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Abstract. Responses of El Niño–Southern Oscillation (ENSO) to global warming remain uncertain, which chal-
lenges ENSO forecasts in a warming climate. We investigate changes in ENSO characteristics and predictability
in idealized simulations with quadrupled CO2 forcing from seven general circulation models. Comparing the
warmer climate to control simulations, ENSO variability weakens, with the neutral state lasting longer, while
active ENSO states last shorter and skew to favor the La Niña state. The 6-month persistence-assessed ENSO
predictability slightly reduces in five models and increases in two models under the warming condition. While
the overall changes in ENSO predictability are insignificant, we find significant relationships between changes
in predictability and intensity, duration, and skewness of the three individual ENSO states. The maximal contri-
bution to changes in the predictability of El Niño, La Niña and neutral states stems from changes in skewness
and events’ duration. Our findings show that a robust and significant decrease in ENSO characteristics does not
imply a similar change in ENSO predictability in a warmer climate. This could be due to model deficiencies in
ENSO dynamics and limitations in the persistence model when predicting ENSO.

1 Introduction

Improving El Niño–Southern Oscillation (ENSO) predic-
tions is crucial to project large-scale climate variability,
which is of great scientific interest and societal need (Tim-
mermann et al., 2018; Christensen et al., 2013; L’Heureux
et al., 2020). Tremendous research efforts have improved the
understanding of ENSO variability (e.g., Wang, 2018) and
developed reliable ENSO predictions at 6–12 lead months in
the present climate (e.g., Cane et al., 1986; Chen et al., 1997;
Chapman et al., 2015; Tang et al., 2018; Ham et al., 2019).
Anthropogenic climate change could alter ENSO charac-
teristics in the future. Many studies have analyzed the im-
pacts of climate change on ENSO characteristics in different
warming scenarios with various models, but the impacts of
climate change on ENSO predictability have not been inves-
tigated with similar rigor, due to large uncertainties in the
simulated ENSO response.

The climate model deficiencies, the short observational
record and the internal variability have prevented us from
drawing robust conclusions about likely changes in ENSO
characteristics in the future (e.g., Beobide-Arsuaga et al.,
2021; Zhu, 2021; Stevenson et al., 2010; Maher et al., 2018;
Zheng et al., 2018). Studies have reviewed ENSO response to
external CO2 forcing in models from the Couple Model Inter-
comparison Project phase 3 and 5 (CMIP3 and CMIP5), and
the results show that changes in ENSO amplitude and fre-
quency under the forcings are model-dependent (Guilyardi,
2006; Guilyardi et al., 2012). Recent studies suggest that
improved climate simulations reduce the model spread of
ENSO responses to climate change. For example, Fredrik-
sen et al. (2020) showed that CMIP6 models simulate ENSO
spectra, amplitude and teleconnection in warming scenarios
in higher agreement than models in CMIP phase 5 and 3.
In addition to model development, longer simulations, espe-
cially those longer than 300 years, are shown to reduce uncer-
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tainties in ENSO simulation by stabilizing the internal vari-
ability (e.g., Sun et al., 2018; An et al., 2008; Knutson et al.,
1997). Callahan et al. (2021) used millennium-length simu-
lations from the Long Run Model Intercomparison Project
(LongRunMIP) to show that ENSO amplitude and frequency
changes were stronger and more consistent across models
when the climate system equilibrated a CO2 forcing than dur-
ing the transient climate state. Building on this finding, we
ask if a robust change in ENSO characteristics will lead to a
robust change in ENSO predictability.

ENSO predictability in the present climate is related to
ENSO characteristics. Jin et al. (2008) investigated the skill
of 6-month ENSO predictions in the hindcasts of 10 cou-
pled general circulation models (GCMs) and showed that the
larger the ENSO intensity, the easier the predictions and that
El Niño and La Niña states are more predictable than the neu-
tral state. Liu et al. (2022) studied retrospective ENSO fore-
casts in an ensemble prediction system in the Community
Earth System Model (CESM) and confirmed that stronger
ENSO events exhibit higher predictability.

The relationship between ENSO predictability and char-
acteristics has also been investigated in a warmer future.
DelSole et al. (2014) ascribed a decreased seasonal ENSO
predictability to a decreased ENSO variance under a fixed
2095 climate forcing in the Community Climate System
Model, version 4. Contractively, Berner et al. (2020) showed
an increased seasonal to interannual predictability in a strong
warming scenario in CESM, which was attributed to an in-
creased ENSO amplitude and frequency. However, previous
studies have neither provided a model intercomparison of
ENSO predictability change in a warmer climate nor an in-
vestigation of predictability changes in El Niño, La Niña and
neutral states separately.

In this paper, we compare changes in ENSO predictability
in a quasi-equilibrated warmer climate across seven models.
We analyze ENSO predictions using a persistence model, and
we investigate predictability of the time series of the Niño in-
dex and its decomposition into the three ENSO phases. Based
on the robust decrease in ENSO characteristics in an equi-
librium climate (in 8 out of 10 models as shown in Callahan
et al., 2021) in combination with the inherent relationship be-
tween ENSO characteristics and predictability, we could ex-
pect that ENSO predictability decreases robustly in a quasi-
equilibrated warming climate or at the very least that the
ENSO characteristics–predictability relationship sustains in
such a climate.

This study is organized as follows: in Sect. 2, we intro-
duce the data and method. In Sect. 3, we analyze changes in
ENSO characteristics and predictability in response to CO2
forcing, and we regress changes in ENSO predictability onto
changes in ENSO characteristics to determine the relation-
ship. In Sect. 4, we discuss implications of these findings and
summarize the results.

2 Data and method

We analyze model outputs from the LongRunMIP archive,
a large set of simulations from atmosphere–ocean general
circulation models that last at least 1000 years (Rugen-
stein et al., 2019). This archive includes 15 models, each
containing a pre-industrial control simulation of constant
1850 forcing and at least one forced simulation, ranging
from instantaneous steps of 2, 4, 8 or 16 times the pre-
industrial CO2 level to realistic Representative Concentra-
tion Pathway (RCP) scenarios with constant forcing beyond
the year 2300. We select seven models from the archive with
simulations of abruptly quadrupling CO2 (hereinafter re-
ferred to as abrupt4xCO2) and compare them with their pre-
industrial control simulations (hereinafter referred to as the
control). This forcing level is chosen because it shows a bet-
ter signal-to-noise ratio than the doubling of CO2. The spatial
resolution of these seven models ranges from 3.75◦ in both
the atmosphere and ocean to 1.4◦ in the atmosphere and 0.5◦

in the ocean (Table 1). Though models with different reso-
lutions might show different ENSO dynamics, our results on
ENSO response are robust among the models. We treat the
period between the year 150 and the end of the simulation
as quasi-equilibrated (Callahan et al., 2021). Our results are
not sensitive to this cut of time. In model simulations, we
analyze monthly surface air temperature (TAS; Fig. 1) in-
stead of sea surface temperature (see Rugenstein et al., 2019,
for data availability). For the observational record, we an-
alyze TAS by using the Goddard Institute for Space Stud-
ies Surface Temperature product version 4 (GISTEMP v4)
(GISTEMP Team, 2022; Lenssen et al., 2019). We compare
changes in the relationship between ENSO characteristics
and predictability calculated from the GISTEMPv4 to that
calculated from the control. In comparison to the relatively
short observational record that shows only 65 El Niño and
La Niña events from 1880 to present, we detect over 300 oc-
currences for both El Niño and La Niña events per model in
the control, accentuating the increased statistical robustness
and reliability of our analysis by using millennium-length
simulations.

To evaluate ENSO simulations in the control, we calcu-
late the Niño3.4 index by computing time series of TAS
anomalies averaged over the Niño3.4 region (5◦ N–5◦ S,
170–120◦W) with centered 30-year-based periods that up-
date every 5 years (Lindsey, 2013). The control shows fair
distributions of the Nino3.4 index compared to the observa-
tional record (Fig. 2a–g), except for GISSE2R, which sim-
ulates too many neutral states and too few and weak active
ENSO states (Fig. 2d). The power spectra of the Niño3.4 in-
dex is model-dependent in the control in terms of the dom-
inant frequency. Three models agree with the observations
that ENSO occurs every 3 to 7 years (Fig. 2i, l and m),
three models simulate a more frequent occurrence (Fig. 2h, j
and k), and one model simulates a less frequent occurrence
(Fig. 2n). To analyze model biases in ENSO dynamics, there
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Figure 1. (a–h) Time series of Niño3.4 mean TAS and (g) CO2 concentrations in the control and abrupt4xCO2 simulations. The dashed
lines mark the year 150, the period after which we assume a quasi-equilibrium.

Table 1. Overview of model simulations. The bold text represents the short name of the models.

Model name Modeling Forcing Simulation Atmosphere resolution Ocean resolution
(short name) center levels length (latitude× longitude) (latitude× longitude)

(years)

(CCSM3)
NCAR

control 1530
3.75◦× 3.75◦ 1.80◦× 3.10◦

(CCSM3) abrupt4x 2120

CESM 1.0.4
NCAR

control 1320
1.88◦× 2.50◦ 0.47◦× 18.0◦

(CESM104) abrupt4x 5900

CNRM-CM6-1
CNRS

control 2000
1.41◦× 1.41◦ 1.00◦× 1.00◦

(CNRMCM61) abrupt4x 1850

GISS-E2-R
NASA

control 5225
2.00◦× 2.50◦ 1.00◦× 1.25◦

(GISSE2R) abrupt4x 1000

HadCM3L
Hadley Centre

control 1000
2.47◦× 3.75◦ 2.47◦× 3.75◦

(HadCM3L) abrupt4x 1000

IPSL-CM5A-LR
IPSL

control 1000
1.88◦× 3.75◦ 1.21◦× 1.98◦

(IPSLCM5A) abrupt4x 1000

MPI-ESM-1.2
MPI

control 1237
1.88◦× 1.88◦ 0.82◦× 1.41◦

(MPIESM12) abrupt4x 1000
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Figure 2. (a–g) Histograms and (h–n) power spectra of the Niño3.4 index in the observations and the control. The blue and red shades in the
upper panels represent La Niña and El Niño events, respectively. The dashed lines in the bottom panels represent the 0.95 confidence bound
of the Markov red noise spectrum in the observations (gray) and the control (black).

Figure 3. Net shortwave heat flux feedback in the observations and
the control.

are generally two most important atmospheric feedbacks that
dominate ENSO dynamics: the negative net heat flux feed-
back and the positive Bjerknes feedback (e.g., Lloyd et al.,
2009). Due to data availability, we only compute the net
shortwave heat flux feedback, regressing TAS anomalies in
the Niño3.4 region onto the net shortwave heat flux anoma-
lies in the combined Niño3 and Niño4 region (5◦ N–5◦ S,
160◦ E–90◦W; Bayr et al. (2019)). Six models simulate the
observed negative feedback parameter, albeit with too-low or
too-high magnitudes (Fig. 3). IPSLCM5A simulates an er-
roneously positive feedback, indicating that the IPSLCM5A
mistakenly simulates ENSO events to be shortwave-driven
(Bayr et al., 2019).

To separate ENSO responses to CO2 forcing into the three
ENSO states, we define El Niño and La Niña events as ex-
ceedance of half a standard deviation of the Niño3.4 index
for at least 6 consecutive months (Fig. 4a–g; Bellenger et al.,
2014). Our results are not sensitive to the choice of dif-
ferent exceedance thresholds. In addition, we define “quasi
El Niño” and “quasi La Niña” events as exceeding the thresh-
old but not lasting long enough to be classified as an active

event. We then investigate the time series of the Niño3.4 in-
dex (hereinafter referred to as “mean”), as well as neutral,
El Niño and La Niña composites (hereinafter referred to as
“states” collectively and as “active ENSO states” when ex-
empting the neutral state).

For ENSO mean characteristics, we define the ENSO am-
plitude as the standard deviation of the Niño3.4 index and
the frequency as the area of the Niño3.4 spectrum that lies
above the Markov red-noise spectra (Wilks, 2011; Fig. 4h–n).
For the characteristics of each ENSO state (excluding quasi-
events), we define the events’ intensity as the average peak
of the Niño3.4 index of the El Niño and La Niña event and
the events’ duration as the average count of months of the
El Niño, La Niña or neutral event. To measure the magni-
tude of ENSO asymmetry, we compute the skewness of the
Niño3.4 index distribution (Kohyama et al., 2018).

To compute ENSO predictability in the control and
abrupt4xCO2, we generate a persistence forecast of the
Niño3.4 index. This persistence forecast uses a first-order
auto-regressive model initialized in November, which pro-
duces the highest skill in short lead times (Knaff and Land-
sea, 1997; Jin et al., 2008) and allows us to investigate the
sensitivity of the spring predictability barrier to global warm-
ing. We measure the predictive skill by a categorical met-
ric, the accuracy, which is obtained from a contingency ta-
ble by calculating the proportion of correct predictions for
each ENSO state relative to the sum of all predictions (Wilks,
2011):

accuracy= (hits+ correct negatives)/total. (1)

The hits are predictions for which a state that is forecasted
to occur does occur; the correct negatives are the number of
states forecasted to not occur and that do not occur. The total
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Figure 4. (a–g) Histograms and (h–n) power spectra of the Niño3.4 index in the control and abrupt4xCO2. The blue and red shades in the
upper panels represent La Niña and El Niño events, respectively. The dashed lines in the bottom panels represent the 0.95 confidence bound
of the Markov red noise spectrum in the control and abrupt4xCO2.

Figure 5. (a–g) Accuracy of persistence predictions of the mean ENSO state in the control and abrupt4xCO2. (h–n) Accuracy of persistence
predictions of the El Niño, La Niña and neutral state in the control and abrupt4xCO2.

represents all states, which is the sum of hits, correct neg-
atives, misses and false alarms. The misses are states fore-
casted to not occur but that occur, and the false alarms are
states forecasted to occur but that do not occur. We calculate
the accuracy of ENSO states for the first 6 lead months (as
shown in Fig. 5), which is hereafter referred to as November
to April. Predictability is defined as the area under the skill
curves across the 6 lead months.

Throughout the paper, we focus on the change in ENSO
characteristics and predictability in response to a warmer cli-
mate. The change is computed by subtracting the averaged
control from every time step in abrupt4xCO2. We test the sig-
nificance of changes by one-sided bootstrapping, of which

the null hypothesis (changes are not significant) will be re-
jected at the 5 % significance level. For changes in the mean
characteristic, we bootstrap the Niño3.4 index in the con-
trol and abrupt4xCO2; for changes in states’ characteristic,
we bootstrap the intensities or durations of each ENSO state.
For changes in ENSO predictability, we convert contingency
tables into arrays, and we bootstrap these arrays at the 5 %
significance level. For example, we assign four letters to rep-
resent each constituent (“a” for hits, “b” for correct nega-
tives, “c” for misses and “d” for false alarms), and we as-
sume a contingency table in the control that has one hit (a),
two correct negatives (b, b), three misses (c, c, c) and four
false alarms (d, d, d, d). We convert the contingency table
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Figure 6. (a–c) Changes in abrupt4xCO2 relative to the control in ENSO amplitude and in intensity of El Niño and La Niña states. (d–
g) Changes in abrupt4xCO2 relative to the control in ENSO frequency and in duration of El Niño, La Niña and neutral states. (h) Changes in
the skewness of the Niño3.4 index distribution. Solid bars represent changes that are significant at the 5 % level of a bootstrap test; hatched
bars represent changes that are insignificant.

into an array ([a, b, b, c, c, c, d, d, d, d]) and bootstrap the ar-
ray with a replacement 5000 times. We now obtain 5000 val-
ues of accuracy for each control and repeat this process for
abrupt4xCO2. For each lead month, we repeat this bootstrap
procedure and calculate changes in accuracy. At last, we test
if our original predictability change is statistically signifi-
cantly positive or negative.

To investigate relationships between changes in ENSO
predictability and characteristics (hereinafter referred to as
“ENSO characteristics–predictability relationship”), we em-
ploy a linear regression analysis. We break the time series of
the Niño3.4 index into running 30-year windows that update
every 5 years, calculate the mean and the states’ predictabil-
ity and characteristics for each 30-year period, and regress
the changes in ENSO predictability onto changes in ENSO
characteristics. We test whether the regression slopes signif-
icantly differ from zero by bootstrapping the dependent and
independent variables in the linear equations. In addition, we
calculate R2 values to determine the contribution of ENSO
characteristic changes to ENSO predictability changes.

3 Results

3.1 Changes in ENSO characteristics

ENSO weakens and reddens in abrupt4xCO2 compared to
the control in most of the models (Figs. 4a–g and 6a, d). Dis-

tributions of the Niño3.4 index narrow in six out of seven
models, and their central peaks intensify (Fig. 4a–g), reflect-
ing a decrease in ENSO amplitude. Six models show sig-
nificantly decreased ENSO amplitudes in abrupt4xCO2 be-
tween −0.03 and −0.34 ◦C (4 % to 61 % compared to their
control values; Fig. 6a). They also show a reddening of high
frequency in abrupt4xCO2 (Fig. 4h–n) accompanied by a sig-
nificant decrease in the power of high frequencies (−2.35 to
−21.0 ◦C yr−1, which is 24 % to 92 % of the values in the
control; Fig. 6d). MPIESM12, being the only exception,
shows an increase in ENSO amplitude of 0.15 ◦C (21 %) and
an increase in ENSO frequency of 8.53 ◦C yr−1 (85 %).

Both the El Niño and La Niña states become weaker and
shorter (Fig. 6). The El Niño state significantly decreases
its intensity in six out of seven models (−0.14 to −0.54 ◦C,
14 % to 44 % relative to the control; Fig. 6b) and significantly
decreases its duration in the same six models (−1.49 to
−12.0 months, 11 % to 59 % relative to the control; Fig. 6e).
Similarly, the La Niña state significantly decreases its inten-
sity in four models (−0.18 to−0.42 ◦C, 19 % to 36 % relative
to the control; Fig. 6c) and significantly decreases its duration
in six models (−1.16 to−10.3 months, 10 % to 52 % relative
to the control; Fig. 6f).

The decreased durations of both active states are ac-
companied by an increased duration of the neutral state.
Five models simulate a significantly longer neutral state in
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Figure 7. Changes in ENSO predictability in the mean state and in El Niño, La Niña and neutral states. Solid bars represent changes that are
significant at the 5 % level of a bootstrap test, while hatched bars represent changes that are insignificant.

abrupt4xCO2 (3.73 to 60.2 months, 28 % to 60.5 % relative
to the control; Fig. 6g).

The difference in duration changes in both active states
suggests changes in the ENSO nonlinearity. To exemplify
changes in the asymmetry in Niño3.4 distributions, we scruti-
nize HadCM3L (Fig. 4e). In the control, the right-side tail of
the histogram of HadCM3L extends further than the left-side
tail, denoting more extreme El Niño than La Niña events. In
addition, the histogram peaks around the threshold that dif-
ferentiates the neutral from the La Niña state, leading to more
quasi La Niña than quasi El Niño events. In abrupt4xCO2, the
right tail becomes shorter, while the left tail remains, result-
ing in fewer extreme El Niño events. Additionally, the peak
of the distribution moves to the right, resulting in more quasi
El Niño events relative to the control. Four models simulate
a significantly decreased skewness of the Niño3.4 distribu-
tion (−0.12 to −1.07; Fig. 6h), in accordance with Fig. 4a–
g, which shows that quasi El Niño increases more than quasi
La Nina events, while extreme El Niño decreases more than
extreme La Niña events in abrupt4xCO2.

3.2 Changes in ENSO predictability

ENSO becomes less predictable in five out of seven mod-
els, although the changes are mostly insignificant according
to our bootstrap test (Figs. 5a–g and 7a). In the control, the
mean persistence skill starts at around 0.95 in all seven mod-
els, denoting that the persistence model is able to correctly
predict 95 % of ENSO states in November. From December
onward, the skill drops to around 0.72 for April, denoting that
72 % of ENSO states are correctly predicted after 6 months.
In abrupt4xCO2, all models first show equivalent skills from
November to January as in the control. Then, five models
show a decrease in skills, with around 70 % of correct pre-
dictions of ENSO states for April, while GISSE2R and MP-
IESM12 show a small increase in skill. We quantify changes
in the area under the skill curve as the change in predictabil-
ity, with only HadCM3L showing a significant decrease in
the mean predictability in abrupt4xCO2 (−0.42, 9 % relative
to the control; Fig. 7a).

The predictability of the El Niño state decreases simi-
larly to the mean predictability, while the predictability of

the La Niña state shows no significant change (Figs. 5h–n
and 7b, c). In the control, the persistence skills of active states
reduce from 0.95 to 0.8 from November to April in all seven
models, being indistinguishable from the mean persistence
skill. In abrupt4xCO2, the skill of predicting the El Niño state
decreases similarly to that in the control from November to
January then changes sharply and model-dependently from
February onward. In comparison, between November and
April, the skill of the La Niña state changes less than the skill
of the El Niño state. Four models show a decrease in the pre-
dictability of the El Niño state, with HadCM3L being again
the only model that exhibits a significant change (−0.54,
11 % relative to the control; Fig. 7b). Five models agree on a
decrease in the predictability of the La Niña state, while none
of the changes are significant (Fig. 7c).

The neutral state in both the control and abrupt4xCO2 is
harder to predict than the mean and the active states, and
its change in predictability exhibits the largest magnitude
(Figs. 5h–n and 7d). In the control, the skill of the neutral
state begins at 0.9 in November and decreases to around
0.65 in April. In abrupt4xCO2, the skill decreases simi-
larly to the control in the first 3 lead months and changes
sharply and model-dependently afterward. Five models sim-
ulate a decrease in the predictability of the neutral state, with
HadCM3L showing the only significant change (−0.63, 15 %
relative to the control; Fig. 7d). In summary, ENSO mean
predictability decreases in abrupt4xCO2, mainly caused by
predictability changes in neutral and El Niño states. How-
ever, contradictory to our expectations, changes in pre-
dictability are neither as robust across models nor as signifi-
cant as changes in ENSO characteristics. Therefore, we test if
the ENSO characteristics–predictability relationship sustains
in the warmer climate.

3.3 Changes in ENSO characteristics–predictability
relationship

3.3.1 The relationship in the observations

In the observations, the characteristics–predictability rela-
tionship is principally significant for most of the analyzed
characteristics for all states (Fig. 8a). The ENSO mean
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Figure 8. (a) R2 values in the observations, which are calculated from regression analyses between 10 ENSO metrics and predictability as
shown in the label bar. (b) Example plot of the regression analysis that represents the uppermost bar in (a). The small gray dots are 30-year
chunks from the time series, and the line shows the regression slope. (c) Similar to (a) but for the control. (d) Similar to (a) and (c) with
regression analyses between changes in ENSO characteristics and predictability. The sign of the bars represents the sign of the regression
slopes. The solid (hatched) bars represent regression slopes that significantly (insignificantly) differ from zero.

predictability increases when ENSO in general is stronger
(R2
= 62 %) and less red (R2

= 42 %). La Niña’s pre-
dictability is higher when the events are stronger (R2

=

39 %) and longer-lasting (R2
= 21 %) and the Niño3.4 distri-

bution more skewed to favor the La Niña state (R2
= 24 %).

Similarly, the neutral state is more predictable when the
events are shorter (R2

= 36 %). As for El Niño’s predictabil-
ity, it only significantly relates to the intensity of El Niño
events (R2

= 24 %). In summary, in the observations, ENSO
predictability is affected by ENSO amplitude, which is at-
tributed from the intensity of both El Niño and La Niña
states.

3.3.2 The relationship in the control

In the control, signs and significance of the characteristics–
predictability relationship are model-dependent; the overall
contribution of ENSO characteristics to ENSO predictabil-

ity is lower than in the observations. For the mean, the rela-
tionship between ENSO predictability and ENSO amplitude
is significant across four models (Fig. 8c). Looking at indi-
vidual models, CNRMCM61 shows the largest R2 value in
relationships of the mean predictability to ENSO amplitude
(18 %) and frequency (14 %), while GISSE2R is the only
model that shows significance in all three relationships but
demonstrates extremely small R2 values (1 % for amplitude,
1 % for frequency and 2 % for skewness).

For active ENSO states, the relationships between
El Niño’s predictability and its characteristics are signifi-
cant across at least five models (Fig. 8c). Looking at in-
dividual models, MPIESM12 shows the largest R2 values
in relationships of the predictability to El Niño’s inten-
sity (14 %) and duration (19 %), but the smallest R2 value
in the skewness–predictability relationship. Similarly, the
characteristics–predictability relationships of the La Niña
state are significant in at least five models. CNRMCM61
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shows the largest R2 values in relationships of the pre-
dictability to La Niña’s intensity (13 %) and duration (17 %).

For the neutral state, the relationship between its dura-
tion and predictability is significant for four models, while
the sign of the relationship is model-dependent. CESM104
shows the largest R2 value (12 %) in such a relationship,
while CNRMCM61 shows the second-largest R2 (7 %) but
matches the sign of the relationship apparent in the observa-
tions (Fig. 8a).

In summary, the ENSO characteristics–predictability rela-
tionship is overall lower in the models in the control than
in the observations. In the control, ENSO predictability is
mainly affected by states’ intensity and duration, counter to
ENSO mean characteristics, which dominate in the observa-
tions.

3.3.3 The relationship in the changes

Moving from the relationship in the observations and the
control, we regress changes in ENSO predictability onto
changes in ENSO characteristics, for which the change is
the difference between the control and abrupt4xCO2. Simi-
lar to the relationship in the control, the sign and significance
of relationships of changes are model-dependent. The con-
tribution of changes in ENSO characteristics to predictabil-
ity becomes more divergent across models but overall even
lower than in the control. The amplitude–predictability rela-
tionship is significant across four models (Fig. 8d). Among
models that show significant results, HadCM3L has the
largest R2 value in the amplitude–predictability relationship
(11 %), and IPSLCM5A has the largest R2 in the skewness–
predictability relationships (17 %). However, models with
the strongest relationships between changes in predictabil-
ity and changes in amplitude and skewness exhibit erroneous
signs of the respective relationships compared to the obser-
vations.

For active ENSO states, on the one hand, the relationships
between changes in El Niño’s predictability and its charac-
teristics are significant across four models (Fig. 8d). Among
models which show significant results, IPSLCM5A has the
largest R2 in the relationships of changes in predictabil-
ity to changes in El Niño’s intensity (18 %) and the skew-
ness (23 %); MPIESM12 has the largest R2 in the duration–
predictability relationship (16 %). On the other hand, the
characteristics–predictability relationships of changes in the
La Niña state are significant in four of seven models
(Fig. 8d). Among models which show significant results,
HadCM3L has the largest R2 in the relationships of changes
in predictability to changes in La Niña’s intensity (27 %) and
the skewness (40 %), and IPSLCM5A has the largest R2 in
the duration–predictability relationship (35 %). Four out of
seven models in the control agree with the observations that
El Niño and La Niña states typically end in spring (March–
May; figure not shown). In abrupt4xCO2, active states end
around 1 to 3 months earlier than in the control, which short-

ens their decaying phase and advances the transition to the
neutral state. The persistence model fails to predict such a
transition correctly, explaining the sharp decrease in the per-
sistence skills from February onward (Fig. 5) and leading to
the decreased predictability (Fig. 6e and f).

For the neutral state, the relationship between changes
in its duration and predictability is significant in five out
of seven models, with four models showing a positive and
one model showing a negative relationship (Fig. 8d). CN-
RMCM61 is the only model that shows a significant and
negative duration–predictability relationship (8 %), agreeing
with the observations, while four models show a positive re-
lationship with the mean R2 value at 14 %. For these four
models, we find that the increased duration of the neutral
state exercises two effects on its predictability. On the one
hand, an increased duration of neutral states decreases the du-
ration of active states. The decreased duration of active states
fastens their transitions to the neutral state, which decreases
the predictability of the neutral state, as its earlier occurrence
cannot be predicted by the November initialization of the per-
sistence model. On the other hand, the pronounced increase
in the neutral state causes each neutral event to last on av-
erage 13 months longer in abrupt4xCO2 than in the control
(Fig. 6g). This cross-year duration increases the persistence
of the neutral state and improves its predictability. Overall,
because the predictability of the neutral state in these four
models decreases (Fig. 7d), we deduce that the effect of early
occurrence of the neutral state during the spring overcompen-
sates the effect of its cross-year duration on the predictability
change.

We find that the relationships of ENSO states are more
significant and have higher R2 values than relationships of
the mean. The characteristics we analyze are not indepen-
dent, as they may offset each other’s contributions or have
two competing effects on the predictability change. Thus, we
suspect that the mean characteristics (amplitude, frequency
and skewness) may be too aggregated to be as clearly related
to the mean predictability change as the states’ characteris-
tics (intensity and duration). Furthermore, given that ENSO
is a highly nonlinear process, it is likely that the three ENSO
states respond to external forcings differently (e.g., Cai et al.,
2015). This highlights the importance of decomposing dif-
ferent ENSO states from the mean ENSO behavior in order
to study ENSO response to an external forcing.

In summary, R2 values are relatively large in the observa-
tions, lower in the control, more divergent, and even lower
in changes between abrupt4xCO2 and the control. We sus-
pect that it might be attributed to model parameterizations
and tuning processes that models simulate ENSO events for
wrong reasons (e.g., Bayr et al., 2019; Dommenget et al.,
2014). However, the difference between the magnitudes of
the feedback (Fig. 3) seems to be unrelated to magnitudes of
the R2 values between changes in ENSO characteristics and
predictability.
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4 Summary and conclusion

We study the equilibrated ENSO response to abruptly
quadrupled CO2 forcing in seven models from the LongRun-
MIP archive. We analyze changes in the whole time series of
the Niño3.4 index, as well as separate El Niño, La Niña and
neutral states. Our results show the following.

1. ENSO mean characteristics significantly change in a
warmer climate. The ENSO amplitude and the skew-
ness of the Niño3.4 index distribution decrease, agree-
ing with findings in Callahan et al. (2021) and Kohyama
et al. (2018). The ENSO frequency decreases, which is
different from the transient ENSO response analyzed in
Berner et al. (2020).

2. ENSO states’ characteristics significantly change in a
warmer climate. The decreased intensity of El Niño and
La Niña states is different from the transient ENSO re-
sponse shown in other studies (e.g., Cai et al., 2021).

The weakening in ENSO characteristics can be seen in
both ultra-high-resolution models and proxy records. Wen-
gel et al. (2021) showed a decreased ENSO amplitude in a
model with 0.25◦ resolution in the atmosphere and 0.1◦ in the
ocean, which is both qualitatively and quantitatively consis-
tent with our results (compare their Fig. 4a with our Fig. 6a).
White and Ravelo (2020) showed a reduced El Niño am-
plitude during the early Pliocene, during which the climate
closely resembles the one projected in the RCP4.5 scenario
(Burke et al., 2018).

From the robust response of ENSO characteristics under
abrupt4xCO2 forcing, we would expect ENSO predictability
to change similarly (e.g., Jin et al., 2008; Liu et al., 2022).

3. We find that ENSO predictability reduces for the mean
and the three ENSO states in five out of seven mod-
els. However, the changes are small and statistically in-
significant.

We find a relationship between ENSO characteristics and
predictability in the observational record and test whether
models reproduce that relationship with and without forcing.
We find the following.

4. In the observations, this relationship is strong. The mean
ENSO characteristics and La Niña state’s characteris-
tics explain more than 60 % of the variance in ENSO
predictability.

5. In the control, this relationship is weaker. Although
the regression slopes significantly differ from zero, the
ENSO characteristics only explain 20 % of variance in
ENSO predictability.

6. In changes between the control and abrupt4xCO2, the
regression slopes are significant. The decreased ENSO
mean characteristics correlate to the decreased ENSO
predictability, consistent with previous studies (e.g.,
DelSole et al., 2014; Berner et al., 2020; Tang et al.,
2008). The decreased intensity of active ENSO states
correlates with the decreased predictability, consistent
with results from Jin et al. (2008), and with the de-
creased duration, which reduces the persistence skills
mainly in spring. While the slopes are significant, the
explained variance of changes in ENSO predictability
by ENSO characteristics is overall small, though some
models show R2 values being around 40 %. This re-
duction in explained variances probably contributes to
changes in ENSO predictability being insignificant.

Dommenget and Vijayeta (2019) studied the inconsistent
change between ENSO characteristics and predictability un-
der RCP8.5 scenarios relative to the historical simulation,
which can be attributed to compensating effects of changes
in the growth rate of the thermocline depth and sea sur-
face temperature. While this might explain our results as
well, we cannot verify this hypothesis, due to the lack of
monthly ocean data in LongRunMIP. Aside from changes
in ENSO characteristics studied here, other factors influ-
ence ENSO predictability: ENSO phase-locking (e.g., Jin
and Kinter, 2009), the Atlantic Niño (e.g., Martín-Rey et al.,
2015), the Pacific Decadal Oscillation (e.g., Kumar et al.,
2013) and volcanic eruptions (e.g., Khodri et al., 2017; Singh
et al., 2020). However, given our findings that changes in the
persistence-assessed predictability are very small, we sus-
pect changes in these factors barely contribute to predictabil-
ity changes or offset each other. Instead of the persistence
forecast, other dynamical prediction models could be used
to analyze whether ENSO predictability in warmer climates
is indeed unchanged or, if a significant change is detected,
whether its relationship to previously revealed ENSO charac-
teristics sustains. In addition, ENSO predictability is also af-
fected by model development such as improved physical pa-
rameterizations, refined spatial and temporal resolutions, and
reduced biases in air–sea interaction (e.g., Chen and Cane,
2008; Tang et al., 2018; Guilyardi et al., 2020; Lu et al., 2020;
Fredriksen et al., 2020).

To conclude, if our set of simulations were representative
of possible real-world changes, we do not find robust reasons
to expect global warming to substantially alter 6-lead-month
ENSO predictability. Yet, given the large range suggested by
the different models, further analysis and deeper understand-
ing of unforced control states and the expected changes under
global warming as well as their implications are necessary to
be able to reduce the large uncertainties in the present assess-
ment.
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