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Abstract. We show that the most prominent of the work theorems, the Jarzynski equality and the Crooks rela-
tion, can be applied to the momentum transfer at the air–sea interface using a hierarchy of local models. In the
more idealized models, with and without a Coriolis force, the variability is provided from Gaussian white noise
which modifies the shear between the atmosphere and the ocean. The dynamics is Gaussian, and the Jarzynski
equality and Crooks relation can be obtained analytically solving stochastic differential equations. The more
involved model consists of interacting atmospheric and oceanic boundary layers, where only the dependence on
the vertical direction is resolved, the turbulence is modeled through standard turbulent models and the stochas-
ticity comes from a randomized drag coefficient. It is integrated numerically and can give rise to a non-Gaussian
dynamics. Also in this case the Jarzynski equality allows for calculating a dynamic beta βD of the turbulent
fluctuations (the equivalent of the thermodynamic beta β = (kBT )−1 in thermal fluctuations). The Crooks re-
lation gives the βD as a function of the magnitude of the work fluctuations. It is well defined (constant) in the
Gaussian models and can show a slight variation in the more involved models. This demonstrates that recent
concepts of stochastic thermodynamics used to study micro-systems subject to thermal fluctuations can further
the understanding of geophysical fluid dynamics with turbulent fluctuations.

1 Introduction

To better understand the interactions between different com-
ponents of the climate system is an important and difficult
task. The problem lies in the different science proper to each
component leading to disparate processes, evolving on dis-
similar scales in space and time. This heterogeneity complex-
ifies the research, from an observational, theoretical and nu-
merical perspective. Air–sea interaction is one example. The
exchange of heat, momentum and matter between the atmo-
sphere and the ocean has a strong influence on our climate
(Stocker et al., 2007). In the present work only the exchange
of momentum is considered. It is caused by the shear at the
sea surface due to the difference between the atmospheric
winds and the ocean currents in the corresponding planetary
boundary layers. For a general discussion on air–sea inter-
action we refer to Csanady (2001). The atmospheric winds
are usually faster than the ocean currents, and therefore the

atmosphere mostly loses energy at the interface by friction
and the ocean mostly gains energy (e.g., Wirth, 2019). The
energy exchange is not conservative, and most of the energy
is dissipated (Duhaut and Straub, 2006; Wirth, 2018).

Since the work of Einstein (1906) (see also Einstein, 1956;
Perrin, 2014), fluctuations have been the focus of research
in statistical mechanics, which had traditionally been con-
cerned with averages. Fluctuations in a thermodynamic sys-
tem usually appear at spatial scales which are small enough
so that thermal, molecular motion leaves an imprint on the
dynamics, as was first noted by Einstein (1906) (see also
Einstein, 1956; Perrin, 2014). The importance of fluctua-
tions is, however, not restricted to small systems where ther-
mal fluctuations are important, since they leave their imprint
on the dynamics at all scales when (not necessarily ther-
mal) fluctuations are strong enough. A typical example of
non-thermal fluctuations is fluctuating turbulent fluid motion
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(e.g., Frisch, 1995). The average motion of a turbulent fluid
can not be understood without some knowledge about the
turbulent fluctuations. The importance of turbulent fluctua-
tions is especially pronounced in geophysical flows, which
are highly anisotropic due to the influence of gravity. This
leads to a quasi-two-dimensional dynamics, an energy cas-
cade from small to large scales and strong fluctuations (see
Boffetta and Ecke, 2012, for a recent review on 2D turbu-
lence). Likewise, the air–sea interaction on hourly to climatic
timescales can not be understood without some knowledge of
the fluctuations at smaller and faster scales (see McWilliams
and Huckle, 2006; Shrira and Almelah, 2020). Furthermore,
in many natural systems the focus is on the fluctuations rather
than on an average state. Examples are weather and climate
dynamics, where we focus on the fluctuations in the same
system on different timescales. For the weather the timescale
of interest is from roughly an hour to a week; for the cli-
mate the focus is from tens to thousands of years. As pro-
cesses with very different timescales intervene, the system is
not in a stationary state at those timescales but is constantly
evolving in time. The different components of the system ex-
change energy; they do work on each other. The exchange of
energy between fluctuating components is the subject of the
present work.

A recent concept, which is presently the subject of at-
tention when non-equilibrium thermal systems are consid-
ered, are work theorems. The most prominent ones are the
Jarzynski equality (Jarzynski, 1997) and the Crooks rela-
tion (Crooks, 1998). Rather than looking at average values of
the thermodynamic variables, they consider their probability
density functions (pdf’s) which allow the replacement of in-
equalities of equilibrium statistical mechanics by equalities.
As an example, the second law of thermodynamics states that
the work W performed on a system is larger than or equal
to the increase 1G in its free energy: W ≥1G. When the
work is seen as a fluctuating quantity w, which differs even
when a specific process is repeated with the same determin-
istic forcing protocol but is subject to thermal fluctuations,
the Jarzynski equality says that 〈exp(−βw)〉 = exp(−β1G),
where the average 〈〉 is taken over the ensemble of thermal
fluctuations. This not only includes the second law on av-
erage but also says that individual exceptions have to exist
(see Sect. 2). When thermal fluctuations are considered, the
(thermodynamic) β = (kBT )−1 is the inverse of the product
of the Boltzmann constant and the temperature. In the case of
air–sea interaction, considered here, the dynamic β, (denoted
βD) is the inverse of an energy related to the macroscopic tur-
bulent fluctuations. It is the inverse of a “temperature”, that
is, in the present context, of a turbulent kinetic energy.

The here discussed work theorems are different but related
to fluctuation theorems considered in Wirth (2018, 2019). In
a recent review Seifert (2012) presents the relation of fluc-
tuation theorems, the Jarzynski equality, the Crooks relation
and other recent concepts of non-equilibrium thermodynam-
ics and develops a unifying framework. Work theorems are

considered based on different approaches: Hamiltonian dy-
namics subject to an external forcing, Fokker–Planck equa-
tions and Langevin dynamics (see Seifert, 2012, for a re-
view). Here only the last approach is used.

The concepts developed for micro-dynamics with fluctua-
tions due to thermal motion are here applied to macroscopic
fluid dynamics, where an atmospheric planetary boundary
layer interacts with an oceanic mixed layer. In this case the
fluctuations are due to the smaller-scale turbulence in both
layers. The concepts of fluctuation theorems have been pre-
viously applied to cases with turbulent rather than thermal
fluctuations. Examples are the experimental data of the drag
force exerted by a turbulent flow (Ciliberto et al., 2004) and
the local entropy production in Rayleigh–Bénard convection
(Shang et al., 2005).

A system that is subject to an external forcing typically
evolves in time; it is in a non-stationary state. If there is a bal-
ance between external forcings and/or internal dissipation in
such a way that ensemble averages do not evolve in time, the
system is in a non-equilibrium stationary state. In the here-
considered work theorems a dissipative system is subject to
forcing and also the average large-scale quantities evolve in
time; the dynamics is in a non-stationary non-equilibrium
state.

The concepts of non-equilibrium statistical mechanics
have been applied to momentum transfer between the at-
mosphere and the ocean in a non-rotating frame in Wirth
(2018, 2019). This was done by adapting the mathematics de-
veloped to study the movement of a Brownian particle. The
present work prolongs this research by considering work re-
lations and extending it to the dynamics in a rotating frame.
The motion of a particle in a rotating frame is similar to
Brownian motion of a charged particle in a magnetic field, a
problem which has been studied since Taylor (1961) (see also
Czopnik and Garbaczewski, 2001). The structure of the equa-
tions is identical when the Larmor frequency of a charged
particle in a magnetic field is replaced by the Coriolis fre-
quency. The passage from a non-rotating frame to a rotating
frame is, however, far from straightforward, for principally
two reasons. First, the dynamics is no longer invariant by
time reversal, even in the non-dissipative limit. In the words
of statistical mechanics, detailed balance, which is the basis
of many analytical results, is lost. Secondly, it is not clear
that results from simple models that do not explicitly resolve
the vertical structure in the atmospheric and oceanic bound-
ary layer are useful to investigate the situation in a rotating
frame with a Coriolis force (see McWilliams and Huckle,
2006). Indeed, the dynamics in the planetary boundary layer
shows a strong dependence on the vertical coordinate, not
only in magnitude but also in direction as determined by Ek-
man (1905). Analytic solutions for time evolution are only
available in special cases (see Shrira and Almelah, 2020).
In the present pedagogical approach to the subject we there-
fore work with a hierarchy of three models. The first model
is a linear zero-dimensional one-component model (1D ve-
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locity vector). We analytically prove the validity of the work
theorems by solving the corresponding stochastic differen-
tial equation (SDE). In the second model the Coriolis force
is added, and it has two horizontal components (2D veloc-
ity vector). The work theorems are again proven analytically.
The third model is a fully non-linear model, explicitly resolv-
ing the vertical dependence of the interacting atmospheric
and oceanic boundary layer, which is integrated numerically.

In the next section we introduce the theory of stochastic
thermodynamics and work relations applied to air–sea inter-
action. The models are introduced and solved, using stochas-
tic calculus, in Sect. 3. As the concepts are new to the field
(see Ghil, 2019, for a historical perspective), we present all
the calculations in detail for pedagogical purposes and also
to show that most of it reduces to linear algebra. We refer the
reader not familiar with stochastic differential equations to
Dijkstra (2013) and Franzke et al. (2015). The results, for the
three models of our model hierarchy, are discussed in Sect. 4,
and we end with some conclusions in Sect. 5.

2 Theory

2.1 Model

2.1.1 The 1D two-component model (1D2C)

We consider the turbulent momentum transfer between the
atmospheric and the oceanic planetary boundary layer, which
are coupled by a frictional force. The atmospheric layer is
also subject to a deterministic forcing imposed from the exte-
rior through a pressure gradient. The dynamics in the bound-
ary layers is investigated using Reynolds decomposition, in
which the fast fluctuations in the three-dimensional veloc-
ity are separated from the slowly evolving component of the
horizontal velocity field (called “velocity field” in the se-
quel). The horizontal variations in the velocity field are ne-
glected. This is justified in a local model by the disparity
of the vertical and horizontal scales. The atmospheric plan-
etary boundary layer is a few hundreds of meters thick. The
oceanic planetary boundary layer spans a few tens of meters
in the vertical. The velocity field in both layers varies con-
siderably over the thickness of the corresponding boundary
layer. Horizontal variations are imposed by the weather sys-
tems that force the dynamics and typically extend 1000 km
in the horizontal. This leads to a classical model of the plan-
etary boundary layers (introduced by Ekman, 1905), which
depends on the vertical direction (1D) and resolves the two
horizontal components (2C) of the velocity vector ũa(z, t)=
(̃ua(z, t), ṽa(z, t))1; this 1D2C model is given by an evolution
equation of both velocity components:

∂t ũa(z, t)= f ṽa(z, t)+ ∂z[νa(z, t)∂zũa(z, t)] + F̃x(t), (1a)
∂t ṽa(z, t)=−f ũa(z, t)+ ∂z[νa(z, t)∂zṽa(z, t)] + F̃y(t), (1b)

1The superscript˜is used to characterize a variable which is a
function of z and t .

where f is the Coriolis frequency; νa(z, t) the turbulent vis-
cosity; and F̃= (F̃x, F̃y) a forcing provided by a large-scale
pressure gradient, which is independent of the vertical di-
rection. The turbulent viscosity νa(z, t) parameterizes the ef-
fect of the not-explicitly-resolved fluctuations on the velocity
field; it is calculated through a turbulent closure scheme. The
atmosphere extends over z ∈ [0,ha], and the boundary con-
ditions are (Neumann at top and bottom)

(∂zũa)z=ha = 0, (2a)

(νa∂zũa)z=0 =
τ

ρa
, (2b)

where ρa is a constant atmospheric density. The ocean is
also governed by model (Eq. 1) where all subscripts are
changed (a→o); the forcing vanishes; the domain extends
over z ∈ [−ho,0]; and the boundary conditions are (Neu-
mann at bottom and top)

(∂zũo)z=−ho = 0, (3a)

(νo∂zũo)z=0 =
τ

ρo
. (3b)

The surface friction τ = (τy,τy) is parameterized as a func-
tion of the velocity difference between the atmospheric and
oceanic velocity near the interface z= 0. Linear Rayleigh
friction (i.e., parameterized to be linearly proportional to the
relative wind) is employed:

τ = ρohoS (̃ua(δa)− ũo(−δo)). (4)

Here S−1 is oceanic friction time, or a quadratic drag law:

τ = ρocd |̃ua(δa)− ũo(−δo)|(̃ua(δa)− ũo(−δo)), (5)

with δa� ha and δo� ho. Here the drag coefficient cd is de-
fined relative to the ocean and the equivalent drag coefficient
for the atmosphere is obtained by multiplying cd by ρo/ρa.

2.1.2 The 0D two-component model (0D2C)

The 0D version of the 1D2C model (Eq. 1) is obtained by
integration over the vertical extent of the corresponding layer
normalized by the layer thickness. Introducing

ua = (ua,va)=
1
ha

ha∫
0

ũa(z)dz,

uo = (uo,vo)=
1
ho

0∫
−ho

ũo(z)dz (6)

and using the boundary conditions (Eqs. 2 and 3) as well as
the linear Rayleigh friction (Eq. 4), we obtain the following
0D2C model for the atmosphere:

∂tua = f va−mS(ua− uo)+Fx , (7a)
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∂tva =−f ua−mS(va− vo)+Fy , (7b)

where m= ρoho
ρaha

is the mass ratio between the oceanic layer
and the atmospheric layer and F(t)= (Fx,Fy) is analogous
to F̃(t). Similarly for the ocean, we have

∂tuo = f vo+ S(ua− uo), (8a)
∂tvo =−f uo+ S(va− vo). (8b)

The upper ocean is mainly forced at its surface by the wind
shear. Forcing due to the dynamics of the deeper or surround-
ing ocean is not considered by the model. The momentum
exchange between the layers due to unresolved turbulent mo-
tion is parameterized by a random force ζ = (ζx,ζy), added
to the friction law. The model under consideration in the fol-
lowing thus reads

∂tua = f va−mS(ua− uo)+Fx +
m

M
ζx , (9a)

∂tva =−f ua−mS(va− vo)+Fy +
m

M
ζy , (9b)

∂tuo =−f vo+ S(ua− uo)−
1
M
ζx , (9c)

∂tvo =−f uo+ S(va− vo)−
1
M
ζy , (9d)

where the stochastic noise has been scaled by M =m+ 1 to
simplify the algebra in the following. Note thatM is the total
mass per unit surface. The analytical solution to the coupled
model (Eq. 9) is given in Appendix B. When the Coriolis pa-
rameter vanishes (f = 0) and the linear friction law is used,
the dynamics in the two horizontal directions is uncoupled.
In this case a simple 0D1C model can be obtained by set-
ting va to 0 in Eq. (9a) (or vo = 0 in Eq. 9c) and discarding
Eq. (9b) (or Eq. 9d).

Let us also introduce the integrated mode, which gives the
momentum integrated over [−ho,ha], and the shear mode:

uI = ua+muo , (10a)
uS = ua−uo . (10b)

The shear and the turbulence in the atmosphere and the
ocean do not affect the integrated momentum uI . The two
layers only interact by friction, which acts as a damping on
the shear mode (see Sects. A1 and B1). The only remaining
two parameters in the problem are the constant mass ratio of
the oceanic versus the atmospheric layer, m, and the func-
tion S. For the case of linear Rayleigh friction (Eq. 4), S is
constant. When the turbulent, quadratic friction law (Eq. 5)
applies, we have S = cd|uS |/ho, with a constant drag coeffi-
cient cD .

The departures from the vertical average in the atmosphere
and the ocean are given by

u′a(z)= ũa(z)−ua , (11a)
u′o(z)= ũo(z)−uo . (11b)

The interaction between the different components is
schematized in Fig. 1. The dynamics of the integrated mode,
uI , does not depend on the shear τ , as can be verified when
Eq. (10a) is combined with Eq. (9) (see Sects. A1and B1).
Newton’s laws insure that the dynamics of the integrated
mode is independent of the interior dynamics, that is of uS ,
u′a, u′o, νa(z) and νo(z). This property is lost when a depen-
dence on the horizontal directions is included. Due to the
boundary conditions, it is also not subject to dissipation and
therefore conserves its (kinetic) energy. The dynamics of the
integrated mode is purely deterministic, and the work WI

done on it equals the increase in the free energy 1G. The
shear mode uS interacts with the internal modes in the at-
mosphere, u′a, and the ocean, u′o, through the shear at the in-
terface τ . The dynamics in the shear mode does not depend
explicitly on the internal viscosity νa(z) and νo(z) in the two
layers but only through u′a and u′o. As u′a has a vanishing ver-
tical average, it is not forced by the pressure gradient. The
dynamics of u′a depends explicitly on uS , u′a, u′o and νa(z).
The same applies to the ocean. In the 0D models the effect
of the internal modes (magenta boxes in Fig. 1) on the shear
mode is modeled by a stochastic noise. In the 1D model the
internal dynamics is resolved explicitly; stochastic noise is
added to the drag coefficient only and enters the dynamics
through the shear at the interface (red arrows in Fig. 1); see
Sect. 3.3 for more details on this point. Looking at air–sea
interaction in terms of modes not only is a technical simplifi-
cation but also emphasizes the view of seeing the atmosphere
and the ocean as a combined system rather than as separate
atmospheric and oceanic layers that act on each other. From
Eqs. (10a) and (10b) we easily obtain that

ua =
1
M

(uI +muS), (12a)

uo =
1
M

(uI −uS), (12b)

with M =m+ 1 being the total mass per unit surface.

2.2 Stochastic thermodynamics

The concept of stochastic thermodynamics was introduced
by Sekimoto (1998) (see also Seifert, 2012). Rather than
considering the classical dynamics described by Hamilton’s
equations over the entire phase space of all microstates, on
one hand, or the averaged thermodynamic quantities, without
internal dynamics, on the other, it takes an intermediate po-
sition by looking at mesostates (also called statistical states).
A mesostate does not completely determine the microstate
of the system but represents an ensemble of microstates. It
is therefore not described by a sharp value but by a pdf.
Its mathematical framework comprises the Langevin equa-
tion and the stochastic differential equations, which describe
the evolution of a pdf. It is a dynamics with a deterministic
and stochastic part that interact. Such an approach is adapted

Earth Syst. Dynam., 12, 689–708, 2021 https://doi.org/10.5194/esd-12-689-2021



A. Wirth and F. Lemarié: Jarzynski equality and Crooks relation for local models of air–sea interaction 693

Figure 1. Schematic of the models considered: the integrated mode and the shear mode are forced. The integrated mode is decoupled from
the rest of the dynamics. The shear mode is coupled to the internal modes of the atmosphere and the ocean by the surface stress. The internal
modes in the atmosphere and the ocean depend on the eddy viscosity in each layer and the surface stress. The randomness arises through the
surface friction τ (red color). In the 1D model the internal dynamics in the atmospheric and oceanic layer are explicitly resolved and random
noise is added to the surface friction coefficient. In the 0D model their influence on the shear mode is parameterized by random noise.

when external forces only constrain part of the dynamics as
the internal response of the system is too involved (chaotic or
turbulent), so it can only be described in a stochastic sense. If
a specific force is applied to a system, the outcome depends
on the initial microstate that is usually not precisely known
and its evolution has a random component. By considering
the evolution of the pdf, which takes into account the uncer-
tainty in the microstates that influences the system, we obtain
a deterministic evolution of the pdf.

We here apply these concepts to air–sea interaction; the
“heat”, the source of the fluctuation, in our approach is
(small-scale) turbulent motion, all that is represented in ma-
genta and red in Fig. 1. The macroscopic variable are the
slowly varying vertically averaged velocities ua and uo or
equivalently modes uI and uS . In analogy to the first law of
thermodynamics we write

dW = dV − dQ. (13)

The work applied to the system by the external force F=
(Fx,Fy) in Eq. (9) is

dW = F · dxa = F ·uadt. (14)

For the sake of readability, in the sequel we will omit the
dot symbol “·” in vector products. V , dV and dQ should be
understood as scalar quantities in the following. The internal
(kinetic) energy is

V =
1
2

(u2
a +mu2

o)=
1

2M
(u2
I +mu2

S), (15)

dV = uadua+muoduo =
1
M

(uIduI +muSduS), (16)

and the heat provided to the system (Q< 0 as friction dissi-
pates heat) is

dQ= dV − dW = uadua+muoduo−Fuadt

=
1
M

(uIduI +muSduS)−F
1
M

(uI +muS)dt. (17)

The dissipation to heat is given by

dQ
dt
= ua

dua

dt
+muo

duo

dt
−Fua = ua(−Smua+ Smuo

+F)+muo(−Suo+ Sua)−Fua =−Sm(ua−uo)2

=−Smu2
S . (18)

To derive the second line we used Eqs. (9a–9d). The shear
force between the layers is SuS ; when the friction law is lin-
ear S is a constant; otherwise it is a function of the shear.
Furthermore if we consider a process that starts at A and fin-
ishes at B, we have

W (A→ B)=

x(B)∫
x(A)

Fdxa =

t(B)∫
t(A)

Fuadt

=
1
M

t(B)∫
t(A)

F (uI +muS)dt. (19)

The free energy is 1G= V (∞)−V (A)= 1
2M u2

I , the en-
ergy in the integrated mode, as the energy in the shear
mode is dissipated away in time. The energy in the inte-
grated mode changes only when a forcing is applied, so it
varies only when the protocol A→ B, or its inverse, is ap-
plied, whereas the internal energy V varies before and af-
ter. Note that dQ

dt < 0, and therefore 1G<W (A→ B) and

https://doi.org/10.5194/esd-12-689-2021 Earth Syst. Dynam., 12, 689–708, 2021



694 A. Wirth and F. Lemarié: Jarzynski equality and Crooks relation for local models of air–sea interaction

−1G<W (B→ A), which leads to −W (B→ A)<1G<
W (A→ B). This means that more work than the free energy
has to be provided to go from A to B and less work than the
free energy is recuperated on the reverse (conjugated) path.
In a cyclic process B = A,1G= 0 and all the work injected
into the system is ultimately dissipated.

It is important to note that the Coriolis parameter does not
explicitly appear in the equation of the work or the heat as the
Coriolis force is orthogonal to the local velocity. However,
the Coriolis parameter strongly influences the dynamics, that
is ua and uo. Through this influence, it has a determining role
on the work and heat budget.

2.3 Forward, inverse and reverse processes

The forcing protocol on the time interval [0,T ] is given by

F̃f A→B (t)= F(t), (20)

where the function F has a compact support within the in-
terval [0,T ], It is important to note that even if the system
evolves (relaxes) outside the interval [0,T ], no work is per-
formed on the system as the force is vanishing. When the
Coriolis force is present, the system is generally not in a sta-
tionary state after the forcing but performs inertial oscilla-
tions. To bring the system back to the initial state, an inverse
protocol has to be performed at precisely a multiple of the
inertial period after the forward protocol:

F̃iB→A(t)=−F(t −
2π
f
n), n ∈ N. (21)

For a reverse protocol it is required that the forcing is

F̃rB→A(t)=−F(T − t + t0). (22)

To satisfy both conditions we impose the symmetries

F(T/2− t)= F(T/2+ t) and t0 =
2π
f
n, n ∈ N. (23)

If we neglect the turbulence in both layers, which is mod-
eled by a stochastic term, the dynamics is deterministic. Dur-
ing the forward process, starting from rest and applying the
protocol F̃A→B (t), we have

ufI (0)= ufS (0)= 0→ ufI (T ), ufS (∞)= 0, (24)

1Gf (∞)=1G,W f
=1G+Qf ,Qf (0,∞)=Q. (25)

The reverse process starts from the converged state, is
forced by F̃rB→A(t) for a period T and then relaxes to rest at
t =∞:

urI (0)= ufI (T ), urS(0)= 0→ urI (T ), urS(∞)= 0, (26)
1Gr (∞)=−1G,W r

=−1G+Qr ,Qr (0,∞)=Q. (27)

Note that −W r
≤1G≤W f which is a statement of the

second law of thermodynamics. When the process is re-
versible then the equalities apply. Furthermore we always

have 21G=W f
−W r . So far the dynamics considered has

been deterministic.
The turbulent motion within the system is due to internal

dynamics and is modeled by stochastic terms. When noise
is added in the linear model, it does not interfere with the
deterministic dynamics but simply adds to it. Furthermore,
the force is deterministic, so the randomness in the work is
provided solely by the fluctuations in ua. As randomness re-
sides only in the shear mode, the fluctuations in the work
w′ =m

∫ T
0 Fu′Sdt come from fluctuations in the shear mode

u′S . Note that the vertical average of u′a vanishes, so the in-
ternal modes do not contribute to the work. When the noise
terms are Gaussian and the friction linear, the velocities are
Gaussian variables and so is the work performed on the lay-
ers and modes. The average of these variables are given
by the deterministic part (〈wf 〉 =W f and 〈wr 〉 =W r ), and
the variance σ 2

W (T ) is obtained through the variance of the
shear mode. In the case with an internal turbulent dynamics,
−W r

≤1Gf (∞)≤W f is true for averages only; individual
trajectories can be exceptions.

In the Gaussian case the pdf’s for the forward and reverse
processes are

pdff (w)=
1

√
2πσW

exp

(
−

(w−W f )2

2σ 2
W

)
, (28)

pdfr (w)=
1

√
2πσW

exp

(
−

(w−W r )2

2σ 2
W

)
. (29)

Note that the pdf’s are identical except for a shift of
21Gf (∞) in z. Examples of the pdf’s in the Gaussian case
for the forward and reverse processes, as well as of the pdf’s
of the reverse process flipped at the origin, are shown, for dif-
ferent values of the work averages and βD, in the schematic
Fig. 2 for illustration.

2.4 Jarzynski equality

We denote the averaging with respect to the forward process
by

〈X(w)〉f =

∞∫
−∞

X(w)pdff (w)dw. (30)

The Jarzynski equality is then expressed by

〈e−βw〉f = e
−β1G. (31)

In the Gaussian case we have

〈e−βw〉f =
1

√
2πσW

∞∫
−∞

e−βw exp(−
(w−W f )2

2σ 2
W

)dw, (32)

and verifying the Jarzynski equality reduces to equating the
powers of the exponential:

−(w−W f )2
− 2βσ 2

W (w−1G)=−(w−W0)2. (33)
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The only non-trivial solution is

β =
2Q
σ 2
w

and W0 =W
r . (34)

The Jarzynski equality applies when β is a constant, indepen-
dent of the forcing protocol F and T . At first sight Eq. (34) is
astonishing, as the Jarzynski equality expressed by Eq. (31)
seems to be a statement on the free energy which solely de-
pends on the integrated mode. Equation (34), however, con-
nects the heat dissipated in the shear mode to the work fluc-
tuations, which are only due to the shear mode. Furthermore,
we have seen that the dynamics of the two modes are unre-
lated. This apparent inconsistency is resolved by multiplying
Eq. (31) by eβ1G on both sides. It is then apparent that an
average of the exponential of 1G−w is taken, which only
depends on the shear mode. Note that when thermal fluctua-
tions are considered, β−1

= kBT and more generally for the
Ornstein–Uhlenbeck process, with an auto-correlation of the
noise characterized by the variable R (defined below through
Eq. 40), β−1

D =
R

SM , which relates the fluctuations to the dis-
sipation and shows the connection of the Jarzynski equality
to the fluctuation dissipation relation and the fluctuation dis-
sipation theorem (see Wirth, 2019, 2018).

Experiments can also be performed for different values
of βD (see the schematic Fig. 2). If the turbulence level de-
creases, βD increases and the dynamics converges towards a
deterministic process. Note that neither 1G−W nor σ 2

w de-
pends on uI (0); in the case of vanishing Coriolis force this is
equivalent to Galilean invariance.

Furthermore, neither the work nor the free energy de-
pends on the relaxation process and in an experiment it is
not necessary to wait for the relaxation to the stationary
state to obtain the free energy. It is only necessary to repeat
the experiment sufficiently many times to obtain statistically
significant results and use the Jarzynski equality to obtain
the free energy. The work does, however, depend on uS(0),
and so we have to start from equilibrium (〈uS(0)〉 = 0 and
〈uS(0)2

〉 = β−1
D ). The Jarzynski equality also shows that, as

σ 2
w > 0, there have to be (rare) paths for which the work per-

formed is smaller than the free energy. This is easily seen as
e−x < 1 for x > 0. In thermodynamics these paths are some-
times referred to as “violations of the second law of thermo-
dynamics”. The probability of such a violation occurring in
the Gaussian case can be expressed using the error function
as erf((1G−W f )/σW )). However, due to the convexity of
the exponential function 〈ex〉 ≥ e〈x〉 (called Jensen’s inequal-
ity), and therefore 〈w〉 ≥1G and the second law of thermo-
dynamics is verified in an average sense, it is a statistical law.

2.5 Crooks relation

The Jarzynski equality (JE) considers an average with respect
to the forward process, whereas the Crooks relation (CR)
compares the pdf’s of the forward and reverse process, with-

out any averaging; it states

pdff (w)
pdfr (−w)

= exp(βD[w−1G])= exp(−βDq). (35)

where q =1G−w is the negative dissipation along a sin-
gle trajectory with work w and Q= 〈q〉 by definition. The
CR is also useful to determine 1G; it is the value w where
the graphs of the forward pdf and the reverse pdf of the
negative argument cross, where pdff (w) is pdfr (−w) (see
Fig. 2). When the shapes of the forward and reverse pdf
agree, the free energy can be also obtained via pdfr (w)=
pdff (w+21G). The first method is useful when βD is small,
and the second is useful when it is large. The CR considers
the pdf, and the JE which is concerned with averages can be
derived from it through dividing Eq. (35) by exp(βDq) mul-
tiplying by pdfr (−w) and integrating over w from −∞ to
∞. In cyclic or stationary processes the free energy gain is
vanishing, the reverse pdf equals the forward pdf and the CR
simplifies to the detailed fluctuation theorem.

In the Gaussian case described above the CR is obtained
by a straightforward calculation:

pdff (w)
pdfr (−w)

= exp
(

1
2σ 2
w

(−w2
+ 2W fw− (W f )2

+w2

+ 2W rw+ (W r )2
))
= exp(βD[w−1G])

= exp(−βDq). (36)

2.6 Integral fluctuation theorem

Note also that when the CR holds,

1=
〈

pdfr (−w)
pdff (w)

〉
f

= 〈exp(βDq)〉f . (37)

This is the integral fluctuation theorem; it shows that there
exists trajectories with q > 0, demonstrating violations of
the second law of thermodynamics. It is proven by us-
ing Jensen’s inequality: 1= 〈exp(βDq)〉 ≥ exp(βDQ), which
leads to Q≥ 0. The integral fluctuation theorem is a refor-
mulation of the JE in terms of dissipated heat.

In cyclic or stationary processes the free energy gain van-
ishes. When a force is applied, it typically drives the system
and does work, which is dissipated to heat. Rare events when
the work is negative and heat does work must exist, following
the derived results above.

3 Results

The work relations are investigated for a hierarchy of mod-
els of air–sea interaction. This not only favors a pedagogical
discussion of the subject but also helps to emphasize crit-
ical points in the application of the theory exposed above.
The simpler models, which are given by Eq. (9), are called
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Figure 2. The pdf’s of the forward (pdff (w), solid lines), the backward (pdfr (w), dotted lines) and the negative of the backward (pdfr (−w),
dashed lines) processes are shown. The averages Wf and −W r are given on the horizontal axis for the processes. The red line represents an
experiment that was performed at a slower rate; less work is provided on average, and fluctuations are smaller as compared to the experiment
corresponding to the black line. The green line represents an experiment that was performed at a lower dynamic βD as compared to the
experiment corresponding to the black line; averages agree, but fluctuations are higher. The dotted lines are shifted by 21G to the left with
respect to the solid lines of the same color. The solid lines and the dashed lines of the same color all intersect at w =1G and the dotted lines,
and the dashed lines of the same color all intersect at w = 0. For an experiment performed at βD =∞ (zero temperature) or an experiment
performed at an infinitely slow rate T →∞, all the pdf’s are the delta function δ(w−1G) (blue line) and the dynamics is deterministic.

0D models as the variables have no spatial dependence. The
friction force between the two layers is parameterized by lin-
ear Rayleigh friction, which allows for analytical solutions.
In these linear models which are subject to Gaussian noise
(through the ζx and ζy terms in Eq. 9 the pdf’s of the work are
Gaussian random variables, which are determined by their
mean, their variance and their temporal correlation). In this
case the work theorems are algebraic relations between the
means and the variances which can be calculated analyti-
cally using stochastic calculus. The first model of interest, re-
ferred to as 0D1C model, does not include the Coriolis force
(f = 0), and the dynamics in the two horizontal directions
(the two components of the velocity vector) are independent.
The analytical solution for this model is given in Sect. 3.1.
The 0D1C model represents the simplest example in which
work theorems can be discussed and solved analytically by
employing Newton’s laws and solving stochastic differential
equations. It can also be shown that in this case the work the-
orems are a consequence of Galilean invariance. When the
Coriolis force is added the 0D2C model (Eq. 9) is recovered
and the dynamics in the two horizontal directions interact.
The Coriolis force also adds several conceptual difficulties to
the problem. First, for Brownian motion of particles subject
to a Coriolis force, detailed balance is lost as the dynamics
is not time reversible. Second, Galilean invariance is broken,
even for the deterministic part of the problem. Third, the ap-
plication of a reverse protocol depends on the timing. The
same force can increase or reduce the free energy depend-

ing on when, at which phase, it is applied. We calculate the
work theorem analytically by employing Newton’s laws and
solving stochastic differential equations in Sect. 3.2.

We then discuss in Sect. 3.3 a non-linear model with a ver-
tical dependence on the atmosphere and ocean (1D2C model)
that describes the non-linear interaction of the two plane-
tary boundary layers. It is described by Eqs. (1), (2), (3) and
(5). The model is deterministic except for the drag coeffi-
cient, which has a stochastic part. All results concerning this
model are obtained through numerical integration of the cor-
responding governing equations.

3.1 The linear 0D1C model

The solution of the 0D1C model introduced in Sect. 2.1 is

ua(t)= ua(0)− (ua(0)− uo(0))
m

M

(
1− e−MSt

)
+

t∫
0

1
M

(
1+m e−MS(t−t ′)

)
F(t ′) dt ′

+
m

M

t∫
0

e−MS(t−t ′)ζ (t ′)dt ′, (38a)
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uo(t)= uo(0)+ (ua(0)− uo(0))
1
M

(
1− e−MSt

)
+

t∫
0

1
M

(
1− e−MS(t−t ′)

)
F(t ′) dt ′

−
1
M

t∫
0

e−MS(t−t ′)ζ (t ′)dt ′, (38b)

where F(t) is the deterministic forcing of the synoptic atmo-
sphere and ζ a random force. The steps to obtain such solu-
tion are given in Sect. A1. In terms of the integrated mode
and the shear mode, the equivalent solution is

uI (t)=

t∫
0

F(t ′)dt + uI (0), (39a)

uS(t)=

t∫
0

e−SM(t−t ′)
[F(t ′)+ ζ (t ′)]dt ′+ uS(0)e−SMt . (39b)

In the following we consider that the noise ζ (t) is delta cor-
related in time:

〈ζ (t)ζ (t ′)〉 = 2Rδ(t − t ′), (40)

with R being a positive scalar.

3.1.1 Constant forcing

The simplest case is a constant force F(t) of amplitude F0
during the interval I = [0,T ]; such forcing satisfies the sym-
metry required for a reverse protocol as given by Eq. (22).
Note that in a linear model the results obtained with such
forcing are general because every forcing can be approxi-
mated by a sum of step-function forcings or an integral of
infinitesimal step functions. The dynamics of a sum of step
functions or an integral is the sum or integral of the dynamics
of the individual forcings. The solution for 0≤ t ≤ T is

uI (t)= F0t + uI (0), (41)

uS(t)=
F0

SM
(1− e−SMt )+ uS(0)e−SMt , (42)

and for t ≥ T , it is

uI (t)= uI (T ), (43)

uS(t)= uS(T )e−SM(t−T )
=

F0

SM

(
e−SM(t−T )

− e−SMt
)

+ uS(0)e−SMt . (44)

The work can be separated in the work done on the shear
mode WS and on the integrated mode WI . The work the sys-
tem absorbs as well as how much is absorbed by each mode

depends on the state of the system and on the initial condi-
tion. The work is

W =

T∫
0

Fuadt =WS +WI =

T∫
0

F
M

(muS + uI )dt

=
F2

0
2M

T 2
+

F0

M

(
uI (0)+

mF0

SM

)
T +

mF0

SM2(
uS(0)−

F0

SM

)
(1− e−SMT ), (45)

WI =
F2

0
2M

T 2
+

F0

M
uI (0)T , (46)

WS =
mF2

0
S2M3 (SMT − 1+ e−SMT )+

mF0

SM2

(1− e−SMT )uS(0). (47)

The kinetic energy is

V (T )=
1
2

(u2
a +mu

2
o)=

1
2M

(u2
I +mu

2
S)

=
1

2M
((F0T + uI (0))2

+m(
F0

SM
(1− e−SMT )

+ uS(0)e−SMT )2), (48)

V (t)=
1

2M

(
(F0T + uI (0))2

+m

(
F0

SM
(e−SM(t−T )

− e−SMt )+ uS(0)e−SMt
)2
)

(49)

for t > T ; if t ∈ I , replace T with t in the above equation.
The energy difference is

1V (T )= V (T )−V (0)

=
1

2M
(u2
I +mu

2
S )=

1
2M

((F0T + uI (0))2
− uI (0)2

+m

(
F0
SM
+ (uS (0)−

F0
SM

)e−SMT
)2
−muS (0)2)

=
F2

0
2M

T 2
+

F0uI (0)
M

T +
m

2M

(
F0
SM

)2

+
mF0

SM2

(
uS (0)−

F0
SM

)
e−SMT

+
m

2M

(
uS (0)−

F0
SM

)2
e−2SMT

−
m

2M
uS (0)2, (50)

1V (∞)=
F2

0T
2

2M
+

F0T uI (0)
M

−
m

2M
uS(0)2. (51)

The free energy is the energy difference in the integrated
mode, as the shear mode relaxes to zero in equilibrium, when
the forcing has subsided. Therefore it equals the work per-
formed on the integrated mode WI .

1G(T )=
F2

0T
2

2M
+

F0T uI (0)
M

=WI (52)
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The free energy only varies when work is performed on the
system. When the process is infinitely slow, the free energy
equals the work. The energy dissipated is

Q(0,T )= SM
m

M

T∫
0

u2
Sdt ′ = Sm

T∫
0

(
F0

SM
(1− e−SMt ′

)
+ uS(0)e−SMt ′ )2dt ′

= Sm

((
F0

SM

)2

T +
2F0

(SM)2

(
F0

SM
− uS(0)

)
(e−SMT

− 1)

−
1

2SM
(
F0

SM
− uS(0))2(e−2SMT

− 1))

=
mF2

0

SM2 T −
2mF0

SM2

(
uS(0)−

F0

SM

)
(e−SMT

− 1)

−
m

2M

(
uS(0)−

F0

SM

)2

(e−2SMT
− 1)

=
mF2

0

SM2 T −
2mF0

SM2

(
uS(0)−

F0

SM

)
e−SMT

−
m

2M

(
uS(0)−

F0

SM

)2

e−2SMT
+
muS(0)2

2M

−
3mF2

0
2S2M3 +

mF0uS(0)

SM2 ,

(53)

Q(T , t)= Sm

t∫
T

uS(T )2e−2SMt ′dt ′

=
muS(T )2

2M
(1− e−2SMt ). (54)

3.1.2 Forward and reverse process (deterministic)

The free energy starting from rest is

1G=
F2

0T
2

2M
. (55)

The forward process starts from rest and is forced with am-
plitude F0 for a period T and is then let to relax:

uI (0)= uS(0)= 0→ uI (∞)= F0T , uS(∞)= 0, (56)

1Gf (∞)=1G, (57)

W f
=

F2
0

2M
T 2
+
m

S

(
F0

M

)2

T −m
F2

0
S2M3 (1− e−SMT )

=1G+
mF2

0T
2

2M
A(T )=1G(1+mA(T )), (58)

A(T )= 2
e−SMT

− 1+SMT
(SMT )2 , (59)

Qf (0,∞)=m1GA(T ). (60)

The reverse process starts from the converged state is
forced with amplitude −F0 for a period T and then relaxes
to rest:

uI (−∞)= uS(−∞)= 0← uI (∞)= F0T ,

uS(∞)= 0, (61)
1Gr (−∞)=−1G, (62)

W r
=−

F2
0

2M
T 2
+
m

S

(
F0

2M

)2

T −m
F2

0
S2M3 (1− e−SMT )

=−1G+
mF2

0T
2

M
A(T )=1G(−1+mA(T )), (63)

Qr (0,∞)=Qf (0,∞)=m1GA(T ). (64)

Note that −W r
≤1G≤W f , which is a statement of the

second law of thermodynamics. When the process is re-
versible then the equalities apply. It is interesting to note
that during a very slow process (T →∞ while keeping F0T

fixed), the process approaches the reversible limit. Further-
more 21G=W f

−W r .

3.1.3 Forward and reverse process (stochastic)

When noise is added in the linear model it does not interfere
with the deterministic dynamics but just adds to it. Further-
more, the force is prescribed (therefore deterministic) and the
randomness in the work is provided solely by the fluctuations
in ua, and as randomness resides only in the shear-mode the
fluctuations in the work w′ =

∫
F0u

′

Sdt come from fluctua-
tions in the shear mode u′S . The work values are Gaussian
variables with a mean that is the value of the deterministic
part (〈wf 〉 =W f , 〈wr 〉 =W r ), and the variance is given by
the variance of the Ornstein–Uhlenbeck process integrated
over the time interval T (see Appendix A, Sect. A2):

σ 2
W (T )=

mF2
0T

2

M
〈(u′S

T
)2
〉 =

2RmF2
0T

2

M(SM)3T 2 (exp(−SMT )

− 1+SMT )=
Rm

SM
1GA(T ),

(65)

where A(T ) is given in Eq. (59), showing a relation be-
tween the difference in the work to the free energy (the dissi-
pated energy) and the stochastic fluctuations; this is the fluc-
tuation dissipation theorem (see Wirth, 2019). In this case
−W r

≤1Gf (∞)≤W f is true on average only; individual
trajectories can be exceptions. Note that

σ 2
W (0)=

Rm1G

SM
, (66)

lim
T→∞

σ 2
W (T )=

Rm1G

SM
2

SMT
, (67)

and the instantaneous correlation is recovered when the aver-
aging time is vanishes and the T −1 law for averaging times
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larger than the correlation time. The pdf’s are

pdff (w)=
1

√
2πσW

exp

(
−

(w−W f )2

2σ 2
W

)
, (68)

pdfr (w)=
1

√
2πσW

exp

(
−

(w−W r )2

2σ 2
W

)
. (69)

3.1.4 Jarzynski equality and Crooks relation

In order to apply the JE to the present problem, we identify
the heat by Q=WS and the free energy by 1G=WI , and
Eq. (34) leads to

βD =
SM
R
. (70)

This proves that the JE applies with the standard dynamic βD
of the Ornstein–Uhlenbeck process.

Note that in the above all dependence is on the product
F0T and not on the factors independently in this linear prob-
lem. Experiments can also be performed at different tempera-
tures. Also, Galilean invariance is assured as neither1G−W
nor σ 2

w depends on uI (0). Furthermore, neither the work nor
the free energy depends on the relaxation process, so the
above is always true and in an experiment it is not neces-
sary to wait for the relaxation to the stationary state to ob-
tain the free energy. It is only necessary to do the experiment
sufficiently many times and use the JE to obtain the free en-
ergy. The work does, however, depend on uS(0), and so we
have to start from equilibrium (uS(0)= 0). As discussed in
Sect. 2.4, the JE also shows that there has to be (rare) paths
for which the work performed is smaller than the free energy,
but 〈w〉 ≥1G and the second law of thermodynamics is ver-
ified in an average sense – it is a statistical law. Expressed
in terms of the dissipation along a trajectory, the JE leads
to 〈e−βDq〉 = 1 and again 〈q〉 ≥ 0 on average, but paths exist
with negative dissipation.

The CR is obtained by a straightforward calculation intro-
ducing W f

=WI +WS and W r
=−WI +WS :

pdff (w)
pdfr (−w)

= exp
(

1
2σ 2
w

(−w2
+ 2W fw− (W f )2

+w2

+ 2W rw+ (W r )2))= exp(βD[w−1G])
= exp(βD1Q). (71)

3.2 The linear 0D2C model

The calculations performed for the one-component model
will now be extended to the two-component model where
the two components interact through the Coriolis force (see
Appendix B). The solutions of the integrated mode uI (t) and
the shear uS(t) mode are given by Eqs. (B10a) and (B10b).

From these equations it follows that the work is

W =WI +WS =
1
M

T∫
0

F(t)CI (F)(t)dt

+
m

M

T∫
0

F(t)CS(F)(t)dt, (72)

where CI and CS are defined in Eq. (B9). The free energy
is again 1G=WI . The freely evolving system typically re-
laxes to a state where the integrated mode, which is non-
stationary, performs undamped inertial oscillations. When a
forcing is applied, the work and free energy change depends
on the phase of the integrated mode.

3.2.1 Constant forcing

We start from a system at rest and apply the force constant F
of amplitude F0 for a time interval T to the x component.

WI =
F2

0
Mf 2 (1− cos(f T )) (73)

WS =
mF2

0
M((SM)2+ f 2)

(SMT +
1

(SM)2+ f 2

[((SM)2
− f 2)cos(f T )− 2SMf sin(f T ))e−SMT

− (SM)2
− f 2
]) (74)

For f = 0, this is equivalent to Eqs. (46) and (47).
As the model is linear, all statistics are Gaussian and

the statistical properties are completely described by the
first-order moments, which are described by the determin-
istic equations and the second-order moments. Assuming the
noise to be isotropic in the horizontal (〈ζ 2

x 〉 = 〈ζ
2
y 〉 = 2R,

〈ζxζy〉 = 0), we obtain for the random part

u′S =


m(CS(ζx)−SS(ζy))
m(SS(ζx)+ CS(ζy))
−CS(ζx)+SS(ζy)
−SS(ζx)− CS(ζy)

 , (75)

where again the CS and SS are given in Eq. (B9).

3.2.2 Jarzynski equality and Crooks relation

Note that for the work fluctuations only the x component, to
which the forcing applies, has to be considered, that is the
random fluctuations in u′ = u′a averaged over the interval T :

u′
T

(t)=
me−SMt

T

T∫
0

e−SMT ′
t+T ′∫
0

eSMt ′
[ζu(t ′)

cos(f (t + T ′− t ′))+ ζv(t ′) sin(f (t
+ T ′− t ′))]dt ′dT ′. (76)
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Due to the linearity, the process is Gaussian with a vanishing
mean value and a variance (see Appendix B, Sect. B2):

〈[u′
T

(t)]2〉 =
2R

Sm(F0T )2WS . (77)

We obtain

〈[w′
T

(t)]2〉 =
m(F0T )2

M
〈[u′

T
(t)]2〉 =

2R
SM

WS , (78)

which leads to

βD =
SM
R
, (79)

which is the same dynamic βD as in the one-dimensional
non-rotating case.

3.3 The one-dimensional non-linear boundary-layer
model

In this model we resolve part of the dynamics in the in-
terior of the atmospheric and the oceanic layer explicitly.
The model consists of Eq. (1) and the boundary conditions
Eqs. (2) and (3). The thickness of the atmospheric layer is
ha = 300 m, and for the oceanic layer it is ho = 30 m, with
densities ρa = 1kg m−3 and ρo = 1000kgm−3. The Coriolis
parameter is f = 10−4 s−1. The vertical viscosity in the at-
mosphere is calculated by a turbulent kinetic energy (TKE)
scheme with a shear-based length scale (see Sect. 4.1 in
Lemarié et al., 2021), and in the ocean a K-profile param-
eterization (KPP; see Sect. 2c in McWilliams and Huckle,
2006) is used. The shear between the layers is calculated us-
ing Eq. (5). The randomness is introduced through the fric-
tion coefficient cd; it is given by the square of a random Gaus-
sian variable with a variance cmd = 1.2× 10−3 and an expo-
nential correlation in time with a decay time of texp.1

cd = f−1

in experiment 1 and texp.2
cd = 10f−1 in experiment 2. This is

justified by the fact that the friction coefficient depends on
a variety of physical properties such as the wave spectrum
and velocity of propagation, as well as the stratification and
boundary-layer turbulence in the atmosphere and the ocean,
which all vary in space and time. This typically leads to large
variability in the measured cd coefficient (see, e.g., Csanady,
2001; Oost et al., 2002; Large, 2006; Patton et al., 2019). Re-
sults from two sets of numerical experiments, exp1 and exp2,
are presented here. The structure of the model is again the
same as shown in Fig. 1; the random part is given by T (red
color in the figure), and all other interactions are presented
through deterministic equations.

For this model the free energy is still given by the kinetic
energy of the integrated mode, as all other motion decays
when forcing subsides. It is governed by the same equation
as in the linear 0D Coriolis model; that is, its dynamics is
independent of the shear and the internal modes in the atmo-
sphere and the ocean. We call T = 4πf−1

= 1 d. The forc-
ing protocol is a constant force that is applied in the intervals

Figure 3. Evolution of the free energy (black) and the work per-
formed on the integrated mode (red) from the numerical integration
is shown. The evolution is deterministic and periodic and results
agree with the analytic solution.

[jT , (j+ .25)T ] for the days j = 1, . . .,n. The forcing is ap-
plied to the x component only through a large-scale pressure
gradient via a geostrophic velocity: Fx =−(−1)jf vG and
Fy = 0 in Eqs. (1a) and (1b), respectively; that is, the for-
ward and reverse forcing alternate periodically. The periodic
work applied to the integrated mode and the evolution of the
free energy are shown in Fig. 3; both agree with the analytic
solution, and the periodic response to the periodic forcing is
clearly visible. This verifies that the dynamics of the inte-
grated mode is not affected by the random fluctuations in the
shear coefficient.

The dynamics of the shear mode is governed by the same
equations as in the linear 0D Coriolis model with a deter-
ministic forcing and friction at the air–sea interface. The dif-
ference to the 0D model is that the dynamics of the inter-
nal modes within the atmosphere and the ocean are explic-
itly resolved and they influence the shear force that acts on
the shear mode. That is, the stochastic term in the 0D mod-
els mimics the influence of the internal modes in the atmo-
sphere and the ocean. The 1D model also resolves the shear
modes, not only between the atmosphere and the ocean but
also within them. These modes interact in a non-linear way
and exchange energy, which is ultimately dissipated when the
external forcing subsides. In the 1D model the internal modes
within the atmosphere and within the ocean interact through
the surface friction term and the internal eddy viscosities. In
more involved 2D or 3D models, not studied here, they also
interact through non-linear horizontal advection.

The numerical model to solve the above-discussed equa-
tions is a variation on the one used in (Lemarié et al., 2021).
There are 20 levels in the atmosphere and 20 in the ocean,
with the first grid points at δa = 5 and δo = 1 m, in the atmo-
sphere and the ocean, respectively. The time step of the inte-
gration is 10π s. For both experiments, the integration con-
sists of a spin-up of 4× 103 d followed by an integration of
4.4× 103 d; the ensemble size is of each integration is 103,
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Figure 4. The forward pdf (pdff (z), solid line), the backward pdf (pdfr (z), dashed line), and the negative of the backward pdf (pdfr (−z),
dotted line); exp1 is in black, and exp2 is in red. Solid and dotted lines intersect at 1z= 5.9 as can be seen in the enlargement (b). Exp2 is
clearly non-Gaussian.

and 10 integrations were performed. The total ensemble size
for each experiment is therefore 2.2×107, when we suppose
ergodicity (note that the protocol repeats every 2 d).

The work performed on the atmosphere is now a ran-
dom process. The numerical results show that the average
work performed on the atmosphere in the forward process
in the two experiments is 1W exp.1

= 21.0 and 1W exp.2
=

67.3 J m−2, while only a small part of this work drives
the integrated mode, contributing to the free energy 1G=
6/101≈ 5.94. Its value can be calculated analytically; it is
independent of the friction process and therefore equal in
both experiments. Results of the numerical integration are
shown in Fig. 4 where the different pdf’s are visualized.
The standard deviations of the pdf’s are σ exp.1

= 10.3 and
σ exp.2

= 34.8 J m−2. They are close to but significantly dif-
ferent from Gaussian with a skewness (third standardized
moment) of µexp.1

3 = 0.03 and µexp.2
3 =−0.20. In this case

the verification of the work theorems no longer reduces to
algebraic relations between the first- and second-order mo-
ments, but the whole shape of the pdf’s has to be consid-
ered. The forward pdf and the backward pdf flipped at z= 0
(pdfr (−z)) intersect at 1G, in both experiments (Fig. 4),
within the statistical error as predicted by the CR. The for-
ward pdf and the backward pdf shifted by 21G superpose
within statistical error, as can be seen in Fig. 4. This is a con-
sequence of the independence of the deterministic dynamics
of the integrated mode from the rest of the dynamics and the
symmetry of the forcing protocol given in Eq. (23). The same
figure shows clearly that the probability of a forward event
with work smaller than the free energy1G is non-negligible;
the equivalents of such events in thermal processes are re-
ferred to as violations of the second law of thermodynamics.
Note that the probability of a forward event with negative
work is also present.

We numerically found the JE 〈exp(−βJE(w−1G)〉f = 1
in the two experiments to be satisfied for βexp.1

JE = 0.115 and

Figure 5. Figure gives βCR as a function of the work w calcu-
lated with the CR Eq. (80), for exp1 (upper graph) and exp2 (lower
graph). For each experiment 10 statistically independent realiza-
tions are superposed.

β
exp.2
JE = 0.290, respectively, as can be seen from Fig. 5. Here

we denote by βJE the value of βD obtained from the data
through the JE.

For evaluating the CR we plotted

βCR =
1

w−1G
ln

(
pdff (w)

pdfr (−w)

)
, (80)

where we denote by βCR the value of βD obtained from the
data through the CR. Note that near 1G this expression is
strongly dependent on the bin size, where the nominator and
denominator go to zero, which makes a numerical evaluation
difficult and leads to strong oscillations. We clearly see that
β

exp.2
CR is close to but significantly different from a constant

and that βexp.2
JE is a good approximation for values around the

maximum of pdff (w). The dimension of β is the inverse of
an energy, and the obvious question is to see how it can be
related to the dynamics. In the Gaussian case Eq. (70) shows
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that it is equal to the ratio of the heat dissipated over one
cycle and the variance of the work:

βGauss =
(Wf +Wr )

σ 2 . (81)

For the present non-Gaussian model these calculations lead
to βexp.1

Gauss = 0.29 and βexp.2
Gauss = 0.10; the value is equal to βCR

and βJE for exp1 (with a close to Gaussian pdf) and close to
βCR and βJE for exp2 (see from Fig. 5).

4 Discussion

We started by introducing the concept of work theorems into
a simple model of air–sea interaction, in which the atmo-
sphere and ocean were represented by their corresponding
mixed layer. In this case the JE and the CR can be obtained
analytically. We then performed the same calculations on a
model including a Coriolis force. In that case the time re-
versibility is broken and the dynamics lags detailed balance,
which is at the basis of the original proofs of the JE and the
CR in the Hamiltonian system. Analytical integrations of the
stochastic differential equations governing the dynamics of
the system prove the existence of the JE and the CR. They
furthermore show that the limit of f → 0 is well defined and
the non-rotating solution is obtained

In the applications of work theorems where fluctuations
arise from thermal dynamics, the thermodynamic β is fixed
by the temperature of the heat bath. In the system considered
here there is no external heat bath, but the fluctuations are
generated by the external forcing and the internal dynamics.
The different value of the dynamic β in the two experiments
comes, therefore, at no surprise, as the fluctuations now arise
from the dynamics of the shear mode and the internal modes
in the atmosphere and the ocean, which clearly differ be-
tween both experiments. In terms of heat fluctuations this
means that the system is not thermostated; there is no out-
side heat bath that keeps the temperature (or β) constant. In
exp2 the variation in the drag coefficient is 10 times slower
than in exp1 and the dynamics of the shear mode and the in-
ternal modes in the atmosphere and the ocean have more time
to adjust to its instantaneous value. The drag influences not
only the work but also the variability, leading to a dynamic
β that depends on w. The result that a variation in the dy-
namic β is undetectable in exp1 and small in exp2 allows for
the definition of an average β in the present dynamics. This
shows the pertinence of the work theorems by Jarzynski and
Crooks in the present context as they apply not only to exp1
but also to exp2 in which the fluctuations are slower than the
forcing protocol. This is important as forcing protocols and
turbulence levels vary over a large continuum of timescales.

The physical interpretation of the dynamic β or its inverse,
often called effective temperature (Feitosa and Menon, 2004)
or characteristic energy (Ciliberto et al., 2004), is given by
Eq. (81) as the ratio of the heat dissipated over one cycle to
the variance of the work.

5 Conclusions

We have shown that the modern concepts of non-equilibrium
statistical mechanics can be applied to large-scale environ-
mental fluid dynamics, where fluctuations are not thermal but
come from the turbulent fluid motion. We have demonstrated
that the concepts of the dynamic beta, that is the equivalent
of temperature in dynamical systems, can be extended to the
momentum transfer at the air–sea interface using the formal-
ism developed by Jarzynski and Crooks. It is important to
note that work theorems are valid for forces of arbitrary am-
plitude; they are not a perturbative theory. This is, to the best
of our knowledge, the first time that the concepts of work
relations are investigated in geophysics and climate science.
We successfully adapted the work theorems to the subject of
air–sea momentum transfer, but they can, in the same way,
be applied to other components of the climate system.

Work theorems also have important practical applications.
When the work pdf’s of the forward and backward process
are obtained, the free energy of the system and the dissi-
pated energy can be obtained and a mechanical efficiency
of the air–sea momentum transfer calculated. This is key in
understanding the energetics of the climate system. For a
discussion of the ocean circulation kinetic energy, we refer
the reader to Ferrari and Wunsch (2009), and for a spatio-
temporal variability in the momentum transfer to the ocean,
we refer to Wirth (2021). When the CR applies, the likeliness
of some rare and extreme events can be obtained from parts
of the pdf that represent likely events. Furthermore, when
work theorems are found to apply in observations, they repre-
sent an important tool to evaluate numerical integrations and
parameterizations in models of the environmental dynamics.

The mechanics of air–sea momentum transfer has ad-
vanced considerably since the pioneering work of Ekman
(1905) and is today an active field of research (Duhaut and
Straub, 2006; McWilliams and Huckle, 2006; Zhai et al.,
2012; Shrira and Almelah, 2020). In an environment fluc-
tuating on a vast continuum of scales in space and time, the
statistical mechanics has to be advanced.

The difficulty in performing simulations in air–sea inter-
action is the large difference in the characteristic timescales
of the fast atmosphere and the slow ocean, the stiffness of
the problem. Therefore integrations of the fast atmospheric
dynamics are necessary with a long spin-up, as the ocean has
to be in a statistically stationary state followed by a long in-
tegration to obtain a statistical significant ensemble of ocean
states. When observations are considered, the stiffness asks
for observations over extended periods of time which are just
becoming available.

Similar problems appear when the interaction of other
components of the climate system are considered. The mo-
mentum transfer at the air–sea interface is just one example
where work relations between fluctuating components of the
climate system increase our understanding. Their extension
to other components is straightforward.
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Appendix A: The linear 0D1C model

A1 Solution

We consider a state vector given by the atmospheric and
oceanic velocity:

u(t)=
(
ua(t)
uo(t)

)
. (A1)

The evolution equation for the 0D1C model (i.e., model of
Eq. 9 with f = 0) can be written in a matrix form as

∂tu= Pu+Fext, (A2)

with

P=−S
(
m −m

−1 1

)
and Fext

= F
(

1
0

)
+
ζ

M

(
m

−1

)
, (A3)

where F is the deterministic forcing of the synoptic atmo-
sphere on the atmospheric boundary layer and ζ is the ran-
dom noise parameterizing internal turbulent motion which
does not act on the integrated momentum.

The first step to solve the system of ordinary differential
equations (ODEs) (Eq. A2) is to diagonalize P. The eigen-
values λj and associated eigenvectors ej of P are

λ1 = 0, e1 =

(
1
1

)
;λ2 =−SM, e2 =

(
m

−1

)
, (A4)

with M =m+ 1. The square matrix P is thus diagonalizable
and can be decomposed as

P= ADA−1, with A=
(

1 m

1 −1

)
,D=

(
0 0
0 −SM

)
. (A5)

Furthermore, MA−1
= A and also

A−1u=
1
M

(Au)=
1
M

(
ua+muo
ua− uo

)
=

1
M

(
uI
uS

)
,

which shows that the integrated uI and shear uS modes de-
fined in Eq. (10) are eigenmodes of the dynamics. We can
thus re-express Eq. (A2) with the unknown u as

∂tuM = DuM +AFext,uM =
(
uI
uS

)
, (A6)

with the unknown uM . Because D is a diagonal matrix, the
two ODEs in Eq. (A6) are decoupled and can be solved sep-
arately. As reported in Eq. (39), we easily find that

uM (t)=
(

1 0
0 e−MSt

)
uM (0)

+

t∫
0

(
F(t ′)

e−MS(t−t ′) [F(t ′)+ ζ (t ′)
])dt ′, (A7)

and the solution in terms of the original unknowns ua and
uo given in Eq. (38) is simply obtained using the relation
u= (AuM )/M to obtain

u(t)=
1
M

{(
1+m e−MSt m(1− e−MSt )
1− e−MSt m+ e−MSt

)

u(0)+

t∫
0

(
F(t ′)+m e−MS(t−t ′) [F(t ′)+ ζ (t ′)

]
F(t ′)− e−MS(t−t ′) [F(t ′)+ ζ (t ′)

])dt ′

 , (A8)

which can be recast as

ua(t)= ua(0)− (ua(0)− uo(0))
m

M

(
1− e−MSt

)
+

t∫
0

1
M

(
1+m e−MS(t−t ′)

)
F(t ′) dt ′

+
m

M

t∫
0

e−MS(t−t ′)ζ (t ′)dt ′, (A9a)

uo(t)= uo(0)+ (ua(0)− uo(0))
1
M

(
1− e−MSt

)
+

t∫
0

1
M

(
1− e−MS(t−t ′)

)
F(t ′) dt ′

−
1
M

t∫
0

e−MS(t−t ′)ζ (t ′)dt ′. (A9b)

A2 Variance

The deterministic and the stochastic dynamics are statisti-
cally independent, so when calculating statistical moments
we can ignore the deterministic one (i.e., F(t) will be ig-
nored). In the following we denote u′S as the random part of
uS . The solution of the shear mode is given by Eq. (39b). Its
variance is, using the fact that

〈
ζ (t)ζ (t ′)

〉
= 2Rδ(t − t ′) (see

Eq. 40) and that 〈ζ (t)〉 = 0,

〈u′S(t)2
〉 =

〈 t∫
0

e−SM(t−t ′)ζ (t ′)dt ′+ uS(0)e−SMt

2〉

=

t∫
0

t∫
0

e−SM(t−t ′)e−SM(t−t ′′)
〈ζ (t ′′)ζ (t ′)〉dt ′′dt ′

+ e−2SMt
〈u′S(0)2

〉

= 2R

t∫
0

e−SM(t−2t ′)dt ′+ e−2SMt
〈uS(0)2

〉

=
R

SM
(1− e−2SMt )+ e−2SMt

〈u′S(0)2
〉. (A10)

It is important to note that there are two different averages
involved in the above equation, all denoted by the same sym-
bol 〈·〉. One is over the noise, and the other is over the initial
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conditions. Using the same symbol is justified as the initial
conditions are due to the same statistical noise applied prior
to t = 0. In a statistically stationary process the variance is
independent of the time t , and therefore

〈u′S(t)2
〉 = 〈u′S(0)2

〉 =
R

SM
. (A11)

Such a consistency condition is extensively used throughout
this paper.

For the work theorems the focus is on the statistics of av-
erages over a time interval T . Using Eq. (A7) we obtain

u′S
T

(t)=
1
T

T∫
0

u′S(t + T ′)dT ′ =
1
T

T∫
0

t+T ′∫
0

e−SM(t+T ′−t ′)

ζ (t ′)dt ′+ uS(0)e−SM(t+T ′)dT ′

=
e−SMt

T

T∫
0

t+T ′∫
0

e−SM(T ′−t ′)ζ (t ′)dt ′dT ′

+
e−SMt

SMT
(1− e−SMT )uS(0).

(A12)

Its variance is

〈[u′S
T

(t)]2〉 =
e−2SMt

T 2

T∫
0

T∫
0

t+T ′∫
0

t+T ′′∫
0

e−SM(T ′−t ′+T ′′−t ′′)

〈ζ (t ′)ζ (t ′′)〉dt ′′dt ′dT ′′dT ′+
e−2SMt

(SMT )2

(1− e−SMT )2
〈uS(0)2

〉

[define : T̃ =min(T ′,T ′′)]

=
2Re−2SMt

T 2

T∫
0

T∫
0

t+T̃∫
0

e−SM(T ′+T ′′−2t ′)

dt ′dT ′′dT ′+
e−2SMt

(SMT )2 (1− e−SMT )2 R

SM

=
R

SMT 2

T∫
0

T∫
0

e−SM(T ′+T ′′−2T̃ )

− e−SM(T ′+T ′′+2t)dT ′′dT ′+
e−2SMt

(SMT )2

(1− e−SMT )2 R

SM

=
2R

SMT 2

T∫
0

T ′∫
0

e−SM(T ′−T ′′)
− e−SM(T ′+T ′′+2t)

dT ′′dT ′+
e−2SMt

(SMT )2 (1− e−SMT )2 R

SM

=
2R

(SMT )2

T∫
0

1− e−SMT ′
+ e−SM(2T ′+2t)

− e−SM(T ′+2t)dT ′+
e−2SMt

(SMT )2 (1− e−SMT )2

R

SM
=

2R
(SMT )2 [T +

e−SMT
− 1

SM

− e−2SMt
(
e−2SMT

− 1− 2e−SMT
+ 2

2SM

)
]

+
e−2SMt

(SMT )2 (1− e−SMT )2 R

SM

=
2R

(SM)3T 2 [SMT + e−SMT
− 1]

=
2R

Sm(F0T )2WS .

(A13)

Note that for T � SM we have 〈[u′S
T

(t)]2〉 = 〈uS(t)2
〉, and

for T � SM we obtain 〈[u′S
T

(t)]2〉 = 2〈uS(t)2
〉/(SMT ).
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Appendix B: The linear 0D2C model

The calculations performed for the one-component model
in the previous section will now be extended to the
two-component model where the two components interact
through the Coriolis force.

B1 Solution

To simplify the algebra we temporarily manipulate complex
quantities in this subsection. For the 0D2C model given in
Eq. (9) we consider a state vector given by

y(t)=
(
Ua(t)
Uo(t)

)
, (B1)

where Ua and Uo are complex quantities such that Ua =

ua+ iva and Uo = uo+ ivo. The general evolution equation
satisfied by y is

∂ty= Pf y+Fext
f , (B2)

with

Pf =
−if− Sm Sm

S −if− S

and Fext
f =

F
0 +

1
M

(ζx + iζy) m−1 , (B3)

where Fu, ζu and ζv are real-valued functions. The matrix Pf
is diagonalizable and can be decomposed as

Pf = ADfA−1, with A=
(

1 m

1 −1

)
,

Df =
(
−if 0
0 −if−SM

)
. (B4)

We recall that MA−1
= A, and introducing the complex

numbers UI = uI + ivI and US = uS+ ivS corresponding to
the integrated and shear modes, we have

A−1y=
1
M

(Ay)=
1
M

yM ,yM =
(
UI
US

)
.

Re-expressing the original system of ODEs in terms of yM ,
we obtain

∂tyM = Df yM +AFext
f ,

and we obtain two independent ODEs for the complex func-
tions UI (t) and US(t):

∂tUI =−if UI +F(t), (B5a)
∂tUS = (−if − SM)US +F(t)+ (ζx(t)+ iζy(t)), (B5b)

whose solutions are

UI (t)= UI (0)e−if t

+

t∫
0

e−if (t−t ′)F(t ′)dt ′, (B6a)

US(t)= US(0)e−(if+SM)t
+

t∫
0

e−(if+SM)(t−t ′)

[
F(t ′)+ (ζx(t ′)+ iζy(t ′))

]
dt ′. (B6b)

Taking the real and imaginary parts of UI (t), we obtain

uI (t)= cos(f t)uI (0)+ sin(f t)vI (0)

+

t∫
0

cos(f (t − t ′))F(t ′)dt ′, (B7a)

vI (t)= cos(f t)vI (0)− sin(f t)uI (0)

+

t∫
0

sin(f (t − t ′))F(t ′)dt ′. (B7b)

Now considering the shear mode, we have

uS(t)= e−SMt (cos(f t)uS(0)+ sin(f t)vS(0))

+

t∫
0

e−SM(t−t ′)
[(F(t ′)+ ζx(t ′))cos(f (t − t ′))

+ ζy(t ′) sin(f (t − t ′))]dt ′

vS(t)= e−SMt (cos(f t)vS(0)− sin(f t)uS(0))

+

t∫
0

e−SM(t−t ′)
[ζy(t ′)cos(f (t − t ′))− (F(t ′)

+ ζx(t ′)) sin(f (t − t ′))]dt ′.

Note that for f = 0, we easily recover the solutions from the
0D1C model. To further simplify those solutions, we intro-
duce the notations

CI (x)=

t∫
0

cos(f (t − t ′))x(t ′)dt ′

CS(x)=

t∫
0

e−SM(t−t ′) cos(f (t − t ′))x(t ′)dt ′

SI (x)=

t∫
0

sin(f (t − t ′))x(t ′)dt ′

SS(x)=

t∫
0

e−SM(t−t ′) sin(f (t − t ′))x(t ′)dt ′, (B9)

to reformulate the solutions of the 0D2C model as

uI (t)=
(

cos(f t) sin(f t)
−sin(f t) cos(f t)

)
uI (0)+

(
CI (F)
SI (F)

)
, (B10a)

uS(t)=
(

cos(f t) sin(f t)
−sin(f t) cos(f t)

)
e−SMtuS(0)

+

(
CS(F)+ CS(ζx)+SS(ζy)
CS(ζy)−SS(F)−SS(ζx)

)
. (B10b)
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B2 Variance

For the sake of clarity we use the notations c = cos(f t) and
s = sin(f t) in the following. We consider a Gaussian process
with a variance:

〈[u′S(t)]2〉 = 2R

t∫
0

e−2SM(t−t ′)dt ′+ e−2SMt (c2
〈uS(0)2

〉

+ s2
〈vS(0)2

〉+ 2cs〈uS(0)vS(0)〉)

=
R

SM
(1− e−2SMt )+ e−2SMt

〈uS(0)2
〉

=
R

SM
.

(B11)

If the noise is turned off at t = 0, we have the deterministic
evolution (using cos(t+α)cos(t+β)+sin(t+α) sin(t+β)=
cosα cosβ + sinα sinβ)

u0
S

T
(t)=

e−SMt

T

T∫
0

e−SMT ′ (cosf (t + T ′)uS(0)

+ sinf (t + T ′)vS(0))dT ′, (B12)

and its variance is given by

〈[u0
S

T
(t)]2〉 =

e−2SMt

T 2

T∫
0

T∫
0

e−SM(T ′+T ′′)

〈[cosf (t + T ′)
uS(0)+ sinf (t + T ′)vS(0)]
[cosf (t + T ′′)uS(0)+ sinf (t + T ′′)
vS(0)]〉dT ′′dT ′

=
Re−2SMt

SMT 2

T∫
0

T∫
0

e−SM(T ′+T ′′)(cosf T ′

cosf T ′′+ sinf T ′ sinf T ′′)dT ′′dT ′

=
Re−2SMt

SMT 2 [(

T∫
0

e−SMT ′ cosf T ′dT ′)2

+ (

T∫
0

e−SMT ′ sinf T ′dT ′)2
]

=
Re−2SMt (e−2SMT

− 2e−2SMT cos(f T )+ 1)
SMT 2((SM)2+ f 2)

. (B13)

It cancels the time-dependent part of the variance due to the
noise (see Eq. B14), making the total variance time indepen-
dent. This is another expression of the consistency condition

mentioned in the previous section. The total variance is

〈[u′S
T

(t)]2〉 = 〈
[
CS(ζu)+SS(ζv)

T
+ u0

S

T
(t)
]2

〉

=
e−2SMt

T 2

T∫
0

T∫
0

e−SM(T ′+T ′′)

t+T ′∫
0

t+T ′′∫
0

eSM(t ′+t ′′)

〈[ζu(t ′)cos(f (t + T ′− t ′))+ ζv(t ′)
sin(f (t + T ′− t ′))][ζu(t ′′)cos(f (t + T ′′− t ′′))
+ ζv(t ′′)
sin(f (t + T ′′− t ′′))]〉

dt ′′dt ′dT ′′dT ′+〈[u0
S

T
(t)]2〉

[define : T̃ =min(T ′,T ′′)]

=
2Re−2SMt

T 2

T∫
0

T∫
0

e−SM(T ′+T ′′)

t+T̃∫
0

e2SMt ′ cos(f T ′)

cos(f T ′′)+ sin(f T ′) sin(f T ′′)dt ′dT ′′dT ′

+〈[u0
S

T
(t)]2〉

=
2Re−2SMt

T 2

T∫
0

T∫
0

e−SM(T ′+T ′′)

t+T̃∫
0

e2SMt ′

cos(f (T ′− T ′′))dt ′dT ′′dT ′+〈[u0
S

T
(t)]2〉

=
R

SMT 2

T∫
0

T∫
0

(eSM(2T̃−T ′−T ′′)

− eSM(−2t−T ′−T ′′))cos(f (T ′− T ′′))dT ′′dT ′

+〈[u0
S

T
(t)]2〉

=
2R

SMT 2

T∫
0

T ′∫
0

e−SM(T ′−T ′′) cos(f (T ′− T ′′))

dT ′′dT ′ =
2R

SMT 2

T∫
0

CS(1)dt

=
2R

Sm(F0T )2WS ,

(B14)

whereWS is given by Eq. (74). It is important to note that the
last equality is equal to the last equality in Eq. (A13) and that
in the limit f → 0, the solutions of the non-rotating case are
obtained in all the formulas.
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