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Abstract. We propose a conceptual model comprising a cascade of tipping points as a mechanism for past
abrupt climate changes. In the model, changes in a control parameter, which could for instance be related to
changes in the atmospheric circulation, induce sequential tipping of sea ice cover and the ocean’s meridional
overturning circulation. The ocean component, represented by the well-known Stommel box model, is shown to
display so-called rate-induced tipping. Here, an abrupt resurgence of the overturning circulation is induced before
a bifurcation point is reached due to the fast rate of change of the sea ice. Because of the multi-scale nature of the
climate system, this type of tipping cascade may also be a risk concerning future global warming. The relatively
short timescales involved make it challenging to detect these tipping points from observations. However, with our
conceptual model we find that there can be a significant delay in the tipping because the system is attracted by the
stable manifold of a saddle during the rate-induced transition before escaping towards the undesired state. This
opens up the possibility for an early warning of the impending abrupt transition via detection of the changing
linear stability in the vicinity of the saddle. To do so, we propose estimating the Jacobian from the noisy time
series. This is shown to be a useful generic precursor to detect rate-induced tipping.

1 Introduction

Multiple elements in the Earth system are believed to be
at risk of undergoing abrupt and irreversible changes in
response to rising atmospheric greenhouse gas concentra-
tions. Among others, the Arctic sea ice, the Greenland and
West Antarctic ice sheets, the Amazon rainforest, and the
Atlantic Meridional Overturning Circulation (AMOC) have
been identified as potentially crossing such tipping points at
varying levels of global warming (Lenton et al., 2008). While
an abrupt decline of the Arctic sea ice is already well under-
way (IPCC, 2019), for a system like the AMOC it is much
more uncertain if and when a tipping point will be reached.
Nevertheless, it constitutes a risk that deserves attention as
it has been observed across the hierarchy of climate models
(Weijer et al., 2019), and there is evidence that it has occurred
repeatedly during the last glacial period (Henry et al., 2016).
Such past changes in the AMOC likely led to abrupt climate

changes known as Dansgaard–Oeschger (DO) events (Dans-
gaard et al., 1993). These are the most significant instances
of large-scale climate change in the past, but the underlying
mechanisms remain debated.

Mathematically, tipping points are typically understood as
a transition from one stable attractor of the system to another.
Most often, this transition is associated with a bifurcation or
attractor crisis, where a system state loses stability as a crit-
ical threshold in a control parameter is crossed, leading to
tipping to another attractor (bifurcation tipping). However,
tipping can occur also before a critical threshold is crossed.
Stochastic perturbations may induce a transition to an alter-
native attractor (noise-induced tipping). Furthermore, some
systems can fail to track their moving equilibrium and tip
to another attractor while no bifurcation was crossed given
there is a change in a control parameter at a high enough rate
(rate-induced tipping) (Wieczorek et al., 2011; Ashwin et al.,
2012).
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Such rate-induced transitions can be expected to play a
role in systems that are comprised of coupled components
with a timescale separation. Here, changes in one component
alter the conditions of another and act as a rapidly changing
control parameter that could cause a rate-induced transition.
This might occur in the real climate system, where a vast
range of timescales is present in the atmosphere, ocean and
cryosphere, and where important climate parameters, such as
polar ice melt, currently display accelerating rates of change
(Trusel et al., 2018; Bevis et al., 2019; The IMBIE Team,
2020). Indeed, a rate-induced collapse of the AMOC has
been shown recently in a global ocean model (Lohmann and
Ditlevsen, 2021). Rate-induced transitions in coupled sys-
tems are an even higher risk if one of the subsystems ex-
periences abrupt change due to tipping. This constitutes a
cascade of subsequent tipping points. Tipping cascades in
coupled ecological or climate models have been considered
before (Cai et al., 2016; Dekker et al., 2018; Rocha et al.,
2018; Klose et al., 2020; Wunderling et al., 2020). However,
cascades where subsystems permit rate-induced tipping have
not been studied yet.

Here we explore such a scenario with a conceptual sea ice–
ocean model. The model describes the influence of changing
polar sea ice cover on the AMOC and features the possibility
of a rate-induced resurgence of the AMOC. While an AMOC
resurgence is not an issue for contemporary climate change,
it plays an important role in past abrupt climate changes and
DO events in particular, where it is thought to be responsi-
ble for the transitions from cold (so-called stadial) periods to
prolonged episodes of milder (interstadial) conditions during
the last glacial period. It is still unknown what drove these
transitions and the associated resurgences of the AMOC. In
climate models, an abrupt collapse of the AMOC can be in-
duced by sudden discharges of freshwater into the North At-
lantic, which is a phenomenon known to have occurred in the
past (Heinrich, 1988). Similar events of sudden “removal” of
freshwater that potentially lead to an abrupt resurgence of the
AMOC are less well known. Instead, we consider changes
in atmosphere–ocean heat exchange as driver of the AMOC
resurgence. These could result from abrupt changes in sea ice
cover, which in turn could be driven by changing atmospheric
wind stress. The potential of rapid sea ice changes to advance
the abrupt DO warming events is well established (Li et al.,
2005; Dokken et al., 2013; Vettoretti and Peltier, 2016; Sa-
datzki et al., 2019) and has been translated into a number of
conceptual models before. Gottwald proposes a model with
sea ice as an intermittent thermal insulator to the polar ocean,
forced by a chaotic (quasi-stochastic) atmospheric compo-
nent, extremes of which can trigger temporary excursions of
the ocean circulation (Gottwald, 2021). While we include a
stochastic forcing, the main cause of the abrupt transitions
in our model is a deterministic underlying parameter shift.
A different conceptual model by Boers et al. (2018) consid-
ers sea ice and an ice shelf coupled to an ocean box model,
where the sea ice evolves due to a prescribed piecewise-linear

feedback, leading to self-sustained oscillations. The mecha-
nism proposed here is different in that it involves a cascade:
a tipping of the sea ice cover due to slowly changing climatic
conditions leads to a rate-induced tipping of the ocean circu-
lation as a consequence of the rapid increase in ocean heat
loss.

Several lines of evidence from proxy data and climate
model simulations motivate such a sequence of events. Zhang
et al. (2014) showed model simulations with abrupt climate
changes similar to DO events by gradually varying the North-
ern Hemisphere ice sheet topography, which led to shifts in
the atmospheric circulation that altered the wind-driven ex-
port of sea ice. This eventually led to an abrupt decrease in
North Atlantic sea ice cover and a resurgence of the AMOC.
Kleppin and co-workers reported spontaneous transitions of
the AMOC that were triggered by the stochastic atmospheric
forcing and subsequent changes in North Atlantic sea ice
(Kleppin et al., 2015). Ice core data indicate that abrupt shifts
in the sea ice extent at the onset of DO events were preceded
by shifts in atmospheric circulation by about a decade (Er-
hardt et al., 2019). Furthermore, there is evidence for gradual
trends leading up to the abrupt shifts in both sea ice and at-
mospheric circulation proxies, indicating an underlying pa-
rameter shift that might be mutually expressed in sea ice and
atmosphere (Lohmann, 2019; Sadatzki et al., 2019).

Besides illustrating a new mechanism for abrupt climate
change, the conceptual model proposed here gives some in-
teresting insight into dynamical phenomena in systems com-
bining time-dependent and stochastic forcing. We find that
the ocean component of our model (the well-known Stom-
mel box model) displays rate-induced tipping in what could
be called a “soft” tipping point. Here, due to a non-smooth
fold bifurcation, tipping always occurs before the bifurcation
point is reached, even if the rate of change in the parame-
ter shift is arbitrarily slow. Further, the rate-induced transi-
tion involves attraction by the stable manifold of a saddle,
which can lead to a significant delay of the tipping under
stochastic forcing. Based on this, we propose an early warn-
ing indicator to detect rate-induced tipping; so far only early
warning signals specific to bifurcation tipping are known
(Held and Kleinen, 2004; Dakos et al., 2008; Scheffer et al.,
2009, 2012).

The paper is structured as follows. In Sect. 2 the coupled
conceptual model is presented. We then show rate-induced
tipping of the ocean component (the Stommel box model) in
the deterministic and stochastic case in Sects. 3.1 and 3.2,
respectively. Thereafter, the cascading dynamics of the cou-
pled model are presented (Sect. 3.3). Early-warning signals
for the cascade, as well as for the rate-induced tipping, are
investigated in Sects. 3.4 and 3.5. The results are discussed
in Sect. 4, and our conclusions are given in Sect. 5.
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Figure 1. (a) Bifurcation diagram of the Stommel box model with η1 as control parameter, η2 = 1.0 and η3 = 0.3. Solid lines indicate
branches of stable fixed points, whereas dotted lines indicate unstable fixed (or saddle) points. (b) Bifurcation diagram with η2 as control
parameter, η1 = 3.0 and η3 = 0.3. (c) Dependence of bi-stability on η3 (η1 = 3.0). The individual bifurcation diagrams with η2 as control
parameter are shown with decreasing bistability interval as η3 is increased from 0.1 up to 0.75.

2 Model

2.1 Ocean component: Stommel’s 1961 box model

We consider the Stommel box model of the Atlantic ther-
mohaline circulation (Stommel, 1961) with added noise to
represent variations in the atmospheric forcing on short
timescales. The model assumes the overturning flow ψ in
between well-mixed polar and equatorial ocean basins to be
proportional to the density difference

ψ ∝ (ρp− ρe)= [αT (Te− Tp)−αS(Se− Sp)], (1)

where the density is given by the equation of state of seawater

ρe,p = ρ0
[
1−αT (Te,p− T0)+αS(Se,p− S0)

]
, (2)

with some reference densities, temperatures and salinities
represented by ρ0, T0 and S0, respectively. The two model
variables represent the dimensionless temperature difference
T = αT (Te− Tp) and salinity difference S = αS(Se− Sp) in
between the boxes. This defines the dimensionless overturn-
ing circulation strength

q = T − S. (3)

Temperature and salinity in the boxes relax towards an atmo-
spheric temperature and salinity forcing T a

e,p and Sa
e,p. The

meridional difference of the forcing drives the circulation
and is represented by the two parameters η1 ∝ (T a

e −T
a

p ) and
η2 ∝ (Sa

e − S
a
p). A third parameter represents the timescale

ratio of the temperature and salinity relaxation η3 =
τT
τS

. The
model is then defined by the stochastic differential equations

dTt = (η1− T − |T − S|T )dt + σT dWT ,t (4)
dSt = (η2− η3S− |T − S|S)dt + σSdWS,t , (5)

with the Wiener processes WS,t and WT ,t . Time is scaled
with respect to the ocean timescale τT = 200 years. For a
more detailed derivation of the model, see Dijkstra (2008).
The deterministic system features a parameter regime with

two stable equilibria, which are referred to as the circula-
tion “on” and “off” states. For the on state we have T > S,
where the temperature forcing gradient dominates the op-
posing salinity forcing gradient and drives the circulation.
The off state (S > T ) corresponds to a reversed circulation,
which is weaker and dominated by the salinity forcing gradi-
ent. In Fig. 1a and b we show deterministic bifurcation dia-
grams of q with respect to the parameters η1 and η2. In both
cases, the on state loses stability in a regular saddle-node bi-
furcation, whereas the off state destabilizes in a non-smooth
saddle-node bifurcation. The latter is also known as a non-
smooth fold (di Bernardo et al., 2008) and is due to the fact
that the Stommel model is a non-smooth dynamical system
owing to the absolute value in its equations (see Sect. S3
and Fig. S3 for more detail). The existence and extent of bi-
stability depends on the parameter η3. A large timescale sep-
aration (slower salinity damping) leads to a large region of
bi-stability, whereas as the salinity damping approaches the
timescale of temperature damping, the bistability disappears
(Fig. 1c). This is because a faster salinity damping disables
the positive salt advection feedback, which gives rise to the
bi-stability.

2.2 Coupled sea ice–ocean model

The ocean model is coupled to a sea ice component in the po-
lar ocean box, which is the energy balance model described
in Eisenman and Wettlaufer (2009) and Eisenman (2012),
modified by neglecting the seasonal cycle and effects of the
sea ice thickness. The changing sea ice cover acts to insu-
late the polar ocean to varying degrees from the cold atmo-
spheric temperature forcing T a

p , thus modulating the temper-
ature forcing gradient η1 ∝ (T a

e − T
a

p ). A schematic of the
coupled model, including model variables and important pa-
rameters, is given in Fig. 2. The deterministic sea ice compo-
nent is defined (Eisenman and Wettlaufer, 2009) by

dI
dt
=1 tanh

(
I

h

)
+ [R02(I )−B]I +L−F − 1+R, (6)
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Figure 2. Schematic of the coupled sea ice–ocean model including
model parameters and variables (bold). A description of the param-
eters is given in Table 1. The well-mixed polar and equatorial ocean
boxes are coupled by a surface flow q, along with an identical re-
turn flow at the bottom. The ocean component is reduced to the two
variables T ∝ Te− Tp and S ∝ Se− Sp. In the polar ocean box, the
sea ice cover I insulates the ocean from the cold atmospheric tem-
perature T a

p .

with the Heaviside step function 2(·). Time is scaled with
respect to τI = 1 year. The parameters and their values are
described in Table 1. While I > 0 corresponds to a positive
sea ice cover, I < 0 represents zero sea ice cover, and the
variable is instead a measure of the enthalpy of the surface
ocean (Eisenman, 2012). The control parameterR models in-
fluences on the sea ice concentration due to external factors,
such as export or import of sea ice into the North Atlantic
via changes in wind stress. While in the climate system R

is driven by slower dynamic processes, such as changes in
ice sheet topography, we treat it as a control parameter. We
use parameter values from Eisenman (2012), which yield a
sea ice component that is bi-stable with respect to R. As
seen in Fig. 3, for a range of R there exists a stable state
with a positive sea ice cover (red), as well as a state with
zero sea ice cover I < 0 (black). This range is bounded by
two saddle-node bifurcations. The stable state with sea ice
cover collapses at R =−0.282. We define the state at R = 0
as the stadial state, yielding a fixed point with positive sea
ice cover I+0 ≈ 1.156. A slight deviation from the parame-
ters of Eisenman (2012) is our larger value of h, which gives
a more gradual albedo transition from an ice-free to an ice-
covered state. Accordingly, the bifurcation diagram is more
“S-shaped” instead of “Z-shaped” (see Sect. S1 and Fig. S1
in the Supplement for more details).

To model transitions from stadial to interstadial conditions
in the coupled sea ice–ocean model, we consider the fol-
lowing mechanism. The glacial polar ocean is insulated by
a high sea ice concentration from the atmospheric temper-
ature forcing, preventing it from losing heat efficiently. As
the sea ice concentration decreases, the polar ocean becomes
more and more exposed to the cold atmosphere and loses

Figure 3. Bifurcation diagram of the sea ice component for param-
eter values as in Table 1. The solid (dotted) lines indicate stable
(unstable) fixed points.

Table 1. Description of model parameters.

Parameter Description Value

η2 Salinity forcing gradient 1.0
η3 Temperature–salinity timescale ratio 0.3
κ Sea ice–ocean coupling 0.303
τT Ocean timescale 200
τI Sea ice timescale 1.0
1 Ocean–sea ice albedo diff. 0.43
h Albedo transition smoothness 0.5
R0 Sea ice export −0.1
B Outgoing longwave radiation coeff. 0.45
L Incoming longwave radiation 1.25
F Ocean forcing on sea ice 1/28

heat. Thus, the sea ice variable modulates the parameter η1,
which we now define as η1(I )= η0

1−κ2(I )I , with the Heav-
iside function 2(·) since I < 0 corresponds to zero sea ice
cover. Adding noise as a model of fast atmospheric perturba-
tions (Wiener processWI,t ), this yields the following coupled
equations:

dIt =
(
1 tanh

(
I

h

)
+ [R02(I )−B]I +L−F − 1+R

)
dt

+σIdWI,t , (7)
τT

τI
dTt =

(
η0

1 − κ2(I ) · I − T − |T − S|T
)

dt + σT dWT ,t , (8)

τT

τI
dSt = (η2− η3S− |T − S|S)dt + σSdWS,t . (9)

The value of κ reflects the change in atmospheric tempera-
ture forcing when removing the sea ice cover. In this concep-
tual framework it can only be chosen heuristically. We can
for instance assume η0

1 = 3.0 for an open ocean, and atmo-
spheric temperature forcings in a glacial climate of 20 and
−10 ◦C in the equatorial and polar box, respectively. Full
sea ice cover would limit the polar temperature forcing to
0 ◦C, corresponding to η1 = 2.0. Even if the glacial polar
atmosphere were above 0 ◦C, given that it was colder than
the surface ocean, extensive sea ice cover would severely
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reduce heat loss to the atmosphere and thus effectively re-
duce η1. Here we choose a scenario where during the stadial
the sea ice reduces the atmospheric forcing from η1 = 3.0 to
η1 = 2.65. κ is then chosen such that η1 = 2.65 at the stadial
fixed point I+0 and η1 = 3.0 for I < 0, yielding κ = 0.35/I+0 .
As a result, the ocean component is in the bi-stable regime for
both full and zero sea ice cover. A transition from stadial to
interstadial will then be captured by decreasing R from zero
beyond the bifurcation point, which tips the sea ice compo-
nent towards a state of I < 0, while the ocean remains in the
bi-stable regime.

Due to the unidirectional, linear coupling of the model,
and our focus on a specific dynamical regime, we restrict our
presentation of the coupled dynamics to the individual bifur-
cation diagrams of the sea ice component with R as control
parameter and of the ocean component with η1(I ) as effec-
tive control parameter. The full bifurcation structure of the
coupled model with R as the only control parameter is pre-
sented in Sect. S2 and Fig. S2.

3 Results

3.1 Rate-induced tipping and soft tipping points in the
Stommel model

Here we investigate the tipping dynamics in the ocean com-
ponent in the deterministic limit (σT = σS = 0). As noted
above, there is a non-smooth fold in the Stommel model as
the off state loses stability, which leads to a resurgence of the
AMOC. In the bifurcation diagrams of Fig. 4 it can be seen
that, both in terms of T and S, the stable fixed point (red
line) moves in the same direction as the saddle point when
the non-smooth fold bifurcation is approached. Thus, in a
sufficiently fast parameter shift towards the fold, the saddle
point can outpace the system state, which is trying to follow
the moving equilibrium. This is illustrated in Fig. 4, where
instantaneous parameter shifts and the corresponding move-
ments of the system state vector in the bifurcation diagrams
are indicated. When the saddle point moves past the system
state, the system will tip towards the alternative stable state,
which is the on circulation in our case. Thus, tipping can oc-
cur even before the bifurcations points are reached, which is
known as rate-induced tipping. While in the Stommel model
this can happen for both η1 and η2 as control parameter, it
occurs for a larger range of amplitudes and rates of the pa-
rameter shift when changing η1.

To be more rigorous one has to consider the movement of
the basin boundary as the control parameter is changed. The
basin boundary is the stable manifold of the saddle, and it
separates the basins of attractions of the on and off states,
i.e., the sets of initial conditions that converge to the respec-
tive attractors. In Fig. 5 we illustrate the movement of the
fixed points and basin boundary as η1 is changed from 2.65
to 3.0. This corresponds to the scenario of a transition from
stadial to interstadial sea ice cover in the coupled model, as

Figure 4. (a, b) Bifurcation diagram of the Stommel model equi-
libria in terms of the variables (a) T and (b) S as a function of η1 as
control parameter with η2 = 1.0 and η3 = 0.3. (c, d) The same as
(a, b) but with η2 as control parameter with η1 = 3.0 and η3 = 0.3.
Solid lines indicate stable fixed points, whereas dotted lines indi-
cate saddle points. The horizontal arrows indicate the movement of
the system state as the control parameter is changed instantaneously
within the bi-stable regime. In (a) we illustrate how the system state
may track the moving equilibrium for a slow parameter shift (pur-
ple trajectory) or tip to the undesired equilibrium in a fast parameter
change (blue trajectory).

described in Sect. 2.2. Figure 5b shows that the off fixed
point before the parameter shift (open circle) lies inside the
basin of attraction of the on fixed point after parameter shift
(blue area). This is a sufficient condition for rate-induced tip-
ping, which has been called basin instability (O’Keeffe and
Wieczorek, 2020), since for an instantaneous parameter shift,
the system would tip to the other attractor. Similarly, as the
system tries to follow the moving fixed point during a suffi-
ciently fast parameter shift, it will fail to reach the off basin
(orange area) at the end of the parameter shift and tip to the
on fixed point. This happens for the blue trajectory, where
the parameter is ramped up linearly within 300 years. In con-
trast, the purple trajectory shows that tipping does not occur
for a ramping duration of 500 years. For this given amplitude
of the parameter shift, there is a critical rate of parameter
change in between these two values.

Figure 6 shows time series of q for simulations with differ-
ent ramping durations. The realizations in Fig. 6a and b tip to
the on attractor, while the realizations in Fig. 6c and d track
the moving off equilibrium. The critical ramping duration is
in between the 388.5 and 390 years employed in Fig. 6b and
c. Comparing Fig. 6a to b, one observes a delay in the tipping
in Fig. 6b of thousands of years. This occurs because, for
close-to-critical rates, the system state passes by very closely
to the saddle point, where it remains for a long time as the dy-
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Figure 5. Phase portraits of the Stommel model with basins of attraction and fixed points. Squares and dots indicate stable fixed points, and
triangles denote saddle points. (a) Phase portrait for η1 = 2.65 with several flow lines to indicate the dynamics around the saddle. The basin
of attraction of the off (on) state is shaded in orange (blue). (b) Phase portrait for η1 = 3.0. Two trajectories where η1 is ramped linearly
from η1 = 2.65 to η1 = 3.0 within 300 and 500 years are shown in blue and purple, respectively. The initial conditions T ,S = (2.4,2.5)
are indicated by the yellow cross. Open symbols indicate the positions of the fixed points at η1 = 2.65, and the black curve indicates the
corresponding basin boundary from (a).

namics slow down before being ejected. The close approach
of the saddle happens because the system state is attracted by
the saddle’s stable manifold, which is also the basin bound-
ary. If one were to use the exact critical ramping duration, the
system state would evolve precisely towards the saddle and
remain there. Such trajectories are called maximum canards
(O’Keeffe and Wieczorek, 2020). This behavior is also seen
for trajectories that eventually track the moving equilibrium,
as in Fig. 6c. It is worth noting that the attraction by the sta-
ble manifold of the saddle continues after the parameter shift
is already over, as shown in the inset in Fig. 6c.

The critical ramping duration depends on the amplitude
1η1 of the parameter shift (Fig. 7a). Rate-induced tipping
becomes possible at a certain1η1, where the basin instability
condition is first satisfied. Increasing1η1 then leads to a very
rapid increase of the critical ramping durationDc. Thereafter,
Dc keeps increasing and actually diverges as the bifurcation
is approached. This is due to the non-smoothness of the fold
bifurcation, where the attractor and saddle meet in a cusp
(see Sect. S3 and Fig. S3 for more detail). As a result, the
attractor gets close to the basin boundary very quickly as the
bifurcation is approached. This leads to a super-linear scal-
ing of the shortest distance to the basin boundary. In Fig. 7b,
we compare this to the square-root scaling of the smooth fold
bifurcation in the sea ice component. In the non-smooth case,
as the bifurcation is approached the basin boundary gets arbi-
trarily close to the attractor. Then, even very small and slow
parameter increases lead to tipping. Thus, the non-smooth
fold leads to what could be called a soft tipping point. In
practice, there is no hard critical threshold of the parameter,
but for any parameter shift at finite rate, the tipping will occur
at some point prior to the bifurcation. The precise location of
the tipping point depends on the trajectory of the parameter
shift.

Figure 6. Time series of q = T − S in the Stommel model when
ramping the parameter from η1 = 2.65 to η1 = 3.0 at different rates.
The realizations are initialized at T ,S = (2.4,2.5), which is close
to the off fixed point at η1 = 2.65. The duration of the ramping is
indicated by the gray shading. The realizations in (a) and (b) with
ramping durations of 300 and 388.5 years, respectively, tip from the
off to the on attractor. The realizations in (c) and (d) with ramping
durations of 389 and 500 years, respectively, track the moving off
attractor. The on, off and saddle fixed points at η1 = 3.0 are shown
as horizontal lines.
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Figure 7. (a) Critical ramping duration below which there is a rate-induced tipping in the Stommel model when shifting the parameter from
η1 = 2.65 to η1 = 2.65+1η1. The off attractor loses stability in the bifurcation at ηoff

1 = 3.333, as indicated by the dashed red line. (b)
Normalized shortest distance to the basin boundary 1B as a function of the normalized distance to the bifurcation 1λ= (ηoff

1 −η1) · (ηoff
1 −

ηon
1 )−1. ηon

1 is the parameter value at the other saddle node bifurcation of the on state. The solid black curve shows the results of the Stommel
model, and a proposed super-linear scaling is shown by the dashed curve. Also shown are results for the smooth bifurcation in the sea ice
component (solid blue) and the corresponding square-root scaling (dotted).

Figure 8. (a) Probability of a rate-induced tipping in the Stommel model from the off to the on state as a function of the linear parameter
ramping duration from η1 = 2.65 to η1 = 3.00. Different noise levels σT = σS = σ are considered: σ = 0.01 (lightest gray curve), σ =
0.02, σ = 0.04, σ = 0.06, σ = 0.1, σ = 0.2, and σ = 0.4 (darkest gray curve). The dashed red line is the critical ramping duration in the
deterministic system. (b) Probability distributions of the time of tipping, defined by the first crossing of q > 0.1, for different noise levels.
The ramping is started in year 1000 and the duration is fixed at 300 years. The dashed red line is the time of tipping in the deterministic
system.

3.2 Noisy rate-induced tipping

We now consider additive noise in the ocean component,
which models variations in atmospheric forcing on short
timescales. In addition to the soft tipping just described,
the stochastic perturbations further blur the critical threshold
leading to tipping. For a given amplitude of the parameter
shift, there is no longer a critical rate but a range of rates
where the probability of tipping goes from 0 to 1. Figure 8a
shows how this range of rates expands for increasing noise
level. Note that since the system features unbounded noise,
we consider finite time-tipping probabilities during a simula-
tion time of 5000 years. Eventually, there will always occur
a noise-induced transition to the on attractor, especially from
the off attractor at η1 = 3.0 for higher noise levels.

By introducing noise, tipping becomes a mixture of rate-
induced and noise-induced transitions, since the unbounded
noise allows the system to cross the basin boundaries of
the deterministic system in any circumstances. Still, for low
noise levels the behavior strongly resembles the determin-
istic case. As discussed earlier, for a ramping speed rela-
tively close to the critical rate, the tipping involves an escape
from the saddle. This behavior is robust for low noise levels,
where the stochastic fluctuations cannot overcome the attrac-
tion of the stable manifold of the saddle. Thus, the system
approaches the saddle before being ejected from its vicinity.

As the noise level is increased, there are noise-induced
early tippings as well as significantly delayed tippings. In or-
der to quantify when a tipping is “early” or “late”, we need to
define the moment when the system actually tips. For the de-
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Figure 9. (a–c) Three realizations in phase space of the Stommel model with σT = σS = 0.2, where η1 is ramped from η1 = 2.65 to
η1 = 3.00 over 300 years. The filled dot (triangle) marks the off fixed point (saddle) at η1 = 3.0. The colored areas are the quasi-stationary
basins of attraction at the time when their boundary is first crossed. The colored basins of attractions are given at the time of first basin crossing
of the trajectories, which change color from purple to yellow. The initial conditions T ,S = (2.4,2.5) are indicated by the yellow cross. The
locations of the saddle point (triangle) and the on fixed point at this time are shown with open symbols. The threshold q = T −S = 0.1 used
to define the time of tipping is shown as a dotted line.

terministic system, a sensible choice would be the time when
the moving, quasi-stationary basin boundary is crossed, since
this is the first moment that the system would tip in case
the parameter shift would be stopped suddenly. However, for
the noisy system this does not guarantee tipping, since the
system may cross back to the other basin at any time. As a
heuristic definition of tipping, we can instead detect the de-
parture from the vicinity of the saddle in terms of the over-
turning q, as the tipping is associated with a monotonic in-
crease of q (see Fig. 6). Thus, as tipping we define the first
crossing of q = 0.1, which is a slightly larger value than at
the saddle to allow for some fluctuations around it. In phase
space this defines a straight line.

Figure 9 shows the crossing of this threshold, as well as the
basins at the time when the basin boundary is first crossed,
for three different realizations with a ramping duration of
300 years and σT = σS = 0.2. The time of tipping varies sig-
nificantly and depends primarily on the proximity of the ap-
proach to the saddle and the subsequent time spent in its
vicinity. Whereas Fig. 9b shows a realization with tipping
close to the deterministic scenario, the realization in Fig. 9a
leaves the stable manifold early and does not approach the
saddle closely. The realization in Fig. 9c approaches the sad-
dle very closely and remains there for a long period of time.

The tipping time distribution and its dependence on the
noise level is shown in Fig. 8b. In our case of a ramping du-
ration slightly below the critical value of the deterministic
system, there are three regimes of noise levels. For low noise
(σ = 0.01, σ = 0.02, σ = 0.04 and σ = 0.06 in Fig. 8b) the
trajectories are very similar to the deterministic case, and it
is very unlikely that the noise pushes the system closer to the
saddle. Thus, the tipping time is distributed closely around
the deterministic value. For intermediate noise (σ = 0.1 and
σ = 0.2 in Fig. 8b), some early noise-assisted tippings are
possible, as seen by the shift of the distribution mode towards
earlier times. For other realizations there is a good chance
that the noise pushes the system closer to the saddle, where it

can stay for a long time (thousands of years) as the dynamics
slow down before escaping. This leads to the development of
a long tail in the tipping time distribution. For larger noise
(σ = 0.4 in Fig. 8b), even earlier noise-assisted tippings are
seen, as well as some delayed tippings. However, the latter
do not occur as frequently as for intermediate noise since the
average residence time at the saddle is also shortened.

3.3 Cascading dynamics

We now consider the coupled model and investigate how a
stadial–interstadial transition can arise as a cascading tipping
of the two components. The cascade is initiated by a change
in the control parameter R leading to a decrease and eventual
tipping of the sea ice to I < 0. Subsequently, the modula-
tion of the parameter η1(I ) due to the decrease of I can be
expected to induce a rate-induced resurgence of the AMOC.
On the one hand, this is because the short sea ice timescale
leads to very fast dynamics as the sea ice tips. On the other
hand, even if the sea ice does not change quickly, when the
amplitude of the change in η1(I ) becomes larger, there will
be rate-induced tipping anyway due to the soft tipping point
in the Stommel model described earlier. We thus choose the
robust scenario where the coupling κ is such that the ocean
component remains in the bi-stable regime with respect to
η1(I ), and thus a rate-induced AMOC resurgence is the only
pathway to tipping. As described in Sect. 2.2, this can be ex-
emplified by a change in η1(I ) from η1 = 2.65 (at the stadial
sea ice fixed point for R = 0) to η1 = 3.0 for a collapsed sea
ice cover I < 0. Simulations with these parameters are quali-
tatively representative for a wider range of coupling strengths
and rates of changing R.

Figure 10 shows trajectories for a cascading stadial–
interstadial transition in the deterministic limit when R is
ramped down from R = 0 to R =−0.3 over 340 years. The
transition can be divided into several stages. First, the sea ice
slowly decreases as R is decreased and the ocean component
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Figure 10. Cascading stadial–interstadial transition in the coupled sea ice–ocean model where R is ramped from R = 0 to R =−0.3 within
340 years and kept constant afterwards. (a) Trajectory of the sea ice component as function of the control parameter R. (b, c) Trajectory of
the ocean component as function of the changing parameter η1(I (t))= η0

1 − κ2(I (t)) · I (t). The tipping cascade consists of several steps
separated by the points A, B, and C and marked by different colors in the trajectories (see main text). The gray surface in (c) is the moving
basin boundary corresponding to the changing η1(I (t)).

Figure 11. Probability of a cascading transition in the coupled sea ice–ocean model when changing the control parameter R linearly from
R = 0 to R =−0.3 within different ramping times. (a) Fixed noise level σI = 0.02 in the sea ice component and varying noise levels
σT = σS = σ = 0.005 (lightest gray), σ = 0.01, σ = 0.02, σ = 0.04 and σ = 0.1 (darkest gray) in the ocean component. (b) Fixed noise level
σT = σS = 0.02 in the ocean component and varying noise levels σI = 0.005 (lightest gray), σI = 0.01, σI = 0.02, σI = 0.04, σI = 0.08
and σI = 0.2 (darkest gray) in the sea ice component.

tries to track the moving equilibrium (green segment of tra-
jectories in Fig. 10). At point A, 325 years after the start of
ramping, the sea ice passes the bifurcation point and rapidly
tips to I < 0 (purple segment in Fig. 10). This leads to a
quick movement of η1(I ) towards η1 = 3.0, which is reached
at point B, 350 years after the start of ramping (Fig. 10b).
As a result, the ocean state crosses the moving basin bound-
ary (gray surface in Fig. 10c) from above and is thus de-
termined to undergo rate-induced tipping to the on attractor
(solid black curve). However, before tipping the ocean state
is attracted by the stable manifold (i.e., the basin boundary)
of the saddle (yellow segment). Finally, at point C (700 years
after the start of ramping) the ocean component escapes the
vicinity of the saddle and tips towards the on state (blue seg-
ment).

There is a critical timescale below which such a cascad-
ing transition with a rate-induced tipping is possible. This is
a combination of the rate of change in the control parameter

R and the speed of the tipping of the sea ice, which is held
fixed here. As additive noise is included in the model, the
boundary of tipping in terms of the ramping time of the con-
trol parameter is again blurred. Figure 11a shows the tipping
probabilities for different noise levels as a function of the
ramping time of R. The result is very similar to the ocean-
only case, except that because of the fast tipping in the sea
ice, the average ramping times leading to tipping are slightly
higher. The picture looks different as we increase the noise
level in the sea ice component, as seen in Fig. 11b. Here,
the ramping times that yield significant tipping probabilities
simply increase with the noise level without a large simulta-
neous decrease of the tipping probability for lower ramping
durations. This is because noise-induced transitions to I < 0
occur before the bifurcation of I is crossed. Since these tran-
sitions happen on the fast sea ice timescale, a rate-induced
tipping of the ocean model becomes possible even when R is
changed very slowly. As in the ocean-only case, the tipping
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cascade involves a saddle escape, which can lead to signifi-
cant tipping delays as noise forcing of intermediate strength
is included. Next, we will discuss this in more detail and re-
late it to potential pre-cursor signals leading up to such tran-
sitions.

3.4 Early warning of the tipping cascade

Due to their irreversible nature, it is important to foresee im-
pending tipping points using generic early warning signals
that do not require detailed knowledge of the system dynam-
ics. These are typically obtained from time series by estimat-
ing a statistical indicator in a sliding window with appropri-
ate detrending (see Sect. S4). For bifurcation tipping, a sys-
tem often exhibits critical slowing down, which can be mea-
sured by increasing variance and autocorrelation. In Fig. 12
we show these indicators estimated in a sliding window for
the cascading transition in Fig. 10. As expected there is an in-
crease in variance and autocorrelation of I leading up to the
bifurcation (Fig. 12c and d). Because of the speed of the pa-
rameter shift necessary to induce the cascade, the increases
in the indicators do not fully exceed the variability prior to
the parameter shift but could still provide early warning with
a reasonable skill. Due to the coupling one might expect a
signature of the sea ice critical slowing down in the ocean
component. This is not seen here (Fig. 12e and f), since in-
creasing fluctuations due to the sea ice are small compared
to the variability in the ocean component for the chosen σ .
If no noise is added to the ocean variables, critical slowing
down can be detected in T or S. This might be an example
of scenarios proposed in Rypdal (2016) and Boers (2018),
where it is hypothesized that a bifurcation in the sea ice sys-
tem is detectable as increased variance in the high frequen-
cies of ice core data prior to DO events. Similarly, the fluctu-
ations in I of increasing amplitude and temporal correlation
may influence the ocean subsystem in a more consistent way
as the bifurcation is approached. This should increase the
cross-correlation, especially on longer timescales that can be
measured with detrended cross-correlation analysis (DCCA).
This has been proposed as early warning indicator for cas-
cading transitions (Dekker et al., 2018). The method is sim-
ilar to detrended fluctuation analysis, but instead of scaling
in the variance, it measures scaling in the covariance of two
signals with increasing timescales (for details, see Zebende,
2011 or Dekker et al., 2018). We can detect a slight increase
on average in the DCCA exponent of I and T (Fig. 12g) for
the transition in Fig. 10. However, the increase found in indi-
vidual time series is not statistically significant, owing to the
large variance of the DCCA estimator.

3.5 Early warning of rate-induced tipping in the
Stommel model

During the rate-induced transition of the ocean component
there is an increase in the ensemble variance, as can be seen

Figure 12. Ensemble simulations of the coupled sea ice ocean
model, where R is ramped linearly from R = 0 to R =−0.3 within
350 years. (a) Time series of R (dashed line) and mean time series
of I with a 90 % confidence band of the ensemble (gray shading).
(b) Mean time series and 90 % confidence band of T and S. (c–
f) Indicators of critical slowing down for I and T , estimated in a
sliding window of 150 years, where the data in the window is de-
trended by a cubic function. The data is cut as the bifurcation in I
is crossed until after the last realization tips plus the sliding window
length. (g) Detrended cross-correlation analysis (DCCA) exponent
estimated from I and T .

by the shadings in Fig. 12b. This increase, as well as a cor-
responding increase in ensemble autocorrelation, has been
proposed before as an early warning signal for rate-induced
tipping (Ritchie and Sieber, 2016). However, we show here
that this results from the large spread in the amount of time
spent by individual realizations at the saddle before tipping
to the other attractor (see Fig. 8). In contrast, the fluctuations
in individual realizations, as used for operational early warn-
ing, do not show an increase in variance and autocorrelation.
This can be seen in Fig. 12e and f, where no increases in
sliding window variance and autocorrelation accompany the
increase in ensemble variance. For the estimation of variance
and autocorrelation in a sliding window, a detrending of the
time series is necessary, such that remaining trends in the
residuals are not larger than the fluctuations themselves. For
our detrending method using cubic functions, the severity of
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Figure 13. (a) Simulation in phase space of the Stommel model
with σT = σS = 0.2, where η1 is ramped from η1 = 2.65 to η1 =
3.00 within 300 years. The two dotted lines correspond to the levels
q = T − S = 0.06 and q = T − S = 0.1. The trajectory in between
the first crossing of these two thresholds is shown in yellow. (b)
Corresponding time series of the variable T .

detrending, and thus the ability to remove sharp changes in
the signal trend, depends only on the sliding window size
(see Sect. S4 for more details). In order to remove the trend
due to the parameter shift regarded here, a window size of no
more than 200 years is required (Fig. S4).

Detrending inevitably removes some of the original fluctu-
ations. To show that the lack of increased fluctuations in the
detrended time series is not a consequence of too severe de-
trending, we extract segments of time series simulated from
the Stommel-only model, where the system is in the vicinity
of the saddle and there are no sharp trends. The fluctuations
around the saddle are then compared to time series segments
where the system fluctuates around the initial attractor. We
define the vicinity of the saddle by the time periods in the
simulations where q = 0.06 is first crossed until q = 0.1 is
first crossed (Fig. 13). We regard the time series segments
of an ensemble of realizations where the system stays in this
vicinity for at least a certain duration. After detrending the
segments by cubic functions, we calculate variance and auto-
correlation. This yields empirical distributions of these quan-
tities, describing the fluctuations in the system shortly before
tipping. For each realization, we also choose a segment of
the same duration taken just before the parameter shift starts,
yielding distributions of variance and autocorrelation at the
initial attractor. Figure 14 shows that variance and autocor-
relation at the saddle are not increased but actually slightly
decreased compared to the initial attractor. This is best seen
for longer segments (Fig. 14c and d), since there the uncer-

Figure 14. Distributions of variance and autocorrelation for ensem-
bles of time series from the Stommel model (σT = σS = 0.2). These
are estimated from time series segments around the initial fixed
point at η1 = 2.65 (black) and close to the saddle point (orange;
see main text). The length of the segments for each realization cor-
responds to the time period that the system spent in the vicinity of
the saddle. (a, b) Results for realizations where these time windows
were at least 300 years long. (c, d) Results for time windows of
at least 700 years. Also shown are the distributions around the on
attractor (dashed) and the off attractor at η1 = 3.0 (dotted).

tainty in the estimators is smaller. One can also see that in
this case the average variance and autocorrelation are larger
compared to Fig. 14a and b because the detrending in longer
windows removes less variability on longer timescales.

It thus does not appear that critical slowing down indica-
tors apply to rate-induced tipping. Instead, we exploit that
the system is attracted towards the saddle where the dynam-
ics are different to those at the initial attractor. If this differ-
ence can be detected before the system tips, a small perturba-
tion in the right direction or a reversal of the parameter shift
could push the system back in the desired basin of attraction.
Saddles, which have at least one unstable direction in phase
space, can be distinguished from attractors by a change from
a negative to a positive real part of the largest eigenvalue of
the Jacobian. Estimating the Jacobian from the time series
in a sliding window could thus be a generic tool to detect
the saddle escape involved in rate-induced tipping, and we
describe a method to do this in the Appendix A. With this
method the elements of the Jacobian during rate-induced tip-
ping of the Stommel model can be inferred and allow for the
distinction of the dynamics around the different fixed points
(Fig. S5). However, there are quantitative biases in the esti-
mates of individual elements, and as a result the estimates of
the real part of the largest eigenvalue in the vicinity of the
saddle are not consistently positive. These biases could be a
result of the detrending, of a too high noise level or because
the unstable dynamics are “suppressed” since we consider
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Figure 15. (a–f) Distributions of the early warning indicator J for ensembles of time series from the Stommel model (σT = σS = 0.2),
estimated around the initial fixed point at η1 = 2.65 (black) and close to the saddle point (orange). For each realization, J is estimated after
detrending in a time window that corresponds to the time period that the system spent in the vicinity of the saddle. In increasing order, the
panels show results for realizations where these time windows were at least 100, 150, 200, 300, 400, and 600 years long, respectively. (g)
Receiver operator characteristic curves for the same time series ensembles, showing the false and true positive rates as the threshold Jc
is increased from low (top right) to high values (bottom left). The increasing darkness in the gray scale of the curves corresponds to the
increasing time window lengths, as above. The diagonal dashed line indicates the performance of a pure chance classifier. The red cross
indicates a perfect classifier.

time series segments taken before the escape from the sad-
dle.

As a more reliable indicator we propose the actual ele-
ments of the Jacobian, since they are inferred in a qualita-
tively robust way (Fig. S5). This lowers the estimator vari-
ance compared to the eigenvalues, which are composed of the
estimates of all elements. The off-diagonal elements record
changes in sign of the feedbacks in between the system vari-
ables. Such changes in feedback are common as a system
moves towards a saddle. We combine the off-diagonal ele-
ments to a scalar early warning indicator J , as defined in
Eq. (A6). Figure 15a–f shows that J can distinguish the
dynamics around the attractor (black) and the saddle (red)
before tipping. The panels correspond to different minimum
lengths of the time windows used to estimate J . The figure
also shows probabilities p of observing a value of J esti-
mated around the attractor that is larger than a value of J in
the vicinity of the saddle. This measures the performance of
J as an early warning signal. For longer time windows, the
distributions become better separated since the uncertainty of
the estimator is reduced. Still, even for relatively short win-
dows the indicator correctly identifies the departure from the
attractor for most realizations.

An operational early warning signal can be constructed by
estimating J in a sliding window, and raising an alert as soon
as a threshold Jc is exceeded. Choosing a location of Jc rela-
tive to the tails of the distributions in Fig. 15a–f is a trade-off
in between maximizing the rate of true positives and mini-
mizing the rate of false positives (alerts). The performance of
the alert as a binary classifier can be summarized in receiver
operating characteristic (ROC) curves. The curve of a per-
fect classifier collapses to the point (0,1). Figure 15g shows
that for realizations that spend a longer time at the saddle,
the indicator J comes close to a perfect classifier, detecting
the saddle approach with very low false positive and very
high true positive rates. Figure 16 shows J estimated from
time series in a sliding window, along with critical slowing
down indicators. J begins to rise sharply roughly 200 years
after the ramping started and decreases slightly as most real-
izations leave the saddle towards the on attractor. In contrast
to the ensemble variance (orange), the variance and autocor-
relation in the sliding window show no signal, apart from a
small artifact around the parameter shift, which is a remnant
of imperfect detrending in the 200-year windows.
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Figure 16. Early warning indicators estimated in a 200-year sliding
window from an ensemble of time series of the Stommel model,
where η1 is ramped from η1 = 2.65 to η1 = 3.0 within 300 years.
(a) Time series of T and the parameter ramp. (b) Variance estimated
from the detrended time series, as well as the ensemble variance
(orange). (c) Lag 1 autocorrelation in the sliding window. (d) Early
warning indicator J (Eq. A6) estimated from the Jacobian in the
sliding window. Mean time series are shown in black and the range
in between 5th and 95th percentiles are shaded in gray.

4 Discussion

In this work we propose a conceptual model that describes
a mechanism for abrupt climate change comprising a rate-
induced resurgence of the AMOC as a response to increas-
ing atmosphere–ocean heat exchange, which results from fast
disappearance of sea ice. The latter occurs via a bifurcation
tipping as a response to changing sea ice export into the
North Atlantic, which could be driven by changes in wind
stress forcing due to variations in ice sheet topography. In the
context of DO events, the proposed model merely describes
the sequence of events leading to a stadial–interstadial tran-
sition and not the dynamics of entire DO cycles that repeat
in a self-sustained way. The model omits processes on longer
timescales, as well as processes that would initiate after the
resurgence of the AMOC. However, it can be easily extended
to display self-sustained DO cycles by adding another slow
variable that dynamically models the parameter shift. This
could be a simple negative feedback reflecting, e.g., the in-
fluence of the AMOC on the ice sheets. Similarly, stronger
noise forcing of the sea ice together with a weak feedback
from the ocean to the sea ice can yield an excitable system
with stochastically driven DO cycles. The proposed mecha-
nism is thus a dynamical skeleton that is in principle com-
patible with stochastic, externally forced and self-sustained

oscillatory dynamics driving DO cycles. Whether it indeed
played a role in past abrupt climate change remains to be
confirmed with more complex models, as well as with anal-
yses of new highly resolved and synchronized climate proxy
records.

The type of cascade introduced here could be a common
feature in coupled systems that feature multistability and
timescale separation. Here, a tipping in a fast subsystem can
trigger a rate-induced transition of a slower subsystem even
for weak coupling. Conversely, when there is no timescale
separation but stronger coupling, the cascade can still occur
in systems with non-smooth fold bifurcations. This is due
to soft tipping points (Sect. 3.1), where the critical ramping
duration to enable rate-induced tipping diverges as the pa-
rameter shift increases towards the bifurcation point. As a
result, the cascading dynamics seen in the conceptual model
may also be relevant for other regime shifts in the climate
system, as well as for other natural systems. Consequently,
we examined the mathematical details of the tipping cas-
cade, which occurs in several stages. During the parameter
shift the ocean subsystem tries to track the moving equilib-
rium. As the sea ice component tips abruptly, this fails and
the system is instead attracted by the stable manifold of the
saddle. The system then remains in the vicinity of the saddle
as the dynamics slow down, before escaping to the on attrac-
tor. Adding noise leads to a broad distribution of the tipping
time towards the on attractor. Early tipping, where stochastic
perturbations push the system away from the stable mani-
fold, is observed as well as significantly delayed tipping. In
the latter case, noise pushes the system very close to the sad-
dle, where it can get stuck for a very long time. A similar
delay of rate-induced tipping for low noise levels has been
reported for a one-dimensional gradient system (Ritchie and
Sieber, 2016). It is seen from our model that due to the attrac-
tion by the stable manifold of the saddle, the tipping delay is
a robust feature that exists for a fairly large range of rates
(both sub- and super-critical) and noise levels. Thus, it opens
up the possibility of issuing an early warning for rate-induced
transitions.

The main difficulty for achieving an early warning of the
cascade before the initial tipping of the sea ice is due to the
relatively fast parameter shift involved. Thus, indicators pro-
posed for cascading tipping points (Dekker et al., 2018) yield
non-significant results, and more research is needed to find
better indicators that might rely on similar principles. In-
stead, we focused on the rate-induced tipping of the ocean
subsystem, since early warning signals for rate-induced tip-
ping have not been developed. As in the case of fast passages
through a bifurcation, for very fast parameter shifts one can-
not hope for an early warning of rate-induced tipping. Here
the system is not attracted by the saddle but evolves quickly
towards the alternative attractor. However, for intermediate
rates we can exploit the fact that tipping occurs via saddle
escape. As the system state departs from the moving attrac-
tor towards the saddle, the linear stability changes. This can
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be captured by the Jacobian matrix, which we estimate from
the time series. We then propose using the off-diagonal ele-
ments of the Jacobian as an early warning signal. These ele-
ments record changes in the sign of coupling in between the
system variables, indicating a change in stability. The pro-
posed indicator detects an approach of the saddle with sig-
nificant skill, in particular for realizations where the system
stays in the vicinity for a longer time, so that the Jacobian
can be estimated with good precision. Note that the actual
tipping occurs by escaping the vicinity of the saddle, which
is largely noise-induced. Thus, early warning in the sense of
predicting the precise time of the saddle escape is hard to
achieve. Early-warning signals for saddle escapes have been
proposed (Kuehn et al., 2015), but they require being very
close to the saddle and very low noise. While the specific
early warning signal proposed here may not apply to all cases
of rate-induced tipping, the general procedure of detecting
a qualitative change in the feedback structure of the system
via the Jacobian or its eigenvalues should be widely appli-
cable. For higher-dimensional systems early warning might
even become easier, since there are often dominant eigenval-
ues and large differences in the effective dimensionality of
the dynamics on the attractor vs. the transient dynamics dur-
ing tipping. Other techniques for detecting transient dynam-
ics may also be useful here (Gottwald and Gugole, 2020).
The phenomenology of cascading transitions involving rate-
induced tipping that has been exemplified here is to be tested
with models of different complexity in upcoming studies.
Furthermore, the applicability of the early warning method to
real-world data needs to be tested. In the typical case where
only one (or a few) scalar time series are available, this will
involve a time series embedding and subsequent estimation
of the Jacobian from the reconstructed multivariate time se-
ries.

5 Conclusions

Building on previous studies of proxy records and state-of-
the-art climate models, we propose that past abrupt climate
change could have arisen as a cascade of tipping points. We
translate this into a conceptual sea ice–ocean model, where a
parameter shift leads to the following cascade. First, as a re-
sult of the gradually changing climatic conditions, the North
Atlantic sea ice cover collapses abruptly. Subsequently, the
AMOC resurges abruptly from a weak to a vigorous state in
a rate-induced tipping, as a response to the fast rate of sea ice
decline enhancing the atmosphere–ocean heat exchange. Our
analysis suggests that cascades of tipping points in weakly
coupled climate components with timescale separation be-
come more likely under certain circumstances. This is the
case when there are rate-dependent tipping points or soft
tipping points associated with non-smooth fold bifurcations.
This motivates the development of specialized early warn-
ing signals for such rate-dependent cascading tipping points.
We present a first step in this direction by showing that due
to a delay in the tipping of the ocean circulation a statistical
estimation of the Jacobian can detect the impending abrupt
transition. This may be applicable as generic early warning
signal of rate-induced transitions.
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Appendix A: An early warning indicator for
rate-induced tipping

We detect rate-induced tipping by identifying a departure
from the initial attractor towards the vicinity of the sad-
dle. This is accompanied by a change in the linear stabil-
ity of the system and thus the Jacobian. The latter is esti-
mated from the multi-variate time series in a sliding win-
dow as follows. Consider the underlying dynamical system
ẋ(t)= f (x(t)) with x ∈ Rd and the observed discrete time
series {x(1),x(2), . . .,x(N )}, where N is the window size.
The linearization of the dynamical system around the equi-
librium point y is

˙̃x(t)=
d∑
i=1

x̃i(t)
∂f (x)
∂xi

∣∣∣∣
x=y

, (A1)

with x̃(t)= x(t)− y. Discretized, this can be approximated
as

x̃(t + 1)− x̃(t) = x(t + 1)− x(t)≡1xt

= δt

(
d∑
i=1

x̃i(t)
∂f (x)
∂xi

∣∣∣∣
x=y

)
. (A2)

In this expression, the factors ∂fj (y)
∂xi

are the elements Jji of
the Jacobian matrix. They can be estimated with multiple
linear regression by sampling different 1xt as a dependent
variable and x̃i(t) for i = 1 . . . d as independent variables
for a given y from within the time series. To this end, we
choose {x(t1),x(t2), . . .,x(tM )} from within the windowed
time series, which are the M closest points to y in phase
space in terms of the distanceDy,k =

∑d
i=1[xi(tk)−yi]

2. For
each x(tk), we evaluate 1xtk using the subsequent point in
the time series. From the M samples of 1xtk and x̃i(tk) for
i = 1. . .d , we obtain the factors ∂fj (y)

∂xi
by multiple linear re-

gression. We then repeat the procedure for every data point in
the window as y, and average the results to obtain average Ja-
cobian elements Jji within the sliding window. In this work
we chose M =N/2. To illustrate how the Jacobian changes
in the Stommel model as the system departs the off attractor,
we write Eq. (4) in the deterministic case as

dT
dt
= f (T ,S), (A3)

dS
dt
= g(T ,S). (A4)

The corresponding Jacobian of the linearized system is as
follows.

J=

(
∂f (T ,S)
∂T

∂f (T ,S)
∂S

∂g(T ,S)
∂T

∂g(T ,S)
∂T

)

=

(
sgn(T − S) · (S− 2T )− 1 sgn(T − S) · T

sgn(S− T ) · S sgn(T − S) · (2S− T )− η3.

) (A5)

Around the attractors, the real parts of both eigenvalues
are negative. As the saddle is approached by crossing q > 0,
the real part of the first eigenvalue becomes positive. Further-
more, the off-diagonal elements of the Jacobian change sign.
We propose this sign change as early warning signal, since
it is more robust than the eigenvalues when estimated from
noisy data. We define the early warning signal as

J ≡
∂f

∂S
−
∂g

∂T
. (A6)

Note that for dynamical systems defined by a gradient of a
potential this indicator is not applicable, since it would be 0
in the whole phase space due to the symmetric Jacobian. Us-
ing just one of the diagonal elements as indicator instead still
gives good early warning possibilities with roughly half the
statistical power due to the smaller amount of information
retained. For time series from unknown dynamical systems,
changes in the individual elements could be monitored si-
multaneously, potentially after embedding in the case of uni-
variate time series.
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