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Abstract. One of the least understood temporal scales of global carbon cycle (C-cycle) dynamics is its inter-
annual variability (IAV). This variability is mainly driven by variations in the local climatic drivers of terrestrial
ecosystem activity, which in turn are controlled by large-scale modes of atmospheric variability. Here, we quan-
tify the fraction of global C-cycle IAV that is explained by large-scale atmospheric circulation variability, which
is quantified by spatiotemporal sea level pressure (SLP) fields. C-cycle variability is diagnosed from the global
detrended atmospheric CO2 growth rate and the land CO2 sink from 16 dynamic global vegetation models and
two atmospheric inversions in the Global Carbon Budget 2018. We use a regularized linear regression model,
which represents a statistical learning technique apt to deal with the large number of atmospheric circulation
predictors (p ≥ 800, each representing one pixel-based time series of SLP anomalies) in a relatively short ob-
served record (n < 60 years). We show that boreal winter and spring SLP anomalies allow predicting IAV in
the atmospheric CO2 growth rate and the global land sink, with Pearson correlations between reference and pre-
dicted values between 0.70 and 0.84 for boreal winter SLP anomalies. This is comparable to or higher than that
of a similar model using 15 traditional teleconnection indices as predictors. The spatial patterns of regression
coefficients of the model based on SLP fields show a predominant role of the tropical Pacific and over South-
east Asia extending to Australia, corresponding to the regions associated with the El Niño–Southern Oscillation
variability. We also identify another important region in the western Pacific, roughly corresponding to the West
Pacific pattern.

We further evaluate the influence of the time series length on the predictability of IAV and find that reliable
estimates of global C-cycle IAV can be obtained from records of 30–54 years. For shorter time series (n <
30 years), however, our results show that conclusions about CO2 IAV patterns and drivers need to be evaluated
with caution. Overall, our study illustrates a new data-driven and flexible approach to model the relationship
between large-scale atmospheric circulation variations and C-cycle variability at global and regional scales,
complementing the traditional use of teleconnection indices.
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1 Introduction

The global carbon cycle (C-cycle) varies at multiple
timescales ranging from minutes to a millennium (Ciais
et al., 2013). Quantifying and understanding the patterns of
variability in the C-cycle and their drivers are crucial to bet-
ter understanding C-cycle dynamics and better constraining
future climate projections (Cox et al., 2013; Friedlingstein
et al., 2014). Primarily driven by the land sink dynamics
(Piao et al., 2020), interannual variability (IAV) is one of the
most uncertain and poorly understood terms of the global C-
cycle in the observational period (Friedlingstein et al., 2019).

A fundamental challenge is that variability in land–
atmosphere carbon exchange is affected in complex ways
by large-scale atmosphere circulation modes but also land
use change, forced climate changes, and direct physiologi-
cal CO2 effects on ecosystems, among others (IPCC, 2013).
Separating these effects is difficult because of the large un-
certainties associated with some processes, for example land
use change (Friedlingstein et al., 2022) or processes not di-
rectly observable at global scale (e.g., photosynthesis or het-
erotrophic respiration) (Schimel et al., 2015; Basile et al.,
2020). The second challenge is that the land sink, as a bal-
ance of carbon uptake and release, responds differently to
variations in the climatic forcing (Jung et al., 2017; Piao
et al., 2020). This makes it hard to attribute induced land
sink IAV to specific drivers, which is crucial for process un-
derstanding (Jung et al., 2017; Humphrey et al., 2018, 2021;
Wang et al., 2022). Last, the limited length of observational
records may hamper robust statistical analysis (IPCC, 2013):
the longest continuous observations of atmospheric CO2 at
the South Pole and Mauna Loa observatory only exist from
1958 onwards (Dlugokencky and Tans, 2019).

Land biospheric CO2 uptake results from the net bal-
ance of carbon uptake from gross primary productivity,
release from multiple respiration terms, and disturbance-
induced fluxes such as fires, amongst other smaller terms
(IPCC, 2013). Most of these processes are primarily driven
by temperature, water, and radiation availability (Jung et al.,
2017). These meteorological drivers are, in turn, modulated
by large-scale modes of atmospheric circulation on multi-
ple timescales, such as the El Niño–Southern Oscillation
(ENSO; Gu and Adler, 2011) and the Pacific Decadal Oscil-
lation (PDO; Newman et al., 2016). These climate variabil-
ity modes are generated within coupled atmosphere–ocean
systems (Ghil, 2002) and considered irreducible noise in
climate projections (Madden, 1976; Schneider and Kinter,
1994; Deser et al., 2012). Because these modes typically in-
teract and affect weather dynamics in regions beyond those
where they emerge, such modes are collectively referred to as
teleconnections (IPCC, 2013). Bacastow (1976) showed that
ENSO is highly correlated with annual variations in observed
atmospheric CO2 measured at the South Pole and Mauna
Loa, Hawaii. Keeling et al. (1995) attributed these correla-
tions to the ENSO impact on the biospheric sink. In addi-

tion to ENSO, Zhu et al. (2017) showed that the PDO and
the Atlantic Multidecadal Oscillation (AMO; Enfield et al.,
2001; Rayner et al., 2003) may also influence global terres-
trial ecosystem carbon fluxes and that other modes of vari-
ability in the Northern Hemisphere also have local impacts
on carbon cycling (Zhu et al., 2017).

A common approach to diagnose the impacts of natural
climate variability is to use ensembles of Earth system model
simulations with perturbed initial conditions to quantify the
impacts of natural climate variability at decadal to millen-
nium scales (Frölicher et al., 2013). However, the inherently
chaotic atmosphere, in combination with model structural
uncertainty, implies large uncertainties for future projections
(Deser et al., 2020). In addition, Earth system model pro-
jections can be compromised by limited representation of
the full complexity of physical processes involved, lack of
observational constraints, and high computational demands
when aiming to resolve high resolutions (Randall et al., 2007;
IPCC, 2013).

Statistical approaches are a simplified but effective way to
reveal physical processes in observations (von Storch, 1995).
A traditional approach consists of evaluating relationships
between the variables of interest (e.g., CO2 time series) and
teleconnection indices (Bacastow, 1976; Bastos et al., 2013;
Zhu et al., 2017). As a simple representation of the large-
scale atmospheric circulation modes, teleconnection indices
are extracted mainly from sea surface temperature or atmo-
spheric anomalies (Kumar and Hoerling, 1997; IPCC, 2013).
Such indices are an effective way to reduce the complexity of
the spatiotemporal variability in multiple variables (Stenseth
et al., 2003; Wills et al., 2017), but they may not be able to
capture spatial variations in the large-scale atmospheric cir-
culation modes themselves.

Recently, Sippel et al. (2019) applied ridge regression,
a regularized linear regression method (Hastie et al., 2009;
Friedman et al., 2010), to quantify the component of pre-
cipitation and temperature variability driven by atmospheric
variations based on sea level pressure (SLP) fields rather than
teleconnection indices. Their approach allowed them to ro-
bustly infer the main spatiotemporal patterns of atmospheric
variability influencing these two climate variables. On the
one hand, including a field of circulation-based predictors,
avoids considering predefined assumptions about their spa-
tial configurations as they are common to teleconnection
indices, while compensating for relatively short historical
records. The regularization approach, on the other hand, al-
lows overcoming overfitting and multicollinearity issues due
to short time series and a very large number of spatial pre-
dictors.

In this study, we adopt the ridge regression approach
in Sippel et al. (2019), aiming to quantify the fraction of
global C-cycle IAV influenced by large-scale atmospheric
circulation variability. We use observation-based time se-
ries of global atmospheric CO2 growth rate (AGR) and land
CO2 surface fluxes from atmospheric inversions and dynamic
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global vegetation models (DGVMs), as well as the land sink
estimated as a residual of other terms in the Global Car-
bon Budget 2018 (Le Quéré et al., 2018). We first evalu-
ate and compare the predictive skill of the ridge regression
model when using SLP as predictors versus commonly used
traditional teleconnection indices (Sect. 3.1). Next, we an-
alyze and discuss the global C-cycle sensitivity to atmo-
spheric circulation variability from various latitudinal do-
mains of SLP anomaly fields (Sect. 3.2). Finally, we evaluate
the sensitivity of the results to the length of the time series
(Sect. 3.3) by comparing the fraction of C-cycle IAV that can
be explained by large-scale atmospheric circulation variabil-
ity based on these datasets with that of a very long time series
(4000 years) of land CO2 fluxes simulated by the Community
Earth System Model (CESM).

2 Data and methods

2.1 CO2 datasets for the recent past

We select the CO2 time series datasets from the Global Car-
bon Budget 2018 version 1.0 (Le Quéré et al., 2018): the at-
mospheric CO2 growth rate (AGR), the land sink from mod-
els (SLDGVMs), the residual land sink (SLResid), and the land
sink from two atmospheric inversions.

In the Global Carbon Budget 2018 (Le Quéré et al.,
2018), the global CO2 balance is calculated based on
the carbon emissions from fossil fuel (FF) (Boden et al.,
2017; UNFCCC, 2018; Peters et al., 2011) and land use
change (FLUC) (Houghton and Nassikas, 2017; Hansis et al.,
2015), the AGR (Dlugokencky and Tans, 2018), and the car-
bon uptake by the ocean sink (SO) and the land sink (SL)
(references for individual models of SO and SL can be found
in Table 4 of Le Quéré et al., 2018).

The difference of annual atmospheric CO2 in a given year
and the previous year (Ballantyne et al., 2012; Dlugokencky
and Tans, 2018; Le Quéré et al., 2018) corresponds to the
AGR, which is based on direct observations. The AGR is
based on the average of well-mixed CO2 measurements at
multiple global stations from the US National Oceanic and
Atmospheric Administration Earth System Research Labo-
ratory (NOAA ESRL) (Dlugokencky and Tans, 2018).

FF emissions are based on inventories, while FLUC,
SL, and SO are estimated by models (the latter two are de-
noted by SLDGVMs and SO in Eq. 1), all of which con-
tain uncertainties (Le Quéré et al., 2018). The total emis-
sions from FF and FLUC minus AGR should equal the SO
and SLDGVMs (Eq. 1). Due to uncertainties in modeled land
and/or ocean sinks or in land use estimations (Bastos et al.,
2020; Hauck et al., 2020), the budget cannot be balanced, and
thus an imbalance term (IMB) is introduced to the budget.

FF+FLUC−AGR−SO= SLDGVMs+ IMB= SLResid (1)

The annual land sink of CO2 (SLDGVMs) is the average net
biome production (NBP) simulated by 16 dynamic global

vegetation models (DGVMs) forced with historical CO2 and
changing climate (Le Quéré et al., 2018). The residual land
CO2 (SLResid) is calculated from emissions, AGR, and ocean
sinks, as described in Eq. (1). SLResid corresponds to the bal-
ance of the fossil fuel and land use change emissions as well
as the sinks in the atmosphere and ocean, and it provides an
alternative estimate of the global land sink.

The time series of AGRR, SLDGVMs, and SLResid in the
Global Carbon Budget 2018 (Le Quéré et al., 2018) are pro-
vided at annual time steps over the period 1959–2017. In the
following analysis, we invert the AGR time series (AGRR for
reversed AGR, i.e.,−1×AGR) for sign consistency with the
land sink datasets used (defined as a positive flux from the
atmosphere to the land).

Additionally, we use the globally aggregated net atmo-
sphere to land CO2 flux (positive sign as a sink in the bio-
sphere) estimated from two atmospheric CO2 inversions in
the Global Carbon Budget 2018 (Le Quéré et al., 2018):
the Jena CarboScope SLCarboScope (Rödenbeck, 2005; Rö-
denbeck et al., 2018) and the Copernicus Atmosphere Mon-
itoring Service inversion SLCAMS (Chevallier et al., 2005),
which cover the periods 1976–2017 and 1979–2017, respec-
tively. Here we use the global annual CO2 fluxes of these
two inversions adjusted for fossil fuel emissions and lateral
fluxes from Bastos et al. (2020). The period common to the
CO2 time series (1980–2017) is selected.

2.1.1 Sea level pressure

We use global monthly mean SLP fields from ERA5 reanal-
ysis with the spatial resolution of 0.25◦× 0.25◦ (Bell et al.,
2020) at monthly time steps covering the period 1950–1978
(Bell et al., 2020) and 1979–present (Hersbach et al., 2019).
The period common to other datasets of 1958–2017 is se-
lected here.

2.1.2 Teleconnection indices

In addition to SLP fields, we select 15 teleconnection indices
from the atmosphere–ocean variability, Northern Hemi-
sphere, and Southern Hemisphere.

Three important atmosphere–ocean coupled variability
modes influence global climate and the C-cycle: the
El Niño-Southern–Oscillation (SOI), the Pacific Decadal
Oscillation (PDO), and the Atlantic Multidecadal Oscilla-
tion (AMO) (Zhu et al., 2017).

In the Northern Hemisphere, the most relevant indices
are the Arctic Oscillation (AO), the North Atlantic Oscilla-
tion (NAO), the Pacific North American pattern (PNA), the
East Atlantic (EA), East Atlantic/West Russia (EAWR), the
Scandinavian pattern (SCAND), polar–Eurasia (polarEA),
and the West Pacific (WP). These indices are calculated and
provided by the Climate Prediction Centre (CPC) of the
National Oceanic and Atmospheric Administration (NOAA)
(CPC, 2008). Detailed information on calculation procedures
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is described in NOAA CPC (2008) and Barnston and Livezey
(1987).

In the Southern Hemisphere, important indices are
the Antarctic Oscillation (AAO), the tropical Atlantic
dipole (TAD), the Dipole Mode Index (DMI) of the Indian
Ocean Dipole, and the Trans Polar Index (TPI).

The teleconnection indices used here have been summa-
rized in Table 1. All the indices are provided as monthly
means and selected for the period of 1958–2017 except the
AAO, which is available for 1979–2017 only.

2.1.3 Long-term pre-industrial control simulations for
statistical benchmarking

Here we select the SLP fields and global net biome produc-
tion fields (NBP) from simulations by the Community Earth
System Model (CESM) version 1.2.2 (in the B1850C5CN
configuration), which has been used by Stolpe et al. (2019).
This experiment corresponds to a 4000-year control run.
The simulation was run at an atmospheric resolution of
1.9◦× 2.5◦ using the Community Atmosphere Model ver-
sion 5 (CAM5.3; Neale et al., 2012) with 30 vertical levels.
The model consists of fully coupled atmosphere, ocean, sea
ice, and land surface components (Hurrell et al., 2013; Meehl
et al., 2013b) and did not include dynamic vegetation. This
simulation includes no external forcing, so it is ideal to ana-
lyze patterns driven by internal variability.

2.2 Data pre-treatment

For all historical datasets (CO2 time series, SLP fields, and
teleconnection indices), we first remove years corresponding
to volcanic eruptions (1963, 1982, 1983, 1991, 1992). We
then pre-treat the datasets as follows.

2.2.1 Trend removal

The long-term trend of CO2 time series is removed by lo-
cally weighted scatterplot smoothing (LOWESS) (Cleveland
et al., 1991) of the annual time series with a fixed window
size that is 25 % of the longer interval (1959–2017) and 45 %
for the shorter period (1980–2017). For monthly teleconnec-
tion indices, we first calculate the seasonal mean values of
DJF, MAM, JJA, and SON; we then remove the seasonal
long-term trends by applying the LOWESS as for the CO2
time series and further include DJF and MAM combined
(DJF+MAM) as treated in SLP (as described below).

2.2.2 Spatial and temporal aggregation

The monthly mean SLP fields are area-weighted and aggre-
gated to 2

◦

× 2◦, 5◦× 5◦, and 9◦× 9◦ spatial resolution, and
the seasonal cycle is removed by subtracting the monthly
mean values for each pixel. We then aggregate SLP val-
ues in seasonal means for December of the previous year
to February (DJF), March–May (MAM), June–August (JJA),

and September–November (SON) of each given year and fur-
ther consider DJF and MAM combined (DJF+MAM), so the
number of pixel-based time series (predictors) in DJF+MAM
is double DJF. Note that a large fraction of the pixel-based
time series of seasonal SLP anomalies show no long-term
trend, and the predicted differences between LOWESS de-
trended and non-detrended SLP are small. Here we keep the
analysis of SLP anomalies with no LOWESS detrending. We
refer to DJF and MAM as boreal winter and boreal spring.

For the CESM simulations, the SLP fields are originally
provided at 1.9◦× 2.5◦ spatial resolution at monthly mean
time steps, which we then resample to 5◦× 5◦ spatial res-
olution. Annual mean NBP is calculated from the monthly
fields. NBP and SLP fields are selected for the simulation
period of 1000–5000 years.

2.3 Statistical analysis

The overall goal is to characterize annual variations in the
global C-cycle that can be explained by large-scale atmo-
spheric circulation variability. Here, the pixel-based time se-
ries of SLP anomalies are used as predictors (p ≥ 800) of
CO2 time series (n≤ 54 years) in a linear regression model.
However, the small sample size relative to the large num-
ber of predictors (n < p) can cause severe overfitting prob-
lems and result in unstable predictions (Hastie et al., 2009).
Moreover, the existing spatial correlations among the neigh-
boring pixels of SLP anomalies might cause multicollinear-
ity among the predictors (von Storch and Zwiers, 1999). The
potential multicollinearity problem results in unstable ridge
regression coefficients in least square estimation, making it
difficult to diagnose the most sensitive spatial patterns of pre-
dictors (von Storch and Zwiers, 1999).

Sippel et al. (2019) applied ridge regression to avoid these
overfitting and multicollinearity problems. Ridge regression
is a regularized linear regression, the fundamental principle
of which is to introduce a constraint (hyper-parameter λ) to
regularize the varying regression coefficients in least squares
estimation (Hastie et al., 2009; Friedman et al., 2010). The
regularized variance comes with a compromise of biased
predictions and is addressed as the bias–variance trade-
off (Hastie et al., 2009). When selecting the best hyper-
parameter λ, this trade-off is considered to achieve stable
(low variance) while slightly biased predictions (Hastie et al.,
2009).

Model performance is evaluated by the R2, Pearson’s cor-
relation R, and mean squared error of the original CO2 time
series against predicted values. Pearson’s correlation R is se-
lected as the main measure of predictability, and the signif-
icance P < 0.05 is selected. Given the relatively short pe-
riod (n < 60), here we use leave-one-out cross-validation to
achieve optimal model training and testing. For each training
and testing group splitting, we select the training group as all
years excluding 3 consecutive years and the middle year of
those 3 is then selected as the test sample. We exclude the
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preceding and following years to reduce the potential influ-
ence of temporal autocorrelation.

A schematic description of the workflow from model train-
ing, validation, and selection with the selected interval 1959–
2017 is shown in Fig. 1. In Fig. 1a, the global maps rep-
resent an example of the spatial distribution of SLP with
a resolution of m◦×m◦, where m varies in [2, 5, 9]. Each
pixel corresponds to a time series of SLP, so that p predic-
tors (xik for i in 1∼ n years and k in 1∼ p, where p de-
pends on the spatial resolution selected) with n= 54 time
steps are defined. Each predictor is assigned a coefficient ωk
to collectively predict CO2 time series, with length n= 54.
The cost function (Harrington, 2012) is the sum of all the
squared errors of original yi minus estimated y′i (xTi ω+ b,
ω represents the vector of all ωk). At the same time, the con-
straint function (Harrington, 2012) suppresses the coefficient
variations under a regularized range defined by the hyper-
parameter λ. Figure 1b shows the model training and valida-
tion processes. In this study, SLP is aggregated to 9◦×9◦, so
p = 800. Note that to reduce the heavy computational load,
when conducting the spatial and temporal sensitivity study
as described in Sect. 2.4, the range of λ is lower and with
smaller steps than the range and step shown in Fig. 1b. For
example, when only selecting the tropical domain of SLP, the
number of predictors is much less than 800. So λ is selected
in the range [10, 1000] with a step of 50. When using tele-
connection indices instead of SLP anomalies, the predictors
are equal to or less than 15, and the range of λ is selected
from [1, 200] with a step of 2.

The first step is to divide datasets into training and testing
groups, as shown in Fig. 1c. The grouped training datasets
are then used for model training to tune the best λ through
5-fold cross-validation. The best λ that achieves the optimal
prediction (highest R2) is then selected by the model to pre-
dict test datasets. The model then starts another iteration with
training and testing grouping. Figure 1c describes the leave-
one-out training and testing grouping. The years before and
after the selected test year are removed for each grouping to
reduce the impact of temporal autocorrelations in CO2 time
series.

Ridge regression leave-one-out cross-validation is per-
formed using the Python package Scikit-learn “Ridge”, and
λ is tuned by Scikit-learn “RidgeCV” (Pedregosa et al.,
2011). The global maps (Figs. 3, A4, A11, and A12) are plot-
ted by Cartopy (Met Office, 2010–2015).

2.4 Experimental design

1. Preliminary dependency tests. To evaluate the robust-
ness of the results for different characteristics of the
datasets and methodological choices, we perform sev-
eral preliminary tests. (1) A resolution dependency test
is performed to evaluate the sensitivity of results to the
SLP spatial resolution under 2◦×2◦, 5◦×5◦, and 9◦×9◦.
(2) A seasonality dependency test is performed to evalu-

ate the dependence of results on the definition of partic-
ular seasons, with each season being the combination of
3 consecutive months (from November last year to July
in the given year). (3) Temporal autocorrelation of the
CO2 time series is performed to ensure no significant
trend remains in the detrended CO2 time series.

Here we directly use the results following the prelim-
inary dependency test (Appendix A). The spatial reso-
lution does not influence the results considerably (see
Fig. A1), and therefore we select 9◦× 9◦ SLP spatial
resolution given its smaller number of grid points. The
seasonal dependency test shows that DJF and MAM
are seasonal combinations more representative of bo-
real winter and spring (see Fig. A2). JJA and SON are
found to have lower or no predictability to CO2 time se-
ries; therefore, we limit our results to DJF and MAM.
As shown in Fig. A3, the temporal autocorrelation of all
CO2 time series is mostly less than 0.4 with lag ranging
from 1 to 35 years. With a lag of 1 year, absolute values
of autocorrelation are below 0.2 so that we can exclude
strong temporal autocorrelation effects.

2. Model training and evaluation. We evaluate the pre-
dictability of annual CO2 time series using SLP anoma-
lies, teleconnection indices, and SOI independently in
the DJF, MAM, and DJF+MAM seasons with the ap-
proach described above. We compare Pearson’s corre-
lation of observations and predicted values for different
periods (1959–2017 and 1980–2017, Fig. 2) and show
the corresponding ridge regression coefficient distribu-
tion maps (Fig. 3a).

3. Spatial sensitivity study. We evaluate the predictabil-
ity of historical annual CO2 time series using DJF SLP
anomalies under different spatial domains in the periods
of 1959–2017 and 1980–2017. Then we use a 30-year
sliding window with annual AGRR to depict how the
predictability under various SLP domains evolves in the
period 1959–2017.

4. Temporal sensitivity study. We evaluate the predictabil-
ity of annual CO2 time series AGRR, SLDGVMs, and
CESM using DJF and MAM SLP anomalies under dif-
ferent time intervals. Sliding windows are employed at
time intervals of 15, 20, 30, and 40 years for historical
datasets and CESM, as well as 100, 500, and 2000 years
for CESM only. For the interval of 100 and 500 years,
we use the sliding window of a 50-year step and a
500-year step for the 2000-year interval. The intervals
shorter than 100 years are all in the 1-year step. We also
evaluate the error rate of the model in each sliding win-
dow of 15-, 20-, 30-, and 40-year lengths. The error rate
is calculated by the number of invalid predictions that
have significance P > 0.05 divided by the number of
total predictions within a given window.

Earth Syst. Dynam., 13, 1505–1533, 2022 https://doi.org/10.5194/esd-13-1505-2022
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Figure 1. Schematic representation of the statistical approach and model design, with an example of the selected time interval of 1959–
2017. (a) Fundamental principle of ridge regression. (b) Model training and validation under ridge regression leave-one-out cross-validation.
(c) Training and testing grouping through leave-one-out cross-validation.

5. Comparison with empirical orthogonal function analy-
sis. We compare the predictability of AGRR by apply-
ing ridge regression and a generalized linear model that
uses the principal components of SLP fields estimated
by empirical orthogonal function (see, e.g., von Storch
and Zwiers, 1999) decomposition as predictors. We first
select three different DJF SLP spatial domains (global,
18◦ N–18◦ S, and 18◦ N–72◦ S). For each spatial do-
main, we select the first 10 components of SLP anoma-
lies. When selecting the global SLP field, the first 10
components explain up to 75 % of the SLP variance

(see Fig. A14). We then reconstruct SLP fields based on
an increasing number of components from 1 (based on
component 1) to 10 components. These components are
used as predictors of AGRR in a simple linear regression
(also with leave-one-out cross-validation). The periods
1959–2017 and 1980–2017 are included (see Figs. A13
and A14).

https://doi.org/10.5194/esd-13-1505-2022 Earth Syst. Dynam., 13, 1505–1533, 2022
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Figure 2. (a) Standardized annual observed and modeled CO2 time series over the period 1959–2017 (AGRR in black, SLResid in red, and
SLDGVMs in yellow) and in the period 1980–2017 (SLCAMS in light blue and SLCarboScope in dark blue). The CO2 time series have all
been detrended as described in Sect. 2. Note that the AGRR, SLResid, and SLDGVMs in the period 1980–2017 are detrended data based on
their relevant period; compared with detrended data based on 1959–2017, the difference is negligible. (b) Pearson correlation of predicted
vs. observed and modeled CO2 time series based on the ridge regression with SLP fields (ρSLP) or teleconnection indices (ρTele) as pre-
dictors. Additionally, the Pearson correlation of predicted vs. observed and modeled CO2 time series by linear regression is based on the
single predictor of the SOI index (ρSOI). SLP fields, teleconnection indices, and SOI are aggregated for different seasons: DJF, MAM, and
DJF+MAM. Panel (b) shows results for 1959–2017 and panel (c) for 1980–2017. Note that in panel (c), the ρSLP of SLCAMS using MAM
SLP as a predictor has significance P = 0.09, and all others have significance P < 0.05.

3 Results and discussion

3.1 Global IAV patterns

In this section, we test the predictability of the global C-
cycle IAV by using different predictors: global SLP fields
by ridge regression, teleconnection indices by ridge regres-
sion, and the single SOI index by simple linear regression. In
this context, each detrended annual CO2 time series (includ-
ing AGRR, SLResid, SLDGVMs, SLCAMS, and SLCarboScope)
is predicted by the above predictors over DJF, MAM, and
DJF+MAM separately (Fig. 2). The predictability is evalu-
ated by the Pearson correlation (ρ) between the original and
predicted detrended annual CO2 time series. ρSLP, ρTele, and
ρSOI represent the predictability by using different predictors

of global SLP fields, teleconnection indices, and SOI, respec-
tively. Accordingly, the relevant ridge regression coefficients
with the above different predictors are represented as ωSLP,
ωTele, and ωSOI.

First, we find that the detrended annual CO2 time series are
generally consistent with each other except that the SLDGVMs
shows slight deviation (Fig. 2a). We find two anomalous
years (1987 and 1998), which show deviations larger than
2 standard deviations in most CO2 time series, both signi-
fying apparent AGR increases and subsequent lower land
sink (Fig. 2a). These two years correspond to strong El Niño
events, which are usually associated with below-average land
CO2 uptake (Keeling et al., 1995; van der Werf et al., 2004;
Bonan, 2016).

Earth Syst. Dynam., 13, 1505–1533, 2022 https://doi.org/10.5194/esd-13-1505-2022
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Figure 3. (a) Distribution of ridge regression coefficients of SLP with the time series of AGRR (top row), SLResid (center row), and
SLDGVMs (bottom row) in DJF (left column) and MAM (right column) based on SLP fields in the period 1959–2017. (b) Distribution of
ridge regression coefficients of teleconnection indices with AGRR, SLResid, and SLDGVMs. Both ωSLP and ωTele are the mean of the n= 54
run ridge regression coefficients.

https://doi.org/10.5194/esd-13-1505-2022 Earth Syst. Dynam., 13, 1505–1533, 2022
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Figure 4. Heat map of predictability with CO2 time series over various SLP latitude domains in DJF. Each heat map contains 5×5 squares,
and each square represents one domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦ N to 72◦ S. All
latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global-scale SLP. ρSLP of AGRR, SLResid,
SLDGVMs, SLCAMS, and SLCarboScope in 1980–2017 is shown here.

Global SLP and teleconnection indices show compa-
rable predictive skill of global C-cycle IAV in winter,
while teleconnection indices have higher predictive skill in
spring (Fig. 2b). In both periods, the value of ρSLP (except
SLDGVMs) is higher in DJF (0.51–0.70) than in MAM (0.29–
0.60). On the other hand, the values of ρTele are higher in
MAM (0.57–0.79) than in DJF (0.53–0.70). The relatively
low predictive skill of global SLP anomalies compared to
teleconnection indices might result from (1) limited sam-
ple size (less than 60 years) and a large number of predic-
tors (p = 800) for ridge regression training with global SLP
anomalies. But for teleconnection indices and SOI, the pre-
dictive skills are much less influenced by the limited sample
size due to their limited predictors (p ≤ 15 for teleconnec-
tion indices and p = 1 for SOI). As we increase the sample
size to over 100 years, the predictive skill of SLP anomalies
increases considerably, as is shown in temporal sensitivity
study (Fig. 6), and (2) the predictive skill of SLP anomalies
in explaining global C-cycle IAV can be reduced in domains
with large local rather than global impacts of atmospheric
variations to land carbon sinks (Jung et al., 2017). In such
domains, the SLP anomalies might show a strong relation-
ship to local C-cycle variations but a weaker link to global
C-cycle variations. Selecting the SLP domains with a higher
contribution to the global C-cycle variability could improve
the predictability, as is shown by the analyzes of the sensitiv-
ity of the results to the SLP spatial domains (Fig. 4).

We find that the ridge regression using the full SLP fields
as predictors yields generally higher predictability than that
of linear regression based on principal components of SLP
(see Figs. A13 and A14). In winter and in the SLP domain

of 18◦ N to 72◦ S, the linear regression based on the leading
principal components of SLP shows lower predictability that
the ridge regression for different numbers of components re-
tained (see Fig. A13, ρ < 0.7 in 1959–2017 and ρ < 0.75 in
1980–2017). The lower predictive skill of the linear regres-
sion based on the leading components of SLP might be due
to (1) principal component analysis capturing the main vari-
ances of the SLP field but not necessarily that of the main
patterns that influence CO2 IAV and the fact that, (2) mathe-
matically, ridge regression and principal component analysis
are deeply connected. Principal component analysis cuts off
all components with small variance beyond a certain thresh-
old, while ridge regression shrinks them, which allows for
information in low-variance components to be used for pre-
diction (van Wieringen, 2021). Thus, ridge regression might
reveal hidden components of SLP variability that are never-
theless important for CO2 IAV.

Compared to the predictive skill of teleconnection indices,
which includes a set of 14 teleconnection indices for the pe-
riod 1959–2017 and 15 for the period 1980–2017 as predic-
tors, the predictive skill of SOI is slightly lower or similar in
both seasons, with 0.53–0.67 in DJF and 0.60–0.74 in MAM
(Fig. 2). This is consistent with the dominant role of ENSO
in driving global C-cycle IAV, with other modes showing
fewer contributions. Such interpretation requires caution as
the indices cannot fully represent the complex atmospheric
dynamics.

The predictive skill of the combined winter and spring
global SLP anomalies reveals the different seasonal re-
sponses of global C-cycle IAV to large-scale atmospheric cir-
culation variability (Fig. 2). The predictive skill of SLP and

Earth Syst. Dynam., 13, 1505–1533, 2022 https://doi.org/10.5194/esd-13-1505-2022
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teleconnection indices in DJF+MAM is within the values for
DJF and MAM for most datasets and slightly higher than the
best-performing season for the predictive skill of SOI.

The predictive skill of SLP to SLResid is similar to
SLDGVMs in MAM and slightly higher than SLDGVMs in DJF.
The difference in the predictive skill of SLP to SLResid and
SLDGVMs in DJF may due to the fact that (1) compared to
SLResid, land sink IAV simulated by DGVMs is less sensitive
to DJF climate forcing (Bastos et al., 2018), and (2) SLResid
implicitly includes the variability from land use change as
well as ocean sink variations (Dufour et al., 2013; DeVries
et al., 2017; Friedlingstein et al., 2019).

We next compare the spatial patterns of the ridge regres-
sion coefficients of SLP and teleconnection indices in the pe-
riod of 1959–2017; the results of the period 1980–2017 can
be found in Figs. A4 and A5. The spatial patterns of the ωSLP
are similar for the three CO2 time series: positive coefficients
over the eastern tropical Pacific Ocean, negative coefficients
from Southeast Asia extending to Australia that together
are roughly consistent with ENSO, and negative coefficients
from the western Pacific (Fig. 3a). In winter the positive co-
efficients over the eastern tropical Pacific are higher than in
other regions, which are influenced by El Niño and La Niña,
respectively (Monahan, 2001; Hsieh, 2004; Rodgers et al.,
2004; Schopf and Burgman, 2006; Sun and Yu, 2009; Yu
and Kim, 2011): El Niño induces negative SLP anomalies
over the eastern Pacific and positive SLP anomalies over the
western Pacific (see King et al., 2020, Fig. 5). The results
are consistent with the land sink being negatively driven by
ENSO in winter: strong El Niño, decreased land sink; strong
La Niña, increased land sink. In spring, the area over the cen-
tral and western tropical Pacific also shows stronger coeffi-
cients and likely corresponds to a mix of different modes,
such as the ENSO, the western Pacific teleconnection, and
the Interdecadal Pacific Oscillation, all showing strong coef-
ficients in Fig. 3b (SOI, WP, and TPI indices). In Fig. A11
we show the anomalies in temperature and precipitation as-
sociated with these patterns, as well as those in NBP from
the two atmospheric inversions (see Fig. A12). Generally, the
temperature anomalies over the tropics show negative cor-
relations with annual land sink (SLP-driven AGRR) in both
winter (as high as −0.85) and spring (as high as −0.73),
while weaker but positive correlations are found in Eurasia.
Tropical precipitation anomalies show roughly positive cor-
relations in winter (as high as 0.73) and in spring (as high
as 0.67). This pattern indicates that AGRR is generally higher
for cooler and wetter conditions over the tropics and South-
ern Hemisphere semi-arid regions in both seasons, which re-
sult in increased NBP (see Fig. A12), as well as cooler but
predominantly drier conditions over Eurasia, which result in
a complex pattern of NBP anomalies (see Fig. A12). These
results are consistent with the strong ENSO fingerprint on
the IAV of global CO2 atmospheric growth rate and global
land sink, e.g., as pointed out by Piao et al. (2020) and with

the importance of southern semi-arid ecosystems (Ahlström
et al., 2015), for IAV in the global land sink.

The higher ridge regression coefficients of teleconnection
indices are consistent with the high-sensitivity domains of
the ridge regression coefficients of SLP corresponding to the
patterns of ENSO and WP (Fig. 3b). Our results show that
C-cycle IAV reveals a high positive sensitivity to SOI (0.18
to 0.21) and negative sensitivity to TPI (−0.24 to−0.28) and
WP (−0.09 to −0.15) in winter. High sensitivities are also
found for DMI in winter (negative) and AMO in spring (neg-
ative) (Fig. 3b). We find that the global C-cycle IAV is very
sensitive to TPI as well as SOI, which is not so obvious for
the spatial patterns of SLP ridge regression coefficients. TPI
is a hemispheric-scale index defined as the pressure anomaly
differences between the locations Hobart (43◦ S, 147◦ E) and
Stanley (52◦ S, 58◦W) (Pittock, 1980, 1984). We find the
TPI to be strongly anticorrelated with SOI in winter and
spring (−0.89 and −0.85, respectively). This might indicate
an amplification of ENSO impacts on C-cycle IAV due to
large-scale atmospheric circulation variability in the South-
ern Hemisphere.

However, the observed patterns of the ridge regression co-
efficients in teleconnection indices and SLP need to be in-
terpreted with caution, since these patterns are not necessar-
ily independent from each other. For example, the area from
Southeast Asia extending to Australia corresponds to a re-
gion influenced by several large-scale atmospheric circula-
tion modes: ENSO, the Indian Ocean Dipole (IOD), and the
Southern Annular Mode (SAM) (Cleverly et al., 2016). Inter-
actions between these modes have been shown to modulate
the occurrence of drought and extreme precipitation in semi-
arid areas of Australia and thus induce large interannual vari-
ability in gross primary productivity in the region (Cleverly
et al., 2016).

Compared to other CO2 datasets, the predictability of
SLDGVMs is higher when using SLP fields in MAM as predic-
tors rather than DJF (Fig. 2b). Moreover, ωSLP of SLDGVMs
exhibits distinct spatial patterns, especially in winter; ωSLP
for SLDGVMs shows higher values in the southern Pacific than
over the tropical Pacific region (Fig. 3a). Compared to histor-
ical results, predictability of SLDGVMs is lower by using win-
ter SLP as predictors in ridge regression rather than by using
spring SLP, and the spatial patterns of the ridge regression
coefficients for SLDGVMs are slightly different. These differ-
ences might be an indication of shortcomings of DGVMs in
simulating the sensitivity of land sink to climatic drivers.

The general match of spatial patterns of the ridge regres-
sion coefficients using SLP and the teleconnection indices
as predictors of global C-cycle IAV indicates that SLP can
capture the spatial distribution of the atmospheric patterns
that influence IAV, with the advantage of being more flexi-
ble than teleconnection indices, since it does not require pre-
defined definitions. However, the short sample size and the
large number of predictors for ridge regression training hin-
der the performance of SLP anomalies, especially the lower
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Figure 5. Predictability of AGRR with DJF SLP over various latitude domains. A 30-year sliding window in the period 1959–2017 with a
1-year step is created. The starting and end year of each interval is labeled on the top of each heat map. Here we only show the results of
every second starting year; the full results are in Fig. A9.

predictability when using SLP anomalies rather than telecon-
nection indices in spring. Reducing the number of predictors
(smaller domains of SLP anomalies) or increasing the sample
size (longer time interval) for ridge regression training could
improve the predictive skill of SLP anomalies. Therefore, in
the next subsections, we conduct a spatial and temporal sen-
sitivity study of the global C-cycle to SLP anomalies.

3.2 Sensitivity to the SLP domains

Here, we test the sensitivity of the global C-cycle IAV pre-
dictability by using different spatial domains of SLP as pre-
dictors in ridge regression. The SLP domains are selected
over different latitudinal bands in DJF and MAM separately
(Fig. 4). We find improved predictability in both seasons
when selecting smaller spatial domains (particularly includ-
ing the tropics to high latitudes of the Southern Hemisphere)
rather than global SLP anomalies. MAM fields show lower
predictability in general and are less sensitive to the spatial
domain considered. In the following, we show the results for
DJF; the results for MAM can be found in Fig. A7. Here we

only show the results of the period 1980–2017. The results
of the period 1959–2017 show a similar trend (see Fig. A6).

Consistent with previous studies (Zeng et al., 2005; Piao
et al., 2020), the tropical domain corresponds to higher
predictability for all datasets, but stronger predictability is
found for regions extending from the tropics to the Southern
Hemisphere (Fig. 4). Including the Northern Hemisphere re-
gions results in lower predictability. The domain 18◦ N–72◦ S
shows the highest predictability, with ρSLP of 0.81 for AGRR
and 0.85 for SLResid in 1980–2017.

The results for net atmosphere–land fluxes estimated by
atmospheric inversions are consistent with those of AGRR,
with ρSLP of 0.70 for SLCAMS and 0.76 for SLCarboScope
in the same domain of 18◦ N–72◦ S. The values of ρSLP of
SLDGVMs are systematically lower than the other datasets,
independently of the domain.

The weaker values of predictability when extending SLP
domains from the tropics to the Northern Hemisphere (Fig. 4)
might be due to the local rather than global impacts of
large-scale atmospheric circulation variability in the North-
ern Hemisphere to land sink IAV. Additional explanations
include the fact that carbon fluxes are weaker in the winter
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Northern Hemisphere so that large-scale atmospheric circu-
lation variability exerts a weaker influence in the global land
sink and that there are strong compensatory effects of gross
primary productivity versus terrestrial ecosystem respiration
in the Northern Hemisphere in response to water and temper-
ature variations (Jung et al., 2017; Wang et al., 2022).

The increasing predictability of global C-cycle IAV when
using SLP fields extending from the tropics to the Southern
Hemisphere (Fig. 4) is likely due to the strong contribution
of semi-arid regions in the Southern Hemisphere extratrop-
ics to the global sink through their drought–wet anomalies
(Poulter et al., 2014; Ahlström et al., 2015). The drought–wet
anomalies in these regions are controlled by large-scale at-
mospheric circulation variability in the Southern Hemisphere
(ENSO and ENSO related modes) and to the interactions be-
tween ENSO and other large-scale atmospheric circulation
modes in the Southern Hemisphere, such as the synergistic
effects from ENSO, IOD, and the SAM on Australia C-cycle
variability (Cleverly et al., 2016).

3.3 Sensitivity to the temporal domains

Because of multidecadal variability in the climate system,
it is possible that the relationships found for short intervals
are not stable. In order to investigate whether these results
depend on the temporal domain considered, we additionally
analyze the influence of different temporal domains (30-year
interval sliding window) on the predictability of global C-
cycle IAV by selecting different temporal domains and per-
forming the ridge regression separately for the global and the
tropical domains (Fig. 5).

Results show stronger predictability of AGRR confined to
the tropics of SLP domains in earlier periods and an intensi-
fication of this predictability for the SLP domains extend-
ing to the Southern Hemisphere over the study period. In
some periods, the tropics and southern extratropics show the
highest values of ρSLP, for example in 1978–2011 and 1984–
2015 (Fig. 5). There is, however, high temporal variability in
the predictability and the most relevant spatial domain, with
other periods showing higher global coherence (e.g., 1968–
2001). It is unclear whether these temporal variations occur
randomly due to internal variability in the climate system or
are influenced by external forcing. Potential explanations for
this pattern include trends found in SLP variability over the
Pacific and southern Atlantic (Schneider et al., 2012; IPCC,
2013; Roxy et al., 2019) or enhanced sensitivity of C-cycle
variability to climatic drivers, particularly in semi-arid areas,
under progressive climate change (Wang et al., 2014; Poulter
et al., 2014).

Understanding and attributing these changes to given pro-
cesses are beyond the scope of this study, but these results
highlight the importance of the temporal domain when ana-
lyzing IAV in the global C-cycle. Since the observed CO2
time series are short and cover only limited temporal do-
mains, results are likely to be affected by multidecadal inter-

nal climate variability, in addition to external forcing. More-
over, the data-driven ridge regression method to quantify
circulation-induced global C-cycle variability uses a large
number of predictors, while only relatively short time se-
ries are available for training, which may negatively affect
the model’s performance. Therefore, we further test the sen-
sitivity of the predictability to the length of the time series
(Fig. 6). We test the predictability of global C-cycle IAV
for different lengths of the temporal domain: 15, 20, 30, and
40 years for the datasets in the Global Carbon Budget 2018
as well as CESM simulations and 100, 500, and 2000 years
for CESM only.

The box plots in Fig. 6 show the distribution of predictabil-
ity calculated for multiple time intervals, with each time in-
terval using a sliding window over the whole period of the
respective time series of AGRR, SLDGVMs, and CESM. The
spread of predictability provides an indication of internal
variability in the predictability of global C-cycle IAV due
to the choice of temporal domain and the uncertainty in the
ridge regression fit for a large number of predictors and com-
paratively small number of training samples.

We find that the longer the time interval the higher the
mean predictability and the smaller the variation, i.e., the less
dependent the results are on the temporal domain considered
(Fig. 6). However, the mean value tends to be lower than the
median for intervals shorter than 30 years and similar to the
median for longer intervals. The lower mean is influenced by
some domains with very low or even negative predictability
from invalid predictions in shorter time intervals.

The mean predictability of AGRR in winter for the global
domain increases from 0.45 to 0.61 from 15 to 40 years,
respectively, while the spread (maximum ρSLP−minimum
ρSLP) decreases from 1.04 to 0.18. Predictability for
SLDGVMs is consistent with those of AGRR, with system-
atically lower mean predictability for winter and higher for
spring, but similar spread in both. The mean value of pre-
dictability for CESM in SLP DJF over the global domain
increases from 0.42 (15 years) to 0.57 (40 years) and to
0.84 (2000 years), and the spread decreases from 1.72 to 0.72
and to 0.008, respectively.

At global scale, the predictive skill of SLP anomalies with
AGRR and with models from SLDGVMs and CESM is differ-
ent in winter and spring (Fig. 6). Predictability of AGRR is
higher with winter SLP (ρSLP is 0.61 in 40-year DJF), but
predictability of SLDGVMs and CESM is higher with spring
SLP (ρSLP in 40-year MAM is 0.70 and 0.65, respectively).

When limiting the SLP domain to the tropics, results fol-
low the same patterns as those at the global scale, but with
better predictive skill: AGRR shows the highest mean pre-
dictability of 0.74 for intervals of 40 years in winter (Fig. 6).
SLDGVMs shows the highest mean predictability, with ρSLP
of 0.73 for 40 years in spring (Fig. 6), a result that is very
similar to those of CESM for the same temporal length
(ρSLP = 0.70). We find that with different time intervals,
tropical SLP in winter leads to higher predictability of AGRR
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Figure 6. Predictability of AGRR, SLDGVMs, and CESM NBP under various time intervals. The predictability of AGRR and SLDGVMs is
within the period 1959–2017, with a 1-year step sliding window of 15, 20, 30, and 40 years. The predictability of CESM is in the period 1000–
5000 and covers extra intervals of 100, 500, and 2000 years. The distribution of the predictability under each sliding window with SLP in
DJF global, MAM global, DJF tropical, and MAM tropical is shown. Tropical domains are 18◦ N–18◦ S for SLP as predictors in predicting
AGRR and SLDGVMs, as well as 20◦ N–20◦ S for SLP as predictors in predicting CESM. Note that the mean values are shown as black dots.

than global SLP fields. The spring tropical SLP only shows
slightly higher predictive skill than global SLP for SLDGVMs
and CESM. AGRR is highly influenced by winter tropical
SLP, while SLDGVMs and CESM are more sensitive to spring
tropical SLP (Fig. 6). This is consistent with the results of
Fig. 4 even when different time intervals are considered. This
might be due to the fact that Earth system models, as CESM
used here, have been found not to reliably simulate the sea-
sonal timing of ENSO occurrence (Sheffield et al., 2013).
The predictive skill of SLP in seasonal and domain differ-
ences between observation-based data and models (SLDGVMs
and CESM) could be used as an indicator to reveal their dif-
ferent driving mechanisms.

We evaluate the error rate of valid predictions within each
time interval sliding window in Fig. 6 (i.e., the fraction of
predictions in one time interval sliding window with ρSLP
of significance P > 0.05) for AGRR, SLDGVMs, and CESM
(see Fig. A10). We find that at least 30-year-long intervals
are needed for robust prediction of global C-cycle IAV. For
periods shorter than 30 years, the rate of invalid predictions
(in the sense given above) can be higher than 40 % for most

datasets and SLP domains and seasons. It is worth noting
that even when predicting AGRR by using winter SLP in the
tropical domain, the error rate can still be as low as 13 % in
a 15-year interval. From the 15- to 30-year interval, the er-
ror rate of AGRR is reduced from 0.4 to 0 in winter global
and 0.13 to 0 in winter tropical. The error rate decreases to
less than 0.16 in a 30-year interval except that AGRR de-
creases to 0.24 in spring global, which also matches the rela-
tive low predictability of spring SLP anomalies in the period
1980–2017 with different spatial domains (see Fig. A7b). All
error rates are reduced to almost zero in a 40-year interval.

4 Conclusions

The major objective of this study is to explore the rela-
tionship between SLP anomalies (as a proxy for large-scale
atmospheric circulation variability) and the global C-cycle
IAV. Specifically, our goals are (1) to investigate the skill
of SLP to predict global C-cycle IAV using ridge regression
as well as to compare with traditional teleconnection indices
and (2) to establish statistical links at different spatiotempo-
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ral scales between large-scale atmospheric circulation vari-
ability and global C-cycle IAV.

First, we find that boreal winter and spring SLP anoma-
lies allow predicting IAV of atmospheric CO2 growth rate
and IAV of the global land sink, with correlations between
predicted and reference values between 0.70 and 0.84 when
using winter SLP fields. This is comparable to or higher than
the predictive skill of a similar model using 15 teleconnec-
tion indices as predictors. The spatial patterns of the ridge
regression coefficients reveal a strong influence of large-scale
atmospheric circulation variability on global C-cycle IAV,
particularly in the El Niño–Southern Oscillation and west-
ern Pacific domains. Second, the comprehensive spatiotem-
poral sensitivity analysis indicates an increasing sensitivity
of global C-cycle IAV to large-scale atmospheric circulation
variability during boreal winter in the Southern Hemisphere
extratropics in the recent decades. This increased sensitivity
may be influenced by internal climate variability or by en-
hanced sensitivity of global C-cycle variability to externally
forced changes but requires further research. Finally, we find
that time series of at least 30 years are needed for robust pre-
dictability of global C-cycle IAV. For shorter time series, pre-
dictability is highly dependent on the particular period con-
sidered and thus largely due to statistical artifacts of random
internal climate variability in the fitting process.

Overall, ridge regression using seasonal SLP fields as pre-
dictors of global C-cycle variability provides a novel and ef-
ficient data-driven approach for detecting the relationship of
large-scale atmospheric circulation variability to global C-
cycle variability. Compared to teleconnection indices, this
approach requires no predefined spatial configurations, is
more flexible to the particular domain considered, and shows
equal or higher predictability of global C-cycle IAV. This
method allows quantifying the contribution of atmospheric
dynamical processes in driving variability in the C-cycle at
global and regional scales and may further be useful for at-
tributing observed changes to internal climate variability ver-
sus anthropogenic climate change.

Appendix A

Figure A1. ρSLP of AGRR, SLResid, and SLDGVMs under different
DJF SLP resolution (2◦× 2◦, 5◦× 5◦, 9◦× 9◦) by ridge regression
leave-one-out cross-validation in the period of 1959–2017.

Figure A2. ρSLP of AGRR, SLResid, and SLDGVMs under dif-
ferent seasonal SLP (with different month combination) by ridge
regression leave-one-out cross-validation in the period of 1959–
2017. Each combination represents NDJ (November, December,
and January), DJF (December, January, and February), JFM (Jan-
uary, February, and March), MAM (March, April, and May), and
AMJ (April, May, and June).
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Figure A3. Time series autocorrelations of pre-treated CO2 time series in the period (a) 1959–2017 for AGRR, SLResid, and SLDGVMs.
(b) 1980–2017 included two more inversions: SLCAMS and SLCarboScope. The shaded areas are the 95 % confidence interval of the calculated
autocorrelation under different lags.
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Figure A4. Distribution ofωSLP with the time series of AGRR (top row), SLResid (second row), SLDGVMs (third row), SLCAMS (fourth row),
and SLCarboScope (last row) in DJF (left column) and MAM (right column) based on SLP fields in the period 1980–2017. ωSLP represents
the mean of the n= 34 run ridge regression coefficients. Note that ρSLP of SLCAMS MAM has P > 0.5.
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Figure A5. Distribution of ωTele with the time series of AGRR, SLResid, SLDGVMs, SLCAMS, and SLCarboScope based on teleconnection
indices in the period of 1980–2017.

Figure A6. Heat map of ρSLP with CO2 time series over various SLP latitude domains in DJF. Each heat map contains 5× 5 squares, and
each square represents one domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦ N to 72◦ S. All
latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global-scale SLP. ρSLP of AGRR, SLResid,
and SLDGVMs in 1959–2017.
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Figure A7. Heat map of ρSLP with CO2 time series over various SLP latitude domains in MAM. Each heat map contains 5× 5 squares,
and each square represents one specific domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦ N to
72◦ S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global-scale SLP. The time series
is from (a) 1959–2017 for AGRR, SLResid, and SLDGVMs. (b) 1980–2017 included two more inversions: SLCAMS and SLCarboScope.
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Figure A8. Heat map of ρSLP with CO2 time series over various SLP latitude domains in DJF+MAM. Each heat map contains 5×5 squares,
and each square represents one specific domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦ N to
72◦ S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global-scale SLP. The time series
is from (a) 1959–2017 for AGRR, SLResid, and SLDGVMs. (b) 1980–2017 included two more inversions: SLCAMS and SLCarboScope.
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Figure A9. Heat map of ρSLP of AGRR with DJF SLP over various latitude domains. A 30-year sliding window in the period of 1959–2017
with a 1-year step is created. The starting and end year of each interval is labeled on the top of each heat map.
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Figure A10. Error rate of the sliding window in 15-, 20-, 30-, and 40-year intervals. For each sliding window, the error rate is calculated by
the number of invalid predictions (with significance P > 0.05 in ρSLP of CO2 time series) divided by the number of total predictions. With
SLP in DJF global, MAM global, DJF tropical, and MAM tropical as predictors, the error rates of ρSLP of (a) AGRR, (b) SLDGVMs, and
(c) CESM are plotted.

Figure A11. The spatial distribution of Pearson correlations between global SLP-predicted AGRR (one time series) and global pixel-based
land temperature and precipitation anomalies (both from the CRU TS4.05 Harris et al., 2020, monthly dataset, aggregated to annual mean
temperature and annual sum precipitation, detrended by LOWESS) in the period 1980–2017. The top panel shows the spatial distribution of
Pearson correlations between pixel-based land temperature anomalies and global SLP-predicted AGRR for DJF (left) and MAM (right), and
the bottom panel shows Pearson correlations of land precipitation anomalies.
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Figure A12. The spatial distribution of Pearson correlations between global DJF–MAM SLP-predicted AGRR (one time series) with pixel-
based annual sum NBP variation (LOWESS detrended) from the atmospheric inversion CarboScope s76 (Bastos et al., 2020; Chevallier et al.,
2005; Rödenbeck et al., 2003) (upper panel) and CAMS (Bastos et al., 2020; Chevallier et al., 2005; Rödenbeck et al., 2003) (lower panel)
in the period 1980–2017.

Figure A13. Comparison of linear regression based on SLP principal components to ridge regression based on SLP fields in the period of
(a) 1959–2017 and (b) 1980–2017. The label of the y axis shows the Pearson correlation between the predicted and original CO2 time series.
The solid lines represent the results by using the linear regression based on a different number of SLP principal components as predictors.
The dashed lines represent the results by using ridge regression. Differently colored lines represent different SLP spatial domains selected.
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Figure A14. The explained variance of SLP principal components extracted from global DJF SLP fields in the period of 1959–2017 (a) and
1980–2017 (b).
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