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S1. FOLD BIFURCATIONS IN THE SEA ICE COMPONENT6

The sea ice component of our coupled model shows a fold-fold bifurcation structure, which usually7

manifests itself in a characteristic ’S-shaped’ bifurcation diagram. However, when choosing low8

values of h in the model, the bifurcation diagram is rather ’Z-shaped’ instead. This is due to the9

steeper transition in the hyperbolic tangent of the underlying ODE (Eq. 5 in the main text), which10

corresponds to a steeper albedo transition from open ocean to full ice cover. The value of h is largely11

a modeling choice, which depends on what region of the ocean our box should represent. In this12

work, our choice h = 0.5 differs from the value h = 0.08 used by Eisenman et al. (2012)3. This13

yields an S-shaped instead of a Z-shaped bifurcation diagram. The effect of this change in h on the14

albedo transition and resulting bifurcation diagrams is illustrated in Fig. S1. Since we are modeling15

a large ocean basin, we considered it more appropriate to use a more gradual albedo transition,16

corresponding to a wider range of partial sea ice cover. The choice of h does not change our results,17

however, besides the fact that for lower values of h it would be more difficult to detect a critical18

slowing down in the sea ice variable. This is because for such a ’Z-shaped’ fold-fold bifurcation19

structure, the curvature of the underlying potential around the equilibria only changes significantly20

when relatively close to a bifurcation point.21
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FIG. S1. Equilibria of the sea ice component. Panels a and c show different terms of the right hand side

of the ODE that defines the model (Eq. 5 in the main text). R = 0.0 and R = −0.2 is used in a and c,

respectively. The blue solid curve comprises the incoming shortwave and longwave radiation, i.e. is equal

to −∆ tanh
(
I
h

)
−L+ 1. The orange dotted curve comprises the remaining, piecewise-linear terms, i.e. the

outgoing radiation, the export and import of sea ice, as well as the ocean heat flux. The intersections of

the curves gives the equilibria, where dI/dt = 0. Shown are two different values of the parameter h, which

determines how gradual the albedo transition from open ocean to full ice cover is. Bifurcation diagrams

with R as control parameter are given in b and d, where the unstable equilibrium is indicated by the

dashed line.

S2. BIFURCATION DIAGRAM OF THE COUPLED MODEL22

The model presented in the paper is unidirectionally and linearly coupled. For our purposes, it23

was easiest and sufficient to understand the model dynamics in terms of the individual bifurcation24

diagrams for I with R as control parameter, and for T with η1(I) as control parameter, as presented25

in the main text. Nevertheless, Fig. S2 shows bifurcation diagrams of the coupled model with R as26

control parameter. A unidirectional coupling of two systems with a fold-fold bifurcation leads to a27
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’quadruple’ fold (see e.g. Dekker et al. 20181), due to the combinations of all different stable and28

unstable branches of equilibria of the two sub-systems. Additionally to the situation discussed in29

the paper, where (depending on the rate of the parameter shift) the system tips from a state with30

collapsed circulation and full sea ice cover to either a state with vigorous circulation and no sea ice31

cover, or to a state with (still) collapsed circulation and no sea ice cover, there exists also a stable32

state with vigorous circulation and full sea ice cover, as well as a variety of unstable equilibria.33

All stable and unstable equilibria are labeled accordingly in Fig. S2c. The figure also includes two34

trajectories with different rates of the parameter shift, which correspond to the cascade presented35

in the main text, with the exception of a different value of h.36

37

FIG. S2. Bifurcation diagrams of the deterministic coupled model with h = 0.08 (Eq. 6 in the main text)38

for the individual variables I (a), T (b) and S (c) with R as control parameter. Solid blue (dashed green)39

lines indicate stable (unstable) equilibria. In panel c the individual branches of equilibria are labeled,40

according to the ocean state ’O’ and the sea ice state ’I’. The ocean circulation can be in a vigorous (Oon),41

or collapsed state (Ooff ), and the sea ice state can be ice free (Ifree) or ice-covered (Icov). Further, there42

are a variety of unstable states, where either the (isolated) sea ice or ocean components assume an unstable43

equilibrium (Iust and Oust). Also shown are two trajectories, where R is ramped linearly from 0 to -0.6 at44

rates below (red) and above (black) the critical rate.45

S3. NON-SMOOTH FOLD IN THE STOMMEL MODEL46

The Stommel model is a non-smooth dynamical system due to the use of an absolute value in47

its equations. Thus, there is a boundary in phase space, given by the line T = S, which separates48
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two regimes of the flow. This can be seen by the discontinuity in the real part of the eigenvalue λ149

of the Jacobian, shown in Fig. S3. Additionally, one of the fold bifurcations when varying η1 occurs50

due to a collision of the saddle and the ’off’ stable equilibrium on this boundary. Such a bifurcation51

is called a non-smooth fold (see e.g. di Bernardo et al., 20082). In Fig. S3, this bifurcation is shown52

by the red solid line (’off’ equilibrium) and the black dashed line (saddle), which meet in a cusp. As53

a result, the ’off’ equilibrium already comes very close to the basin boundary significantly prior to54

the bifurcation point. In contrast, for the smooth fold bifurcation of the ’on’ equilibrium (collision55

of the solid and dashed black lines) this is not the case. This is the origin of the ’soft’ tipping56

behaviour discussed in the main article, and shown in Fig. 7 specifically.57

58

FIG. S3. Real part of the first eigenvalue λ1 of the Jacobian of the Stommel model with η3 = 0.3 (color59

map). Note that since η1 and η2 are additive parameters, they don’t influence the Jacobian. Also shown60

are the curves of equilibria in the model when changing η1 with fixed η2 = 1.0. The red curve are the stable61

’off’ equilibria for η1 = 2.0 to η1 = 3.33, the solid black curve are the stable ’on’ equilibria for η1 = 2.55 to62

η1 = 3.7, and the dashed black curve shows the saddle equilibria for η1 = 2.55 to η1 = 3.33.63

S4. ESTIMATION OF EARLY-WARNING SIGNALS FROM TIME SERIES64

From the trend in a time series it is hard to infer whether an abrupt transition is imminent, and65

what type of transition this might be. Instead, most early-warning signals aim to extract generic66

features in the fluctuations around a trend that occur as a tipping point is approached. We consider67
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several early-warning indicators leading up to the tipping points by estimating statistical properties68

of the fluctuations in a sliding window. The trends encountered here are due to the system dynamics69

trying to catch up with the moving equilibria during a parameter shift, and are nonlinear. Thus,70

to separate the fluctuations from the trend, a nonlinear detrending is necessary. We do this by71

subtracting a fit with a cubic function to the time series in the sliding window. While higher-order72

polynomials could more accurately detrend the signal, they would also remove more of the variability73

around the trend. As a result, the only free parameter is the sliding window size.74

Choosing the optimal window size is done by two trade-offs. First, a significant early-warning75

signal needs to be achieved. Here, there is a trade-off between low uncertainty of the estimator76

(large window) and sufficient temporal resolution to detect the changes in the fluctuations before77

the transition (small window). The required temporal resolution depends on how fast the tipping78

point is approached. If it is approached fast, there is only a short time frame during which changes79

in the fluctuations occur. Second, there is a trade-off between removing the non-linear trend as80

precisely as possible (small window) and preserving as much of the variability used to detect the81

early-warning signal as possible (large window). If the window is chosen too large, there remains82

a residual trend, which leads to artifacts in the statistical indicators, depending on the noise level.83

This effect is shown in Fig. S4. Considering these trade-offs, we use a window size of 150 years for84

the simulations with the coupled model, and 200 years for simulations with the Stommel model. In85

the latter case there is a slightly smoother trend since no rapid transition of the sea ice is involved.86

The results are not sensitive to the precise values.87

We note that the choice of the detrending method and sliding window size should also depend88

on the noise level and the rate of the parameter shift. However, for our purposes these two factors89

are tightly constrained. The rate of the parameter shift is chosen fast enough to obtain a dynamical90

regime with rate-induced transitions, but slow enough so that it is possible to consider early-warning91

indicators. The noise levels are constrained because we aim for a regime where there is significant92

tipping variability and delays, but not too many noise-induced transitions (see Sec. IIIB).93
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FIG. S4. Residuals after detrending with a cubic function of simulations with the Stommel model (σT =

σS = 0.2), where η1 is ramped from η1 = 2.65 to η1 = 3.00 within 300 years. The mean residuals are

shown as the black line, and the gray shading illustrates the region in between the 5- and 95-percentile.

The detrending is shown for a window of 150 years (a-b), 200 years (c-d), and 250 years (e-f). Panels a,

c and e show time windows around the start of the parameter shift (red dashed line), whereas panels b, d

and f show time windows around the end of the parameter shift (red dashed line). In e and f the average

residuals show the remaining trends due to the imperfect fit of a cubic function to the non-linear trend of

the model variables, which are as large as the residual fluctuations (shading). Thus, the window is chosen

too wide in this case.

S5. JACOBIAN ESTIMATED FROM TIME SERIES IN THE STOMMEL MODEL94

In this paper we propose an early warning signal for rate-induced tipping based on estimating95

the Jacobian from noisy time series. In Fig. S5 we show that using the method presented in the96

Appendix A, the Jacobian in the vicinity of the fixed points as well as the saddle of the Stommel97

7



model can be inferred correctly with only a small quantitative bias. From simulations where the98

parameter η1 is shifted from η1 = 2.65 to η1 = 3.0 within 300 years, we extract the part of the99

time series where the system is in the vicinity of the saddle (see Fig. 13), and detrend with a cubic100

function. Here only realizations are chosen where the systems stays in the vicinity of the saddle for101

at least 1000 years. For each realization, we also choose segments of the same length before and102

after the parameter shift to estimate the Jacobian around the ‘off’ attractor at η1 = 2.65 (black)103

and the ‘on’ attractor at η1 = 3.0, respectively. This gives rise to the three distributions of each104

Jacobian element around the saddle (orange), ‘off’ attractor (black), and ‘on’ attractor (blue) in105

each panel of the figure.106

107

FIG. S5. Distributions of estimates of the Jacobian elements in the Stommel model (σT = σS = 0.2)108

from an ensemble of simulations where η1 is ramped from η1 = 2.65 to η1 = 3.0 within 300 years. The109

different distributions represent the Jacobian elements around the ‘off’ attractor at η1 = 2.65 (black),110

the ‘on’ attractor at η1 = 3.0 (blue) and the saddle (red, see main text for more information). Only111

realizations have been chosen where the system spent at least 1000 years close to the saddle. The dashed112

lines correspond to the true values at the corresponding fixed points.113
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