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Abstract. The original Budyko–Sellers type of 1D energy balance models (EBMs) consider the Earth system
averaged over long times and apply the continuum mechanics heat equation. When these and the more phe-
nomenological box models are extended to include time-varying anomalies, they have a key weakness: neither
model explicitly nor realistically treats the conductive–radiative surface boundary condition that is necessary for
a correct treatment of energy storage.

In this first of a two-part series, I apply standard Laplace and Fourier techniques to the continuum mechanics
heat equation, solving it with the correct radiative–conductive boundary conditions and obtaining an equation
directly for the surface temperature anomalies in terms of the anomalous forcing. Although classical, this equa-
tion is half-ordered and not integer-ordered: the half-order energy balance equation (HEBE). A quite general
consequence is that although Newton’s law of cooling holds, the heat flux across surfaces is proportional to a
half-ordered (not first-ordered) time derivative of the surface temperature. This implies that the surface heat flux
has a long memory, that it depends on the entire previous history of the forcing, and that the temperature–heat
flux relationship is no longer instantaneous.

I then consider the case in which the Earth is periodically forced. The classical case is diurnal heat forcing;
I extend this to annual conductive–radiative forcing and show that the surface thermal impedance is a complex
valued quantity equal to the (complex) climate sensitivity. Using a simple semi-empirical model of the forcing, I
show how the HEBE can account for the phase lag between the summer maximum forcing and maximum surface
temperature Earth response.

In Part 2, I extend all these results to spatially inhomogeneous forcing and to the full horizontally inhomoge-
neous problem with spatially varying specific heats, diffusivities, advection velocities, and climate sensitivities.
I consider the consequences for macroweather (monthly, seasonal, interannual) forecasting and climate projec-
tions.

1 Introduction

Ever since Budyko (1969) and Sellers (1969) proposed a
simple model describing the exchange of energy between
the Earth and outer space, energy balance models (EBMs)
have provided a straightforward way of understanding past,
present, and possible future climates. The models usually
have either zero or one spatial dimension, respectively rep-
resenting the globally or latitudinally averaged meridional
temperature distribution (for a review, see McGuffie and
Henderson-Sellers, 2005, and North and Kim, 2017).

The fundamental EBM challenge is to model the way that
imbalances in incoming shortwave and outgoing longwave
radiation are transformed into changes in surface tempera-
tures. In an energy-balanced climate state, the vertical flux
imbalances are transported horizontally. Here I am primarily
interested in the anomalies with respect to this state. When
an external flux (forcing) is added, some of this anomalous
imbalance is radiated to outer space, while some is converted
into sensible heat and conducted into (or out of) the subsur-
face. This latter flux accounts for both energy storage and
surface temperature changes as well as attendant changes in
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470 S. Lovejoy: The half-order energy balance equation

longwave emissions. EBMs avoid explicit treatment of this
critical surface boundary condition, treating it phenomeno-
logically in ways that are flawed; in this two-part paper, I
show how they can easily be improved with significant bene-
fits: first, the (idealized) homogeneous case (Part 1) and then
the general horizontally inhomogeneous (2D) case (Part 2;
Lovejoy, 2021).

First, consider box EBMs with zero horizontal dimensions
as a model of the mean Earth temperature. These are based
on two distinct assumptions, namely (a) that the rate that heat
(S) is exchanged between the Earth and outer space (dS / dt)
is proportional to the difference between the surface temper-
ature (T ) and its long-term equilibrium value (Teq), dS / dt ∝
(Teq− T ) (Newton’s law of cooling, NLC), and (b) that this
rate is also proportional to the rate of change of surface tem-
perature: dS / dt ∝ dT / dt . Budyko–Sellers models are on
firmer ground: they start with the basic continuum mechanics
heat equation with advective and diffusive heat transport. Yet
they have no vertical coordinate and are therefore unable to
correctly treat the surface conduction–radiation–energy stor-
age issue. By restricting explicit treatment of energy trans-
port to the horizontal, they resort to the ad hoc assumption
that the vertical flux imbalances are redirected horizontally
and meridionally. The original Budyko–Sellers models were
of time-independent climate states, and there was no energy
storage at all: the radiative imbalances were completely redi-
rected. While this approximation may be reasonable for these
long-term states, they became problematic as soon the orig-
inal models were extended to include temporal variations
(Dwyers and Petersen, 1975). While these time-varying ex-
tensions implicitly allow for subsurface energy storage, this
implicit treatment is both unnecessary and unsatisfactory.

The basic physical problem is that anomalous radiative
flux imbalances partly lead to heat conduction fluxes into
the subsurface and partly to changes in longwave radiative
fluxes. The part conducted into the subsurface is stored and
may re-emerge, possibly much later. Starting with the heat
equation, realistic and mathematically correct treatments in-
volve the introduction of a vertical coordinate and the use
of conductive–radiative surface boundary conditions (BCs).
If one considers the horizontally homogeneous 3D problem
in a semi-infinite medium with these mixed BCs and lin-
earized longwave emissions, the problem is classical and can
be straightforwardly solved using Laplace and Fourier tech-
niques. Mathematically it turns out that the key is the surface
layer that defines the surface vertical temperature gradient.
The influence of the subsurface is only over a thin layer of
the order of a few diffusion depths where most of the energy
storage occurs. This depth depends on the specific heat per
volume and the diffusivity, and it is estimated to be typically
of the order of 100 m for the ocean (depending on its turbu-
lent diffusivity) and less over land (see Appendix A, Part 2).

The exact treatment of this homogeneous problem con-
firms that Newton’s law of cooling holds but shows that
the classical box model relation between heat flux and the

surface temperature is wrong: symbolically the correct rela-
tion is dS/dt ∝ dhT/dth with h= 1/2 – not the phenomeno-
logical value h= 1. Physically, these fractional derivatives
are simply convolutions, and in the Fourier domain they are
power-law filters, in this case involving power-law storage
(hence “memories”). The corresponding half-order energy
balance equation (HEBE) has qualitatively much stronger
storage than the short exponential memories associated with
the standard integer-ordered (h= 1) box model derivatives.

Half-order derivatives have appeared in heat and diffu-
sion problems since at least the 1960s (Meyer, 1960; Old-
ham and Spanier, 1972; Oldham, 1973; Oldham and Spanier,
1974). An equation mathematically identical to the homo-
geneous h= 1/2 special case of the fractional energy bal-
ance equation (FEBE) was derived by Oldham (1973) as a
short-time approximation of electrolyte diffusion in a spheri-
cal geometry, and Oldham and Spanier (1974) anticipated the
present application by noting that half-order derivatives can
be applied to “not one but an entire class of boundary value
problems”. Later, half-order derivatives were developed by
Babenko (1986) and have been regularly exploited in en-
gineering heat transfer problems (see, e.g., Sierociuk et al.,
2013, 2015, and references therein). The method is probably
not more generally known since most applications are with
fairly standard heat flux boundary conditions and other more
familiar techniques can also be used.

More generally, fractional derivatives and their equations
(Podlubny, 1999) have a history going back to Leibniz in
the 17th century, and their development has exploded in
the last decades (for books on the subject, see, e.g., Miller
and Ross, 1993; Podlubny, 1999; Hilfer, 2000, West et al.,
2003; Tarasov, 2010; Klafter et al., 2012; Klafter et al., 2012,
Baleanu et al., 2012; Atanackovic et al., 2014).

Interestingly, the explicit or implicit application of frac-
tional derivatives to model the Earth’s temperature – and
more recently the energy budget – has several antecedents
arising from the wide range of spatial scaling symmetries
of atmospheric fields respected by the fluid equations, mod-
els, and (empirically) the atmospheric fields themselves (see
the reviews in Lovejoy and Schertzer, 2013; Lovejoy, 2019a).
Since this includes the velocity field – whose spatial scaling
implies scaling in time – it implies that power laws should be
more realistic than exponentials. At first, this led to power-
law climate response functions (CRFs) (Rypdal, 2012; van
Hateren, 2013; Rypdal and Rypdal, 2014; Rypdal et al.,
2015; Hebert, 2017; Hébert et al., 2021). However, with-
out truncations, pure power-law CRFs lead to divergences:
the “runaway Green’s function effect” (Hébert and Lovejoy,
2015), whereby a model is unstable to infinitesimal step func-
tion increases in forcing and the equilibrium climate sensitiv-
ity is infinite. These can be tamed by a high-frequency trun-
cation (Hebert, 2017; Hébert et al., 2021) or avoided by con-
straining forcings to return to zero (Rypdal, 2016; Myrvoll-
Nilsen et al., 2020).
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However, Lovejoy (2019a) and Lovejoy et al. (2021) ar-
gued that it is not the CRF itself but rather the Earth’s
heat storage mechanisms that respect the scaling symme-
try. This hypothesis implies that the corresponding storage
(the derivative term) in the energy balance equation (EBE) is
of fractional rather than integer order: the fractional energy
balance equation (FEBE). Denoting the order of the deriva-
tive term in the equation by h, it was empirically shown
that if the derivative was of order h≈ 0.4–0.5 (rather than
the classical EBE value h= 1), it could account for both the
low-frequency multidecadal memory (Hebert, 2017; Hébert
et al., 2021) needed for climate projections and the high-
frequency macroweather (i.e., the regime at timescales longer
than the lifetime of planetary structures, here monthly to
decadal) memory needed for monthly, seasonal, and annual
macroweather forecasts (Lovejoy, 2015; Lovejoy et al., 2015;
Del Rio Amador and Lovejoy, 2019, 2021a, b). Indeed, the
FEBE CRF can be used directly to make climate projections
that are compatible with the Coupled Model Intercompari-
son Project 5 (CMIP5) multi-model ensemble mean projec-
tions but with substantially smaller uncertainties (Procyk et
al., 2020). Finally, it is possible to generalize the classical
(3D) continuum equation to the fractional heat equation from
which the (inhomogeneous, 2D) FEBE governs the surface
temperature (work in progress).

In spite of empirical and theoretical support, the FEBE
is essentially a phenomenological global model; in this pa-
per I show how – at least for the h= 1/2 special case
– it can be placed on a firmer theoretical basis while si-
multaneously extending it to two spatial dimensions. The
model is for macroweather temperature anomalies, i.e., at
timescales longer than the lifetimes of planetary structures,
typically 10 d. Following Budyko and Sellers, the system av-
eraged over weather scales is considered to be a continuum,
justifying the application of the continuum mechanics heat
equation. The starting point is thus the same as the classi-
cal EBMs: radiative, advective, and conductive heat trans-
port using the standard continuum mechanics energy equa-
tion. Also, following the classical approaches, the longwave
black-body radiation is treated in its linearized form.

This work is divided into two parts. The first part is clas-
sical; it focuses on the homogeneous heat equation, point-
ing out the consequence that with semi-infinite geometry
(depth) and with (realistic) conductive–radiative boundary
conditions, the surface temperature satisfies the homoge-
neous HEBE. I relate this to the usual box models, Budyko–
Sellers models, and classical diurnal heating models includ-
ing the notions of thermal admittance and impedance as well
as complex climate sensitivities that are useful in understand-
ing the annual cycle. I underscore the generality of the basic
(long-memory) storage mechanism. The second part extends
this work to the horizontal, first to the homogeneous case (but
with inhomogeneous forcing, including a direct comparison
with the classical latitudinally varying 1D Budyko–Sellers
model on the sphere) and then – using Babenko’s method – to

the general inhomogeneous case. Part 2 also contains several
appendices that discuss empirical parameter estimates, spa-
tial statistics useful for empirical orthogonal functions, and
understanding the horizontal scaling properties as well as the
changes needed to account for spherical geometry.

2 The transport equations

2.1 Conductive and advective heat fluxes

In most of what follows, the Earth’s spherical geometry plays
no role, and I use Cartesian coordinates with the z axis point-
ing upwards and horizontal coordinates x = (x, y) (however,
in Sect. 2.3 in Part 2 and Appendix C of Part 2, I treat the
latitudinally varying case on a sphere). The horizontal is es-
sentially the same as in the Budyko–Sellers model: horizon-
tal diffusive and advective heat fluxes are atmospheric col-
umn averages lying on the surface (z= 0). What is new is
the treatment of the vertical with radiative and conductive
fluxes crossing the surface either into the subsurface (down-
ward, the negative z direction where it can propagate to−∞)
or to outer space (upward, z> 0) so that heat is effectively
stored in the half-volume (x,y,z<0). Although in principle
this means that the entire semi-infinite region z ≤ 0 is mod-
eled, ultimately only the vertical surface temperature deriva-
tive is needed and this is well defined as long as the sur-
face layer is of the order of a few diffusion depths (tens or
hundreds of meters). Later, I show that the main equations
only explicitly depend on the local relaxation times and cli-
mate sensitivities; the vertical and horizontal transport details
are only implicit. Finally, the fields are assumed to be in the
macroweather regime; i.e., they have been averaged over the
weather–macroweather transition scale (about 10 d) or longer
and possibly for tens or hundreds of kilometers in space (the
space–time limits are not yet clear). Since 10 d is the typical
lifetime of planetary atmospheric structures, much of the ac-
tual turbulent atmospheric transport processes are averaged
out, giving some justification to the parametrization. Future
work is needed to clarify several foundational issues.

Let us start with energy transport by diffusion: Fick’s law
Qd =−ρcκ∇T , where Qd is the diffusive heat flux vec-
tor, κ is the thermal diffusivity, ρ the density, c the specific
heat, and T (x,z, t) the temperature. Following standard en-
ergy balance models, use eddy diffusivities that are different
in the horizontal (h) and vertical (v) as κh(x) and κv(x):

Qd =−ρcκh∇hT − ρcκv
∂T

∂z
ẑ; ∇h =

∂

∂x
x̂+

∂

∂y
ŷ. (1)

The circumflex indicates unit vectors. To include advection,
consider the heat equation for a fluid in a horizontal velocity
field vh:

cρ
DT
Dt
=−∇ ·Qd;

DT
Dt
=
∂T

∂t
+ vh · ∇T , (2)
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where D /Dt is the advective derivative. The heat equation is
therefore

cρ
∂T

∂t
=−cρvh · ∇hT +∇h · (ρcκh∇hT )+

∂

∂z

(
ρcκv

∂T

∂z

)
. (3)

If the volumetric specific heat (cρ) is constant, using the con-
tinuity equation ∇ · (cρvh)= 0, one may write

cρ
∂T

∂t
=−∇ · (Qa+Qd);

Qa = cρvh(T − T0); Qd =−ρcκh∇hT − ρcκv
∂T

∂z
ẑ. (4)

Qa is the advective heat flux and T0 is a constant reference
temperature (it disappears when the divergence is taken).
This is the classical fluid heat equation; it can readily be ver-
ified that it conserves energy (integrate both sides over a vol-
ume and then use the divergence theorem). κh (x), κv(x), and
vh(x) are taken to be independent of t and z; they are part
of the climate state and are empirically determined so as to
reproduce the time-independent climate temperature distri-
bution. In future work, they could be given their own time-
varying anomalies.

2.2 Radiative heat fluxes

At the surface, there is an incoming energy flux R↓,

R↓(x, t)=Q0(x)+F (x, t), (5)

where F is the anomalous forcing andQ0(x) is the local solar
radiation:

Q0 (x)=QS (x)a (x) . (6)

Q is the mean top-of-the-atmosphere flux (≈ 341 W m2),
S(x) is the dimensionless local solar constant with local co-
albedo a(x) (in the notation of North and Kim, 2017), and
the time-dependent part of the radiative balance is speci-
fied by the additional incoming energy flux, the “forcing”
F (x, t). Although in this paper I mostly ignore temporal
albedo variations (see, however, Sect. 3.3), they are impor-
tant for studying temperature–albedo feedbacks and climate
transitions. If needed, even if they include a (potentially non-
linear) temperature dependence, they are easy to incorpo-
rate. For example, they could be included in F by using
a (x, t)= a0 (x)+a1 (x, t,T (x, t)) in place of a(x) in Eq. (6)
and F (x, t)= F0 (x, t)+QS (x)a1 (x, t,T (x, t)) in place of
F in Eq. (5).

As usual, F (x, t) includes solar, volcanic, and anthro-
pogenic forcings. However, since macroweather includes
random internal variability, F (x, t) also includes a stochas-
tic internal variability component. Finally, for macroweather
scales shorter than a year, F could also include the annual
cycle and therefore possible cyclical albedo variations due
to seasonally varying cloudiness (Sect. 3.3). Alternatively, T

and F can be deseasonalized in the usual way to yield stan-
dard monthly climate “normals” so that the mean anomalies
are zero over the climate normal reference period.
R↓ (x, t) is partially balanced by the outgoingR↑ (x, t) that

depends on the surface temperature and the effective emissiv-
ity ε(x):

R↑ (x, t)= σε (x)T (x,0, t)4, (7)

where σ is the Stefan–Boltzmann constant. The R↓ and R↑
imbalance drives the system, and it implies that heat dif-
fuses across the surface, which is the top boundary condition
needed to solve Eq. 3 for T (x, z< 0, t):(
σε(x)T (x,z, t)4

+ ρcκv(x)
∂T (x,z, t)

∂z

)∣∣∣∣
z=0

=Q0(x)+F (x, t). (8)

The derivative term ρcκv∂T /∂z|z=0 =Qs is the conduc-
tive (sensible) heat flux across the surface into the Earth;
see Fig. 1. The radiative fluxes thus impose a “mixed”
conductive–radiative boundary condition involving both T
and ∂T /∂z (they are a special case of “Robin” bound-
ary conditions; Hahn and Ozisk, 2012). If we add the ini-
tial condition T (x,z, t = 0)= 0 (or later, T (x,z, t =−∞)=
0 and the Dirichlet boundary condition at great depth
T (x,z=−∞, t)= 0 and assume that the system is peri-
odic or infinite in the horizontal, then, in principle, these are
enough to determine the temperature for T (x, z<0, t >0) (or
eventually, T (x,z, t =−∞)= 0). Instead of avoiding this
conductive–radiative BC below I show how it directly yields
an equation for the surface temperature.

2.3 The climatological and anomaly fields

Now decompose the heat flux and temperature into time-
independent (climatological) and time-varying (anomaly)
components:Qc, Tc,Q, and T . As usual, linearize the outgo-
ing black-body radiation, although do so around the spatially
varying surface temperature Tc(x,z= 0) (i.e., not the global
average temperature), which yields spatially varying coeffi-
cients:

R↑ (Tc (x,0)+ T (x,0, t))≈ R↑ (Tc (x,0))+
T (x,0, t)
s (x)

, (9)

where Tc+ T is the actual temperature. With climate sensi-
tivity, it yields

s (x)=
1

4σε (x)Tc(x,0)3 . (10)

Since typical macroweather temperature anomalies are only
a few degrees, the black-body emission is quite linear with
the temperature anomaly. However, due to feedbacks, the
proportionality coefficient – the climate sensitivity – as es-
timated in Eq. (10) is not accurate; below, simply consider
s(x) to be an empirically determined function of position.
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Figure 1. A schematic diagram showing the correct 3D energy bal-
ance equations with conductive–radiative surface boundary condi-
tions. Qs is the heat flux across the surface into the subsurface, and
S is the energy stored in the subsurface per unit surface area. The
picture illustrates the thin surface layer (whose thickness is of the
order of the diffusion depth lv with relaxation time τ ; Eq. 20) in
which the radiative exchanges between the Earth and outer space
occur.

The incoming radiation at the location x drives the sys-
tem. The radiative imbalance 1R going into the subsurface
is therefore equal to the conductive flux Qs into the surface;
it specifies the conductive–radiative surface boundary condi-
tion for Tc and the anomalies T :

1R =Qs; 1R = R↓−R↑; Qs =−Qd,z, (11)

where Qd,z is the (upward) vertical component of the
heat flux at the surface given by Fick’s law: Qd,z =

−ρcκv
∂T
∂z

∣∣∣
z=0

. The conductive–radiative surface boundary

conditions for the time-independent climate and anomaly
temperatures is therefore

(
R↑(Tc(x,z))+ ρcκv

∂Tc(x,z)
∂z

)∣∣∣∣
z=0
=Q0(x)(

T (x,z, t)
s

+ ρcκv
∂T (x,z, t)

∂z

)∣∣∣∣
z=0
= F (x, t), (12)

where s, ρ, c, and κ are all presumed to be functions of x.
Note that the conductive heat flux is a sensible heat flux; the
boundary condition involves its vertical component that rep-
resents heat stored in the subsurface. While Eqs. (11) and
(12) involve the vertical temperature derivative at the surface
(i.e., over an infinitesimal layer), lv = sρcκv defines the dif-
fusion depth (typically ≈ 10–100 m in thickness; see Part 2)
so that physically the model need only be realistic over this
fairly shallow depth where most of the (anomalous) heat is
stored.

Now, in the temperature equation (Eq. 3), replace T by
Tc+T . The equation for the time-independent climate part is

cρ
∂Tc

∂t
= 0=−ρcvh · ∇hTc+∇h · (ρcκh∇hTc)

+
∂

∂z

(
ρcκv

∂Tc

∂z

)
. (13)

And the equation for the time-varying anomalies is

cρ
∂T

∂t
=−ρcvh · ∇hT +∇h · (ρcκh∇hT )+

∂

∂z

(
ρcκv

∂T

∂z

)
. (14)

These equations must now be solved using boundary con-
ditions in Eqs. (11) and (12) for Tc, T , and Tc = T = 0 at
z=−∞ (all t), as well as T (x,z, t = 0) = 0 (or see below,
T (x,z, t =−∞)= 0).

The separation into one equation for the time-invariant cli-
mate state and another for the time-varying anomalies is done
for convenience. As long as the outgoing longwave radiation
is approximately linear over the whole range of temperatures
(as is commonly assumed in EBMs), this division involves no
anomaly smallness assumptions or assumptions concerning
their time averages; the choice of the reference climate de-
pends on the application. Below, I choose anomalies defined
in the standard way (although not necessarily with the an-
nual cycle removed; Sect. 3.3); this is adequate for monthly
and seasonal forecasts as well as 21st-century climate projec-
tions. However, a different choice might be more appropriate
for modeling transitions between different climates including
possible chaotic behaviors.

2.4 The climatological temperature distribution and
Budyko–Sellers models

In order to simplify the problem, starting with Budyko (1969)
and Sellers (1969), the usual approach to obtaining Tc is
somewhat different. First, the climatological temperature
field is only defined at z= 0, i.e., Tc(x)= Tc(x, 0). Without
a vertical coordinate, the climatological radiative imbalance
Q0 (x)−R↑(Tc(x)) no longer forces the system via the verti-
cal surface derivative (Eq. 11); instead, the imbalance is con-
ventionally redirected in the meridional direction away from
the Equator (Fig. 2).

To see how this works, return to Eq. (4) for the climato-
logical component and put ∂

∂z
= 0:

Qc(x)=Qc,a(x)+Qc,d(x)+ sign(y)(Q0(x)−R↑(Tc(x)))ŷ. (15)

In this formulation, one usually uses the latitude angle in-
stead of the meridional coordinate y (see Part 2, Sect. 2.3).
The direction of the redirected vertical flux is always away
from the Equator (y = 0, and hence sign(y)); in any event,
zonal fluxes will cancel when averaged over latitudinal
bands.
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Figure 2. A schematic diagram showing the Budyko–Sellers 1D
energy balance equation obtained by latitudinal averaging and by
redirecting the vertical imbalance away from the Equator.

The usual Budyko–Sellers type of models then averageQc
over lines of constant latitude, yielding a 1D model:

Qc(y)=
(
ρc

(
vyT c− κh

∂T c

∂y

)
+ sign(y)

(
Q0(y)−R↑(T c)

))
ŷ, (16)

where the overbar indicates averaging over all longitudes, x.
In the more popular Seller’s version, the basic horizontal

transport is due to the eddy thermal diffusivity, the κh term.
There may also be a small advection velocity v; it is not con-
sidered to be a true physical velocity but only an ad hoc pa-
rameter needed to prevent κh from being negative (Sellers,
1969). The standard presentation (North et al., 1981; North
and Kim, 2017) avoids the problem by using the diffusivity as
in Sect. 3.1. The horizontal eddy diffusivity κh is often taken
as the sum of contributions from water, water vapor, and air.
In the pure Budyko version, there is no eddy diffusivity, and
the heat flux is assumed to be proportional to the tempera-
ture difference with respect to a reference (e.g., mean) value(
Q)y ∝ (T − T0)

)
. Comparing this with Eq. (4) for Qa, we

see that this implies that Budyko horizontal heat fluxes are
purely advective.

The final step to obtaining the energy equation is to take
the divergence:

∇ ·Qc =
∂(Qc)y
∂y

=−ρc
∂T c

∂t
. (17)

Budyko and Sellers only considered the time-independent
case and obtained

∂(Qc(y))y
∂y

= 0

Qc = const. (18)

By appropriately choosing a reference temperature (usually
the global average), the constant can be adjusted for conve-
nience. Somewhat later, Dwyers and Petersen (1975) con-
sidered the time-independent case (Eq. 17), which is second
order in y. Subsequently, the model has been widely used for
studying different past and future climates as well as the cor-
responding transitions. Note that the ρc ∂Tc

∂t
term corresponds

to energy storage; in the time-independent case there is no
storage.

3 The classical origin of the fractional operators:
conductive–radiative boundary conditions in a
semi-infinite domain

3.1 The zero-dimensional homogeneous heat equation

3.1.1 The key parameters

No matter how the climate temperature equation is solved,
the equation for the time-dependent anomaly temperature re-
mains as in Eq. (14). I now rewrite it in a way that brings
out the critical mathematical properties. Since ρc and κv are
taken to be only functions of x, Eq. (14) can be rewritten as(
∂

∂t
− κv

∂2

∂z2

)
T =−v · ∇hT + κh∇

2
hT ;

v = vh− vd
vd =

1
ρc
∇h(κhρc),

(19)

where I have defined an effective diffusion velocity vd and
effective advection velocity v. Eq. (19) must be solved with
the boundary conditions in Eq. (12).

The roles of the various terms are clearer if the equation
is nondimensionalized. For this, note that if we include the
boundary conditions, the anomaly temperature is entirely de-
termined by the dimensional quantities κ , s, ρ, and c. From
these, there is a unique dimensional combination τ (x) with
dimensions of time; we will see that this controls the relax-
ation of the system back to energy balance, and it is a “relax-
ation time” (for the zero-dimensional model, energy balance
is the same as thermodynamic equilibrium). Using κv yields

τ = κv(ρcs)2
; lv = (τκv)1/2

= κvρcs, (20)

where lv(x) is the vertical relaxation length of the surface
energy balance processes. In the next section, I give some
rough parameter estimates. We may also define the horizontal
diffusion length lh, speed V , nondimensional (square root)
diffusivity ratio β, and nondimensional advection vector α:

α =
v

V
;V =

lh

τ
; lh = (τκh)1/2

= βκhρcs; β =

(
κv

κh

)1/2

. (21)
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The continuity equation for energy becomes ∇ ·
(
β
s
α
)
= 0.

For global (zero-dimensional) models, τ has been estimated
as 2.4–7.0 years (90 % confidence; Procyk et al., 2020),
which is comparable to the classical exponential relaxation
timescales mentioned above (Hebert, 2017), and in Sect. 3.3
it is estimated as τ ≈ 2.75 years.

In order to understand the classical origin of fractional
derivatives, it is helpful to consider the homogeneous Sellers-
type (diffusive transport) heat equation, where τ , lv, and lh
are constants and can thus be used to nondimensionalize the
operators. The nondimensional t is therefore in terms of re-
laxation times, the nondimensional x in terms of diffusion
lengths lh, and the nondimensional z in terms of diffusion
depths lv. Taking s = 1 effectively uses a forcing F with
dimensions of temperature. The result is an equation with
nondimensional operators acting on temperatures. In Part 1,
I consider only the zero-dimensional equation, where “zero”
refers to the number of horizontal dimensions (i.e., only ver-
tical z and time t).

Using the dimensional parameters in Eqs. (20) and (21),
we can write the equations as

Qh =−
lh

s
∇hT +

α

s
(T − T0) ; Qz =−

lv

s

∂T

∂z
, (22)

τ
∂T

∂t
=−ζT − lvs

∂Qz

∂z
;
ζ = lhs∇h ·

(
α−lh∇h

s

)
ζT = lhs∇h ·Qh,

(23)

where ζ is the dimensionless horizontal transport operator.
The reference temperature T0 was ignored, justified by either
taking it to be zero or assuming∇h ·

(
s−1α

)
= 0, which is true

if β is constant.
If the advection is chosen appropriately (as in Eq. 24 be-

low), then we may write the horizontal transport operator in
the form

ζ =−s∇h ·

(
lh

s

)
∇h; α = s∇h

(
lh

s
.

)
(24)

This is convenient for comparing the HEBE with the 1D B-S
equations on a sphere in Part 2 (Sect. 2.3), and it avoids the
unphysical negative diffusivities reported by Sellers. Follow-
ing North and Kim (2017), in spherical geometry, introduce
DF , which is the diffusion constant per radian:

ζ =−sR∇h ·DF∇h; DF =
lh (x)
Rs (x)

= κh
βρc

R
, (25)

where R is the Earth’s radius.

3.1.2 Parameter estimates

Before proceeding, it is useful to get a feel for typical val-
ues of the parameters in the equations. In Sect. 2.3 and Ap-
pendix A of Part 2, I combine these parameter estimates with
analyses of monthly space–time temperature anomalies in or-
der to analyze which terms in the equations are dominant

at different timescales; the following are order-of-magnitude
estimates. The basic parameters are the horizontal diffusivity
κh, the volumetric specific heat ρc, the sensitivity s, vertical
diffusivity κv, κh, and relaxation time τ . They can be esti-
mated as follows.

a. Volumetric specific heat ρc. Ocean and land values are
similar; the values for water and soil are ρc ≈ 4× 106

and ≈ 1× 106 J / (m3 K), respectively. The soil value
depends on moisture and soil type; this is an order-of-
magnitude estimate.

b. Climate sensitivity s. Using the CO2 doubling
value 3± 1.5 K, a 90 % confidence interval, and
3.71 W m2 for CO2 doubling, the global mean value
is s ≈ 0.8± 0.4 K W m2, with regional values a fac-
tor of ≈ 2 higher or lower (IPCC AR5), yielding
ρcs ≈ 3× 106 s/m.

c. Relaxation time τ . Based on responses to anthropogenic
forcings since 1880, Hebert (2017), Hébert et al. (2021),
and Procyk et al. (2020) give the global estimate τ
≈ 108 s (≈ 4 years). This is comparable to the relaxation
times for global box models.

d. Horizontal diffusivity κh. As detailed in Part 2
(Sect. 2.3), North et al. (1981) and North and
Kim (2017) use a diffusion constant per radian DF
(Eq. 25) combined with global-scale climatological
forcing and temperature data to estimate a global
thermal conductivity of K = 4.1× 106 Wm−1/K from
which we estimate the horizontal (eddy) diffusivity
as κh =K /(ρc) ≈ 1 m2/s. Sellers (1969) gives values
about 100 times larger for the ocean.

e. Vertical diffusivity κv. The vertical diffusivity is not
used in the usual energy balance models; however, in
climate models, ocean values of κv ≈ 10−4 m2/s are
typical (Houghton et al., 2001). For soil, rough val-
ues are κv ≈ 10−6 m2/s (wet) and κv ≈ 10−7 m2/s (dry);
see Márquez et al. (2016). Alternatively, we can use
κv = τ/(ρcs)2 and the global estimates of τ ≈ 108 s to
obtain κv ≈ 10−5 m2/s, which is close to the model val-
ues.

f. Diffusion depth lv. Using lv = κvρcs, we find for the
ocean and soils lv ≈ 300 m and ≈ 3–10 m, respectively.
Using the global estimates, κv ≈ 10−5–10−4 m2/s yields
lv ≈ 30–100 m.

g. Diffusion length lh. This is a key parameter: lh =
(τκh)1/2

= βκhρcs (Eq. 21). Using lh = (κhκv)1/2ρcs,
lh ≈ 30 km (ocean) and 3 km (land). Using lh =

(τκh)1/2and κh ≈1 m2/s yields a global estimate of
lh ≈ 10 km.

h. Diffusive-based velocity parameter V . V ≈

lh/τ ≈ 3× 10−3–3× 10−4 m/s.
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i. Nondimensional advection velocity α. The best trans-
port model – diffusive, advective, or both – is not clear;
therefore, let us estimate the magnitude of the advec-
tive velocity v assuming that it dominates the trans-
port. The appropriate value is not obvious since most
models just use eddy diffusivity – not advection – for
transport. One way, for example (Warren and Schnei-
der, 1979), is to note that typical meridional heat fluxes
are of the order of 100 W m2 over meridional bands
whose temperature gradients 1T are several Kelvin.
If this heat is transported by advection, it implies
v ≈Qa/(ρc1T )≈ 10−5–10−4 m/s (Eq. 4); hence, us-
ing V ≈ 10−4 m/s (above), we find α = v/V ≈ 0.1–1.

3.1.3 The nondimensional equations

With z and t in dimensionless form, the homogeneous zero-
dimensional heat equation is(
∂

∂t
−
∂2

∂z2

)
T (t;z)= 0. (26)

I use the following notation: the first argument is t , then
(when applicable) horizontal space, then a semicolon fol-
lowed by the depth z. The transfer is confined to the semi-
infinite region z ≤ 0 with boundary conditions T (t;−∞)=
0 (bottom). The system is forced by the conductive–radiative
surface boundary condition at z= 0 (the top):

∂T

∂z

∣∣∣∣
z=0
+ T (t;0)= F (t) . (27)

For initial conditions, in this section, the forcing is “turned
on” at t > 0 (i.e., T (t ; z)= 0 for t ≤ 0), allowing use of
Laplace transforms (see Sect. 3.3 for Fourier methods).

Performing a Laplace transform (LT) of the heat equation,
we obtain(
d2

dz2 −p

)
T̂ (p;z)=−T (0;z)= 0, (28)

where the circumflex indicates the Laplace transform in time
(with conjugate variable p):

T̂ (p;z)= A(p)e
√
pz
+B(p)e−

√
pz, (29)

whereA and B are determined by the BCs. Since the temper-
ature at depth (z� 0) remains finite, we must have B = 0,
and hence

T̂ (p;z)= A(p)e
√
pz. (30)

To determine A(p), Laplace-transform the surface boundary
condition:

dT̂
dz

∣∣∣∣
z=0
+ T̂ (p;0)= F̂ (p); F (t)

LT
↔ F̂ (p), (31)

yielding

A (p)=
F̂ (p)

1+
√
p
. (32)

It is more convenient to determine the response Gδ (t;z)
to the impulse forcing F (t)= δ(t), which is the impulse
Green’s function. Using Eqs. (30) and (32) we obtain

Ĝδ (p;z)=
e
√
pz

1+
√
p
; F (t)= δ (t)

LT
↔ F̂ (p)= 1. (33)

The above assumes that the subsurface is infinitely deep.
If instead it has a finite thickness L, and we take the
bottom boundary condition as T (t;−L)= 0 (rather than
T (t;−∞)= 0), then B (p)≈O

(
e−2L

√
p
)

and Ĝδ (p;0)=
1

1+
√
p
−

2e−2L
√
p√p

(1+
√
p)2 +O

(
e−4L

√
p
)

so that the influence of the

bottom condition on the surface decreases exponentially fast
as its depth L increases. Physically, as long as the depth is
of the order of a few diffusion depths (estimated as ≈ 100 m
in the ocean,≈ 10 m for land), the semi-infinite geometry as-
sumption is unimportant. In the following, I therefore ignore
any finite thickness corrections.

Taking the inverse Laplace transform of Eq. (33) we obtain
the integral representation:

Gδ (t;z)=
1
π

∞∫
−∞

ζe−ζ
2t

1+ ζ 2 (−sinzζ + ζ coszζ )dζ

LT
↔ Ĝδ (p;z)=

e
√
pz

1+
√
p
, (34)

with z ≤ 0, where I have used contour integration on the
Bromwich integral.

3.1.4 The surface temperature

For the surface, the integral (Eq. 34) can be expressed with
the help of higher mathematical functions.

G0,1/2 (t;0)=Gδ (t;0)=
1
√
πt
− eterfc

√
t

LT
↔ Ĝ0,1/2 (p;0)= Ĝδ (p;0)=

1
1+
√
p
;

erfc (z)=
2
√
π

∞∫
z

e−u
2
du (35)

Gδ (t;0) is the h= 1/2 impulse response Green’s function,
also denoted asG0,1/2; the 0 is for the 0th integral of the im-
pulse, and 1/2 is for the order of the derivative for its equa-
tion; see below. It is sometimes called a “generalized expo-
nential”, which is itself expressed in terms of Mittag–Leffler
functions.
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Figure 3. The nondimensional temperature as a function of nondi-
mensional time for various nondimensional depths with a step forc-
ing: G2(t ; z) (obtained by integrating Eq. 34 in time). The (top)
surface curve can be interpreted as the fraction of the forcing that
is conductive. At first, all the forcing is conductive with no radi-
ation; eventually, all the fluxes are radiative, the system reaches a
new thermodynamic equilibrium, and there is no conductive heat
flux.

For long times after an impulse, the response Gδ (t;0)≈
t−3/2 (t � 1, Eq. 37 below) so that the system rapidly re-
turns to its original temperature. It is more interesting to con-
sider the response of the system to a step (Heaviside) forcing
F (t)=2(t) (= 1, for t > 0, = 0 for t ≤ 0) after which the
system eventually attains a new energy balance (for the zero-
dimensional model, this corresponds to thermodynamic equi-

librium). Since 2 (t)=
t∫

0
δ (u)du, we have the step response

G2 (t;z)=
t∫

0
Gδ (u;z)du (also denoted G1,1/2 in Eq. 36),

and G2 (t;0)≈ 1− 1
√
πt

(Eq. 37), i.e., a slow power-law ap-
proach to thermodynamic equilibrium. Figs. 3 and 4 show
this at different times and depths. With unit step forcing,
the boundary condition (Eq. 27) indicates that the fraction
of the heat flux that is transformed into longwave radiation
is equal to the temperature with unit forcing. Therefore, the
z= 0 curve in Fig. 3 shows that at first, all the forcing flux is
conducted into the subsurface, but this fraction rapidly van-
ishes as the surface approaches equilibrium. At equilibrium,
the temperature has increased so that the shortwave and long-
wave fluxes are once again in balance and there is no longer
any conductive flux.

For future reference, I give the corresponding step re-
sponse G1,1/2 =G2, which is the integral of G0,1/2 that de-
scribes relaxation to energy balance (for this model, thermo-
dynamic equilibrium) when F is a step function. Similarly,
the ramp (linear forcing) response G2,1/2 is the integral of

Figure 4. Contours of nondimensional temperature as a function of
nondimensional time and depth after a step function forcing (G2(t ;
z)).

the step response, the second integral of the Dirac.

G1,1/2 (t)=G2,1/2 (t)=

t∫
0

G0,1/2 (s)ds

= 1− eterfc
(
t1/2

)
(36)

G2,1/2 (t)=

t∫
0

G1,1/2 (s)ds

= 1− 2

√
t

π
+ t − eterfc

(
t1/2

)
For small and large t , we have the following.

G0,1/2 (t)=Gδ,1/2 (t)≈

1
√
πt
− 1+ 2

√
t
π
− t

+
4
3 t
√

t
π
− t − . . .� 1

1
2t
√
πt
−

3
4

1
t2
√
πt
+ t + . . .� 1

(37)

G1,1/2 (t)=G2,1/2 (t)≈
2
√

t
π
− t + 4

3
t3/2
√
π
− t − . . .� 1

1− 1
√
πt
+

1
2t
√
πt
− t − . . .� 1

G2,1/2 (t)≈
4
3 t
√

t
π
−
t2

2 +
8

15 t
2
√

t
π
−
t3

6 + t + . . .� 1

t + 1− 2
√

t
π
−

1
√
πt
+

1
2t
√
πt
− t − . . .� 1

The asymptotic equation for the step response (G1,1/2) shows
that equilibrium is approached slowly as t−1/2. It is this
power-law step response (empirically with ≈ t−0.5) that was
discovered semi-empirically by Hebert (2017) and Lovejoy
et al. (2017, 2021) and was successfully used for climate
projections through 2100 (Hébert et al., 2021). Similarly,
≈ t−0.4 behavior was used for macroweather (monthly, sea-
sonal) forecasts close to the short-time t−1/2 impulse re-
sponse expansion (Lovejoy et al., 2015; Del Rio Amador and
Lovejoy, 2019).

If we take this as a model of the global temperature, we
can use the ramp Green’s function to estimate the ratio of
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the equilibrium climate response (ECS) to the transient cli-
mate response (TCR); we find TCR /ECS=G2,1/2 (1t)/1t ,
where 1t is the nondimensional time over which (for the
TCR) the linear forcing acts. Using τ = 4 years and the stan-
dard 1t = 70 years for the TCR ramp, we find the plausible
ratio TCR/ECS ≈ 0.78.

3.1.5 Comparison with temperature forcing boundary
conditions

It is interesting to compare this with the classical surface
boundary condition when the system is forced by the surface
temperature; an alternative – periodic surface heat forcing –
is discussed in Sect. 3.3. If the surface (z= 0) boundary con-
dition Tforce (t) is imposed,

Ttemp (t;0)= Tforce (t) , (38)

then there will be vertical surface gradients that imply that
heat is conducted through the surface. To obtain the impulse
response Green’s function, take Tforce (t)= δ (t), and repeat-
ing the Laplace transform approach, we obtain A(p)= 1
(Eq. 31 with no derivative term). This yields the following
Laplace transform pairs for the impulse and step Green’s
function.

Gtemp,δ (t;z)=
ze−z

2t

2
√
πt3

LT
↔ Ĝtemp,δ(p;z)= e

√
pz

Gtemp,2(t;z)= 1+ erf
(

z

2
√
t

)
LT
↔ Ĝtemp,2(p;z)=

e
√
pz

p
(39)

In the context of the Earth’s temperature, using heat conduc-
tion (not temperature) boundary conditions, Brunt (1932) ob-
tained the analogous classical formula noting that “this solu-
tion is given in any textbook”.

These classical Green’s functions provide useful compar-
isons with the conductive–radiative BCs. For example, in-
tegrating Eq. (34) with respect to time and simplifying, we
obtain the following.

1G2 (t;z)=G2,temp (t;z)−G2 (t;z)

=
1
π

∞∫
−∞

e−ζ
2teizζdζ

(1+ iζ )
;
t ≥ 0
z ≤ 0 (40)

Since the step response G2 describes the approach to
thermodynamic equilibrium, 1G2 (t;z) (Fig. 5) succinctly
expresses the differences between the temperature and
conductive–radiative forced boundary conditions. The lead-
ing large t approximation to the integral in Eq. (40) is

1G2 (t;z)≈ e−
z2
4t /
√
πt so that, although they both slowly

approach each other and eventually attain equilibrium, the
differences are important (especially in the diffusion layer,
z≈< 1) and they decay very slowly with time and depth; I
discuss this further in Sect. 3.3.

Figure 5. The difference 1G2 (t;z) between the classical
(temperature-forced) and radiatively forced step response functions
over the diffusion depth (nondimensional z= 0 to −1). The top
shows the surface (z= 0), and the curves from the top to bottom
are at depths z= 0, −0.1, −0.2, −0.3, . . . −1. While the difference
is large over the relaxation time (up to nondimensional t = 1), we
see that they both slowly converge to thermodynamic equilibrium
at large t .

3.1.6 Surface temperatures, fractional derivatives, and
the HEBE

Let us now introduce the hth-order fractional derivative t0D
h
t

to represent the fractional derivative order h of an arbitrary
function f over the domain from t0 to t :

t0D
h
t f =

1
0 (1−h)

t∫
t0

(t − u)−hf ′(u)du;

f ′(u)=
df
du
; 0≤ h≤ 1. (41)

Fractional derivatives of order h are most commonly inter-
preted in the Caputo (as above) or Riemann–Liouville sense
(Podlubny, 1999). For h≤1, the main case of interest here,
the distinction is not important and they most commonly use
t0 = 0. Fractional derivatives and their inverses, fractional in-
tegrals (with h< 0), are thus power-law-weighted convolu-
tions; fractional integrals of noises are often associated with
long-memory stochastic processes. Many studies have found
long memories in macroweather (Blender and Fraedrich,
2003; Bunde et al., 2005; Rybski et al., 2006; Varotsos et al.,
2013), and Gaussian-noise-forced models (fractional Gaus-
sian noise) have been proposed as models of internally forced
(macroweather) temperature variability (Rypdal and Rypdal,
2014; Lovejoy, 2015; Del Rio Amador and Lovejoy, 2019;
Del Rio Amador and Lovejoy, 2021a).

Most applications of fractional derivatives are for forc-
ings that start at t = t0 = 0 (i.e., F = 0 for t ≤ 0) (see
Miller and Ross, 1993, and Podlubny, 1999) and are con-
venient for deterministic forcings; however, they singular-
ize t = 0, whereas we often wish to include periodic or
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statistically stationary internal stochastic forcings so that
F (−∞)= 0 (or in the periodic case, the mean over a cycle
= 0) is more convenient, in which case take t0 =−∞ and
hence Ts (t =−∞)= 0 (or periodic). As discussed in Love-
joy (2019b), this corresponds to the semi-infinite-range Weyl
fractional derivative. Deterministic, stochastic, and periodic
forcings can be combined into a single framework simply by
using the Weyl derivatives with, for example, the determin-
istic part of the forcing starting at t = 0 (with the determinis-
tic F (t)= 0 for t ≤ 0) and the stochastic forcing at t =−∞.
These fractional derivatives have the following transforma-
tion properties:

0D
h
t

LT
↔ ph

−∞D
h
t

FT
↔ (iω)h, (42)

where ω is the Fourier conjugate to t (see, e.g., Miller and
Ross, 1993; Podlubny, 1999). In this Part 1 (except for
Sect. 3.3), I consider deterministic forcings; putting t0 = 0

in Eq. (41) and using 0D
1/2
t

LT
↔
√
p (h= 1/2 in Eq. 42), we

obtain the HEBE for the surface temperature Green’s func-
tion.(

0D
1/2
t + 1

)
Gδ (t;0)= δ (t)

LT
↔
(√
p+ 1

)
Ĝδ(p;0)= 1 (43)

This proves that the surface temperatures implied by the
heat equation with conductive–radiative boundary conditions
can be determined directly from the HEBE using the same
Green’s function. For the dimensional equations, the surface
temperature therefore satisfies the dimensional HEBE:

τ 1/2
0D

1/2
t Ts+ Ts = sF (t) ;

Ts (t)= s

t∫
0

Gδ

(
t − u

τ
;0
)
F (u)

du
τ
, (44)

where the surface temperature is Ts(t)= T (t;0).
This HEBE for the surface temperature could be regarded

as a significant nonclassical example of the Mori–Zwanzig
formalism (Gottwald et al., 2017; Mori, 1965; Zwanzig,
1973, 2001) and empirical model reduction formalisms (Ghil
and Lucarini, 2020), whereby memory effects arise if we
only look at one part of the system, ignoring the others. In the
HEBE, the surface temperature is analogously expressed di-
rectly in terms of the forcing, ignoring the subsurface degrees
of freedom. Although such memories are usually considered
exponential and hence small, the HEBE shows that the clas-
sical continuum heat equation has, on the contrary, strong
power-law memories. This points to serious limitations on
conventional dynamical systems approaches to climate sci-
ence that assume that the dynamical equations are integer-
ordered with exponential memories. The HEBE shows that
the (fundamental) radiatively exchanging components of the
climate system will generally be characterized by long mem-
ories associated with fractional rather than integer-ordered
derivatives. I develop this insight elsewhere.

3.2 The HEBE, zero-dimensional and box models, and
Newton’s law of cooling

Phenomenological models of the temperature based on the
energy balance across a homogeneous surface may represent
either the whole Earth or only a subregion. The former are
global zero-dimensional energy balance models (sometimes
called global energy balance models or GEBMs; see the re-
view in McGuffie and Henderson-Sellers, 2005), whereas the
latter may represent the balance across the surface of a homo-
geneous subsection: a “box”. The boxes have spatially uni-
form temperatures that store energy according to their heat
capacity, density, and size. Often several boxes are used, mu-
tually exchanging energy, and the basic idea can be extended
to column models. Since the average Earth temperature can
be modeled either as a single horizontally homogeneous box
or by two or more vertically superposed boxes, in the follow-
ing, “box model” refers to both global and regional models.

A key aspect of these models is the rate at which energy is
stored and at which it is exchanged between the boxes. Stored
heat energy is transferred across a surface, and it is generally
postulated that its flux obeys Newton’s law of cooling (NLC).
The NLC is usually only a phenomenological model; it states
that a body’s rate of heat loss is directly proportional to the
difference between its temperature and its environment. In
these horizontally homogeneous models, it is only the heat
energy per area (S) that is important so that the NLC can be
written as

Qs =
dS
dt
=

1
Z

(
Teq− T

)
. (45)

S is the heat in the body and Qs is the heat flux across the
surface into the body (see Fig. 6). Teq is the equilibrium tem-
perature, andZ is a transfer coefficient, which is the “thermal
impedance” (units: m2 K/W); its reciprocal Y is the surface
“thermal admittance” (see the next section). Identifying the
equilibrium temperature with Teq(t)= sF (t) and using the
dimensional surface boundary condition (Eq. 12), it is easy to
check that a direct consequence of the HEBE’s conductive–
radiative boundary condition is that it also satisfies the NLC:

Qs,HEBE =
dSHEBE

dt
= ρcκv

∂T

∂z

∣∣∣∣
z=0
=

(
Teq− T

)
s

;

Teq = sF. (46)

Unlike the usual phenomenological box applications that
simply postulate the NLC, the HEBE satisfies it as a conse-
quence of its energy-conserving surface boundary condition.
Comparing Eqs. (41) and (42), we may also conclude that
thermal impedance Z = s.

While the HEBE and box models both obey the NLC, the
relationships between the surface heat flux Qs = dS / dt and
the surface temperature T are quite different. For example,
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Figure 6. A schematic showing Newton’s law of cooling (NLC)
that relates the temperature difference across a surface to the heat
flux crossing the surface, Qs (into the surface). Teq is the fixed out-
side temperature; heat will flow as long as the surface temperature
Ts 6= Teq. Z is the thermal impedance (equal here to the climate
sensitivity s). To apply the NLC, we need to relate the heat flux to
the surface temperature. The lower left shows the consequence of
applying the heat equation with conductive–radiative BCs, and the
lower right shows the phenomenological assumption made by box
models. The arrows represent heat fluxes, hence the factor s in the
denominators. The system is assumed to be horizontally homoge-
neous with a subsurface much thicker than the diffusion depth.

for forcings starting at time t = t0 , using the HEBE we have

Qs,HEBE =
dSHEBE

dt
=
τ 1/2

s
t0D

1/2
t T ;

τ = ρcslv; lv = κvρcs. (47)

Although this relation between surface heat fluxes and tem-
peratures has been known for some time (Babenko, 1986;
Podlubny, 1999; see, e.g., Sierociuk et al., 2013, 2015, for
applications), to my knowledge, it has never been applied to
conduction–radiative models, nor has it been combined with
the NLC to yield the homogeneous HEBE. In comparison,
box models satisfy

Qs,box =
dSbox

dt
=
τbox

s

dT
dt
; τbox = ρcsL; L=

C

ρc
, (48)

where L is the effective thickness of the surface layer, C is
the specific heat per area, and τbox is the classical EBE re-
laxation time. Geoffroy et al. (2013) used a two-box model
to fit outputs of a dozen general circulation models (GCMs)
and found τbox ≈ 4.1± 1.1 years (the mean and spread of 12
models) and≈ 40–800 years for the second box, whereas the
IPCC (2013) recommends a two-box model with relaxation
scales of τbox = 8.4 and 409 years. With the FEBE, Procyk et
al. (2020) find h= 0.38± 0.05 and τ = 4.7± 2.3 years.

The HEBE and box heat transfer models can conveniently
be compared and contrasted by placing them both in a more
general common framework. Define the hth-order heat stor-

age as

Sh (t)=
τh

s0 (1−h)

t∫
t0

T (u) (t − u)−hdu; 0≤ h≤ 1. (49)

If T (t0)= 0 (this is equivalent to fixing the reference of the
anomalies), then integrating by parts yields

Sh (t)=
τh−1

s0 (1−h)

t∫
t0

T ′ (u) (t − u)1−hdu; 0≤ h≤ 1. (50)

Putting h= 1 yields the simple S1 (t)= T (t)/s so that S1 =

Sbox.
Over the interval t0 to t , the fractional derivative of or-

der h is defined as the ordinary derivative of the 1−h-order
(Riemann–Liouville) fractional integral:

t0D
h
t T =

d
dt

(
t0D

h−1
t T

)
=

d
dt

 1
0 (1−h)

t∫
t0

(t − u)−hT (u)du

 ;
0≤ h≤ 1. (51)

Therefore, S1/2 = Sbox and

dSh

dt
= s−1τht0D

h
t T ;

hHEBE = 1/2; τFEBE = lvρcs,

hbox = 1; τbox = Lρcs.
(52)

Combining this with the NLC, in both cases we obtain

τht0D
h
t T + T = sF. (53)

Hence, the box and HEBE models are special cases of
the fractional-order energy balance equation (FEBE; Love-
joy, 2019a, b) derived phenomenologically in Lovejoy et
al. (2021). Whereas the box model changes its heat con-
tent instantaneously with its current temperature (T (t)), at
any moment, the energy stored in the HEBE model depends
on the past temperatures, and since their weights fall off
slowly – there is a long memory – it potentially depends on
the temperature and hence energy stored in the distant past.
Box or column models all have surfaces that exchanges heat
both radiatively and conductively so that – contrary to stan-
dard practice – these surfaces should instead exchange heat
fractionally with h= 1/2 not h= 1. Note that when box in-
terfaces with purely conductive heat exchanges are consid-
ered (without radiative transfer, e.g., between a “deep ocean”
and “mixed layer” in global two-box model), then the ther-
mal contact conductance that characterizes the interface is
needed.

At a theoretical level, the advantage of the HEBE is that
unlike, the box models, it is a direct consequence of the stan-
dard (energy-conserving) continuum heat equation combined
with standard energy-conserving surface boundary condi-
tions. It is therefore natural to ask if the h= 1 heat transfer
(i.e., dS1/dt = (C/s)dT / dt) can be derived from the heat
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transport equation. Returning to the nondimensional bound-

ary condition
(
∂T
∂z

∣∣∣
z=0
+ T (t;0)= F (t)

)
, it is easy to ver-

ify that in order to recover h= 1 heat transfer, one must in-
stead use ∂2T

∂z2

∣∣∣
z=0
+T (t;0)= F (t). I therefore conclude that

box model h= 1 transfer is not simultaneously compatible
with the heat equation and energy balance boundary condi-
tions.

To summarize, we are currently in the unsatisfactory posi-
tion of having zero- and one-dimensional (box and Budyko–
Sellers) energy balance equations, neither of which satisfy
the correct radiative–conductive surface boundary condi-
tions. For the box models, the consequence is that the energy
storage processes have rapid (exponential) rather than slow
(power-law) relaxation. For the Budyko–Sellers models, the
consequence is that, at best, they are 1D, and even with
this restriction, their time-dependent versions have deriva-
tives of the wrong order (Part 2, Sect. 2.3). In comparison,
the zero-dimensional HEBE is a consequence of correcting
the Budyko–Sellers boundary conditions. It satisfies the NLC
and corrects the order h by reducing it from the phenomeno-
logical value of h= 1 to h= 1/2. As a bonus, in Part 2 we see
that the HEBE can easily be extended from zero to two spa-
tial dimensions, enlarging the scope of energy balance mod-
els while simultaneously eliminating these weaknesses.

3.3 Thermal impedance, complex climate sensitivities,
and the annual cycle

3.3.1 Conductive versus conductive–radiative boundary
conditions

Up until now, I have discussed forcing that is turned on at
t = 0; this allowed for convenient solutions using Laplace
transform methods. However, for forcing that is periodic or
that is a stationary noise (i.e., the internal variability), Fourier
techniques are more useful.

The first applications of Fourier techniques to the problem
of radiative and conductive heat transfer into the Earth was
by Brunt (1932) and Jaeger and Johnson (1953), who consid-
ered the (weather regime) diurnal cycle. I already mentioned
that Brunt (1932) also considered step function heat forcing,
which he claimed might be a plausible model of the diurnal
cycle near sunset or sunrise. However, in zero-dimensional
models, the long-time temperatures after step heat flux forc-
ings are divergent (but not in 2D models; see Part 2) so that
later in his paper Brunt considered periodic diurnal heat flux
forcing with no net heat flux across the surface and used
Fourier methods instead. In this classical diurnally forced
problem, the periodic temperature response lags the forcing
by a phase shift of π/4 = 3 h. If we apply the same shift to
the annual cycle – assuming that the Earth is forced by heat
flux into its subsurface – the corresponding lag is 1.5 months
≈ 46 d, which is generally (at least for land) too long (we
shall see that it corresponds to an infinite relaxation time).

Following Brunt (1932) and Jaeger and Johnson (1953),
consider the response to a single Fourier component forcing
(this is equivalent to Fourier analysis of the equation). In this
case, assuming a periodic temperature response and substi-
tuting this into the 1D heat equation (time and depth, i.e., the
dimensional version of Eq. 22), we find that the variation of
amplitude with depth is

T (t;z)= Tse
iωte

√
iω
κv z; z ≤ 0, (54)

where Ts is the amplitude of the surface temperature oscil-
lations; it depends on the nature of the forcing, here on the
boundary conditions (“s” is for surface). Following Brunt,
using the classical heat surface heat forcing Fse

iωt as the
surface boundary condition (with this forcing, Fs =Qs is
the heat crossing the surface and entering the system in the
downward direction; see Figs. 1 and 6), we find

ρcκv
∂Theat

∂z

∣∣∣∣
z=0
= Fse

iωt , (55)

where “heat” is for heat forcing, and we obtain

Ts,heat =
Fs√

iω(ρc)2κv
= Z (ω)Fs; Z (ω)=

s
√
iωτ

, (56)

where Z(ω) is the complex frequency-dependent thermal
impedance, the reciprocal of the thermal admittance. For a
given surface heat flux, Z(ω) quantifies the surface tempera-
ture response (I have written the impedance with the help of
s in order to nondimensionalize the denominator). Thermal
impedance and admittance are standard in areas of heat trans-
fer engineering and were introduced into the problem of diur-
nal Earth heating by Byrne and Davis (1980). From Z(ω), we
can thus easily understand the key (Brunt, 1932; Jaeger and
Johnson, 1953) result that arg(Z(ω))= arg(i−1/2)=−π /4
(“arg” indicates the phase).

So far, this approach has only been applied to weather
scales (the diurnal cycle). Let us now apply the same ap-
proach but with an eye to longer macroweather timescales,
notably the annual cycle. The climate sensitivity is an emer-
gent macroweather quantity determined by numerous feed-
backs that over weather scales are quite nonlinear but over
macroweather scales are considerably averaged (and, at least
for GCMs, are already fairly linear; Hébert and Lovejoy,
2018). In any event, for the annual cycle we use radiative–
conductive boundary conditions rather than the pure conduc-
tive ones used by Brunt.

Using conductive–radiative surface BCs with external
forcing Fse

iωt yields

F (t)= Fse
iωt ,

Fs =Qs+Qs,rad = s
−1
(

1+ (iωτ )1/2
)
Ts,

Qs,rad = s
−1Ts,

Qs = ρcκv
∂T

∂z

∣∣∣∣
z=0
= s−1(iωτ )1/2Ts, (57)
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where Fs is the radiative (downward) forcing radiative flux,
and Qs and Qs,rad are the surface conductive (into the sub-
surface) and longwave radiative emission (away from the sur-
face) fluxes, respectively. Solving, we obtain the same depth
dependence (Eq. 54), but with the amplitude of the surface
oscillations given by

Ts = s (ω)Fs; s (ω)= Z (ω)=
s

1+ (iωτ )1/2 , (58)

where I have introduced the complex climate sensitivity
s(ω), which by definition is equal to the complex thermal
impedance Z(ω). In the context of the Earth’s energy bal-
ance, it is more useful to think in terms of sensitivities than
impedances so that below I use s(ω). With this, we obtain

Qs =
s (ω)
s

(iωτ )1/2Fs; Qs,rad =
s (ω)
s
Fs. (59)

Since arg(i1/2)= π /4 (= 45◦), we see that as mentioned ear-
lier, the conductive and longwave radiative fluxes are out of
phase by 45◦, but the phase of the temperature lags the forc-
ing by arg(s(ω)), which only reaches 45◦ in the large τ limit
(see Fig. 7).

Note that I could have deduced Eq. (59) directly by Fourier
analysis of the HEBE using FT

(
−∞D

1/2
t

)
= (iω)1/2, but the

above allowed comparison with the results of the classical
model. The Fourier method allows us to extend the complex
climate sensitivity to the more general FEBE:

sh (ω)=
s

1+ (iωτ )h
. (60)

The usual EBE is the h= 1 special case.

3.3.2 Empirical estimates of complex climate
sensitivities

Figures 7 and 8 compare the phases and amplitudes of
s(ω) for the HEBE with classical and conductive–convective
boundary conditions (h= 1/2) as well as the h= 1 EBE. The
plots use ω = 2π rad per year. From Fig. 7, we see that, tak-
ing the empirical value τ ≈ 4.7 years (Procyk et al., 2020),
the HEBE lag is a little over a month. From the detailed
maps in Donohoe et al. (2020) (see also Ziegler and Rehfeld,
2020) I estimate that in the extratropical regions over land,
the summer temperature maximum is typically 30–40 d after
the solstice but only 20–30 d after the maximum forcing (in-
solation). For ocean, it is 60–70 d after the solstice but only
30–40 d after the maximum insolation. The HEBE result is
thus close to the observed lag between the summer solstice
and maximum temperatures over most land areas.

In contrast, if the Brunt (1932) classical heat forcing re-
sult is used, we obtain π /4 = 1.5 months = 46 d, which is
already too long for most of the globe, and the h= 1 EBE
result (close to 3 months= 91 d) is much too long. Over the
ocean, the lag is typically longer than over land, probably

Figure 7. The temperature phase lag (in months, the negative of
argument of the complex climate sensitivity) using the complex cli-
mate sensitivity and annual cycle forcing (i.e., with ω = 2π rad per
year) with τ in years. The line with short dashes (top) is the usual
EBE (h= 1), the solid line is the (h= 1/2) HEBE, and the line with
long dashes is the classical heat forcing model, which is the large
τ HEBE limit. All curves ignore any net horizontal heat transport.
The data analyzed here yield τ ≈ 2.75± 0.8 years, but the actual
phase is somewhat shorter due to horizontal heat transport.

Figure 8. Same as Fig. 7 except for the amplitude of the complex
climate sensitivity to annual cycle forcing (i.e., with ω = 2π rad per
year) with τ in years. The short dashed line (bottom) is the usual
EBE (h= 1), the top line with long dashes is the classical heat forc-
ing model, and the solid line is the (h= 1/2) HEBE.

because of the strong albedo periodicity associated with sea-
sonal ocean cloud cover (Stubenrauch et al., 2006; Donohoe
et al., 2020). This delays the summer solstice forcing maxi-
mum over the ocean, potentially explaining the extra lag.

Although a complete analysis with modern data is out of
our present scope, we can get a feel for the realism of this
approach by using the zonally averaged (North and Coak-
ley, 1979) Sellers model discussed in the review (North et
al., 1981, updated in North et al., 1983) wherein most of
the Earth follows the EBE phase lags of ≈ 90 d. The model
uses a second-order Legendre polynomial to take into ac-
count the latitudinal variations and a sinusoidal annual cycle
with empirically fit parameters that effectively zonally av-
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erage over land and ocean. Empirical parameters are given
for the albedo, top-of-the-atmosphere insolation, tempera-
ture, and outgoing IR radiation such that the global temper-
ature maximum lags the solstice by 32.5 d (North and Coak-
ley, 1979; North et al., 1983). An updated 2D version of the
Sellers model has been used to estimate phase lags with re-
spect to the solstice, finding lags of ≈ 90 d over oceans and
≈ 30–40 d over land (Zhuang et al., 2017; Ziegler and Re-
hfeld, 2020).

Before continuing, recall that the zero-dimensional theory
discussed here assumes that radiative flux imbalances are all
stored; it ignores the divergence of the horizontal heat trans-
port, which according to Trenberth et al. (2009) is small even
though the heat fluxes may be significant. Although, at least
for temperature anomalies, I argue that this effect is mostly
important at small scales, the magnitude of horizontal heat
divergence at macroweather scales is not well known and
is presumably quite variable from place to place depending
on (inhomogeneous) local transport parameters (see Part 2).
A simple way to parameterize the transport is to maintain
the assumption that the Earth has homogeneous parameters
and to assume that the transport is due to horizontally inho-
mogeneous forcing. In Part 2, I show that for a horizontal
wavenumber k, the effect of horizontal transport is to modify
the storage term as (iωτ )1/2

→
(
iωτ + (lhk)2)1/2; therefore,

for pure periodic horizontal forcing,

Qs,h =
sh (ω)

(
iωτ + (lhk)2)1/2

s
Fs;

Qs,rad =
sh (ω)
s

Fs;

sh (ω)=
s

1+
(
iωτ + (lhk)2)1/2 , (61)

where h is for “horizontal inhomogeneity” as in Lovejoy et
al., 2021; there is an analogous calculation for the FEBE with
h 6= 1/2. In the North et al. (1983) 1D model, the top-of-the-
atmosphere forcing is exactly a cosine variation, i.e., with a
single wavenumber k = 1 cycle around the Earth. The only
differences are that the curvature of the Earth was neglected
and the Earth’s transport properties were assumed to be con-
stant. I nevertheless use Eq. (61) as an approximation for the
horizontal transport.

From the data in Table 1 of North et al. (1981), we may
deduce the following.

Fs = (212± 28)e−3.27i sinθ; W/m2

Qs,rad = 38e−3.65i sinθ; W/m2

Ts = 15.5e−3.70i sinθ; K
(62)

The forcing Fs is the product of the solar constant with the
co-albedo (the albedo is 1 minus the co-albedo), θ is the lati-
tude, and the phases are taken with respect to the winter sol-
stice. The variation (about ±13 %) in the amplitude of Fs is
due to the latitudinal variation of the co-albedo. In the model,

the longwave radiationQs,rad and the surface temperature re-
sponse Ts have exact sinθ dependencies. The phases (in radi-
ans) are taken with respect to the winter solstice so that the
summer solstice has a phase π = 3.14 rad (in the Northern
Hemisphere, 21 June). Due to the co-albedo variations, the
actual forcing has a phase of 3.27 rad, peaking on 28 June.
Also, the phases of the temperature and longwave emissions
are larger at 3.70 rad and 3.65 rad, corresponding to maxima
on 26 July and 23 July, respectively (all results are appro-
priately symmetric for the Southern Hemisphere and for the
cold lag following the winter solstice). The nearly identical
nature of the phases of temperatures and longwave responses
(a 3 d difference, probably not empirically significant) is al-
ready support for the model that predicts that they should be
in phase. Also note that these lags (of 28, 25 d) are consid-
erably shorter than the 46 d lag (12 August) that would have
been obtained had we applied Brunt’s heat conductive forc-
ing.

Now use these data to estimate the climate sensitivity, re-
laxation time τ , and horizontal conduction term lhk by using
the following.

s =
Ts

Qs,rad
= 0.41+ 0.02i ≈ 0.41K/(W/m2);

sh (ω)=
Ts

Fs
= (0.068± 0.009)+ (0.031± 0.004i)K/(W/m2);

iωτ + (lhk)2
=

(
Fs

Qs,rad
− 1

)2

= (13.20± 4.6)

+ (17.3± 5.1) i
(63)

From this (with ω = 2π per year), we obtain

τ = 2.75± 0.8 years

lhk = 3.63± 0.64. (64)

The relaxation time is within the rough bounds deduced
by considering the atmosphere–ocean coupling timescale
(≈ 2 years; Hébert et al., 2021), low-frequency climate
records (≈ 4.7± 2.3 years; Procyk et al., 2020), and high-
frequency EBE relaxation times ≈ 4.1± 1.1 years (Geof-
froy et al., 2013). The ratio of the storage to transfer is
17.3/13.2≈ 1.3 so that most of the heat is indeed stored
and the above homogeneous theory is plausible. The nondi-
mensional lhk characterizes the typical horizontal divergence
over the period of a year. Rather than interpreting it determin-
istically in terms of a global-scale horizontal variation over
a homogeneous Earth, I consider it a nondimensional em-
pirical parameter that will be clarified in future work. In any
case, the horizontal transport and storage are in quadrature so
that the effect of the transport on the magnitude of sensitiv-
ity is smaller,

∣∣(iωτ )1/2
+ 1

∣∣/ ∣∣∣(iωτ + (lhk)2)1/2
+ 1

∣∣∣≈ 0.88
(i.e., about 12 %), but the change in the phase is more sub-
stantive (≈ 15 d). Note that the EBE h= 1 value (ignoring
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transport, with τ = 2.75 years) gives 87 d, i.e., a maximum
on 21 September, which is much too late (Fig. 7).

The static climate sensitivity s should be purely real. Its
imaginary part is indeed small; it corresponds to 3 d and is
probably within the error of the model and empirical es-
timates, so it will be ignored below. The variable s can
be converted to K / (CO2 doubling) by multiplying it by
the canonical value of 3.71 W/m2/(CO2 doubling) to yield
1.51 K / (CO2 doubling), which is at the lower end of the
IPCC 90 % confidence range (3± 1.5 K / (CO2 doubling)).
Since both the methodology and the empirical parameter es-
timates could be updated and improved, the result is encour-
aging. In the future, instead of assuming latitudinal constancy
with a sinusoidal latitudinal dependence, gridded data could
be used and the horizontal conduction approximation (the lhk
term) could be improved.

4 Conclusions

This first paper of two parts proposes a new 2D energy bal-
ance equation for macroweather scales: 10 d and longer. It
follows the classical energy balance models pioneered by
Budyko (1969) and Sellers (1969) and assumes that the dy-
namics can be adequately modeled by the continuum me-
chanics heat equation – by advection and diffusion. As re-
viewed in McGuffie and Henderson-Sellers (2005) and North
and Kim (2017), the classical models treat the parts of the at-
mosphere and ocean that radiatively interact with outer space
as a zero-thickness, two-dimensional surface. The complex
radiative processes that occur in the vertical direction are
only treated implicitly. The dimensionality is then further re-
duced by zonal averaging.

While this original time-independent model may be rea-
sonable for the long-term (time-invariant) climate states, it
is inadequate for treating time-varying anomalies. The key
improvement in realism was by made explicitly introducing
a vertical coordinate z. Yet, when this was done, it turned
out that a detailed vertical model was still unnecessary: all
that was required was the existence of a surface layer whose
thickness was of the order of the diffusion depth. This is
where most of the energy storage occurs, and it determines
the vertical temperature derivative at the surface and hence
the vertical conductive heat flux. This sensible heat flux is
the crucial link between the local radiative imbalances that
drive the system, the heat that is stored, and the heat that is
transported horizontally. Whereas the Budyko–Sellers mod-
els have zero thicknesses, the model has a finite but possibly
small thickness; it need only be thick enough to account for
energy storage and to determine the surface vertical temper-
ature derivative.

In this first part, I considered only homogeneous zero-
dimensional models. These are completely classical, yet as
far as I know, they have not been solved with conductive–
radiative (linearized) boundary conditions. Using standard

Laplace and Fourier techniques, I solved the full depth–
time heat equation and showed that its Green’s function was
identical to a half-order fractional differential equation that
directly gives the surface temperature. Although half-order
derivatives have occasionally been used in the context of
the heat equation (at least since Oldham and Spanier, 1972,
1974; Babenko, 1986), the resulting half-order energy bal-
ance equation (the HEBE) is apparently new. Mathemati-
cally, the result is a direct consequence of the heat equation,
the semi-infinite medium, and conductive–radiative surface
boundary conditions.

The consequences are surprisingly far-reaching. For exam-
ple, the familiar integer-ordered differential equations have
exponential Green’s functions and short memories. In con-
trast, the more general fractional-ordered equations such as
the HEBE have Green’s functions that are generalized expo-
nentials based on power laws and long memories. A general
consequence is that while the HEBE respects Newton’s law
of cooling – i.e., that heat fluxes across a surface are propor-
tional to temperature differences – the relationship between
this heat flux and the surface temperature is quite different: it
involves a half-order derivative rather than a first-order one.
The energy stored is no longer instantaneously determined by
the surface temperature, but rather by the entire prior forcing
history. Irrespective of the details, we thus expect Earth heat
storage processes to generally have long memories.

I also obtained general results for the Earth’s response
to periodic forcings. Ever since Brunt (1932), Fourier tech-
niques have used the heat equation to model the Earth’s
temperature response when subjected to a diurnal heat flux
forcing. I extended this from the weather regime to the
macroweather regime and from diurnally periodic heat forc-
ing to annually periodic radiative–conductive forcing. An im-
mediate consequence is that the surface thermal impedance
– equal to the climate sensitivity – is a complex number
whose phase determines the lag between the maximum of
the forcing (shortly following the summer solstice) and the
temperature maximum. Using a simple latitudinally averaged
model with empirical parameters, I estimated this complex
climate sensitivity and showed how this could readily ac-
count for the observed 22–25 d lag, estimating the (static)
climate sensitivity at s ≈ 0.41 K / (W/m2) with a relaxation
time τ ≈ 2.75 years.

In Part 2, I extend these zero-dimensional results to the
horizontal. I first continue to use Laplace and Fourier tech-
niques to treat the case of homogenous Earth parameters,
but with inhomogeneous forcing. Then, with the help of
Babenko’s method, this is extended to the full inhomoge-
neous problem with horizontally varying relaxation times,
diffusivities, specific heats, climate sensitivities, and forc-
ings.

Code availability. The figures were produced using a standard nu-
merical integration package.
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