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1 Data project and model descriptions

The reanalysis and model data are obtained from different projects. A brief description of these projects and models is given
below, see the references herein for more details.

CLM

The Community Land Model version 4 (CLM, Lawrence et al. (2011); Oleson et al. (2010)) was forced with 6-hourly at-
mospheric forcing from two datasets. Once with raw ERA-Interim data (CLM-ERA-I) and once with bias-corrected ERA-
Interim data from the Water and Global Change (WATCH) project (CLM-WFDEI); i.e., the WATCH-Forcing-Data-ERA-
Interim (WFDEI Weedon et al., 2014) . CLM is the land component of the Community Earth System Model and has 10
hydrologically active soil layers of exponentially increasing thickness and a groundwater module.

RefET

The daily reference ET (RefET Hobbins et al., 2018)) used in this study was generated by the US National Oceanic and Atmo-
spheric Administration from hourly drivers provided by the Modern-Era Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) of the US National Aeronautics and Space Administration (NASA) Global Modeling and Assimilation
Office (GMAO). Hourly MERRA-2 drivers for 2-m air temperature, 2-m specific humidity, surface pressure, 2-m wind speeds,
and downwelling shortwave radiation at the surface were aggregated to daily input to the American Society of Civil Engineers
Standardized Reference ET Equation [Allen et al. (2005); identical to the international standard FAO-56 report (Allen et al.,
1998) at the daily timescale] for a 0.12-m short grass reference crop. The reference ET data are available daily from January 1,
1980 to within a few weeks of the present at a resolution of 0.125°, which was downscaled from the native MERRA?2 resolution
of 0.5°latitude x 0.625°longitude (https://www.esrl.noaa.gov/psd/eddi/globalrefet/).

ISIMIP

Within the second phase of the Inter-Sectoral Impact Model Intercomparison project (ISIMIP2 Gosling et al., 2019), global
hydrological models are used for intercomparison of climate impacts. The model simulations use input from GCMs or ob-
servations, e.g., precipitation and PET. For more details on the ISIMIP project, please refer to Warszawski et al. (2014) and
Rosenzweig et al. (2017). We used modelled soil moisture (0.5°x 0.5°spatial resolution) for the period 1850/1861-2018
from four global hydrological models: HO8 (Hanasaki et al., 2008a, b), LPJmL (Bondeau et al., 2007; Rost et al., 2008;
Schaphoff et al., 2013), PCR-GLOBWB (van Beek et al., 2011; Wada et al., 2011, 2014) and WaterGAP2 (Miiller Schmied
et al., 2016). The GCMs used are GFDL-ESM2M (GFDL, Dunne et al., 2012, 2013), HadGEM2-ES (HadGEM, Jones
et al., 2011), MIROC5 (MIROC, Watanabe et al., 2010), IPSL-CM5A-LR (IPSL, Dufresne et al., 2013). All simulations
were carried out under the modelling framework of phase 2b of the ISIMIP Project (ISIMIP2b: Frieler et al., 2017, https:
/Iwww.isimip.org/protocol/#isimip2b). For the ISIMIP models we also have access to the adjusted (i.e., bias corrected for the
ISIMIP project) GCM data that is used as input for the hydrological models (see also Section 3.2 of the paper). For precipitation
and temperature, the original GCM data is analysed for trends.

Weather @home

For weather@home we use the large-ensemble regional modelling approach as in (Uhe et al., 2018) employing the distributed
computing framework climateprediction.net (Massey et al., 2015; Guillod et al., 2017). For this study, two large ensembles of
simulations of temperature, precipitation and soil-moisture are available for the present day climate (2005-2016) and a coun-
terfactual climate representing how conditions might have been without anthropogenic greenhouse gas and aerosol emissions
for the same time-frame. Trends are calculated by dividing the difference in the variables between the present day climate and
the counterfactual climate by the difference in GMST in the model in these two ensembles.


https://www.esrl.noaa.gov/psd/eddi/globalrefet/
https://www.isimip.org/protocol/#isimip2b
https://www.isimip.org/protocol/#isimip2b
https://www.isimip.org/protocol/#isimip2b

40 EC-Earth - PCR-GLOBWB

EC-Earth - PCR-GLOBWB has been developed using large-ensemble simulations of EC-Earth (Hazeleger et al., 2012) in
combination with the PCR-GLOBWB model (Sutanudjaja et al., 2018). The EC-Earth - PCR-GLOBWB (EC-PCRGLOB)
ensemble was originally developed by van der Wiel et al. (2019) to study changes in hydrological extremes.
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Figure S1. Synthesized values of trends per 1K GMST rise for Soil moisture [/K] (a), precipitation [mm/day/K] (b), temperature [K/K](c)
and Eg [mm/day/K] (d) for region WE. Black bars are the average trends, colored boxes denote the 95% CI. Blue represents observations
and reanalyses, red represents models and magenta the weighted synthesis. Coloured bars denote natural variability, white boxes also take
representativity / model errors into account if applicable (see Section on Methods). In the synthesis, the magenta bar denotes the weighted
average of observations and models and the white box denotes the unweighted average. Soil moisture trends are based on standardized data,
the other trends are absolute trends.
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Figure S2. As for Fig. S1 but for region EE

(b) Precipitation
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Figure S3. As for Fig. S1 but for region NS
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Figure S4. As for Fig. S1 but for region NK
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Figure S5. As for Fig. S1 but for region CK
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