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Abstract. Estimating the risk of forest collapse due to extreme climate events is one of the challenges of adapt-
ing to climate change. We adapt a concept from ruin theory, which is widely used in econometrics and the
insurance industry, to design a growth–ruin model for trees which accounts for climate hazards that can jeop-
ardize tree growth. This model is an elaboration of a classical Cramer–Lundberg ruin model that is used in the
insurance industry. The model accounts for the interactions between physiological parameters of trees and the
occurrence of climate hazards. The physiological parameters describe interannual growth rates and how trees
react to hazards. The hazard parameters describe the probability distributions of the occurrence and intensity of
climate events. We focus on a drought–heatwave hazard. The goal of the paper is to determine the dependence
of the forest ruin and average growth probability distributions on physiological and hazard parameters. Using
extensive Monte Carlo experiments, we show the existence of a threshold in the frequency of hazards beyond
which forest ruin becomes certain to occur within a centennial horizon. We also detect a small effect of the
strategies used to cope with hazards. This paper is a proof of concept for the quantification of forest collapse
under climate change.

1 Introduction

Extreme events such as droughts and heatwaves are climate
hazards that have short- and long-term effects on forests. The
accumulation of drought and heat stress in forests due to re-
cent events might lower their resilience to future extreme
events (e.g. Wigneron et al., 2020; Flach et al., 2018; Bas-
tos et al., 2020; Anderegg et al., 2015a). It has been observed
that such events increase the chance of tree mortality (An-
deregg et al., 2013). This increase in tree mortality proba-
bility challenges the survival of tree species in some regions
of the world (Zeppel et al., 2011; Lindenmayer et al., 2016).
The mechanisms leading to tree mortality include complex
physiological processes that can depend on the tree species
and type of hazards involved (e.g. Choat et al., 2012).

Most studies on tree death are based on direct or indi-
rect observations of the behaviour and growth parameters of
trees. They give precious information on the observed global
response of forests to climate hazards, but they are also inher-
ently limited to the observation period used and have mostly

focused on a few key observed events (e.g. Rao et al., 2019).
This can hinder the development of the statistical descrip-
tion needed to build projections or estimate risk (Field et al.,
2012) as a response to climate change. Here, risk is consid-
ered to be the probability distribution of a failure (e.g. ir-
reversible damage or death) due to climate hazards (Katz,
2016).

The potential disappearance of a whole forest or a given
tree species due to changes in climate features can be con-
sidered a tipping point for climate change. There is ample
literature on tipping points in the climate system, i.e. climate
thresholds beyond which ecosystems change their behaviour
(Lenton et al., 2008; Levermann et al., 2012). These papers
have defined methodologies for identifying climate thresh-
olds beyond which ecosystems are endangered. They have
been used to infer tipping points of forests (Reyer et al., 2015;
Pereira and Viola, 2018).

The key concept of this paper is the use of so-called ruin
theory to provide estimates of the probability of such tipping
points. Many papers in the econometrics literature that de-
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scribe ruin models for insurance and finance have been pub-
lished since the seminal work of Lundberg (1903). A mathe-
matical and statistical framework (Asmussen and Albrecher,
2010) has been used to help determine the optimal param-
eters of such models, so that insurers or investors limit the
risk of losing their investment and maximize their gain. Ruin
models are used to describe the probability that a company
which grows with regular income will become bankrupt due
to external hazards. To the best of our knowledge, such mod-
els have never been adapted for use in the environmental sci-
ences.

We chose to investigate trees or forests because trees are
adapted to live for a long time and can survive adverse cli-
matic conditions during a given year, in contrast to annual
plants. Process-based growth models for trees can be devised
(e.g. Han and Singh, 2020), and observations of tree mortal-
ity are available (e.g. Choat et al., 2012). Tree growth is af-
fected by climate variations in various ways. Heatwaves and
droughts can alter (and lower) tree reserves and the capac-
ity of trees to grow during the years following an extreme
climate event, which affects their average growth and can in-
crease the probability of tree mortality (von Buttlar et al.,
2018; Sippel et al., 2018). For this reason, trees contain a
large amount of nonstructural carbohydrates (NSCs). These
NSC reserves allow trees to rapidly build large surfaces of
leaves (potential productivity is related to foliage area) at the
time of leaf onset during the subsequent year. NSCs also help
with leaf renewal following defoliation (caused by frost or
insects, for instance) and, more generally, provide the nec-
essary energy for metabolism (e.g. to protect the tree from
pathogenic diseases). Hence, part of the annual productiv-
ity of a tree is devoted to its accumulation of carbohydrate
reserves (i.e. these reserves are larger than required to ini-
tiate the leaf phenological cycle during the following year).
As there is a competition between NSC reserves and plant
growth for the allocation of assimilates, the plant does not
accumulate reserves indefinitely; the reserves tend to reach
an optimum level (Barbaroux et al., 2003). Climate hazards
can reduce the quantity of assimilates allocated to the reserve
(He et al., 2020). This can be caused directly by a reduction
in productivity, but climate hazards can also indirectly cause
plant damage, such as xylem embolism, which can kill trees
in extreme cases (especially in young trees). This process
kills only parts of mature trees, which affects the total amount
of NSCs and the development of new foliage and jeopar-
dizes the ability of the tree to grow in the following years.
So, even though this effect does not directly impact NSC re-
serves, it has equivalent consequences for tree growth in the
years following climate hazards. Several studies have inves-
tigated the physiological processes leading to tree mortality
based on empirical observations (Adams et al., 2009; Bigler
et al., 2007; Bréda and Badeau, 2008; Villalba and Veblen,
1998; Matusick et al., 2018). Those studies compared rela-
tive tree ring growth between dead and healthy surrounding
trees of the same diameter during the years prior to tree death.

Since it removes annual climate effects, such a comparison is
a good proxy for the difference in NSC reserves. Those stud-
ies concluded that dying trees have a systematically lower
level of reserves than living trees. Hence, even if trees are
not fully depleted of NSCs, there is a critical level of NSCs
below which trees cannot recover, so they die. These studies
suggest that the levels of NSCs in trees are good indicators
of possible forest dieback. Allocation to NSC reserves can
hence be compared to an insurance system where, each year,
part of the productivity is “paid” to the insurance (i.e. NSCs
for trees) which, in return, can be mobilized in the case of
damage. Therefore, “ruin” occurs when the amount of NSCs
drops to a critical level below which the probability of tree
death in the short term becomes very likely. This loosely jus-
tifies drawing a parallel between insurance and tree systems.

At present, full-size process-based models of tree growth
forced by large ensembles of climate simulations (e.g.
Massey et al., 2015) require large computing resources, lim-
iting the number of numerical experiments that can be per-
formed to reliably estimate probability distributions of key
environmental variables. This paper addresses this limitation
and uses a framework based on the Cramer–Lundberg toy
model to generate probability distributions of climate haz-
ards.

The goal of this paper is to formulate a simplified model of
tree growth and the impacts of climate hazards, which can be
interpreted as a ruin model, and to use multiple simulations
to evaluate its sensitivity to hazard parameters. Our study in-
vestigates the probability of ruin for a population of trees that
are subjected to heat and drought stress. In this context, tree
ruin is reached when its carbon reserves fall below a critical
threshold, meaning that the growth of trees is no longer guar-
anteed. In principle, this concept of ruin could be applied to a
forest in general but also to a given tree species, which means
that this species will disappear from the forest but more toler-
ant species in the forest can still survive. Such an application
requires the determination of key physiological parameters
that are adapted to the species and the determination of cli-
mate hazard statistical parameters.

Section 2 introduces a growth–ruin model for trees based
on the Cramer–Lundberg ruin model and discusses the inter-
pretation of its parameters (Sect. 2.1). Section 2.2 introduces
a simple tree growth model based on the Cramer–Lundberg
ruin model for insurance (Embrechts et al., 1997). We in-
vestigate its properties in order to evaluate the occurrence of
ruin (i.e. when trees stop growing) within a fixed time hori-
zon under the influence of extreme events in various climate
scenarios. Here, the term “horizon” is the maximum (finite)
date for which simulations are performed, which, in prac-
tice, can be viewed as the end of the 21st century. This ap-
proach is used to quantitatively tackle the issue of ruin tip-
ping points for a specific field (forestry), although this con-
cept could be extended to other domains. Here, “quantitative”
implies that the probability distributions of key ruin param-
eters (e.g. ruin time and average carbon reserve) are deter-
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mined explicitly. Unlike the Cramer–Lundberg ruin model,
our tree model cannot be solved analytically, and extensive
numerical simulations are therefore used. A standard sample
for the insurance industry has to contain more than 104 mem-
bers for robust probability estimates. In Sect. 3, we detail the
meteorological data that are used to construct a damage func-
tion (where the damage is due to climate hazards). Section 4
explains the experimental protocol for the analyses. The re-
sults and interpretations are provided in Sect. 5. An appendix
is devoted to the development of a drought index based on
precipitation and temperature.

2 Methods

2.1 Cramer–Lundberg ruin model

This section introduces the key concepts of ruin models.
The insurance industry uses such statistical models to de-
termine the premium rates that allow ruin (i.e., bankruptcy)
to be avoided when hazards occur. Those statistical models
are based on the simple Cramer–Lundberg model (Asmussen
and Albrecher, 2010; Embrechts et al., 1997), which can be
formulated as

R(t)= R0+p · t − S(t), (1)

where R(t) is the insurance capital at time t , R0 > 0 is the
initial capital, p > 0 is the premium rate that is collected ev-
ery year t , and S(t)≥ 0 is a damage function that represents
the (random) losses to hazards that occur up to time t . The
only random part of the model in Eq. (1) stems from the dam-
age function S(t). Ruin is declared and the process is stopped
when R(t)≤ 0. If S(t) is always 0, the capital grows indefi-
nitely. The literature on ruin theory describes how the prob-
ability distribution of R(t) depends on hypotheses about the
hazards conveyed by the random damage function S(t).

One may be interested in the behaviour of the system be-
fore a finite horizon T > 0, e.g. a few decades. We define the
ruin probability 9 before horizon T as

9(R0,p,T )= Pr(R(t)≤ 0, for some T ≥ t > 0) , (2)

and the ruin time τ (R0,p,T ) as the first positive time when
ruin is reached:

τ (R0,p,T )= inf{t > 0,R(t)≤ 0}, (3)

where infA is the infimum value of the set A. Since S(t) is
a random variable, we are interested in E(τ ), the expected
value of τ with respect to the random variable S(t). If ruin
never occurs during simulations of R then E(τ )=∞. Actu-
aries in insurance companies try to estimate the smallest pre-
mium rate p that avoids ruin from expert knowledge of the
probability distribution of S(t), as it is assumed that using
the lowest p would make the insurance scheme more attrac-
tive to clients. This gives the company a lead in the compe-
tition against more greedy companies (which are subject to
the same damage S(t)).

In several instances, there is no acceptable value for p
that prevents ruin, i.e. the expected value of τ can be lower
than the value of T (with some low probability, say). This
is why insurance companies resort to reinsurance to avoid
bankruptcy after unexpectedly large losses S(t). Reinsurance
companies are insurers of insurance companies (e.g. https:
//en.wikipedia.org/wiki/Reinsurance, last access: 9 Septem-
ber 2021). There is no obvious reinsurance mechanism for
natural systems such as trees, other than human intervention.

The damage S(t) is generally represented as a random sum
of random variables:

S(t)=
N (t)∑
k=1

Xk, (4)

where N (t) is a Poisson random variable that accounts for
the number of hazards occurring up to time t and Xk are ran-
dom variables that account for the cost of each hazard. The
Poisson distribution is used to express the number of events
that occur over a fixed period of time. Hence, the probability
distribution of N (t) can be written as

Pr(N (t)= n)=
λn

n!
e−λ, (5)

where λ > 0 is called the intensity of the Poisson distribution.
Both the mean and variance of the Poisson distribution are λ.

The probability distribution of Xk can be modelled by an
extreme value law, such as the generalized Pareto distribution
(GPD) (Coles, 2001; Embrechts et al., 1997), when a haz-
ard variable exceeds a high threshold u. The GPD describes
the probability distribution of a random variable X when its
value exceeds the threshold u. Its cumulative probability dis-
tribution function is

Pr {X > x|X > u} =
[

1+ ξ
(
x− u

σ

)]−1/ξ

, (6)

where σ > 0 is a scale parameter and ξ is a shape parameter
that states how fast extremes grow. The parameters of the
Poisson distribution for N (t) and the GPD distribution are
estimated from prior information, e.g. observations or expert
knowledge.

There is ample statistical literature in finance on the re-
lation between τ and the probability distribution of S (Em-
brechts et al., 1997; Asmussen and Albrecher, 2010). In prac-
tice, estimates of E(τ ) or an optimal p can be obtained by
simulating the model of Eq. (1) and estimating empirical
probability distributions.

The notion of a finite horizon T is useful when consider-
ing that an investment (in the insurance sector) is made for
a finite time. We are interested in generating many finite se-
quences of S(t) corresponding to a sample of all possible T -
long trajectories.
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2.2 A ruin model for trees

The goal of this subsection is to adapt the Cramer–Lundberg
model in Eq. (1) to formulate a simple tree growth model that
explicitly takes into account the damage S(t) due to a climate
hazard such as a drought or heatwave.

Here, R(t) is the amount of nonstructural carbohydrates in
a tree (hereafter called “reserves”; in kg C m−2) that allows
tree growth at the beginning of the growing season, e.g. the
start of spring in the Northern Hemisphere. We assume that
trees spend a fraction of their reserves to grow their plant
organs (e.g. roots, stem, leaves), depending on their previ-
ous state. As stated previously, we also assume that tree re-
sources are bounded by a maximal value Rmax (Barbaroux
et al., 2003). The value of Rmax sets the scaling of the re-
serves R(t). The value of Rmax is estimated to be around
2 kg C m−2 for beech and oak trees (Barbaroux et al., 2003).
In order to maintain genericity (i.e. the model of ruin does
not depend on the exact value of Rmax) and simplicity, we
normalize the reserve value R(t) by Rmax so that the reserves
are expressed as a percentage of Rmax, leading to values be-
tween 0 % and 100 %.

There have been observations of legacy effects of a
drought hazard on tree growth during the year after the
drought (Anderegg et al., 2015b). This effect depends on the
tree species. Because of this decrease in net primary produc-
tion (NPP) due to a drought, we assume that it also affects
the allocation to carbohydrate reserves. Hence, the yearly
NPP allocated to reserves p(t) (in kg C m−2 yr−1) depends
on the damage caused by the climate hazard during the pre-
vious year S(t − 1) (in kg C m−2) as follows:

p(t)= p0−BS(t − 1)/1t, (7)

where p0 is the optimum average yearly NPP of a population
of trees allocated to the NSC reserves, B ≥ 0 is the memory
factor of the damage function, and 1t = 1 year. More gener-
ally, p0 represents the fraction of NPP allocated to R when
NPP is itself optimum. However, it has been observed from
in-situ measurements that the total NPP decreases the year
after a hazard (Anderegg et al., 2015b). In general, this is re-
lated to the fact that the plants have lower leaf areas or an
increased respiration cost due to the investment involved in
repairing tissues or defensive costs. Therefore, Eq. (7) can
be interpreted by noting the fact that the total amount of car-
bohydrate allocated to reserves decreases because of the de-
crease in the total NPP (B and S are positive), assuming that
the fraction allocated to R is unchanged on average. In prin-
ciple, the value of p0 can depend on the tree species or loca-
tion.

We hence introduce a new growth–ruin model for trees that
describes the variation in the carbon reserves R with time:

R(t)=min
[
(1− b)R(t − 1)+p(t)1t − S(t),Rmax

]
, (8)

where b ≥ 0 is the fraction of the previous resources (at time
t − 1) devoted to growth, and 1t is the time interval (here
1t = 1 year).

In this model, the parameters b, B and Rmax are called
physiological parameters, as they describe tree growth. We
define that tree ruin occurs when R = 0, i.e. when the NSC
value reaches a critically low level where tree death become
almost certain. Taking a positive threshold value (e.g. a small
percentage of Rmax) would not change the results qualita-
tively. We recall that all physiological parameters are nor-
malized by Rmax and are therefore expressed in terms of a
fraction (b) or percentage (p(t) in % yr−1) of the actualRmax.
The formulation of Eq. (8) is based on an iterative version of
the Cramer–Lundberg model in Eq. (1).

In this paper, we assume that the type of hazard that can
affect tree growth (or survival) is a summer drought (Allen
et al., 2010; Choat et al., 2012; DeSoto et al., 2020). In Eu-
rope, major summer heatwaves are often concomitant with
droughts. This combination of climate factors creates stress
for trees, which lowers their NPP and can destroy branches
and leaves and impact their growth and reserves. Other types
of hazards could also be considered (storms, pests, etc.).

The hazards do not necessarily occur every year: they oc-
cur during years t that can be modelled by an exponential
distribution with parameter 3 (Coles, 2001). Thus, we as-
sume that the interarrival times follow a Poisson distribution
with a mean value of θ = 1/3 (the average return time of
hazards). This description, which is rather generic, has been
widely used in atmospheric sciences or statistical climatol-
ogy (e.g. von Storch and Zwiers, 2001; Smith and Shively,
1995). It implies that the number of hazards N (t) up to year
t follows a Poisson distribution with parameter3, so that this
formulation is consistent with the Cramer–Lundberg model
(Eq. 1). When climate hazards occur (at random times), the
corresponding damage S(t) during year t is written as

S(t)= Ah
M(t)∑
k=1

Yk. (9)

Equation (9) is slightly different from Eq. (4), in which haz-
ard equates to damage, as the damage in Eq. (4) is the cu-
mulative damage up to year t . This subtle difference stems
from the iterative nature of Eq. (8), which generalizes the
direct formulation of Eq. (1). In Eq. (9), Yk are the hazards
that occur during year t . Hence, the sum of the Yk in Eq. (9)
corresponds to the damage X in Eq. (4). Ah is a normaliz-
ing constant that translates the climate hazard conveyed by
Yk into the damage S(t). M(t) is the number of hazards (e.g.
the number of very hot and dry days) during year t , and fol-
lows a Poisson distribution with parameter λ. The Yk are in-
ferred from climate variables such as the drought index for
heatwaves or the wind speed for storms during hazards. We
assume that they follow the generalized Pareto distribution
(GPD) with scale parameter σ and shape parameter ξ . The
GPD describes the probability distribution of Xk when it ex-
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ceeds a high threshold u (Coles, 2001). The parameters of the
GPD distribution (σ and ξ ) and the parameters of the Poisson
distributions (λ and 3) are called the hazard parameters.

When no hazard occurs, S(t)= 0. If b = 0 (no use of the
reserves for growth), B = 0 (no memory of the previous haz-
ard) andM(t)= 1 (only one hazard occurs at a time at most),
the model in Eq. (8) simplifies to the Cramer–Lundberg ruin
model (Eq. 1), in which N (t) follows a Poisson distribution
with parameter 3. If hazards never occur (i.e. S = 0 at all
times), R(t) converges to (1− b)Rmax.

The parameters of the Poisson distributions for M(t) and
the Pareto distributions for Yk can be estimated experimen-
tally from meteorological observations or climate model sim-
ulations. The growth parameters p0, b and Rmax in Eq. (8)
can be obtained from tree physiology databases (Allen et al.,
2010; Cailleret et al., 2017) and should be adapted to the tree
species present.

The difficult part is to estimate scales for the values of
Ah and B. It has been observed that the strategies used by
tree species to deal with heat and drought stress can differ
(Adams et al., 2009; Teuling et al., 2010). One strategy al-
lows some tree species to grow in spite of the occurrence
of a hazard during year t . This can be achieved by keeping
stomata open to maintain photosynthesis (anisohydric mech-
anism), which increases the risk of embolism (Mitchell et al.,
2013), or by changing the allocation to maintain the growth
of branches and roots at the expense of the carbohydrate re-
serves (van der Molen et al., 2011). In both cases, the trees
pay a price for this growth the next year, even if there is
no hazard then, because plant growth occurs at the expense
of foliage surface and plant protection during the next year
(van der Molen et al., 2011). This strategy implies that these
trees have an interannual memory of hazards. Conversely, a
second strategy is used by other tree species that stop grow-
ing during hazards: they close their stomata to avoid em-
bolism (isohydric mechanism) or maintain the allocation to
reserves at the expense of other pools. For these trees, growth
is impacted during the year of the hazard, but this hazard
has fewer impacts during the next year. This strategy implies
that the trees do not have an interannual memory of hazards.
There is more to these two strategies than simply anisohy-
dric vs. isohydric mechanisms, as they also include possi-
ble changes in allocation to growth or reserves. However, to
use botanical terminology, and for simplicity, we will use the
terms anisohydric and isohydric to refer to these mechanisms
below, as these terms are widely used to describe different
responses to drought. It is possible to represent the different
strategies in the model through the parameter B. The aniso-
hydric strategy, which maintains growth during the year of
the hazard at the expense of impacts in later years (i.e. the
trees have an interannual memory), can be represented by a
positive value of B in Eq. (7). Conversely, the isohydric strat-
egy, in which growth is reduced during the year of the hazard
but the hazard has less of an impact in later years (i.e. the
trees do not have an interannual memory), can be represented

by a B value of close to 0 in Eq. (7). We will investigate the
sensitivity of the ruin probabilities to these tree strategies. To
simplify the terminology, we draw a parallel with the insur-
ance system: if B = 0, the trees pay “cash” on their reserves
(S(t) is then large when a hazard occurs); if B > 0, the trees
are allowed “credit” during the next year (S(t) is reduced in
the current year, but this strategy implies a possibility of us-
ing the reserves the next year). Mitchell et al. (2013) note
that there is a continuum between the two strategies, which
can be represented by different values of B. The values of B
are chosen such that the average value of the damage (i.e. the
expected value of (1+B)S(t)) is a constant. This constant
gives the scale of the impact parameter Ah.

In this paper, the values of Ah and B are arbitrarily chosen
to scale with the expected behaviour of the trees. The ranges
of these parameters can be estimated from in situ observa-
tions or expert knowledge. In this proof-of-concept paper,
these two parameters are considered to be normalized and
do not have units.

2.3 Sample trajectories

For simplicity, we normalize all the parameters to the op-
timum level of reserves R(t), fixed at an arbitrary value of
100. Therefore, Rmax = 100. R(t)= 0 is the value for tree
ruin. As explained in the “Introduction”, this does not nec-
essarily imply totally depleted NSC reserves, but simply a
reserve level that makes the probability of tree recovery very
unlikely, even in good weather conditions, and so the trees
will die in the short term. Barbaroux et al. (2003) evaluated
the seasonal evolution of NSC for beech and oak trees. The
amount of NSC in July (which corresponds to the minimum
of the NSC cycle) reaches 75 % of its maximum. Hence, we
assume that the annual allocation and use of the NSC is 25 %
of the total (i.e. p0 = 25 % yr−1 and b = 0.25). Likewise, He
et al. (2020) evaluated the impact of several levels of drought
on the total NSC. They estimated a decrease in NSC of 20 %
in the case of a large drought. Therefore, we assume that
Ah = 1.2, so the average value of the damage is ≈ 20% of
Rmax. The hazard parameters are σ = 0.1, ξ =−0.2 and the
threshold u= 1 (from the GPD distribution of the drought
index), and λ= 10 d and 3= 5 years for the hazard arrivals.
The model is run with memory parameter values of B = 0
(isohydric or “cash”) and B = 0.4 (anisohydric or “credit”).
We simulate 104 trajectories with those parameters. For each
ensemble, we compute the average of the reserve function
R(t) before it reaches R(t)= 0. We select four trajectories:
those with the 95th quantile, median and 5th quantile of the
average reserve function and one trajectory in which ruin oc-
curs (i.e. the ruin time is τ < 100 years).

Figure 1a and b show the time series for the damage S(t)
and reserve R(t) functions for those four key trajectories
when B = 0 (isohydric). As the shape parameter ξ is neg-
ative, the damage values S(t) do not present large variability
(i.e., are unbounded). The statistical properties of all trajec-
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tories of S(t) are supposed to be similar, as they are drawn
from the same underlying distributions. Therefore, we only
show two trajectories for S(t): one that achieves ruin (in red)
and the one with the median value of the mean R(t). In this
experiment, the reserve averages for the 5th quantile, median
and 95th quantile trajectories are, respectively, 74, 84 and 88
reserve units.

Figure 1c and d show the time series of the damage S(t)
and reserve R(t) functions for four key trajectories when
B = 0.4 (anisohydric). The damage function yields the same
statistical properties but the scaling is different, so the inte-
grated damage is similar in both cases: the hazard is scaled
so that the damage at year t is distributed over t and t + 1.
For this sample of simulations, the reserve averages for the
5th quantile, median and 95th quantile trajectories are, re-
spectively, 75, 84 and 88 reserve units. These values for the
anisohydric strategy are similar to those for the isohydric
strategy in Fig. 1a and b. The reserves R(t) with B = 0.4
present slightly slower variability for the upper quantiles (the
black and blue lines in Fig. 1b and d), which is explained
by the memory induced by B > 0. The empirical probabil-
ity of a ruin within 100 years (see Eq. 2) is higher for B = 0
(9 = 4× 10−3) than for B = 0.4 (9 = 1.5× 10−3). In both
cases, a ruin is a rare event for the chosen physiological pa-
rameters, and the return period of a ruin (i.e. the inverse of its
probability) is larger than 100 years. This justifies our statis-
tical approach of simulating a very large ensemble of trajec-
tories, as the key difference between the tree strategies is a
small probability that is difficult to assess from observations.

In principle, a physical evaluation of the model is difficult.
The main reason for this is the nature of the phenomenon that
is modelled – it does not occur very often. Ruin of insurance
companies hardly ever occurs for complete validation of the
Cramer–Lundberg model, which could represent a heuristic
argument that this model works (at least in that domain of ap-
plication). In practice, a lot of data have been collected from
dead trees and surrounding trees that are still alive to evalu-
ate how dead trees behave in the years before they die (e.g.
Villalba et al., 1998; Bréda and Badeau, 2008). Hence, dif-
ferences in tree ring width between dead and living trees can
be considered a good proxy for tree reserves. Cailleret et al.
(2017) synthesized data on differential tree growth and used
it as a proxy for NSC in various climate hazard scenarios.
There is good agreement between our simulated evolution of
reserves in the case of ruin (Fig. 1b and d) and the observed
evolution of relative tree ring growth before tree death. In
particular, Cailleret et al. (2017) show that there is an ob-
served relative decrease in growth between 20 and 50 years
before tree death in most cases, which is consistent with our
simulations.

3 Data

The goal of this section is to provide climate constraints on
the parameters of the hazard function S(t).

3.1 Observations

Meteorological data are taken from the European Climate
Assessment and Dataset (ECA&D) database (Haylock et al.,
2008). We use daily maximum temperature (TX) and daily
precipitation (RR) data from stations in Berlin, De Bilt, Orly,
Toulouse and Madrid. This choice is motivated by the desire
to cover a large area of Western Europe. We consider data
from 1948 to 2019 (> 70 years of daily data). Less than 10 %
of the values are missing from this dataset.

3.2 Drought–heatwave damage index

We consider the drought–heatwave index IYV (defined in Ap-
pendix A), which is based on precipitation frequency and
temperature values from the ECA&D database. This index
is computed for five ECA&D stations (Berlin, De Bilt, Orly,
Toulouse and Madrid). This new index is considered due to
the shortcomings of pre-existing indices that prevent reliable
and relevant statistical modelling. On the one hand, the most
physically relevant indices are based on soil moisture, but
they do not cover a period that is long enough to determine
the GPD parameters of its extremes. On the other hand, in-
dices that use well-measured meteorological variables (e.g.
temperature and precipitation) are not fully adapted to reflect
drought (see Appendix A). This justifies the development of
an index from which we can infer the GPD parameters of the
damage function due to hazards. The index IYV yields high
values (more than 1.1 ◦C) during summer drought and heat-
wave events and low values (less than 1 ◦C) for wet and cold
summers.

From the spring–summer variations of this index, we de-
termine the generalized Pareto distribution parameters of the
daily index IYV when the (daily) values exceed the 95th
quantile. As the daily values are temporally correlated (by
construction, as the index is a running sum), we consider the
maxima of clusters above the 90th quantile and determine the
number of days that exceed the 95th quantile threshold. This
procedure is advocated in the textbook of Coles (2001).

The values and standard errors of the GPD parameters
(threshold, scale and shape) as well as the Poisson param-
eters for the event duration and return period are shown in
Table 1. The values of the GPD parameters are consistent
with the existing literature (e.g. Parey, 2008; Kharin et al.,
2013).

We consider the value ranges in the parameters obtained
from the five stations and their uncertainties, and obtain the
envelope for each parameter from their lower and upper
uncertainties. This provides a conservative estimate of the
range of variation for each parameter (i.e. a wide range). Us-

Earth Syst. Dynam., 12, 997–1013, 2021 https://doi.org/10.5194/esd-12-997-2021



P. Yiou and N. Viovy: Modelling forest ruin 1003

Figure 1. Sample of time series for simulations of S(t) (upper panels) and R(t) (lower panels) with B = 0 (isohydric: panels a and b) and
B = 0.4 (anisohydric: panels c and d). The red lines show sample trajectories of S(t) and R(t) for which R(t) reaches 0 in t < 100 years. A
vertical dashed-dotted line indicates the ruin time. The black lines indicate trajectories of S(t) and R(t) (for B = 0 and B = 0.4) that achieve
the median of the temporal mean of all 104 trajectories of R(t). The orange and blue lines in panels (b) and (c) show the trajectories of R(t)
that achieve the 5th and 95th quantiles of all 104 simulation means. The horizontal dashed lines in the lower panels (b) and (d) represent the
means of the represented trajectories before ruin.

Table 1. Parameter value ranges for the damage function S(t) ob-
tained from the drought–heatwave (HW) index IYV values com-
puted for the five stations. The average GPD threshold is the average
of the 95th quantiles of the index for the five stations. The average
GPD scale and shape parameters are the averages of the estimates
for the indices for each of the five stations. The ranges of the GPD
parameters take uncertainties into account.

Parameter Interpretation Average Range
value

u GPD threshold 1.7 [1;5]

σ GPD scale 0.15 [0.08;0.2]

ξ GPD shape −0.32 [−0.45;−0.2]

λ Number of dry days 15 [2;30]

3 Return period 8 [2;15]
for HW events (years)

ing those ranges of the parameters, we simulate generalized
Pareto distributions for the damage function in the model of
Eq. (9).

4 Experimental design

The physiological parameters in Eq. (8) are fixed at b = 0.25,
p0 = 25 % yr−1 and Rmax = 100 (in % of≈ 2 kg C m−2). We
simulate N = 106 trajectories of R(t) for 100 years, with an
initial condition of R(0)= 60. For each trajectory, the pa-
rameters of the damage function S(t) are randomly sampled
from a uniform distribution with a range that is estimated
from the drought–heatwave stress index IYV (in Sect. 3). The
bounds of the uniform distributions are given in Table 1 and
reflect the variability across Berlin, De Bilt, Orly, Toulouse
and Madrid.

From those ensembles of simulation trajectories, we de-
termine the average reserve R(t) before ruin 〈R〉 and the ruin
time Truin (if it ever occurs). Due to the way in which the
model is constructed, R(t) evolves between 0 and 100 (the
optimal reserve) and Truin is between 1 (immediate ruin) and
100 (no ruin during simulations of 100 years).
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Figure 2. The probability distribution of the ruin year τ as functions of the drought–heatwave (HW) return period3 (a), the number of days
when IYV exceeds the threshold u during summer λ (b), GPD scale σ (c), GPD shape ξ (d) and the threshold u above which damage S(t)
is triggered (e). B = 0 in all experiments. For each value of the control variable, a boxplot is given. The thick horizontal bar in each box
represents the median (q50) of the distribution. The boundaries of each box represent the 25th quantile (q25) and the 75th quantile (q75).
Each upper whisker represents min[max(τ ),1.5× (q75− q25)+ q50]. The lower whiskers are min[max(τ ),q50− 1.5× (q75− q25)]. The
small circles represent data that are above or below the whiskers; note that the circles below the lower whiskers tend to be close to each other
and therefore appear like thick vertical lines.

The large number of trajectories (106) helps us to investi-
gate the dependence of 〈R〉 and Truin on the parameters of S,
namely σ , ξ , λ and 3 (see Table 1).

5 Results

The dependence of the ruin time on the four damage param-
eters when B = 0 is shown in Fig. 2. Each boxplot depicts
the probability distribution of the ruin time for a given value
of one parameter and a random combination of the other pa-
rameters.

Figure 2 highlights the fact that the system can shift from
a no-ruin state to probable ruin within a century upon mak-
ing rather small changes to the frequency of extreme days in
the index IYV (either the frequency of dry and hot summers
or the number of dry and hot days during a hot summer).
The dependence on the scale parameter σ and the shape pa-
rameter ξ is rather weak (Fig. 2c, d). The prescribed ranges
of variation for those GPD parameters are small in abso-
lute value. The GPD threshold u has an important impact on
the ruin time, as the probability distribution of the ruin time
shifts from a median of 100 years to a median of 70 years
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Figure 3. Probability distribution of the average reserves before ruin 〈R〉 as functions of the drought–heatwave (HW) return period 3 (a),
number of hot days during summer λ (b), GPD fit scale σ (c), GPD fit shape ξ (d) and the GPD threshold u (e). B = 0 in all experiments. For
each value of the control variable, a boxplot is given. The thick horizontal bar in each box represents the median (q50) of the distribution. The
boundaries of each box represent the 25th quantile (q25) and the 75th quantile (q75). Each upper whisker represents min[max(〈R〉),1.5×
(q75− q25)+ q50]. Each lower whisker has the symmetric formulation. Small circles represent data that are above or below the whiskers;
note that the circles below the lower whiskers tend to be close to each other and therefore appear like thick vertical lines.

with a 6 % change in the threshold u (i.e. upon changing from
u= 2.5 to u= 2.75; Fig. 2e).

We define that bifurcation of the ruin probability occurs
when the median ruin year τ becomes less than 100 years.
From this experiment (B = 0), we find that a “no ruin to
ruin” bifurcation occurs when the return period threshold of
9 years is crossed (Fig. 2). If we focus on the last 20 years in
Western Europe, extreme summer heatwaves and droughts
occurred in 2003, 2006, 2018 and 2019. This might imply
that European forests with trees that yield those physiological
parameters are close to the threshold of positive ruin proba-
bility.

The threshold number of hot days per summer is 14 d
(Fig. 2b). This parameter controls the magnitude of the
random sum in S(t) because the daily hazards Yk yield a
bounded tail (ξ < 0). This means that if heatwaves can ex-
ceed 14 d in duration, tree ruin becomes significantly likely
before the end of the 100 years. Such an event occurred in
2018 in Europe (Yiou et al., 2020).

The probability distribution of the average reserves before
ruin 〈R〉 for trees with B = 0 is shown in Fig. 3. This fig-
ure highlights that 〈R〉 weakly depends on the GPD parame-
ters of the damage function (Fig. 3c, d). The average reserves
strongly depend on the return period of heatwaves, the num-
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Figure 4. Probability distributions of the ruin year τ as functions of the drought–heatwave (HW) return period 3 (a), number of hot days
during summer λ (b), GPD fit scale σ (c), GPD fit shape ξ (d) and the threshold u above which damage S(t) is triggered (e). B = 0.4 in all
experiments. For each value of the control variable, a boxplot is given. The thick horizontal bar in each box represents the median (q50) of
the distribution. The boundaries of each box represent the 25th quantile (q25) and the 75th quantile (q75). Each upper whisker represents
min[max(τ ),1.5× (q75− q25)+ q50]. Each lower whisker has the symmetric formulation. Data that are above or below the whiskers are
shown as small circles; these circles are close to each other and therefore appear like thick vertical lines.

ber of hot days during heatwaves and the GPD threshold u
(Fig. 3a, b, e).

Figure 3a shows that when damage (due to droughts and
heatwaves) occurs too often (i.e. the return period of events
is short), the trees do not have enough time to build enough
reserves to face the next extremes.

The behaviour of tree growth when B = 0.4 (anisohydric)
is qualitatively similar to its behaviour when B = 0 (isohy-
dric) (Fig. 4). The bifurcation threshold is 6 years for3, 16 d
for λ and a value of 3 for u. This suggests a higher resilience
of trees with interannual memory (B > 0), as the bifurcations
occur for higher values of 3, λ and u.

In a second set of experiments, we maintain the scale and
shape parameters constant: σ = 0.1 and ξ =−0.3. The other
hazard parameters are randomly sampled within the ranges
indicated in Table 1. As observed in Fig. 2a and b, the median
ruin time τ transitions from 100 years (i.e. ruin is unlikely or
does not occur) to < 100 years when the event return time 3
is between 6 and 10 years, the event duration λ is between
12 and 16 d, and the GPD threshold u is between 2.25 and
3. Therefore, we focus on the probability distributions of the
ruin time and the reserve near these thresholds for the isohy-
dric (B = 0) and anisohydric (B = 0.4) simulations.

Figure 5 summarizes the probability distributions of the
ruin time and the reserve for all simulations and for simu-
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Figure 5. Conditional probability distributions of the ruin time (a) and the reserve (b). The boxplots in the first column (isohydric (isoh:
B = 0) and anisohydric (anisoh:B = 0.4)) are for all simulations. The boxplots in the second column are for drought–heatwave return periods
(3) of 6–10 years in the isohydric (isoh) and anisohydric (anisoh) simulations. The boxplots in the third column are for drought–heatwave
durations during summer (λ) of 12–16 d. The boxplots in the last column are for GPD thresholds of 2.25–3. Data that are below the whiskers
are shown as small circles; these circles are close to each other and therefore appear like thick vertical lines.

lations with hazard values 3 ∈ [6,10] years, λ ∈ [12,16] d
and u ∈ [2.25,3]. On the whole, the probability of ruin 9 is
≈ 0.53 forB = 0 and9 ≈ 0.47 forB = 0.4. Figure 5a shows
that the anisohydric simulations (B = 0.4) yield a larger me-
dian ruin time (100 years vs. 74 years for B = 0). This
means that an anisohydric strategy leads to a longer life ex-
pectancy. The differences in the reserve are shown in Fig. 5b.
A Kolmogorov–Smirnov test (von Storch and Zwiers, 2001)
indicates a significantly higher average reserve for B = 0 (83
vs. 81, p-value < 10−15). The differences amount to ≈ 2
units of reserve, which is small compared to the optimal
value Rmax = 100.

On the whole, these results show the dependence of the
ruin time on the coping strategy: spreading the damage over
2 years increases the time to ruin in various event scenarios
(with different event return times, lengths and intensities).
However, the response of the reserve depends on the param-
eters of the generalized Pareto and Poisson distributions: a
higher frequency (or shorter return period 3) favours isohy-
dric strategies, while the higher intensity (linked to the dura-
tion or highest value) slightly favours anisohydric strategies.

6 Conclusions

This paper presents a paradigm based on ruin theory for in-
vestigating tipping points for trees using a statistical frame-
work. The framework illustrates how the frequent occurrence
of extreme events can fatally damage trees. We described the
vulnerability of an idealized forest as its probability of dying
through the loss of nonstructural carbohydrate reserves, and
illustrated a statistical methodology for identifying climate
parameters that control the ruin time. This proof of concept
was applied to tree growth, but it could be extended to all
types of ecosystems that are vulnerable to climate hazards
over long time scales. Careful determination of the physio-
logical parameters of the model from in situ observations is
necessary for the operational application of our approach.

The example shown here illustrates how forestry decisions
may be guided by a priori information on climate change.
The framework shown here takes into account only one type
of natural hazard. Others (including storms or fires) could be
included, although the recovery rate (or “strategy”) must be
specified for each type of hazard.

We have investigated how variations in the hazard param-
eters affect the damage function and the probability of ruin.
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The most critical parameters are linked to the frequency of
extreme events and their average intensity, which affect the
rate of recovery of the trees.

We have examined the impact of strategies to cope with
extremes. Although small, this impact has differential ef-
fects on the average tree NSC reserve and the probability
of ruin. For example, we obtain the counter-intuitive result
that, on average, trees with a lower probability of ruin also
have a lower average reserve if the hazard frequency changes
(Fig. 5). However, if the average intensity of a hazard be-
comes longer or more intense, trees with a lower probability
of ruin also have a (slightly) higher reserve. Hence, changes
in hazard intensity or frequency do not have the same effects
on isohydric and anisohydric coping strategies, although the
differences in effects were found to be small in our experi-
ments.

This subtlety shows that this simple model can yield differ-
ent kinds of behaviour as a response to hazards. In particular,
this emphasizes the need for a proper definition of the haz-
ard (Cattiaux and Ribes, 2018), as this affects the Pareto or
Poisson parameters of the hazard-damage function.

This study has obvious caveats. The growth–ruin model
used here is exceedingly simple and does not reflect real
trees, just as the Cramer–Lundberg model does not reflect
the complexity of the insurance sector. The proposed tree
model is mainly a proof of concept that could be improved
by using parameters or processes with greater physical or bi-
ological meaning. A key point of this work is that complex
processes which are adversely affected by climatic condi-
tions can be modelled using the Cramer–Lundberg modelling
framework, which illustrates the competition between annual
regular growth and occasional abrupt damage.

Some of the parameters (especially the impact scale fac-
tor Ah in Eq. 9) we used were chosen heuristically. More
detailed in situ studies and expertise would be necessary to
fine-tune those parameters for each tree species.

Many mathematical papers have described the exact prop-
erties of the Cramer–Lundberg model (e.g. see Embrechts
et al., 1997, for a review). Our tree growth–ruin model vio-
lates some of the simple assumptions of the basic Cramer–
Lundberg model, namely the time independence of R(t) in
the anisohydric mode. This forbids analytical computation
of the ruin time. This is why we resorted to extensive nu-
merical Monte Carlo simulations. Those simulations (≈ 106

trajectories of 100 years) took less than 4 min on a 12-core
computer.

The drought and heat stress index we used is also rather
crude and could be refined, although it was only designed to
determine the parameters of a Pareto distribution. We then
simulated Pareto and Poisson distributions with parameters
that were fitted to that index. All simulations were performed
with the stationarity assumption (i.e. that the parameters of
the GPD distribution do not change over time), albeit with
random selections of parameters. Nonstationary simulations
could be envisaged as a means to explicitly take climate
change into account. Data from climate model simulations
could be used to simulate hazards (e.g. Herrera-Estrada and
Sheffield, 2017; Massey et al., 2015). This is left to future
studies.

Earth Syst. Dynam., 12, 997–1013, 2021 https://doi.org/10.5194/esd-12-997-2021



P. Yiou and N. Viovy: Modelling forest ruin 1009

Appendix A: Drought–heatwave index definition

As this paper is more a proof of concept for a ruin model
than a detailed study (which will be performed later), we con-
sider a simplified drought–heat hazard index that can easily
be computed from climatological observations. We are inter-
ested in an index that reflects a compound event (Zscheis-
chler et al., 2020) with an extended dry period and high tem-
peratures. There are a few indices of drought or aridity that
consider precipitation and temperature (Baltas, 2007). The
index of De Martonne (1926) normalizes the cumulative pre-
cipitation to the average temperature over a given season:

IDM =
P

T + 10
. (A1)

Here, the numerator is the cumulative precipitation (in
mm d−2) and T is the mean temperature (in degrees Celsius).
This index was used to determine drought zones. The varia-
tion in this index over time can be obtained by considering
yearly or seasonal averages of precipitation and temperature.
The +10 term in the denominator of Eq. (A1) is included
ad hoc to scale the respective variations in precipitation and
temperature. Droughts are obtained with small values of this
index (low precipitation and high temperature values).

Although easy to compute, this simple index suffers from
a few drawbacks. The main one is that it mainly reflects wet-
ness, not drought. Most of its variability is connected with the
variability of the precipitation and the upper tail of its prob-
ability distribution. Therefore, seasons with little rain pro-
duce little variability in the index. One way to circumvent
this would be to invert the index (i.e. consider 1/IDM). How-
ever, this is still not satisfactory because the values of IDM
for summers with notoriously dry heatwaves (e.g. 1976 and
2003) in Europe are within the average range – they do not
stand out, contrary to what is expected (Ciais et al., 2005).

Thus, we propose an alternative drought index, still based
on daily precipitation and temperature. For a given day
j , we define Dj as the frequency of precipitation, with
Dj = 0 if precipitation Pj > 0.5 mm d−1 andDj = 1 if Pj ≤
0.5 mm d−1. We then construct an aridity index based on the
weighted drought frequency and temperature:

IYV(t)=
t∑

j=t−30
Tj × (Dj + a)Aexp(−(t − j )/30), (A2)

where t is the time (in days), a ≥ 0 is a scaling constant (sim-
ilar to +10 in Eq. A1) and Tj is the maximum daily temper-
ature (TX in ECA&D (Klein-Tank et al., 2002)). A≈ 30 is
a scaling constant which ensures that the sum of the expo-
nential weights is 1. In this paper, we chose a = 1 after a few
tuning tests to verify that the index yields high values during
notoriously dry years (e.g., 1976, 2003 and 2018).

This daily index is analogous to the inverse of the De
Martonne index. One refinement comes from the exponen-
tial weights, which give more importance to recent days than

remote days. We can then compute the monthly median, up-
per quantiles and maximum of IYV. We compute this index
by starting on 1 March, as this is generally when the tree
phenology resumes after the winter season at Northern mid-
latitudes. The daily index is computed until 30 September,
when the vegetative cycle is almost finished.

With this new drought index, the extreme droughts and
heatwaves of 1976 and 2003 do become exceptional, as ex-
pected from the literature (Ciais et al., 2005). Figure A1 com-
pares the precipitation, temperature, de Martonne index and
the new index IYV for temperature and precipitation observa-
tions in Orly (near Paris, France). The precipitation or num-
ber of dry days does not yield extreme values for years with
notorious heat stress in France (e.g. 1976, 2003 and 2019),
as they are close to the 25–75th quantile values (Fig. A1b,
d). Therefore, the De Martonne aridity index does not yield
particularly extreme values for those years (Fig. A1c).

To better evaluate whether the newly defined index is a
pertinent indicator of the impact of the climate on vegetation
stress, we used the ORCHIDEE land surface model (Krin-
ner et al., 2005) to simulate both soil moisture and tree net
primary production (NPP). We performed a simulation using
the ERA5 land atmospheric reanalyses at 0.1◦× 0.1◦ resolu-
tion (Hersbach et al., 2020) for the gridcell including Orly
between 1981 and 2019. After a spin-up of 200 years us-
ing the first 10 years of the forcing, the simulation was per-
formed for the entire period. The variations in soil moisture
served as input for the hazard function and were a refinement
compared to using precipitation only. As an indicator of veg-
etation damage, we considered the number of days at which
NPP is below the 10th quantile (0.15 g C d−2 m−2), which
corresponds to the “risk zone” for trees (Fig. A1f).

We found a significant negative correlation between the
percentage of dry days and the relative humidity for the
1981–2019 period (Fig. A1c), with r =−0.7 and the p-value
< 10−6. The NPP variation was significantly (anti)correlated
with IYV (r =−0.7, p-value < 10−6). The percentage of
days for which NPP was below the 10th quantile corre-
sponded to the percentage of days in which IYV exceeded
a high threshold (Fig. A1e). Therefore, we believe that our
decision to use this index has a physical basis, and that it can
be used as a proxy to compute the parameters of the damage
function.

We computed the index IYV at five stations – Berlin, Orly,
Toulouse, De Bilt and Madrid – from ECA&D (Klein-Tank
et al., 2002). Those five stations cover a large part of Western
Europe.
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Figure A1. Variations in indices for Orly. Horizontal dashed lines show the q25 and q75 quantiles. The vertical red lines indicate the year
2003. (a) Average (March to September) temperature in Orly. (b) Average (March to September) precipitation in Orly (thin line) and the De
Martonne index scaled by 28 (thick black line). (c) Percentage of dry days between March and September (black line) and relative humidity
(thick blue line). (d) Mean value of IYV from March to September. (e) Daily maximum IYV (black line) and scaled number of days when
NPP was below the 10th quantile (thick blue line). (f) NPP variations at Orly, as obtained from an ORCHIDEE model simulation forced by
the ERA5 reanalysis.
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