

Supplement of

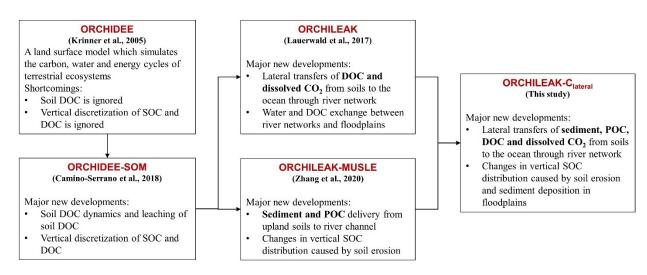
Estimating the lateral transfer of organic carbon through the European river network using a land surface model

Haicheng Zhang et al.

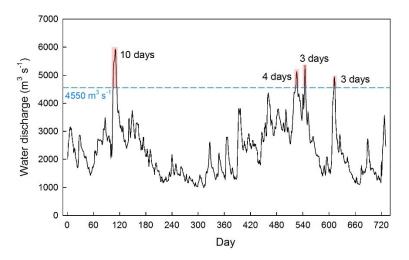
Correspondence to: Haicheng Zhang (haicheng.zhang@ulb.be)

The copyright of individual parts of the supplement might differ from the article licence.

Abbreviation	Description
A	Upstream drainage area (m ²)
Cebank	Fraction of sediment deficit that can be complemented by erosion of river bank each day (0-unitless)
Cebed	Fraction of sediment deficit that can be complemented by erosion of river bed each day (0-1, unitless)
Cflddep	Daily deposited fraction of the suspended sediment in flooding waters (0-1, unitless)
Ciday	Daily actual cover management factor (unitless, 0-1)
Cref	Assumed reference cover management factor of MUSLE (unitless, 0-1)
Crivdep	Daily deposited fraction of the sediment surplus (0-1, unitless)
DAi	Drainage area of headwater basin i (m ²)
DOC	Dissolved organic carbon
DOCı	Labile DOC pool
DOCr	Refractory DOC pool
Eh2o	Evaporation of flooding water (m3 day ⁻¹)
f_A_fid	Fraction of floodplain area in each grid cell (0-1, unitless)
friv	Fraction of river surface in each grid cell (0-1, unitless)
$m{F}_{bed2fld_k}$	Transformation of sediment (k=sed, g day ⁻¹) and POC (k= POC g C day ⁻¹) deposited in rive channel to the floodplain soil
Fbero_k	Sediment (k =sed, g day ⁻¹) or carbon (k = POC, DOC or CO ₂ , g C day ⁻¹) entering the target river segment due to erosion of river bank
F down2fld_k	Water $(k=h2o,m^3 day^{-1})$, sediment $(k=sed, g day^{-1})$ or carbon $(k=POC, DOC \text{ or } CO2, g C da 1)$ flow from the target river segment to the neighbouring downstream floodplain
Fdown2riv_k	Water ($k=h2o$,m ³ day ⁻¹), sediment ($k=sed$, g day ⁻¹) or carbon ($k=POC$, DOC or CO_2 , g C day ⁻¹) flow from the target river segment to the neighbouring downstream river
F_{DR_k}	Water $(k=h2o,m^3 day^{-1})$ or carbon $(k=DOC \text{ or } CO_2, g C day^{-1})$ flow from upland to the slow water reservoir through drainage
F_{fd_k}	Water $(k=h2o,m^3 day^{-1})$, DOC $(k=DOC \text{ g C } day^{-1})$ or CO2 $(k=CO2 \text{ g C } day^{-1})$ infiltrated to floodplain soil, or sediment $(k=sed, \text{ g } day^{-1})$ or POC $(k=POC \text{ g C } day^{-1})$ deposition on floodplain
$F_{fld2riv_k}$	Water $(k=h2o,m^3 day^{-1})$, sediment $(k=sed, g day^{-1})$ or carbon $(k=POC, DOC \text{ or } CO_2, g C day^{-1})$ input from flooding water to the target river segment
F Fout_k	Water $(k=h2o,m^3 \text{ day}^{-1})$, sediment $(k=sed, \text{ g day}^{-1})$ or carbon $(k=POC, DOC \text{ or } CO_2, \text{ g C da}^{-1})$ flow from fast reservoir to stream reservoir
Fpoc_i	Daily decomposition rate of POC in water reservoir i (g C day ⁻¹ , i = fast, stream, flooding water)
F rd_k	Sediment (k =sed, g day ⁻¹) or carbon (k = POC, DOC or CO ₂ , g C day ⁻¹) deposition in river channel
Frero_k	Sediment (k =sed, g day ⁻¹) or carbon (k = POC, DOC or CO ₂ , g C day ⁻¹) entering the target river segment due to erosion of river bed
FRO_k	Water $(k=h2o,m^3 day^{-1})$, sediment $(k=sed, g day^{-1})$ or carbon $(k=POC, DOC \text{ or } CO_2, g C day^{-1})$ flow from upland to the fast water reservoir through surface runoff
ftopo	Topographic index of each headwater basin (unitless)
Fup2fld_k	Water ($k=h2o$,m ³ day ⁻¹), sediment ($k=sed$, g day ⁻¹) or carbon ($k=POC$, DOC or CO_2 , g C day 1) flow from upstream river segment to the neighbouring downstream floodplain


Table S1 Abbreviation used in this study.

F _{up2riv_k}	Water ($k=h2o$,m ³ day ⁻¹), sediment ($k=sed$, g day-1) or carbon ($k=POC$, DOC or CO_2 , g C day 1) input from upstream river segments to the target river segment
Ih2o	Infiltration of flooding water (m ³ day ⁻¹)
Ki	Soil erodibility factor of MUSLE in headwater basin <i>i</i> (Mg MJ ⁻¹ mm ⁻¹)
LSi	The combined dimensionless slope length and steepness factor MUSLE in headwater basin i (unitless, $0-1$)
PFT	Plant functional type
POC	Particulate organic carbon
POCa	Active POC pool
POC _p	Passive POC pool
POC s	Slow POC pool
Pref	Factor of erosion control practices (unitless, 0-1)
q ave	Long-term average stream flow rate (m ³ s ⁻¹)
q i_ref	Daily peak flow rate at the outlet of headwater basin <i>i</i> under the assumed reference runoff condition (m ³ s ⁻¹)
Q_{i_ref}	Total water discharge at the outlet of headwater basin <i>i</i> for the daily reference runoff condition $(m^3 day^{-1})$
q iday	Stream flow rate on day $i(m^3 s^{-1})$
R 30_k	The maximum half-hour runoff in each day (mm 30-min ⁻¹)
R 30_ref	Assumed reference daily maximum 30-minutes runoff (mm 30-min ⁻¹)
R iday	Daily total surface runoff (mm day ⁻¹)
R ref	Assumed reference daily total runoff (= 10 mm day^{-1})
Sdeep	Soil layer under 2 m depth
Sfast_k	Water ($k=h2o$,m ³), sediment ($k=sed$, g) or carbon ($k=POC$, DOC or CO_2 , g C) storage in the fast water reservoir (i.e. the upland surface runoff)
S _{fld_k}	Water ($k=h2o$,m ³), sediment ($k=sed$, g) or carbon ($k=POC$, DOC or CO_2 , g C) storage in the flooding water reservoir
S _{i_ref}	Daily sediment delivery from headwater basin <i>i</i> under a given set of reference runoff and vegetation cover conditions (Mg day ⁻¹ basin ⁻¹)
S iday	Actual daily sediment delivery from land to river a specific $0.5^{\circ} \times 0.5^{\circ}$ grid cell (g day ⁻¹ grid ⁻¹)
SOC	Soil organic carbon
Spoc_i	Stock of POC in each water reservoir (g C day ⁻¹ , i = fast, stream, flooding water)
S ref	Total sediment delivery from land to river in a specific $0.5^{\circ} \times 0.5^{\circ}$ grid cell under reference runoff and vegetation cover conditions (g day-1 grid-1)
Sriv_k	Water ($k=h2o$,m ³), sediment ($k=sed$, g) or carbon ($k=POC$, DOC or CO^2 , g C) storage in the stream water reservoir
ТС	Sediment transport capacity (g m ⁻³)
ТОС	Total organic carbon
Twater	Temperature of water reservoirs (°C)
t fast	Default water residence time of the fast reservoir (= 3 days)
$ au_{flood}$	Default water residence time of the flooding water reservoir (= 3 days)
TPOC_i	the turnover time of the <i>i</i> (active, slow and passive) POC pool (year)


ω

Coefficient of proportionality for calculating sediment transport capacity (unitless)

Figures in Supplementary Information

- 6 Figure S1 Properties and the developing history of the ORCHIDEE branches mentioned in this
- 7 study.

10 **Figure S2** Comparison between the return period of daily bankfull flow (*P*_{flooding}) and the return

period of flooding event. When the threshold of bankfull flow is set to 4550 m³ s⁻¹, $P_{flooding}$

12 shown in this figure is 0.1 year as the bankfull flow occurred in 20 days during the investigated

time of two years. But the return period of flooding event is 0.5 year as there are four flooding

14 events.

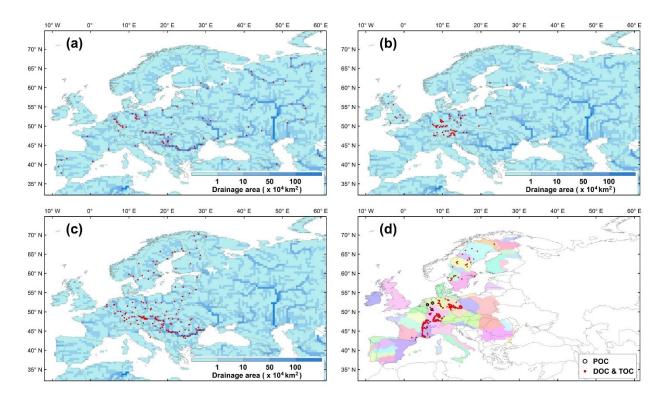
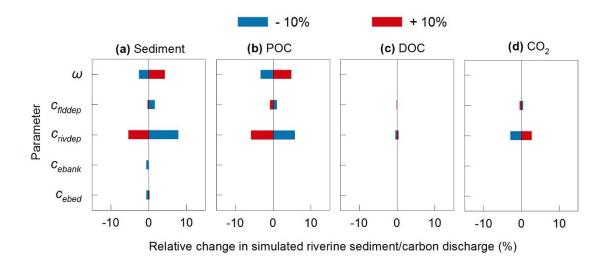



Figure S3 Geographical location of the gauging stations for river discharge (a), bankfull flow
(b), sediment discharge (c) and riverine organic carbon discharge (d) used in this study. Figure
(d) also shows the spatial distribution of 57 catchments in Europe. The simulated average net soil
loss rates (g m⁻² yr⁻¹) of these 57 catchments were compared to the average net soil loss rates
extracted from the sediment delivery data provided by the ESDAC (see section 2.3 of the main
text).

Figure S4 Relative changes in simulated riverine sediment and carbon discharges with 10% increase and decrease in parameters controlling sediment transport in river network. ω is the coefficient of proportionality for calculating sediment transport capacity (Eq. 8); c_{flddep} is the daily deposited fraction of the sediment surplus in flooding reservoir (Eq. 11); c_{rivdep} is the daily deposited fraction of the sediment surplus in stream reservoir (Eq. 5); c_{ebank} is the fraction of sediment deficit that can be complemented by erosion of river bank (Eq. 6); c_{ebed} is the fraction of sediment deficit that can be complemented by erosion of river bed (Eq. 6).

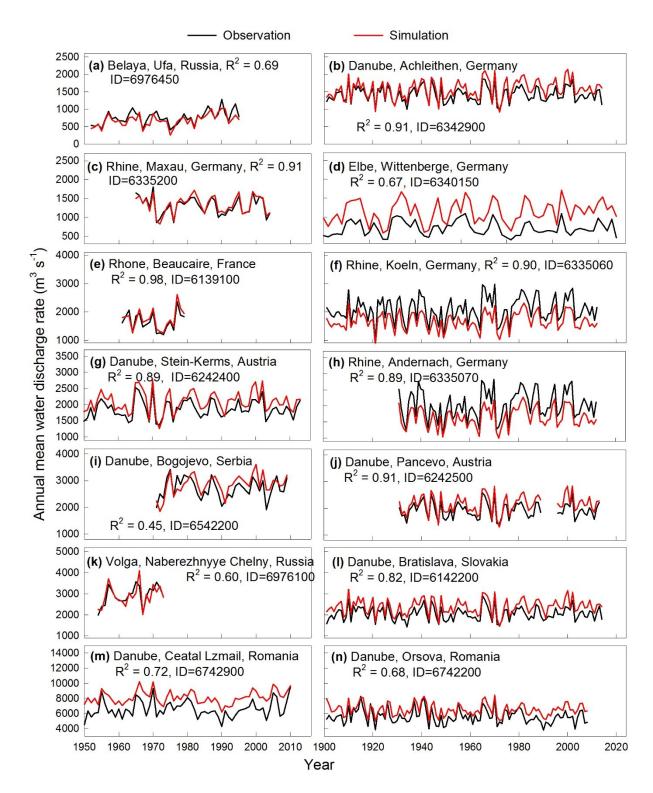
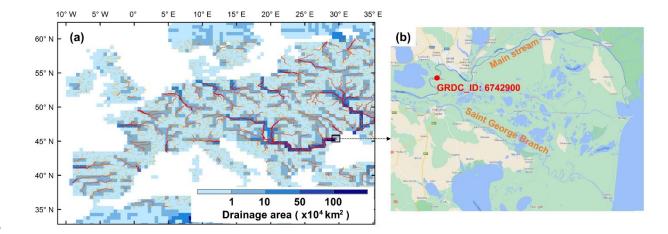



Figure S5 Comparison between the simulated and observed time series of mean annual water
discharge rates at 14 gauging stations.

36

Figure S6 (a) Comparison between the river network extracted from the STN-30p database at
0.5° resolution (blue) (i.e. the forcing data of stream flow directions used in this study) and the
river network derived from the HydroSHEDS DEM data at 3" resolution (red); (b) the real river
network in the estuary region of the Danube River (obtained from © Google Maps). GRDC ID

41 denotes the identify number of the gauging station in the GRDC database (Table 1).

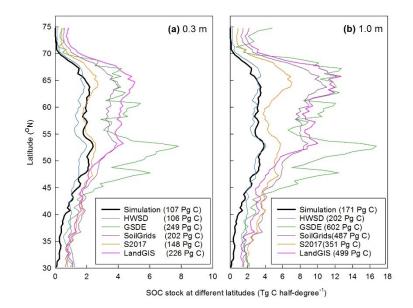


Figure S7 Comparison between the simulated SOC stock by ORCHIDEE-Clateral and those
obtained from five soil databases. Figure (a) and (b) showed the SOC stocks in the 0-0.3 m and
0-1.0 m soil layer, respectively. Value in the legend following the name of each soil database is
the total SOC stock in the whole Europe. Sources of the soil databases used in this figure can be
found in Table 1.

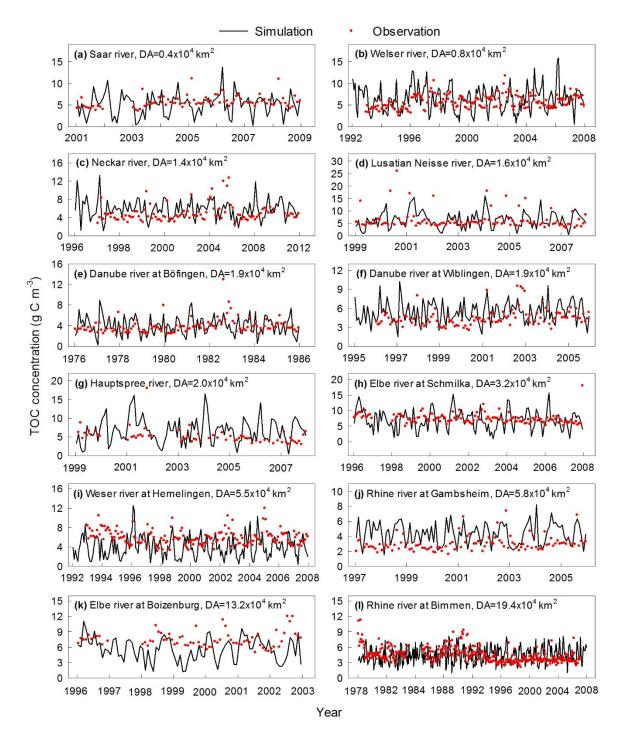


Figure S8 Comparison between simulated and observed concentrations of total organic carbon
(TOC) in representative European rivers. DA is the drainage area of the corresponding gauging
station.

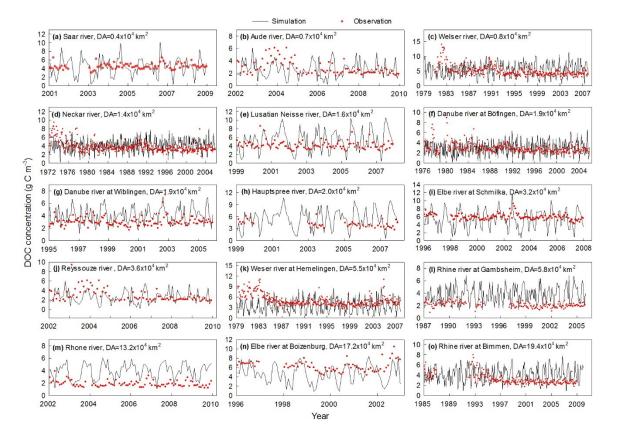
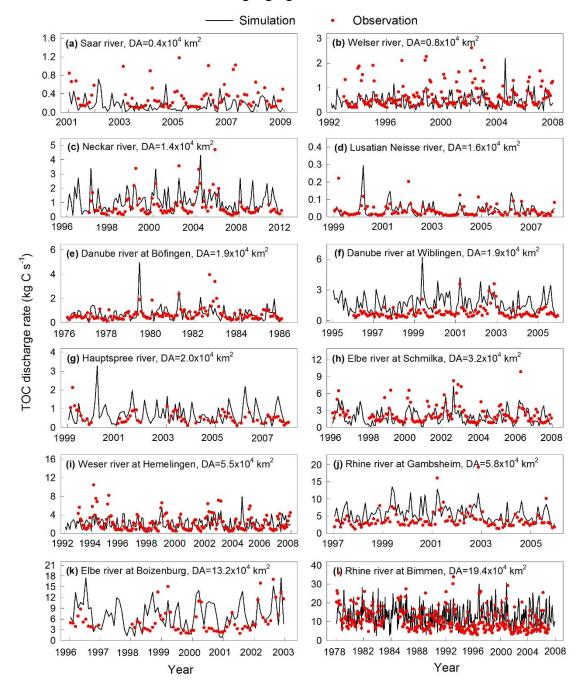
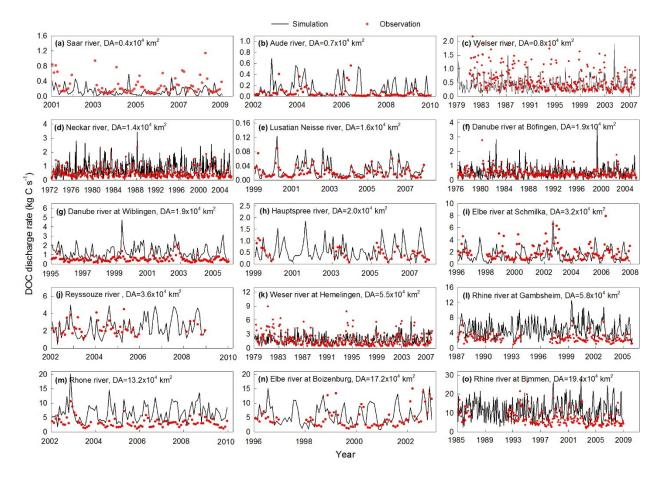
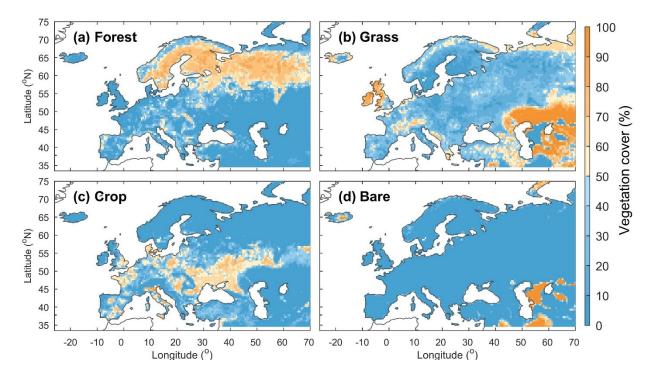


Figure S9 Comparison between simulated and observed concentrations of dissolved organic
 carbon (DOC) in representative European rivers. DA is the drainage area of the corresponding


Figure S10 Comparison between simulated and observed discharge rates of total organic carbon
 (TOC) in representative European rivers. DA is the drainage area of the corresponding gauging

61 station.

Figure S11 Comparison between simulated and observed discharge rates of dissolved organic

- 64 carbon (DOC) in representative European rivers. DA is the drainage area of the corresponding
- 65 gauging station.

Figure S12 Land cover fraction of forest, grassland, cropland and bare soil (e.g. desert,

69 waterbodies and bare rock) in each $0.5^{\circ} \times 0.5^{\circ}$ grid cell in Europe during the period 1901-2014.

- For the Europe, the land cover fraction of forest, grassland, cropland and bare soil are 30.0%,
- 71 41.1%, 21.1% and 7.8%, respectively.

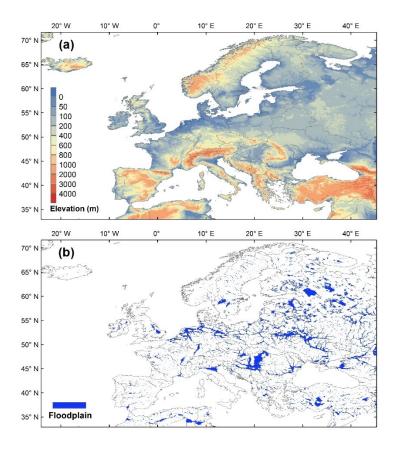
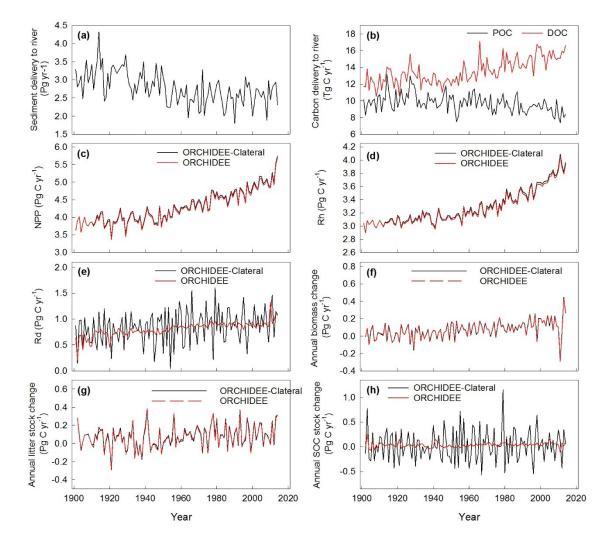
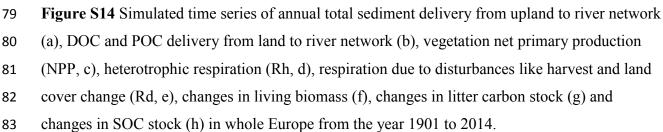
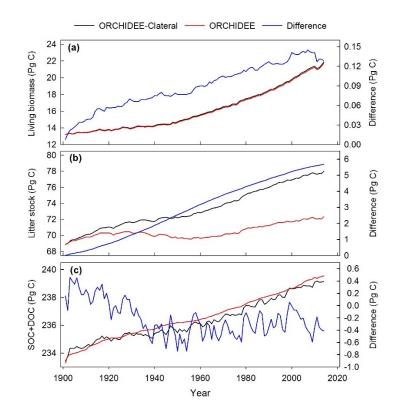





Figure S13 Spatial distribution of elevation (a) and floodplains (b) in Europe. Elevation and
floodplain distribution data are obtained from the ASTER GDEM v3 (Abrams et al., 2020) and
GFPLAIN250m (Nardi et al., 2019), respectively.

Figure S15 The simulated time series of living vegetation biomass (a), litter carbon pool (b) and

total soil organic carbon pool (SOC+DOC, c) by ORCHIDEE-C_{lateral} and ORCHIDEE (i.e.

87 ORCHIDEE-C_{lateral} with deactivated soil erosion and routing module) in whole Europe from the

year 1901 to 2014. The blue line in each subplot is the difference between the simulated results

89 from ORCHIDEE-C_{lateral} and ORCHIDEE.

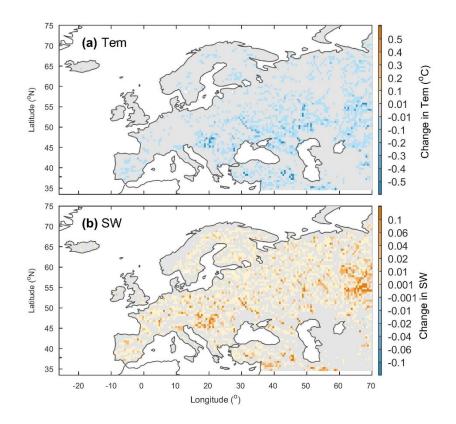


Figure S16 Changes in soil temperature (Tem, °C) and soil wetness (SW, unitless) above wilting
point due to the lateral carbon transport. The change of Tem was calculated as Tem_{lat} - Tem_{nolat},
where Tem_{lat} and Tem_{nolat} are the soil temperatures when lateral carbon transport is considered
and ignored, respectively. The change of SW was calculated in the same method as the Tem.

- 96 References:
- Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bastrikov, V., De Vos, B., Gielen, B., Gleixner, G., Jornet Puig, A., Kaiser, K., Kothawala, D., Lauerwald, R., Peñuelas, J., Schrumpf, M., Vicca, S., Vuichard, N.,
- 99 Walmsley, D., and Janssens, I. A.: ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved
- 100 organic carbon (DOC) dynamics along vertical soil profiles in Europe. Geosci. Model Dev., 11, 937-957, 2018.
- 101 Guimberteau, M., Drapeau, G., Ronchail, J., Sultan, B., Polcher, J., Martinez, J. M., Prigent, C., Guyot, J. L.,
- 102 Cochonneau, G., Espinoza, J. C., Filizola, N., Fraizy, P., Lavado, W., De Oliveira, E., Pombosa, R., Noriega,
- L., and Vauchel, P.: Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new
 datasets. Hydrol. Earth Syst. Sci., 16, 911-935, 2012.
- Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and
 Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system.
 Global Biogeochem. Cycles, 19, 2005.
- 108 Lauerwald, R., Regnier, P., Camino-Serrano, M., Guenet, B., Guimberteau, M., Ducharne, A., Polcher, J., and Ciais,
- P.: ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial–
 aquatic continuum of the Amazon basin. Geosci. Model Dev., 10, 3821-3859, 2017.
- 111 Zhang, H., Lauerwald, R., Regnier, P., Ciais, P., Yuan, W., Naipal, V., Guenet, B., Van Oost, K., and Camino-
- Serrano, M.: Simulating Erosion-Induced Soil and Carbon Delivery From Uplands to Rivers in a Global Land
 Surface Model. J. Adv. Model. Earth Syst., 12, e2020MS002121, 2020.
- 114
- 115