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Parameter group Parameter Initial value

Critical temperatures (◦C)


Tlimit, Greenland 1.6

Tlimit, West Antarctica 5.0

Tlimit, AMOC 5.5

Tlimit, Amazon rainforest 3.8

Strong links (a.u.)


Greenland→ AMOC 0.64

AMOC→ Greenland −0.57

Greenland→West Antarctica 0.77

Intermediate links (a.u.)

 AMOC→ Amazon rainforest 0.0

West Antarctica→ AMOC 0.0

Weak links (a.u.)

 West Antarctica→ Greenland 0.13

AMOC→West Antarctica 0.12

Table S 1. Exemplary initial values that have been used to construct the timeseries in Figs. 2 and 3 in the main manuscript. All initial values

are random numbers drawn from a uniform distribution with a latin-hypercube sampling algorithm (Baudin, 2013) between their respective

limits (see Tabs. 1 and 2). The random numbers for the links have already been multiplied with 1/10× sij (see Table 2). The exemplary

timelines were computed using a network without considering the uncertain links (AMOC → Amazon rainforest and West Antarctica →

AMOC), whose link strengths are set to zero.
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Figure S 1. Role of tipping elements in cascades. (a) Relative frequency in percent of occurrence of a certain tipping element in a tipping

cascade (hatched bars). The standard deviation is computed by evaluating the deviation between reasonable network settings (see Sect. 2.7).

(b) Relative frequency in percent that a certain tipping element causes a tipping cascade (coloured bars). We define that the cause of a

cascade is the element, whose critical temperature is closest to the temperature at which the cascade takes place. Again the error bars show

the standard deviation between different network settings as in (a). It must be noted that the Amazon rainforest cannot initiate a tipping

cascade since it has no outgoing link (see Fig. 1). (c) Count versus global mean surface temperature increase at which a tipping cascade

occurs divided into the respective four tipping elements. (d) Same as in (c), but for the tipping element which causes the cascade. N.B.: (c)

and (d) are set to the same scale normalised to the highest value in the histogram.
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Figure S 2. Difference in critical temperatures with respect to the interaction strength. Difference of critical temperatures in ◦C (left panels)

and % (right panels) compared to the respective initially drawn critical temperature for the four investigated tipping elements: (a, b) Greenland

Ice Sheet, (c, d) West Antarctic Ice Sheet, (e, f) AMOC and (g, h) Amazon rainforest. The standard deviation from the ensemble members is

shown as respective colour shading.
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Structural sensitivity analysis including ENSO

In this section, we perform a structural sensitivity analysis by taking ENSO into account as a tipping element since it is debated

whether and to which extent ENSO should be seen as a tipping element (discussion see main manuscript in Sect. 3.4). Below

and in Tab. 2, we elaborate on additional references regarding the interactions that include ENSO, equal to the other interactions

in the main manuscript (see Sect. 2.2).5

1. AMOC → ENSO: There are two contradicting impacts representing the influence of the AMOC on ENSO: (I) Oceanic

Kelvin waves could start from a colder north Atlantic and travel towards the south. In western Africa, Rossby waves could

then be produced travelling in northern and southern direction, which are then converted back into Kelvin waves that

move into the Pacific sea. This would intensify the Pacific thermocline and thereby dampen the amplitude of ENSO (Tim-

mermann et al., 2005). (II) When the AMOC becomes weaker, the northern tropical Atlantic would become cooler and10

northerly trade winds would be strengthened over the northeastern tropical Pacific. It has been suggested that this could

lead to a southward shift of the ITCZ (Zhang & Delworth , 2005). Simultaneously, it is argued that Rossby waves are sent

into the northeast tropical Pacific, which would strengthen ENSO (Dong & Sutton, 2005). Summarised, it is believed that

process (II) is more powerful than process (I). Moreover, it has been found in more complex Earth system models that a

weakening of the AMOC indeed reinforces the variability of ENSO (Dekker et al., 2018; Sterl et al., 2008). Therefore,15

this link is set as destabilising (see Fig. S3).

2. ENSO → Amazon rainforest: It has been proposed that droughts due to climate variabilities (such as ENSO) could

harm the Amazon rainforest and its integrity (Holmgren et al., 2013, 2006; Malhi & Wright, 2004). With PlaSim, an

Earth system model of intermediate complexity, a permanent El-Niño state would severely threaten major parts of the

Amazon basin since the forest might suffer from restricted water access in South America (Duque-Villegas et al., 2019).20

Therefore, we set this link as destabilising (see Fig. S3).

3. ENSO → West Antarctic Ice Sheet: There is evidence for heating oceanic effects from El-Niño in the Amundsen and

Ross Sea region, while La Niña phases would have the opposite oceanic effect. However, the atmosphere could offset

the oceanic effect (Bertler et al., 2006). In addition to that, observations have shown that ice shelves gain height, but

lose mass during major El-Niño events in the Amundsen and Ross Sea region (Paolo et al., 2018). In particular, a large25

surface melt event, that was associated with a strong El-Niño event, took place in 2016 (Nicolas et al., 2017). Still, the

interaction between ENSO and West Antarctica is one of the interactions with the highest uncertainty (as also noted in

Kriegler et al., 2009). Furthermore, some studies suggest that the frequency of El-Niño events increase with ongoing

global warming (Cai et al., 2014). Thus, we set this interaction destabilising (see Tab. S2 and Fig. S3).

4. ENSO → AMOC: It has been argued by evaluating reanalysis data that water vapour transport out of the tropical At-30

lantic is increased (Schmittner et al., 2000). There is contradicting evidence suggesting that El-Niño conditions might

or might not have a strengthening impact the deepwater formation in the north Atlantic and with that the strength of the
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AMOC (Spence & Weaver, 2006; Schmittner et al., 2000). This illustrates that this interaction pair is less well under-

stood than others. Therefore, we consider this link as being of low strength, but with a stabilising (negative) sign since

there is only evidence for this direction of interaction (see Fig. S3 and Tab. S2).35

5. Amazon rainforest → ENSO: The moisture recycling feedback would be stopped in case the Amazon rainforest tips to a

large portion (Boers et al., 2017; Zemp et al., 2017; Aragão, 2012). Since it is unknown as to whether this would have

an impact on the formation of El-Niño events, this link is set as unclear and its uncertainty is propagated in our Monte

Carlo ensemble (see Fig. S3). The strength of this interaction is set very weak due to its possibly very limited impact on

ENSO (see Tab. S2).40

Edge Maximal link strength sij (a.u.) Physical process

ENSO→ Amazon rainforest +10 Drying over Amazonia

ENSO→West Antarctica +5 Warming of Ross and Amundsen seas

AMOC→ ENSO +2 Cooling of North-East tropical Pacific with thermo-

cline shoaling and weakening of annual cycle in EEP

ENSO→ AMOC −2 Enhanced water vapour transport to Pacifics

Amazon rainforest→ ENSO ±1.5 Changes in tropical moisture supply

Table S 2. Edges in the network of tipping elements that include ENSO. The values are given in analogy to Tab. 2 of the main manuscript.
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Figure S 3. Interactions between climate tipping elements and their roles in tipping cascades. The Greenland Ice Sheet, West Antarctic Ice

Sheet, Atlantic Meridional Overturning Circulation (AMOC), El-Niño Southern Oscillation (ENSO) and the Amazon rainforest are depicted

together with their main interaction pathways (Kriegler et al., 2009). Same as in Fig. 1 in the main manuscript, but including ENSO as a

tipping element.
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Figure S 4. Role of the tipping elements including ENSO. The panels (a,b) show the same as in Fig. S3, but with error bars (standard

deviation). In analogy to the the dominos in Fig. S1 (there without ENSO), the panels (a,b) show the frequency of occurrence in a tipping

cascade and the frequency in initiating a tipping cascade. The panels (c,d) depict the increase of the global mean surface temperature, at

which this cascade occurred or is initiated. The main pattern of the results remains robust, meaning that the large ice sheets are the initiators

of cascades, while the AMOC transmits cascades. The role of ENSO is intermediate since it strongly initiates tipping cascades with the

Amazon rainforest, but is apart from that less often (than other tipping elements) part of a tipping cascade and also mediates some cascades.
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Figure S 5. Shift of critical temperature ranges due to interactions with ENSO. The panels are the same as in Fig. 4 of the main manuscript

excluding ENSO. With increasing interaction strength, the critical temperatures develop similar as in the case without ENSO for the Green-

land Ice Sheet, the West Antarctic Ice Sheet and the AMOC. For the Amazon rainforest, there is now also a strong reduction of its critical

temperature since it is strongly connected and influenced by ENSO.
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Figure S 6. Difference in critical temperatures with respect to the interaction strength including ENSO. The panels show the same as in

Fig. S2 without ENSO. The results are similar apart from the Amazon rainforest that shows more reduction in its critical temperature level

due to its strong interaction with ENSO.
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