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Abstract. Single model initial-condition large ensembles (SMILEs) are valuable tools that can be used to inves-
tigate the climate system. SMILEs allow scientists to quantify and separate the internal variability of the climate
system and its response to external forcing, with different types of SMILEs appropriate to answer different scien-
tific questions. In this editorial we first provide an introduction to SMILEs and an overview of the studies in the
special issue “Large Ensemble Climate Model Simulations: Exploring Natural Variability, Change Signals and
Impacts”. These studies analyse a range of different types of SMILEs including global climate models (GCMs),
regionally downscaled climate models (RCMs), a hydrological model with input from a RCM SMILE, a SMILE
with prescribed sea surface temperature (SST) built for event attribution, a SMILE that assimilates observed
data, and an initialised regional model. These studies provide novel methods, that can be used with SMILEs.
The methods published in this issue include a snapshot empirical orthogonal function analysis used to investi-
gate El Niño–Southern Oscillation teleconnections; the partitioning of future uncertainty into model differences,
internal variability, and scenario choices; a weighting scheme for multi-model ensembles that can incorporate
SMILEs; and a method to identify the required ensemble size for any given problem. Studies in this special issue
also focus on RCM SMILEs, with projections of the North Atlantic Oscillation and its regional impacts assessed
over Europe, and an RCM SMILE intercomparison. Finally a subset of studies investigate projected impacts of
global warming, with increased water flows projected for future hydrometeorological events in southern Ontario;
precipitation projections over central Europe are investigated and found to be inconsistent across models in the
Alps, with a continuation of past tendencies in Mid-Europe; and equatorial Asia is found to have an increase in
the probability of large fire and drought events under higher levels of warming. These studies demonstrate the
utility of different types of SMILEs. In the second part of this editorial we provide a perspective on how three
types of SMILEs could be combined to exploit the advantages of each. To do so we use a GCM SMILE and
an RCM SMILE with all forcings, as well as a naturally forced GCM SMILE (nat-GCM) over the European
domain. We utilise one of the key advantages of SMILEs, precisely separating the forced response and internal
variability within an individual model to investigate a variety of simple questions. Broadly we show that the
GCM can be used to investigate broad-scale patterns and can be directly compared to the nat-GCM to attribute
forced changes to either anthropogenic emissions or volcanoes. The RCM provides high-resolution spatial in-
formation of both the forced change and the internal variability around this change at different warming levels.
By combining all three ensembles we can gain information that would not be available using a single type of
SMILE alone, providing a perspective on future research that could be undertaken using these tools.
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1 An introduction to SMILEs

A single model initial-condition large ensemble (SMILE; see
Table 1 for a glossary of abbreviations) is a set of model
simulations starting from different initial conditions but pro-
duced with a single climate model and identical external
forcing. Over the last decade SMILEs have been increasingly
utilised in climate science (e.g. Zelle et al., 2005; Branstator
and Selten, 2009; Kay et al., 2015; Frankignoul et al., 2017;
Kirchmeier-Young et al., 2017; Sanderson et al., 2018; Stolpe
et al., 2018; Maher et al., 2019; Deser et al., 2020). The value
of SMILEs comes from the ability to quantify and separate
the internal variability of the climate system and the forced
response to changes in external forcing (e.g. Kay et al., 2015;
Maher et al., 2019). Additional value comes from identify-
ing and robustly sampling extreme events (e.g. heatwaves,
floods, and droughts), which potentially have large impacts
on people despite their low probability of occurrence (e.g.
Fischer et al., 2013; Suarez-Gutierrez et al., 2018; Haugen
et al., 2018). Here, SMILEs allow a more accurate sampling
of the entire probability distribution, including the tails of
the distribution where extreme events occur. This sampling
additionally allows for future projections of events with long
return periods to be made (e.g. van der Wiel et al., 2019). Dif-
ferent applications require different types of SMILEs. For ex-
ample, to investigate questions that involve the entire climate
system, global climate model (GCM) SMILEs must be used.
However, to investigate impacts at local scales, regionally
downscaled climate model (RCM) SMILEs are more appro-
priate. Here, we provide an overview of the exciting new sci-
ence published in the special issue “Large Ensemble Climate
Model Simulations: Exploring Natural Variability, Change
Signals and Impacts”. We also present a perspective on the
value of combining different types of existing SMILEs, by
presenting four simple examples combining a GCM, RCM,
and a natural forcing only GCM SMILE.

A large body of literature already exists using individual
GCM SMILEs. The majority of studies have used the Com-
munity Earth System Model Large Ensemble (CESM-LE;
Kay et al., 2015) as it has been available for the longest
period of time (since 2015). Many studies have utilised the
power of SMILEs to investigate the internal variability of
the climate system (e.g. Fasullo and Nerem, 2016; Frankig-
noul et al., 2017; Smith and Jahn, 2019; Dai and Bloecker,
2019) and extreme events (e.g. Diffenbaugh et al., 2015; Gib-
son et al., 2017; Kirchmeier-Young et al., 2017; Tebaldi and
Wehner, 2018; Wang et al., 2018). Studies have also looked
into all components of the climate system, including the
biosphere, with oceanic biogeochemistry included in these
models (e.g. Rodgers et al., 2015; McKinley et al., 2016;
Lovenduski et al., 2016; Krumhardt et al., 2017; Li and Ily-
ina, 2018; Schlunegger et al., 2019). More recently studies
have utilised a combination of multiple SMILEs (e.g. Maher
et al., 2018; Fasullo et al., 2020; Schlunegger et al., 2020;
Zhou et al., 2020), allowing the assessment of model agree-

ment between the SMILEs for individual scientific questions.
SMILEs from seven GCMs have now become publicly avail-
able (Deser et al., 2020). In the reference paper for this model
archive, Deser et al. (2020) have demonstrated that this col-
lection “offers an unprecedented opportunity for evaluating
and comparing models’ forced responses and their internal
variability”. Despite their recent availability these SMILEs
are already widely used. Some examples include the investi-
gation of the role of internal variability and model differences
in affecting future projections (Maher et al., 2020; Lehner
et al., 2020; Maher et al., 2021), trends in sea surface temper-
ature patterns (Olonscheck et al., 2020) and South American
summer rainfall (Díaz et al., 2021), the decadal modulation
of global warming (Liguori et al., 2020), the time of emer-
gence of ocean biogeochemical trends (Schlunegger et al.,
2020), and Arctic extremes (Landrum and Holland, 2020).
These SMILEs have also been investigated for use in adap-
tion decision making (Mankin et al., 2020), hydroclimate un-
certainty in east–central Europe (Topál et al., 2020), and un-
certainty in projections of global land monsoon precipitation
(Zhou et al., 2020).

GCM SMILEs have been used not just to investigate sci-
entific questions, they have also been utilised as test beds
for new approaches, and tools to inform policy makers. They
have been used to create an observational large ensemble
(McKinnon et al., 2017; McKinnon and Deser, 2018) and
test dynamical adjustment techniques (Deser et al., 2016;
Lehner et al., 2017). They have also been used to develop
new methodologies such as utilising the ensemble dimension
for analysis (Herein et al., 2017; Maher et al., 2018, 2019;
Haszpra et al., 2020a, b) and to develop and test statisti-
cal methods for isolating the forced response (Sippel et al.,
2020; Wills et al., 2020). Such ensembles have additionally
provided important information for policy makers, such as
whether emission reductions are likely to be detectable in the
coming years, or whether they could be masked by internal
variability (Lehner et al., 2016; Tebaldi and Wehner, 2018;
Marotzke, 2019; Spring and Ilyina, 2020).

Targeted experiments that utilise the main advantage of
SMILEs, i.e. to isolate the forced response and internal vari-
ability, have also been run that both build on and comple-
ment the GCM studies. Some examples of such targeted ex-
periments include single-forcing SMILE experiments, which
have been used for detection and attribution (e.g. Kirchmeier-
Young et al., 2017), and RCM SMILEs, which are increas-
ingly being used for impact studies (e.g. Leduc et al., 2016).
Other complementary experiments include a large ensem-
ble which is designed to test the sensitivity of the historical
simulations to known uncertainties in aerosol forcing (Dittus
et al., 2020). Atmosphere- or ocean-only large ensembles are
also used to quantify the internal variability in select parts
of the climate system when the rest of the climate system is
fixed to observed values (Gates, 1992; Barnett et al., 1997;
Penduff et al., 2014). In the following paragraphs we outline
the utility of some of these targeted experiments, focusing on
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Table 1. Glossary of acronyms presented in alphabetical order for three categories: large ensemble types, Earth system acronyms, and specific
climate models and modelling projects.

large ensemble types

GCM global climate model; a model of the Earth system that encompasses the entire globe and includes ocean,
atmosphere, land, and ice components

nat-GCM GCM forced by natural forcing only; i.e. does not have greenhouse gas or anthropogenic aerosol forcing

RCM regionally downscaled climate model; high-resolution climate model of a portion of the globe with its bound-
aries set using GCM output

SMILE single model initial-condition large ensemble; a set of model simulations starting from different initial condi-
tions but produced with a single climate model and identical external forcings

Earth system acronyms

DJF boreal winter mean taken over December, January, February

ENSO El Niño–Southern Oscillation

JJA boreal summer mean taken over June, July, August

max-SAT maximum daily surface air temperature

NAO North Atlantic Oscillation

SAT surface air temperature

SEOF snapshot empirical orthogonal function

SST sea surface temperature

Specific climate models and modelling projects

CanESM2 Canadian Earth System Model (Second Generation) used as part of the Canadian Earth System Model Large
Ensembles and as boundary conditions for CRCM5-LE (Kushner et al., 2018; Kirchmeier-Young et al., 2017)

CESM-LE Community Earth System Model Large Ensemble (Kay et al., 2015)

ClimEx regional large ensemble project; uses CRCM5 with CanESM2 as the boundary conditions for CRCM5-LE
(Leduc et al., 2019)

CMIP Coupled Model Intercomparison Project

CRCM5 Canadian Regional Climate Model, used in the CRCM5-LE (Martynov et al., 2013)

CRCM5-LE Canadian Regional Climate Model Large Ensemble; part of the ClimEx experiment

EURO-CORDEX Coordinated Downscaling Experiment – European Domain

LAERTES-EU Large Ensemble of Regional Climate Model Simulations for Europe (Ehmele et al., 2020)

MIROC5 Model for Interdisciplinary Research on Climate version 5 (Watanabe et al., 2010)

MPI-GE Max Planck Institute Grand Ensemble (Maher et al., 2019)

single-forcing and RCM ensembles as these are able to ex-
plore a wide range of possible past and future states as they
include all components of the climate system.

Single-forcing SMILEs are used to separate the role of dif-
ferent forcings and to attribute change to different drivers.
The first single-forcing SMILE was run as part of the Cana-
dian large ensemble experiments (Kirchmeier-Young et al.,
2017). This ensemble consists of a GCM run for 50 mem-
bers with all forcings, 50 members with only anthropogenic
aerosols, and 50 members with only natural (volcanic and

solar) forcing. These experiments were completed for the
period 1950–2020. The Canadian large ensemble has been
used to show that extreme fire events in Canada are 1.5 to
6 times more likely under anthropogenic greenhouse gas
forcing compared to a climate with natural forcing alone
(Kirchmeier-Young et al., 2017). This ensemble has been
used to show that anthropogenic aerosols offset the effects
of anthropogenic greenhouse gases on ice cover in the mid-
twentieth century (Gagné et al., 2017a) and that large vol-
canic eruptions result in an increase in Arctic sea ice follow-
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ing the eruption (Gagné et al., 2017b). This single-forcing
SMILE has also been used in combination with another
SMILE (CESM-LE) to investigate the detection timescale of
tropospheric warming in single-ensemble members (Santer
et al., 2019). Here, the authors provided an estimate as to
how uncertainty due to internal variability can affect the time
required to detect patterns of change and how dependent this
detection time is on different types of forcing from the single-
forcing simulations.

A different type of single-forcing SMILE has also been run
where an individual forcing is set to a specific value but all
others remain as in the full experiment as opposed to fixing
all but one forcing as in the Canadian large ensemble (Pen-
dergrass et al., 2019). By keeping aerosols fixed at the pre-
industrial level Pendergrass et al. (2019) are able to identify
the relationship between global warming and extreme pre-
cipitation. Previous studies have assumed that single-forcing
experiments can be linearly added to recreate an all-forcing
experiment result. Pendergrass et al. (2019) find that the re-
lationship in their model is quadratic and stress that the re-
sponse of extreme precipitation to aerosols is state dependent
and as such the linearity assumption that is often used in the
context of single-forcing experiments does not hold for this
quantity. These results demonstrate the need for many dif-
ferent types of experiment to answer different questions and
show that when there is large internal variability these exper-
iments must be run as large ensembles.

RCMs allow for higher-resolution studies and smaller-
scale impact-based studies than GCMs. Internal variability
is found to be larger at smaller spatio-temporal scales (Aal-
bers et al., 2018) demonstrating the need for RCM SMILEs
that can resolve these scales and provide a large sample size
(Wood and Ludwig, 2020). RCMs have the advantage the
they can better represent local values. For example Leduc
et al. (2019) found a better representation of extreme tem-
perature and precipitation locally in an RCM SMILE com-
pared to its driving GCM SMILE. In applying machine learn-
ing techniques, RCM SMILEs were of great service to de-
tect frequencies, intensities, and the temporal dynamics of
Vb cyclones (a specific type of cyclone associated with ex-
treme precipitation and flooding over Europe) and the asso-
ciated patterns of extreme precipitation over central Europe
(Mittermeier et al., 2019). Multiple RCM SMILEs are now
becoming available (e.g. Aalbers et al., 2018; Leduc et al.,
2019; Kirchmeier-Young et al., 2019; Lang and Mikolajew-
icz, 2020), which are currently run over European and North
American domains. Having multiple RCM SMILEs is im-
portant as different RCMs have different magnitudes of inter-
nal variability. This was demonstrated by von Trentini et al.
(2019), who found that internal variability of a single RCM
SMILE covers some but not all of the spread in a multi-model
RCM ensemble.

Large ensembles of RCMs are currently used for a vari-
ety of purposes. They can be used for event attribution at
higher-resolution scales than GCMs (e.g. Kirchmeier-Young

et al., 2019). They can also be used to look at local changes
in internal variability (e.g. Leduc et al., 2019) and projected
changes in the signal-to-noise ratio of both the mean and
importantly extremes (Aalbers et al., 2018; Poschlod et al.,
2020b). With the availability of SMILEs, impact studies, e.g.
in hydrology, can assess new ways of analysing the impacts
of climate change on hydrological processes, reaching from
water balance studies and flow regime changes (Poschlod
et al., 2020a) to extreme events, such as floods (Willkofer
and Ludwig, 2020). In order to deal with the challenges of
dynamically altered extreme events under climate change,
often compound events, SMILEs can introduce the concept
of analysing the relevance of climate variability by means
of spatially explicit and process-based models, assessing the
non-linear response to multiple meteorological drivers, such
as in alpine snow cover dynamics (Willibald et al., 2020) and
(managed) land surface responses (Zscheischler et al., 2018).
SMILEs can be used as new instruments to provide the data
density and the parameter space to deal with the high pro-
cess complexity and (often) data scarcity, especially when
operational flood forecasting or flood risk management is tar-
geted (Willkofer and Ludwig, 2020). For all of these cases,
SMILEs can serve as a provider of coherent and standardised
data, providing a very useful extension to the existing top–
down modelling chain concepts, by enabling the application
of artificial intelligence, machine learning, and big data con-
cepts for impact studies.

Given the recent availability of many of the aforemen-
tioned tools, SMILEs are currently only beginning to be
utilised to their full power. There are unexploited opportu-
nities for a wide range of disciplines, such as hydrology, bio-
geosciences, and climate dynamics. The special issue “Large
Ensemble Climate Model Simulations: Exploring Natural
Variability, Change Signals and Impacts” was open to sub-
missions which exploited these new opportunities and ex-
plored how a combined analysis of the different types of ex-
isting large ensembles can advance our knowledge in differ-
ent fields. Submissions were particularly invited to use new
methods to investigate these topics. The new contributions
published in this special issue will be summarised in the fol-
lowing section.

2 Advances in knowledge from this special issue

The nine studies published in “Large Ensemble Climate
Model Simulations: Exploring Natural Variability, Change
Signals and Impacts” have utilised a wide range of types
of SMILEs including seven GCM SMILEs, three RCM
SMILEs, hydrological models driven by RCMs, a SMILE
for event attribution (prescribed sea surface temperature), a
data-assimilated SMILE, and an initialised regional SMILE.
As such the studies published in this special issue cover a
wide range of SMILEs that can be used for a variety of pur-
poses. The studies fall into the following categories: (1) novel
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methods, (2) RCM large ensemble evaluation and use, and
(3) impacts of global warming. They will be presented in the
following sections.

Novel methods

Four novel methodologies have been published in this special
issue. The study of Haszpra et al. (2020a) entitled “Investi-
gating ENSO and its teleconnections under climate change in
an ensemble view – a new perspective”, uses a single GCM
SMILE (CESM-LE) and the snapshot empirical orthogonal
function (SEOF) analysis method to investigate the El Niño–
Southern Oscillation (ENSO) pattern and amplitude changes
in each individual season by applying an SEOF across the en-
semble for each month of the year. Haszpra et al. (2020a) are
then able to investigate teleconnections of ENSO (taken as
the first principal component) with precipitation data by com-
puting lagged regressions between the two variables. The
use of this methodology has allowed Haszpra et al. (2020a)
to identify an increase in the sea surface temperature (SST)
fluctuations in the ENSO region that is most pronounced in
June, July, August, and September but also occurs in Decem-
ber, January, and February. They have also used this method-
ology to identify which ENSO teleconnections are projected
to change and to become more pronounced in this SMILE.
For example they find enhanced positive precipitation cor-
relations with ENSO in central Africa and on the western
coast of South America and a more pronounced anticorrela-
tion over Australia and the southern edge of South America
that occur in June, July, August, and September.

Hawkins and Sutton (2009) originally proposed a method-
ology to partition uncertainty into that from model differ-
ences, internal variability, and scenario choices using a multi-
model ensemble. Lehner et al. (2020) revisit this methodol-
ogy in a study entitled “Partitioning climate projection uncer-
tainty with multiple large ensembles and CMIP5/6”. Here,
using seven GCM SMILEs and the Coupled Model Inter-
comparison Projects 5 and 6 (CMIP5 & 6), they show that the
original approach works well at global and regional scales;
however, for local scales a more accurate partitioning of un-
certainty is needed, which can only be achieved using the
SMILEs. They additionally demonstrate that differences be-
tween CMIP5 and 6 can to some extent be reconciled by nor-
malising projections by global mean temperature or applying
a simple model weighting that targets high climate sensitiv-
ities. This shows that the differences between CMIP5 and 6
results are largely due to the high climate sensitivities found
in some of the CMIP6 models.

With the newly available CMIP6 data, where some mod-
els have one ensemble member and some models have many,
the question of how to combine these data in the most mean-
ingful way has been asked. Merrifield et al. (2020) use three
GCM SMILEs and 88 members of CMIP5 to provide a com-
prehensive evaluation of five different weighting strategies
for a multi-model ensemble that includes some SMILEs in

“An investigation of weighting schemes suitable for incorpo-
rating large ensembles into multi-model ensembles”. They
provide a comprehensive explanation of how one would de-
termine weights for any application and demonstrate that rea-
sonable weights can be generated when taking both model
performance and independence into account. Having such a
methodology that allows the use of all available information
is highly valuable and will be applicable as the new CMIP6
data becomes available. Due to its importance for upcoming
analyses of the CMIP6 simulations this article was published
in ESD’s highlight section.

With the recent availability of many SMILEs, which vary
in size from as few as 15 members to as many as 200
members, it is now important to ask the following question:
“How large does a large ensemble need to be?”. Milinski
et al. (2020) do this, presenting a method to estimate the re-
quired ensemble size for any given problem using a single
GCM SMILE (Max Planck Institute Grand Ensemble; MPI-
GE) and a long pre-industrial control simulation to test the
method. They demonstrate that the required ensemble size
depends on both the question asked and the acceptable error
to the user. In general the signal (response to external forcing)
and the magnitude of the internal variability determine how
large the ensemble needs to be. The smallest ensemble size
is needed for estimating the forced response, with a larger
size needed to quantify internal variability and the highest
ensemble size required to detect changes in internal variabil-
ity. They also demonstrate that more members are needed
for regional than global quantities. This method can be used
by any scientist to identify the ensemble size required before
starting their study.

These novel methodologies demonstrate the utility of
SMILEs as a test bed and show that when using SMILEs
traditional methods can be redefined and new methods de-
veloped, which exploit the power of large ensembles.

RCM large ensemble evaluation and use

RCM SMILEs have been used extensively in this special is-
sue with two studies specifically evaluating how well RCMs
perform. Böhnisch et al. (2020) use the 50-member Canadian
Regional Climate Model Large Ensemble (CRCM5-LE) to
investigate the regional response to the North Atlantic Os-
cillation (NAO). In particular, they investigate how well the
NAO signal propagates from the GCM domain to the RCM
domain in a study entitled “Using a nested single model large
ensemble to assess the internal variability of the North At-
lantic Oscillation and its climatic implications for Central
Europe”. They find that both models reproduce the NAO pat-
tern, with the large-scale NAO propagating properly into the
finer-scale RCM domain; however, the RCM produces more
realistic spatial climate patterns, likely due to the additional
topographic features. These features in the RCM are also
found to provide value in evaluating regional NAO impacts,
with the relationship between the NAO and climate over Eu-
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rope predicted to slightly weaken in the future. This study
highlights how dynamically downscaling a GCM SMILE can
help to understand regional impacts of major modes of inter-
nal variability by combining the advantages of a large sample
size with high resolution to represent regional processes.

A multi-RCM SMILE comparison over Europe was pro-
vided by von Trentini et al. (2020). They compare three RCM
SMILEs with observations in “Comparing interannual vari-
ability in three regional single model initial-condition large
ensembles (SMILEs) over Europe”. This study evaluates sea-
sonal temperature, precipitation, dry periods, and heatwaves.
They find that the three ensembles agree well with observa-
tions for interannual variability and that despite some model
differences, the sign of projected future variability changes is
similar across models. Specifically, they find an increase in
summer temperature and precipitation variability as well as
decreases in winter temperature and precipitation variability
under strong global warming. They also find increased vari-
ability in summer in the number of heatwaves and the maxi-
mum length of a dry period in two of the three models. The
study highlights the differences in projected interannual vari-
ability between ensemble members and shows that SMILEs
are necessary to robustly quantify the significance of such
changes.

These two studies – Böhnisch et al. (2020) and von Tren-
tini et al. (2020) – have both demonstrated the value of using
an RCM SMILE in addition to a GCM SMILE (Böhnisch
et al., 2020) and provided some confidence in projections
across the European domain (von Trentini et al., 2020).

Impacts of global warming

Many studies in this special issue address the changing prob-
abilities of extreme events and their impacts under a chang-
ing climate. SMILEs are the perfect tool to investigate such
events because they sample the probability distribution at
each time step and allow assessment of changes in the proba-
bilities of events such as floods, droughts, and heatwaves. In
this special issue Canadian winter hydrometeorological ex-
treme events are investigated by Champagne et al. (2020),
European flooding events are investigated by Ehmele et al.
(2020), and fire and drought in Asia are investigated by Sh-
iogama et al. (2020).

Champagne et al. (2020) published “Winter hydromete-
orological extreme events modulated by large-scale atmo-
spheric circulation in southern Ontario”. In this study they
use a single RCM SMILE (CRCM5-LE) to create a new
winter compound index to investigate the contribution of the
combination of rain and snowmelt to extreme events. They
then use the output from the RCM SMILE as input to a hy-
drological model to identify the necessary conditions needed
for high flows to occur in three southern Ontario watersheds
and to project their future evolution. They find that the RCM
output is realistic when compared to observational data and
project an increase in the future number of heavy rain and

warm events associated with high flows particularly in the
vicinity of Lake Erie, especially when there are high 500mb
geopotential height anomalies centred on the eastern Great
Lakes and the Atlantic Ocean. Using the RCM SMILE they
are able to investigate how the internal variability of climate
will modulate the future evolution of these hydrometeoro-
logical extremes and show that the increase in events can be
amplified or attenuated depending on the location of pressure
systems modulated by internal variability.

Ehmele et al. (2020) use a single RCM SMILE (Large
Ensemble of Regional Climate Model Simulations for Eu-
rope; LAERTES-EU) that consists of both long-term and ini-
tialised simulations as well as runs that assimilate reanalysis
data to look at “Long-term variance of heavy precipitation
across central Europe using a large ensemble of regional cli-
mate model simulations”. They find that the model represents
observed extreme precipitation well. When considering fu-
ture projections, the upcoming decade shows a continuation
of past tendencies in Mid-Europe, with increasing heavy pre-
cipitation, with no clear signal for the Alps. Additionally they
use the power of the large ensemble to show that there are
phases of increased and decreased heavy precipitation that
are due to internal variability alone. Generally, they empha-
sise the benefit of RCM SMILEs for an improved estimation
of extreme values, building on robust statistics.

A large event attribution ensemble (Model for Interdisci-
plinary Research on Climate 5; MIROC5), where sea surface
temperatures and ice are prescribed, is used to demonstrate
the role of historical anthropogenic warming on droughts
and fires in equatorial Asia (Shiogama et al., 2020). In the
study entitled “Historical and future anthropogenic warm-
ing effects on droughts, fires and fire emissions of CO2 and
PM2.5 in equatorial Asia when 2015-like El Niño events oc-
cur”, Shiogama et al. (2020) show significant increases in
burned area, carbon dioxide, and PM2.5 emissions at 1.5 and
2 ◦C of warming, with the chance of exceeding the large 2015
event reaching 100 % under 3 ◦C of warming. They also ar-
gue for including fires in future climate modelling scenarios
as these can affect global carbon dioxide emissions.

Finally the previously discussed papers of Böhnisch et al.
(2020) and Haszpra et al. (2020a) also investigate impacts
of the modes of variability: NAO and ENSO respectively.
Böhnisch et al. (2020) find an increasing the frequency of
a negative NAO that favours colder and harsher winters in
Europe. Haszpra et al. (2020a) demonstrate that some ENSO
teleconnections can change, with some increasing in strength
while others decrease, which will have different impacts in
different regions. An example of the changes they find is an
increase in precipitation teleconnections between ENSO and
Australia and Africa in their respective winters at the end of
the century.

Overall these studies on changing events and their impacts
are made possible by the use of SMILEs, where extreme
events are well sampled and changes in modes of variability
can be separated from large internal variability. These stud-
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ies are relevant for policy and planning, with Ehmele et al.
(2020) demonstrating high variability in precipitation over
different decades in Europe, Champagne et al. (2020) show-
ing changes in flood risk in Ontario in their study, and Sh-
iogama et al. (2020) finding an increase in the risk of large
fires and their impacts in equatorial Asia under increasing
warming.

3 Perspectives on new tools and their value

There are now many SMILEs available for use in the climate
community. These include GCM SMILEs, atmosphere- and
ocean-only SMILEs, single forced SMILEs, SMILEs forced
with all except one forcing, RCM SMILEs, and SMILE
experiments with different sets of forcing such as vary-
ing aerosols. In this section we present some simple exam-
ples to investigate the value of combining different types of
SMILEs and demonstrate how future research can benefit
from using the SMILEs which are already available. To do
this we use the Canadian Earth System Model Large En-
semble (CanESM2; Kirchmeier-Young et al., 2017; Kush-
ner et al., 2018) because it has 50 members of both the full
forced ensemble (1950–2100; historical and RCP8.5) and 50
members of natural-only forcing (solar and volcanic forc-
ing; 1950–2020). These SMILEs are henceforth referred to
as GCM and nat-GCM. We combine the GCM and nat-GCM
with the Canadian Regional Climate Model Large Ensem-
ble (CRCM5-LE as part of the ClimEx project; Leduc et al.,
2019), which uses the Canadian Regional Climate Model
(12km resolution CRCM5; Martynov et al., 2013; Šeparović
et al., 2013) with the CanESM2 GCM SMILE with all forc-
ings used as boundary conditions. We utilise the European
domain from this SMILE. This SMILE will be referred to as
RCM for the rest of this study.

To investigate the value of combining the GCM and RCM
SMILEs we will evaluate changes in both near-surface air
temperature (SAT) and precipitation at multiple warming lev-
els. The warming levels are 1 K (2002), 1.5 K (2015), 2 K
(2028), 3 K (2048), and 4 K (2067). The years at which each
warming level occurs are found using the ensemble mean
from the GCM as compared to the pre-industrial control. We
use an 11-year window centred on each warming level to
analyse the data. Projected changes are always shown relative
to the 1 K level (similar to the present day; Allen et al., 2018)
and are computed individually for each ensemble member.
This choice allows us to investigate future changes above the
present day. This is particularly relevant in light of the tar-
gets of 1.5 and 2 K set by the Paris Agreement. In addition
to SAT and precipitation we use the variable maximum daily
temperature (tasmax in the ensemble output), henceforth re-
ferred to as max-SAT. For the GCM this variable is output
as the monthly mean of the daily maximum temperature. We
average the daily data from the RCM to be comparable. For
the analyses presented in this editorial summer is computed

as the average of June, July, and August (JJA) and winter as
the average of December, January, and February (DJF).

The ensemble mean SAT and precipitation at 1 K of warm-
ing are shown for the GCM and RCM SMILEs in Fig. 1.
The continental outlines highlight the resolution difference
between the GCM and the RCM. The patterns of both SAT
and precipitation are broadly similar between the GCM and
the RCM, with warmer temperatures to the south and more
precipitation to the north-west of the domain, particularly
over the United Kingdom and western Norway. Figure 1 also
shows that the increased resolution of the RCM allows the
local patterns to be better resolved and highlights the ef-
fects of features such as coastlines and mountains. Subtract-
ing the GCM from the RCM shows that the RCM tends to
be slightly cooler and wetter than the GCM. While there
has been no comprehensive validation of whether the GCM
or RCM is more realistic, when compared to observations
over Europe, Leduc et al. (2019) found a better represen-
tation of extreme precipitation and local extremes in the
RCM than the GCM, particularly over coastal and moun-
tain regions, due to the higher resolution. In general due to
their higher-resolution RCMs provide a more realistic rep-
resentation of smaller scales, such as land–sea contrasts and
orography and, at higher resolutions, lakes and rivers (e.g.
Lucas-Picher et al., 2017; Rummukainen, 2010; Christensen
and Kjellström, 2020; Feser et al., 2011). This makes RCMs
more suited for looking at impacts at local scales and more
reliable than GCMs when looking at small regions and events
on shorter timescales (Rummukainen, 2016).

To demonstrate the utility of combining different types of
SMILE we consider the following simple examples:

1. We ask whether the SAT and precipitation responses
over Europe are linear with global warming in both the
GCM and RCM.

2. We investigate SAT, max-SAT, and precipitation projec-
tions in a subset of European cities in both the GCM and
RCM at 1.5, 2, 3, and 4 K global warming. These cities
are shown in Fig. 1 and are chosen due to their location
near the coastline or in mountainous regions, where the
increased resolution of the RCM may provide additional
information.

3. We investigate whether there are forced changes and, if
so, their drivers in summer SAT variability at 1.5 and
4 K, by combining the GCM, nat-GCM, and RCM

4. Finally we investigate the European seasonal response
to large volcanic eruptions using all three SMILEs.

Regional response to global warming

In this section we ask whether the European SAT and precipi-
tation responses are linear with global warming. By using the
GCM SMILE we can pinpoint specifically when the model
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Figure 1. Ensemble mean surface air temperature (SAT) and pre-
cipitation in the GCM (a, b) and RCM (c, d) SMILEs over Eu-
rope at 1 K warming (2002). The difference between the RCM and
GCM SMILEs is shown in (e) and (f). We use an 11-year window
around the warming year to analyse the data. The cities investigated
in Figs. 3 and 4 are shown on the maps. Continental borders are
plotted for each model’s native grid.

has reached a given level of global warming. By computing
the ensemble mean at each warming level, we can precisely
identify the forced response at each warming level in both the
GCM and RCM. Due to the large ensemble sizes, differences
between the GCM and RCM can be directly attributed to dif-
ferences in the forced response between the two SMILEs.
Using an RCM for climate projections has previously been
shown to both provide additional value, but to also introduce
additional biases (Jacob et al., 2020). The added value has
been shown to come from better representation of physical
mechanisms as well as the better representation of underly-
ing topography (Dudhia, 2014; Mearns et al., 2013; Di Luca
et al., 2013; Evans and McCabe, 2013), suggesting the RCM
projections may be regionally more reliable than the GCM.

We find that the scaled SAT and precipitation patterns at
1.5 K are very similar in the GCM and RCM (Fig. 2a, c, e, g).
These patterns also resemble those found in the Coordinated
Downscaling Experiment in the European Domain (EURO-
CORDEX) experiment (Jacob et al., 2018). By looking at
the scaled 4 K response as compared to the scaled 1.5 K re-
sponse (Fig. 2b, f), we find that the SAT response is slightly
non-linear with south-western Europe warming more at 4 K
and northern and eastern Europe warming less relative to the
scaled 1.5 K response. The RCM and GCM agree well on this

non-linearity. When considering precipitation, the response
is again non-linear (Fig. 2d, h), with the increase in precip-
itation over northern Europe not as large at 4 K as at 1.5 K,
but the decrease over southern Europe larger. While there is
agreement between the GCM and RCM on the broad-scale
pattern, the RCM is needed to resolve the local precipitation
non-linearity and the response over southern Europe. The re-
sult that there is more added value of the RCM for precipi-
tation than SAT is in agreement with previous work as pre-
cipitation is more affected by orography and small-scale pro-
cesses than SAT (Lucas-Picher et al., 2017; Christensen and
Kjellström, 2020; Feser et al., 2011; Rummukainen, 2016).

Projections in individual European cities

Given that the RCM provides the most additional informa-
tion at local scales, particularly near the coastlines and orog-
raphy, we next investigate some major cities across Europe
(shown in Fig. 1), all of which are near the coastline or orog-
raphy. Here, we investigate how the warming in an individual
city compares to the global mean warming by utilising the
power of the SMILEs and computing the forced response in
each city. For example if we take a city such as Rome, we can
ask the question of whether we expect Rome to warm more
or less than the global mean. We can then ask whether this
relative warming is linear with global warming; i.e. if at 2 K
warming Rome warms more than the global mean, does it
warm the same amount more at 4 K? Finally because we are
using SMILEs we can look at the range of warming in Rome
that we could observe due to internal variability. For example
if the mean warming is the same as the global mean warm-
ing, how much more or less warming than the mean could
we observe due to internal variability? Here, we will assess
if the answers to these questions differ between the GCM and
RCM.

We find a range of results across the three cities (Fig. 3).
When we consider the ensemble mean warming, Lisbon
warms less than the global mean, while Rome warms slightly
more and Gdańsk warms similarly. Rome and Gdańsk warm
more in summer and in the summer maximum temperature
than the global mean, especially at larger levels of warming.
This means that someone living in these cities would likely
experience more warming than the global mean level would
suggest. Surprisingly, we find that the RCM shows less non-
linearity in the relative warming than the GCM. This gives
slightly lower projected temperatures and a slightly more
promising outlook when using the RCM as compared to the
GCM.

We next consider the seasonal cycle. Here, an increase
means that summer warms more than winter. The seasonal
cycle increases in Lisbon and Rome. This change and the
internal variability of the change are slightly smaller in the
RCM than the GCM, suggesting that the local range of pos-
sible observed changes could be smaller than expected from
the GCM. Where the internal variability no longer crosses the
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Figure 2. Surface air temperature (SAT) and precipitation change over Europe scaled by the globally averaged SAT change. (a) Scaled SAT
change at 1.5 K in the GCM, (b) scaled SAT change at 4 K with scaled SAT change at 1.5 K subtracted in the GCM, (c) scaled precipitation
change at 1.5 K in the GCM, (d) scaled precipitation change at 4 K with scaled SAT change at 1.5 K precipitation in the GCM, (e) Scaled SAT
change at 1.5 K in the RCM, (f) scaled SAT change at 4 K with scaled SAT change at 1.5 K subtracted in the RCM, (g) scaled precipitation
change at 1.5 K in the RCM, and (h) scaled precipitation change at 4 K with scaled SAT change at 1.5 K precipitation in the RCM. Changes
are computed relative to the pattern at 1 K of global warming. Continental borders are shown for the each model’s native grid. The scaled
changes in panels (a) and (d) are computed as the pointwise SAT at 1.5 K minus the pointwise SAT at 1 K dived by the global mean warming
above 1 K (i.e. 0.5 K) in each individual ensemble member. The patterns in (b) and (f) use the same calculation at 4 K, with the patterns from
(a) and (e) subtracted from them. The ensemble mean is taken prior to the subtraction. The same process is computed in the right-hand panels
for precipitation.

zero line (e.g. 3–4 K warming for Rome and Lisbon), we ex-
pect to see an increase in the seasonal cycle in all members,
although the magnitude of the change depends on how the
system evolves in each individual member. This is an impor-
tant advantage of using SMILEs as we can assess the range of
possible futures that could be observed due to the combina-
tion of increasing greenhouse gases and internal variability.

Finally we investigate how precipitation is projected to
change in a city on the coastline with high mean precipitation
(Bergen, Fig. 4a, b), a city on the coastline with low mean
precipitation (Gibraltar, Fig. 4e, f), and a city surrounded by
high orography (Munich, Fig. 4c, d). We find limited changes
in the forced response for both mean and summer precipita-
tion in all three cities as compared to the precipitation at 1 K
of warming. There is little difference in the mean changes be-
tween the GCM and RCM. However, the RCM can have very
different internal variability than the GCM. We find larger
variability in the RCM over Bergen. This means that while
there is little mean change in Bergen, at any warming level
the city could observe a 2.5 mm/d decrease or 3 mm/d in-
crease in both the mean and summer mean precipitation in
any given year due to internal variability alone. This demon-
strates the additional value of an RCM SMILE in planning
for potential observed changes in local locations.

Insights into forced changes in temperature variability

Using SMILEs we are now able to quantify changes in in-
ternal variability at different warming levels. This was not
previously possible with single runs of climate models. By
pooling the summer data for all ensemble members for the
11-year window around each warming level we can calculate
the internal variability at each grid point in the European do-
main for each individual warming level. To do this we take a
standard deviation across the pooled data. Figure 5 shows the
GCM summer SAT internal variability at 1.5 K and the dif-
ference between the GCM and the RCM and the nat-GCM.
We find that the GCM has slightly less variability over north-
western Europe as compared to the nat-GCM, suggesting that
summer variability at 1.5 K is decreased over this region as
compared to natural unforced variability alone. The RCM
generally has less variability than the GCM, which indicates
that the GCM might overestimate summer SAT variability
over Europe. We then consider the change in variability at
4 K as compared to 1.5 K in both the GCM and RCM. We
find a projected increase in variability over all of the Euro-
pean land mass, except Portugal and Spain, that is larger in
the RCM than the GCM. This tells us that local processes in
the RCM result in a larger increase in summer temperature
variability, although the overall increase in both the RCM
and GCM displays the same pattern.
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Figure 3. Annual-mean surface air temperature (SAT) (a, e, i), summer SAT (b, f, j), and summer max-SAT (c, g, k) and the seasonal cycle
change (d, h, l) shown at each warming level relative to 1 K of global warming. Shown for the GCM (circles) and the RCM (diamonds).
Each ensemble member is shown in the small symbols with the ensemble mean in the large symbol. Shown for (a–d) Lisbon (38.7223◦ N,
9.1393◦W), (e–h) Rome (41.9028◦ N,12.4964◦ E), and (i–l) Gdańsk (54.3520◦ N, 18.6466◦ E). Each ensemble members change is computed
relative to itself at 1 K, with the global warming above 1 K then subtracted for all variables except the seasonal cycle. The seasonal cycle is
computed as the standard deviation over all 12 months after the 11-year period has been averaged.

Attributing climate responses to volcanic eruptions

By combining the GCM, RCM, and nat-GCM SMILEs we
can further investigate the response of both SAT and precipi-
tation to large volcanic eruptions over Europe. To investigate
the response to volcanoes previous studies have shown that
many ensemble members are needed to tease out the forced
response (Maher et al., 2015; Pausata et al., 2015; Bittner
et al., 2016; Milinski et al., 2020), meaning that SMILEs are
an ideal tool to investigate this question.

By combining the GCM and RCM SMILEs after volcanic
eruptions we can investigate the local structure of both the
temperature and precipitation responses over Europe to these
eruptions. Figure 6 demonstrates that the RCM and GCM
give broadly similar response patterns but again that the
RCM provides higher-resolution local information. Compu-
tationally GCMs are much more efficient than RCMs, mak-
ing the GCM the perfect tool to run the natural-only forc-
ing experiment with. By using nat-GCM we can precisely
tease out which part of GCM and by proxy RCM response is
forced by the volcanoes and what the contribution of other

factors such as anthropogenic emissions is. The volcanic
cooling is underestimated in the GCM and RCM SMILEs
when using the standard method of removing the 5-year
mean prior to the eruption, particularly in summer (e.g. Fis-
cher et al., 2007; Maher et al., 2015; Liu et al., 2018; Zuo
et al., 2018), as is demonstrated by the much stronger cool-
ing found in the nat-GCM SMILE. This demonstrates that
using nat-GCM adds to the GCM analysis by better identify-
ing the full cooling response to volcanic eruptions. By using
the nat-GCM we can conclude that cooling occurs in both the
first summer and winter after the eruptions with more cooling
occurring in summer. When considering the precipitation re-
sponse, there is a general increase in the nat-GCM in summer
and a decrease in winter over the domain. The non-volcano
response is fairly similar in the two seasons leading to an am-
plification of the winter pattern and a damping of the summer
pattern in the GCM and RCM that can only be identified by
combining these SMILEs with the nat-GCM.

By using nat-GCM SMILE we can investigate these vol-
canic responses even further. While most previous studies
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Figure 4. Annual-mean precipitation (a, c, e) and summer pre-
cipitation (b, d, f) shown at each warming level relative to 1 K of
global warming. Shown for the GCM (circles) and the RCM (dia-
monds). Each ensemble member is shown in the small symbols with
the ensemble mean in the large symbol. Shown for (a–b) Bergen
(60.3913◦ N, 5.3221◦ E), (c–d) Munich (48.1351◦ N, 11.5820◦ E),
and (e–f) Gibraltar (36.1408◦ N, 5.3536◦W). Each ensemble mem-
bers change is computed relative to itself at 1 K.

could only look at multi-eruption mean response due to small
ensemble sizes (e.g. Maher et al., 2015), we can investigate
individual eruption responses in nat-GCM (Fig. 7). We find
that El Chichón and Pinatubo have qualitatively more simi-
lar responses over Europe, while Agung shows different pat-
terns for both SAT and precipitation. This agrees well with
a new study using a different SMILE (MPI-GE) that shows
that the intertropical convergence zone and ENSO response
is different after Agung due to its aerosol being located in the
Southern Hemisphere as compared to the other two eruptions
(Ward et al., 2020). By using the nat-GCM we can simply
tease out the response over Europe to each individual erup-
tion without needing to remove the anthropogenic signal.
Here, using the three SMILEs together gives us additional
insight into the European response to volcanic eruptions.

4 SMILEs – new frontiers in climate science

The utility of different types of SMILEs has been highlighted
in the studies published in this special issue, “Large En-
semble Climate Model Simulations: Exploring Natural Vari-
ability, Change Signals and Impacts”. Lehner et al. (2020)
demonstrate where and when internal variability is most im-
portant for projections using seven GCM SMILEs. Böhnisch
et al. (2020) show that RCM SMILEs are important due to
the large range of results that can be obtained in single re-
alisations, with von Trentini et al. (2020) finding that it is
important to have multiple RCM SMILEs due to the com-

bined role of both internal variability and model differences
in causing the uncertainty that occurs on the regional scale
as well as the global scale. Examples that use SMILEs to
drive a hydrological model, event attribution large ensem-
bles, and a combination of data-assimilated, initialised, and
long-term large ensemble simulations and their utility are
given by Champagne et al. (2020), Shiogama et al. (2020),
and Ehmele et al. (2020) respectively, with Champagne et al.
(2020) demonstrating how important SMILEs are for inves-
tigating the range of projections we may observe and Ehmele
et al. (2020) highlighting the benefit of SMILEs for improv-
ing the estimation of extreme values.

While Deser et al. (2020) have demonstrated the utility
of having comparable GCM SMILEs from different mod-
els, in this editorial we build on this to show the value of
having multiple types of SMILEs. We use three types of
SMILE (GCM, RCM, and nat-GCM), which all stem from
the same modelling chain. While there is a wealth of liter-
ature on the added value of RCMs to GCMs that demon-
strates that RCMs are most valuable when looking at smaller-
scale projections around land–sea regions and orography as
well as short-timescale events (Rummukainen, 2016), RCM
SMILEs have only recently begun to be utilised in the litera-
ture. Single-forcing SMILEs (such as nat-GCMs) have been
used more extensively to focus on and identify the role of
individual forcings in driving specific events or changes (e.g
Kirchmeier-Young et al., 2017; Gagné et al., 2017a, b; Pen-
dergrass et al., 2019) but could be increasingly used in com-
bination with other types of SMILEs, such as RCMs.

By using SMILEs we are able to precisely quantify the
forced response, and internal variability in an individual
model. By combining this key advantage with the three dif-
ferent types of SMILE we have shown that the European SAT
and precipitation responses are non-linear with global warm-
ing, with the southern European and local-scale non-linearity
in precipitation only identifiable using the RCM SMILE in
combination with the driving GCM SMILE. We have investi-
gated individual cities under different levels of warming and
identified that the internal variability in precipitation can be
quite different in the RCM compared to the GCM, demon-
strating the added value of the RCM SMILE at local scales.
By using SMILEs we have also been able to quantify forced
changes in the summer SAT variability itself. Combining the
GCM, RCM, and nat-GCM we have shown where changes
in variability can be attributed to increasing greenhouse gas
forcing and that the RCM has a larger increase in variability
over Europe than the GCM. Finally using all three SMILEs
we have investigated the European response to volcanic forc-
ing. In this case the RCM provides a better-resolved response
locally but the nat-GCM gives the most additional value and
allows us to identify the response to the each eruption in-
dividually, while the GCM shows how this volcanic forcing
combined with global warming impacts what could be ob-
served.
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Figure 5. Summer surface air temperature (SAT) variability in (a) the GCM at 1.5 K warming, (b) difference between GCM and the nat-GCM
at 1.5 K warming, (c) difference between the GCM and RCM at 1.5 K warming, (d) the GCM at 4 K warming, (e) the RCM at 4 K warming,
and (f) difference between the GCM and RCM at 4 K warming. Before the RCM is subtracted from the GCM, the GCM is regridded to the
RCM grid. We use an 11-year window around each warming year to analyse the data. SAT variability is calculated as the standard deviation
across the pooled summer (mean over June, July, and August each year) SAT from all ensemble members and all years in the time period.
The forced response in the mean state is removed by removing the ensemble mean for each summer from each ensemble member prior to
the variability calculation. Continental borders are shown for each model’s native grid.

Figure 6. Multi-eruption mean surface air temperature (SAT) for the summer (a, e, i, m) and winter (b, f, j, n) and precipitation for
summer (c, g, k, o) and winter (d, h, l, p) 1 year after the eruption. Shown for the GCM (a–d), RCM (e–h), nat-GCM (i–l), and the residual
forcing (m–p; GCM minus nat-GCM). Anomalies are shown relative to the 5-year period directly prior to the eruptions. The three eruptions
in the multi-eruption mean are Agung, El Chichón, and Pinatubo; the years plotted are 1964, 1983, and 1992 respectively (for winter this is
1963/64, 1982/83, and 1991/92) similar to Fischer et al. (2007). Continental borders are shown for each individual model.
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Figure 7. Surface air temperature (SAT) for the summer (a, e, i) and winter (b, f, j) and precipitation for summer (c, g, k) and winter (d, h, l)
1 year after (a–b) Agung, (c–d) El Chichón, and (e–f) Pinatubo shown for the nat-GCM. Anomalies are shown relative to the 5-year period
directly prior to the eruptions. The years plotted are 1964, 1983, and 1992 respectively (for winter this is 1963/64, 1982/83, and 1991/92)
similar to Fischer et al. (2007). Continental boundaries are shown for the GCM native grid.

Here, we have shown that dynamically downscaling a
GCM SMILE provides valuable additional information, par-
ticularly at local scales compared to the GCM. The compu-
tationally cheaper GCM is needed to run the RCM and to
compute the warming levels. It also has the advantage that
additional sensitivity experiments are affordable. With the
modelling chain of GCM, RCM, and targeted GCM (e.g.
nat-GCM), we can better interpret some of the signals in the
RCM, thus utilising the unique power of the RCM and tar-
geted GCM experiments.

With the many SMILEs now becoming available, new
studies that combine different types of ensemble will in-
creasingly be able to answer unsolved questions in climate
science, particularly focusing on separating and quantifying
the forced response to external forcing and internal variabil-
ity. Additionally due to the large computational expense of
SMILE experiments, utilising the data available and com-
bining experiments is more accessible to many users. Using
simple examples and a small subset of the data available, in
this editorial we have shown some interesting applications of
combining multiple types of large ensemble. Future studies
will be able to go well beyond this and push the boundaries
of our understanding of internal variability and the forced re-
sponse to external forcing at both global and local scales due
the wealth of new data that has become available. The new

methods published in the special issue already begin to push
the boundaries of what can be done using large ensembles
(Haszpra et al., 2020a; Lehner et al., 2020; Merrifield et al.,
2020; Milinski et al., 2020) as do those that combine differ-
ent ensemble types (Merrifield et al., 2020; Böhnisch et al.,
2020; Champagne et al., 2020) and positively contribute to
the new science around large ensemble climate modelling.

Code and data availability. The raw model output, primary data,
and code used to complete the analysis and create the figures can be
accessed in the following locations.

– The data for the Canadian Earth System Model Large En-
sembles can be accessed here: https://open.canada.ca/data/
en/dataset/aa7b6823-fd1e-49ff-a6fb-68076a4a477c (Kushner
et al., 2018; Kirchmeier-Young et al., 2017). The GCM data
can also be accessed at http://www.cesm.ucar.edu/projects/
community-projects/MMLEA/ (Deser et al., 2020).

– The ClimEx project data can be accessed from the Globus end-
point found in this location: https://www.climex-project.org/
en/data-access (Leduc et al., 2019).

– Primary data and scripts used in the analysis and other sup-
porting information that may be useful in reproducing the
author’s work are archived by the Max Planck Institute for
Meteorology and can be obtained by contacting publica-
tions@mpimet.mpg.de.
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