance between GLENS (black)
and EQ (red), (b) the temperature distance between GLENS (black)
and RCP8.5 (blue), (c) the precipitation distance between GLENS
(black) and EQ (red), and (d) the precipitation distance between
GLENS (black) and RCP8.5 (blue), shown on the 2-D plane that
contains both area-weighted vectors (while both vectors are m-
dimensional, there is a unique plane that contains both). Both tem-
perature and precipitation are expressed in the number of stan-
dard deviations (and are thus dimensionless). In each plot, both the
x and y axes are distances in the number of standard deviations.
In panels (a) and (b), SD is the standard deviation of 20-year aver-
ages of temperature, calculated from the across-ensemble variabil-
ity from 2010–2029 in RCP8.5 simulations. In panels (c) and (d),
SD is the standard deviation of 20-year averages of precipitation.

θAOD = 9.9dp. (9)

As shown in Fig. 8, pairs of strategies with relatively similar
AOD patterns have relatively similar temperature and pre-
cipitation responses, and conversely, pairs of strategies with
very different AOD patterns result in very different tempera-
ture and precipitation responses. However, the relationships
between θAOD and dt and between θAOD and dp are not ex-
actly linear (i.e., the outlier in Fig. 8a). While similar AOD
patterns yield similar climate responses, different AOD pat-
terns do not guarantee different climate responses, which in-
dicates we might explore too many options and the number of
meaningfully independent DOFs might be smaller than what
we find in this study. However, this is better than possibly
ignoring important DOFs.

Figure 8. (a) Angle between AOD patterns, θAOD, and the distance
between corresponding temperature responses, dt , for each pair of
strategies in Table 1; (b) angle between AOD patterns, θAOD, and
the distance between corresponding precipitation responses, dp, for
each pair of strategies in Table 1. dt and dp are expressed in the
number of SDs of 20-year averages of temperature and precipitation
respectively. Orange dots represent the values of θAOD and corre-
sponding dt and blue dots represent the values of θAOD and corre-
sponding dp of all pairwise comparisons between different strate-
gies. The black lines represent the best-fit linear regression func-
tions, constrained to pass through the origin: θAOD = 6.1dt , and
θAOD = 9.9dp with the coefficient of determination, R2

t = 0.62 and
R2

p = 0.65, respectively. The error in estimating each point (calcu-
lated from across-ensemble variability) is small (less than 0.2◦ in
AOD angle, and less than 0.1 SD in both temperature distance and
precipitation distance) compared to the fitting error, indicating that
a linear approximation to the relationship is only an approximation.
Points in the upper right (most dissimilar AOD and dissimilar sur-
face climate) are the pairwise comparisons between the equatorial
injection strategy and the other strategies. In panel (a), the outlier at
approximately (1.6, 19), which is the comparison between iSpring
and iAutumn, shows that the relationship between θAOD and dt is
not exactly linear; similar AOD patterns yield similar climate re-
sponses but different AOD patterns do not guarantee different cli-
mate responses.

Data used here are from SAI designs that were considered
in previous studies. Although they are not designed to span
either the overall AOD design space or the surface climate
design space, these available simulations do provide a useful
set of data for analyzing the relationship between how sim-
ilar or dissimilar the AOD patterns are and how similar or
dissimilar the surface climate responses are.

5 Detectability at different levels of cooling

To evaluate how different the surface climate responses are,
we first perform Welch’s t test on the five injection strate-
gies, using a single ensemble member of each injection strat-
egy. Welch’s t-test assumes that sampled data are indepen-
dent; we remove the effect of serial autocorrelation from the
temperature and precipitation data by estimating the effec-
tive sample size assuming both temperature and precipitation
follow a first-order autoregressive (AR(1)) process (Wilks,
2019). The t-test results for comparing differences in surface
air temperature between GLENS and iSpring and between
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Figure 9. Panels (a, c) show the comparison between GLENS and iSpring; (b, d) show the comparison between GLENS and EQ. Pan-
els (a) and (b) show the difference in temperature responses between GLENS and iSpring and between GLENS and EQ, respectively; shaded
areas are where no statistically significant difference is observed, based on a t test with a confidence level of 95 %. Panels (c) and (d) are de-
tectability plots that geometrically show the ability of detecting differences in the temperature responses between GLENS (black) and iSpring
(blue) and between GLENS and EQ (red), respectively. The temperature responses are expressed in the number of standard deviations (SDs)
of 20-year averages of temperature. Both the x and y axes are distances in the number of standard deviations. The length of each vector
represents the area-weighted L2 norm of surface air temperature response, and the circle represents temperature variability in all possible
directions, with a radius of 1 SD due to the normalization. The dashed line in panels (c) and (d) measures the temperature distance, dt ,
between GLENS and iSpring and between GLENS and EQ, respectively. GLENS and EQ have a larger distance in the temperature response,
which indicates the difference between GLENS and EQ is more detectable at the same level of cooling.

GLENS and EQ are shown in Fig. 9a and b; the t-test results
for precipitation comparison are shown in Fig. 10a and b. At
a 4 ◦C cooling and a confidence level of 95 %, temperature
and precipitation responses from GLENS and iSpring are sta-
tistically significantly different from each other in 17 % and
7 % of Earth’s area, respectively, as opposed to the compar-
ison between GLENS and EQ, in which 37 % and 23 % of
area on the Earth show statistically significant difference in
temperature and precipitation.

Here, we define that two strategies are considered to be de-
tectably different if the difference in temperature or precipi-
tation responses between them are detectable at a 95 % con-
fidence level over a 20-year period on more than 5 % of the
Earth’s area. With the temperature and precipitation normal-
ized by the standard deviation of 20-year means, temperature
or precipitation responses at any grid point will be detectably
different if the difference between the normalized data is
more than 2 SD (standard deviations). To obtain a global ag-
gregate metric, we note that roughly 5 % of the Earth’s sur-
face area has a temperature difference more than double the
overall temperature distance dt considered earlier and 5 % of
the Earth’s surface area has a precipitation difference more
than double the precipitation distance dp. (For example, be-
tween GLENS and iSpring, only 5.2 % of the Earth’s area has
a difference in regional temperature responses that is more

than twice the value of dt , and only 4.7 % of the Earth’s area
has a difference in regional precipitation responses that is
more than twice the value of dp.) Thus, when the temperature
distance dt between two injection strategies is 1 standard de-
viation, then roughly 5 % of the Earth’s surface area will have
detectably different temperature responses at a 95 % confi-
dence interval. Similarly, when the precipitation distance dp
between two injection strategies is 1 standard deviation, then
roughly 5 % of the Earth’s surface area will have detectably
different precipitation responses at a 95 % confidence inter-
val. Thus, we use 1 standard deviation of the overall rms nor-
malized temperature distance or precipitation distance as the
threshold for determining whether two strategies result in de-
tectably different temperature or precipitation responses.

We compare the difference in temperature and precipita-
tion responses between GLENS and iSpring and between
GLENS and EQ, and show how the difference changes
with levels of cooling using detectability plots, as shown
in Figs. 9c, d and 10c, d. Figures 9c and 10c show the
detectability of difference in temperature and precipitation
between GLENS and iSpring at a cooling level of 4 ◦C.
Figures 9d and 10d show the comparison between GLENS
and EQ at the same cooling level. In each plot, the length
of the vector is equal to the area-weighted L2 norm of the
corresponding temperature or precipitation vector, and the
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Figure 10. Panels (a, c) show the comparison between GLENS and iSpring; (b, d) show the comparison between GLENS and EQ. Pan-
els (a) and (b) show the difference in precipitation responses between GLENS and iSpring and between GLENS and EQ, respectively; shaded
areas are where no statistically significant difference is observed, based on a t test with a confidence level of 95 %. Panels (c) and (d) are
detectability plots that geometrically show the ability of detecting differences in the precipitation responses between GLENS (black) and
iSpring (blue) and between GLENS and EQ (red), respectively. The precipitation responses are expressed in the number of SDs of 20-year
averages of precipitation. Both the x and y axes are distances in the number of standard deviations. The length of each vector represents the
area-weighted L2 norm of precipitation response, and the circle represents precipitation variability in all possible directions, with a radius of
1 SD due to the normalization. The dashed line in panels (c) and (d) measures the precipitation distance, dp, between GLENS and iSpring
and between GLENS and EQ, respectively. Similar to temperature response, the difference in precipitation between GLENS and EQ is more
detectable than that between GLENS and iSpring at the same level of cooling.

distance between the two vectors is the corresponding tem-
perature distance or precipitation distance. The circle around
the tip of each vector represents the temperature or precip-
itation variability on a 20-year timescale, whose radius is
equal to one due to the normalization by the standard devia-
tion of temperature or precipitation variability. In Fig. 9c, the
two temperature variability circles partially overlap, while
in Fig. 9d, the two circles are separated from each other.
The more overlapped these two circles are, the less area has
detectably different temperature responses. When the over-
lapped area is sufficiently large, it indicates that the differ-
ence in temperature responses is small enough such that it
is hard to tell whether the difference could be purely due to
natural variability. These implications from the observation
of temperature responses also apply to precipitation.

From the detectability plots that compare these different
SAI strategies, it is clear that the detectability of different in-
jection strategies depends on both the level of cooling and the
choice of climate variables. With the underlying assumption
of linearity for surface climate responses, we estimate the dif-
ference in temperature and precipitation responses between
GLENS and EQ at reduced levels of cooling (Fig. 11). For
the same pair of strategies, as we reduce the amount of cool-
ing, the temperature distance and the precipitation distance
between these two strategies decrease. At 1.8 ◦C cooling,

the resulting temperature responses of these two strategies
are 2 SDs of temperature variability away from each other
(Fig. 11b); at the same level of cooling, the resulting precipi-
tation responses are 1 SD apart (Fig. 11e). At 0.9 ◦C cooling,
the resulting temperature responses are exactly 1 SD apart
(Fig. 11c), and the precipitation responses are 0.5 SD apart
(Fig. 11f). For any cooling level lower than 0.9 ◦C, temper-
ature responses of GLENS and EQ will not be detectably
different by our metric; that is to say, less than 5 % of area on
the Earth is expected to have detectably different temperature
responses at a 95 % confidence level over a 20-year period.
On the other hand, to have detectably different precipitation
responses between GLENS and EQ, the cooling level needs
to be higher than 1.8 ◦C. The cooling levels of 0.9 and 1.8 ◦C
are defined as the cut-off cooling levels for detectable differ-
ence in temperature and precipitation, respectively, between
GLENS and EQ. Note that for sufficiently small amounts of
cooling, the resulting climate from these strategies will also
be undetectably different from the climate with neither in-
creased greenhouse gases nor SAI; from Fig. 7, they will be
detectably different from the climate with increased GHGs
except at very small levels of cooling.

As shown in Fig. 11, the cut-off level of cooling 1Tt is
inversely proportional to dt and the cut-off level of cool-
ing 1Tp is inversely proportional to dp:
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Figure 11. Panels (a)–(c) are detectability plots for the difference in temperature responses between GLENS (black) and EQ (red) at three
different levels of cooling: (a) 4 ◦C, (b) 1.8 ◦C, and (c) 0.9 ◦C. Panels (d)–(f) are detectability plots for the difference in precipitation re-
sponses between GLENS (black) and EQ (red) at those three levels of cooling. Dots represent the estimated mean temperature or precipitation
responses for the corresponding levels of cooling. Temperature and precipitation responses are expressed in the number of SDs of 20-year
averages of temperature and precipitation respectively. In each plot, both the x and y axes are distances in the number of standard deviations.
As the cooling level decreases, less area on the Earth has detectably different climate responses, and the ability to detect the difference
between GLENS and EQ decreases.

1Tt =
4
dt

(10)

1Tp =
4
dp
. (11)

By substituting Eq. (10) into Eq. (8) and substituting Eq. (11)
into Eq. (9), we obtain two functions that can be used to es-
timate a threshold value of AOD angle, θa, which is used to
assess the detectability of different injection choices at dif-
ferent levels of cooling:

θ ta = 24/1Tt (12)
θ

p
a = 40/1Tp. (13)

Thus, given a particular level of cooling, we can calculate if
two injection strategies are expected to result in detectably
different temperature or precipitation responses by compar-
ing their AOD patterns. If the angle between the patterns
of AOD is smaller than θ ta or θp

a , these two strategies can
be expected to not result in detectably different tempera-
ture or precipitation responses. However, if the angle be-
tween the patterns of AOD is larger than θ ta or θp

a , these two
strategies can be expected to be meaningfully independent
in terms of temperature responses or precipitation responses.
In Fig. 12, we compare the cut-off AOD angles predicted
by Eqs. (12) and (13). As shown in Fig. 12, the threshold
values of AOD angle predicted using temperature responses

Figure 12. The cut-off AOD angle θa at different levels of cool-
ing1T estimated using temperature responses and precipitation re-
sponses.

are always lower than those predicted using precipitation re-
sponses.

6 Estimating the number of DOFs

In the previous sections, we estimate the relationship be-
tween the number of DOFs included and the maximum er-
ror in approximating AOD, and the relationship between the
AOD angle and the level of cooling at which the resulting
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Table 2. The minimum number of DOFs, n, of the SAI design space
for four targeted levels of cooling. At each level of cooling, θ ta is
the maximum angle that can be formed between two AOD patterns
that yield undetectably different temperature responses. θ∗(n) is the
maximum angle that can be formed between any AOD pattern and
the design space of n DOFs and must be smaller than θ ta .

Targeted Cut-off Minimum θ∗(n)
level of angle number of
cooling θ ta DOFs, n
[
◦C]

0.5 48◦ 2 38◦

1 24◦ 6 18◦

1.5 16◦ 8 15◦

2 12◦ 12 11◦

temperature or precipitation responses could be expected to
be detectably different. In this section, we combine these two
to estimate how many meaningfully independent DOFs there
are as a function of the levels of cooling.

As changes in temperature are more detectable than those
in precipitation, the extent to which two AOD patterns are
sufficiently similar, and thus the number of DOFs in the SAI
design space, is determined by the temperature response. Us-
ing Eq. (12), we calculate the cut-off AOD angle θ ta (listed in
Table 2) for cooling levels of 0.5, 1, 1.5, and 2 ◦C. It is ex-
pected that two SAI strategies, with AOD differing by any
angle smaller than θ ta , will not result in detectably different
temperature or precipitation responses. Figure 13 shows the
four cut-off AOD angles and the corresponding minimum
numbers of DOFs required for θ∗(n) not exceeding the cut-
off value, θ ta (also listed in Table 2).

θ∗(n)≤ θ ta(1T ) (14)

Any set of injection choices that has a θmax smaller than the
cut-off angle θ ta(1T ) will form a design space that captures
all detectably different climate responses. That is, for any
possible injection strategy not included in the design space,
you can find an injection strategy in the design space such
that the angle between their AOD patterns is smaller than θ ta
and the difference in the corresponding climate responses is
sufficiently small such that they are not meaningfully differ-
ent.

As shown in Table 2, as the targeted level of cooling in-
creases, the cut-off value of θ ta decreases and the minimum
number of DOFs increases. For a targeted cooling level of
1 ◦C, we likely need 6 DOFs. For any possible AOD pattern,
the angle between it and the AOD pattern approximated by a
design space of 6 DOFs is likely to be smaller than 24◦, and
the resulting difference in climate response will be largely
undetectable. For a targeted cooling level of 1.5 ◦C, we likely
need 8 DOFs. This finding significantly reduces the dimen-
sion of the design space needed for evaluating the possible

Figure 13. The minimum number of DOFs corresponding to the
worst-case error in approximating AOD, θ ta .

climate impacts of different SAI strategies and associated
trade-offs.

For a cooling level of 1 ◦C, the best set of six among the
set of 29 sample injection choices includes (i) spring injec-
tions at 60◦ N/60◦ S, (ii) annual injections at 30◦ N/30◦ S, and
(iii) winter and summer injections at the Equator. Figure 14
shows the AOD spatiotemporal patterns of the six injections
in the best set. A set of six that instead includes annually
constant injection at 30, 15◦ N, 15, and 30◦ S (the four cases
considered in MacMartin et al., 2017; Kravitz et al., 2017;
Tilmes et al., 2018a) as well as spring injection at 60◦ N (as
in Lee et al., 2021) and 60◦ S is only slightly worse than this
optimal set, within a range of 0.1◦, still sufficient to span the
design space for 1 ◦C cooling.

For a cooling level of 1.5 ◦C, the best set of eight is simi-
lar to the best set of six but with equatorial injections at the
other two seasons instead and the addition of summer injec-
tions at 15◦ N and 15◦ S. Note that in the optimization ear-
lier, we constrained our search to hemispherically symmetric
pairs of injection choices. Including only annually constant
injection at the Equator rather than two seasons yields a set
of seven injection choices that performs almost as well as the
optimal set of eight and is still sufficient for 1.5 ◦C cooling.

7 Analysis of injections at different altitudes

The SAI simulations analyzed in the previous sections are
all high-altitude injections (6–7 km above the tropopause).
Tilmes et al. (2017) also conducted low-altitude (5 km lower)
simulations at 50◦ N, 30◦ N, 15◦ N, 0◦, 15◦ S, 30◦ S, and
50◦ S with an annual injection rate of 6 Tg yr−1, all simulated
in CESM1(WACCM). The AOD patterns of low-altitude and
high-altitude injections are shown in Fig. 15. For each injec-
tion case, the spatiotemporal AOD responses are weighted by
TOA incoming solar energy. The angle of the AOD pattern of
each high-altitude injection with respect to the set of all low-
altitude injections is listed in Table 3; these high-altitude in-
jections are all within a small angle with respect to the set of
low-altitude injections. For a level of cooling under 2 ◦C, the
difference of AOD responses due to injecting at these differ-
ent altitudes is small compared to the differences achievable
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Figure 14. AOD patterns from the best set of six injections: (a) spring injection at 60◦ N, (b) annual injection at 30◦ N, (c) winter injection
at 0◦, (d) spring injection at 60◦ S, (e) annual injection at 30◦ S, and (f) summer injection at 0◦.

Table 3. Angle between the AOD vector of each high-altitude in-
jection and the set of all low-altitude injections.

Injection 50◦ N 30◦ N 15◦ N 0◦ 15◦ S 30◦ S 50◦ S
latitude

θAOD 5.3◦ 11.6◦ 6.2◦ 7.0◦ 4.5◦ 6.3◦ 4.9◦

through injecting at different latitudes and seasons. If a much
higher level of cooling is desired, injecting at different alti-
tudes may result in meaningfully different surface climates
and injection choices of different altitudes may need to be
considered when choosing the design space and evaluating
trade-offs. Injection at or below the tropopause, while inef-
ficient, would likely result in more significant differences in
AOD patterns (Bernstein et al., 2013). Thus, injection at or
below the tropopause could add further degrees of freedom
at the expense of a significant loss of efficiency.

8 Conclusions

Previous studies have shown that different choices of strato-
spheric aerosol injection latitudes and seasons lead to differ-
ent surface climate responses. Choosing where and when to
inject aerosols to the stratosphere to meet different climate
goals can be considered a design problem. Previous studies
have concluded that there are at least 3 DOFs; that is, at least
three independent climate goals can be simultaneously met.
These three – basically the global mean aerosol burden, the
interhemispheric difference, and the Equator-to-pole differ-
ence – were motivated by physical intuition regarding strato-
spheric transport, which will ultimately constrain how many
independent DOFs are achievable through different injection

choices. A key observation is that the number of DOFs effec-
tively depends on the amount of global cooling provided by
SAI, because for a small amount of cooling, the difference
in the climate response for different strategies may not be
detectable. As the amount of cooling increases, the number
of meaningfully independent DOFs increases. For a cooling
level of 1–1.5 ◦C, there are likely between 6 and 8 mean-
ingfully independent DOFs. If only precipitation changes
mattered, and not temperature changes, then there would be
fewer meaningfully independent DOFs.

The choice of 20-year average, as well as the choice of
95 % confidence threshold over 5 % of the Earth’s area, af-
fects the number of DOFs that are “meaningfully differ-
ent”. Considering the responses over a longer period of time
might introduce additional DOFs. To date, current climate
models have relatively high confidence in predicting tem-
perature responses but have lower confidence in predicting
circulation-related responses and much lower confidence in
predicting regional-scale circulation-related extreme events
(Shepherd, 2014). The number of DOFs is primarily driven
by the differences in temperature responses. Precipitation
and circulation-related extreme events are typically harder to
detect and are not likely to introduce additional DOFs; that
is, as the amount of cooling is gradually increased (or as the
time horizon is increased), two distinct strategies are likely
to become detectably different in their temperature response
earlier than for precipitation changes or changes in extremes.

When evaluating the design space, we do not consider in-
jections at different longitudes and additional altitudes be-
yond those evaluated in Sect. 3, nor do we consider adaptive
injection strategies as explored by Aksamit et al. (2021). The
longitude is not expected to matter due to rapid zonal mixing
in the stratosphere. As the injection altitude approaches the
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Figure 15. AOD patterns produced by low-altitude annually con-
stant injection of 6 Tg yr−1 at (a) 50◦ N, (b) 30◦ N, (c) 15◦ N,
(d) 0◦, (e) 15◦ S, (f) 30◦ S, and (g) 50◦ S, and high-altitude annually
constant injection of 6 Tg yr−1 at (h) 50◦ N, (i) 30◦ N, (j) 15◦ N,
(k) 0◦, (l) 15◦ S, (m) 30◦ S, and (n) 50◦ S.

tropopause, the lifetime in the stratosphere decreases, leading
to more spatially and temporally confined changes to AOD
that would add further degrees of freedom at the expense of
a significant loss of efficiency.

Our estimation of the number of DOFs provides useful
guidance to bound the number of injection choices that need
to be considered when evaluating the range of possible dif-
ferent SAI strategies and the trade-offs among them. If only
a small amount of cooling is needed from implementing SAI,
a small set of selected injection choices would be sufficient
to capture the range of possible resulting climate responses

and evaluate how different those climate responses could be.
As all possible injection choices form an extremely high-
dimensional design space, only considering the meaningfully
independent injection choices significantly reduces the di-
mension of the design space.

The number of meaningfully independent DOFs deter-
mines the number of independent climate metrics that SAI
can manage simultaneously. Thus, for a cooling level of 1–
1.5 ◦C, for example, SAI can manage six to eight indepen-
dent climate metrics at the same time. This expands the man-
ageable number of climate metrics relative to what has been
considered in previous studies, opening up new opportunities
for exploring alternate designs that will have different distri-
butions of impacts.

It is important to note that all of these results are obtained
from a single climate model. Other climate models may pro-
duce different numerical results. Nonetheless, the number
of independent DOFs needed to span the range of possi-
ble different stratospheric AOD patterns can be reasonably
expected to remain consistent as the transport of aerosols
are constrained by stratospheric circulation. We make sev-
eral simplifying approximations in order to make analysis
tractable, particularly to estimate the relationship between
how similar or dissimilar two patterns of AOD are and how
similar or dissimilar the corresponding surface climate re-
sponses are; future research could explore the impact of these
approximations. First, we only consider changes in tempera-
ture and precipitation, and we only consider changes in an-
nual mean rather than shifts in seasonality, which could mat-
ter at high latitudes in particular (Jiang et al., 2019). Sec-
ond, we only consider whether the difference in climate re-
sponse would be detectable over a 20-year period. Third, the
globally aggregated metric we use for determining whether
two different climate responses are “detectable” is based on
whether they are detectably different at a 95 % confidence
level over 5 % of the surface area. However, changes that are
less-confidently detected may still matter, and since social,
agricultural, and other economic activities are strongly af-
fected by regional climate changes, just because they only
happen in a small percentage of the area, does not necessar-
ily mean that they are not important – the details of where
and what the differences are potentially matter.

A key outcome of this study is that further research should
be conducted to explore alternate SAI designs that can man-
age more than three and up to eight independent climate
metrics simultaneously, and to compare the resulting cli-
mate responses and associated trade-offs. Research into more
than eight is less policy-relevant, simply because any hy-
pothetical deployment scenario would not reach more than
1.5 ◦C cooling for many decades. Greater cooling might be
needed under a higher emission scenario, which would add
further degrees of freedom. Ultimately, to evaluate the im-
pacts of stratospheric aerosol geoengineering, regional sur-
face climate and extreme weather events need to be con-
sidered, as social and economic activities are significantly
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affected by regional climate change. Alternate SAI designs
may enable a better compensation of the impacts from cli-
mate change; alternate designs might also lead to the poten-
tial to create more novel climates that optimize some met-
rics at the expense of others – both of these possibilities are
important to understand in order to inform not only future
scientific research in SAI but also governance challenges.
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