
Earth Syst. Dynam., 12, 1427–1501, 2021
https://doi.org/10.5194/esd-12-1427-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Extreme metrics from large ensembles: investigating the
effects of ensemble size on their estimates

Claudia Tebaldi1,2, Kalyn Dorheim1, Michael Wehner2, and Ruby Leung3

1Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA, USA
3Pacific Northwest National Laboratory, Richland, WA, USA

Correspondence: Claudia Tebaldi (ctebaldi@lbl.gov)

Received: 30 June 2021 – Discussion started: 6 July 2021
Revised: 1 October 2021 – Accepted: 2 October 2021 – Published: 6 December 2021

Abstract. We consider the problem of estimating the ensemble sizes required to characterize the forced compo-
nent and the internal variability of a number of extreme metrics. While we exploit existing large ensembles, our
perspective is that of a modeling center wanting to estimate a priori such sizes on the basis of an existing small
ensemble (we assume the availability of only five members here). We therefore ask if such a small-size ensemble
is sufficient to estimate accurately the population variance (i.e., the ensemble internal variability) and then apply
a well-established formula that quantifies the expected error in the estimation of the population mean (i.e., the
forced component) as a function of the sample size n, here taken to mean the ensemble size. We find that indeed
we can anticipate errors in the estimation of the forced component for temperature and precipitation extremes as
a function of n by plugging into the formula an estimate of the population variance derived on the basis of five
members. For a range of spatial and temporal scales, forcing levels (we use simulations under Representative
Concentration Pathway 8.5) and two models considered here as our proof of concept, it appears that an ensemble
size of 20 or 25 members can provide estimates of the forced component for the extreme metrics considered that
remain within small absolute and percentage errors. Additional members beyond 20 or 25 add only marginal
precision to the estimate, and this remains true when statistical inference through extreme value analysis is used.
We then ask about the ensemble size required to estimate the ensemble variance (a measure of internal variabil-
ity) along the length of the simulation and – importantly – about the ensemble size required to detect significant
changes in such variance along the simulation with increased external forcings. Using the F test, we find that
estimates on the basis of only 5 or 10 ensemble members accurately represent the full ensemble variance even
when the analysis is conducted at the grid-point scale. The detection of changes in the variance when comparing
different times along the simulation, especially for the precipitation-based metrics, requires larger sizes but not
larger than 15 or 20 members. While we recognize that there will always exist applications and metric definitions
requiring larger statistical power and therefore ensemble sizes, our results suggest that for a wide range of anal-
ysis targets and scales an effective estimate of both forced component and internal variability can be achieved
with sizes below 30 members. This invites consideration of the possibility of exploring additional sources of
uncertainty, such as physics parameter settings, when designing ensemble simulations.
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1 Introduction

Recently, much attention and resources have been dedi-
cated to running and analyzing large ensembles of climate
model simulations under perturbed initial conditions (e.g.,
Deser et al., 2012; Pausata et al., 2015; Steinman et al.,
2015; Bittner et al., 2016; Li and Ilyina, 2018; Maher et al.,
2018; Deser et al., 2020; Lehner et al., 2020; Maher et al.,
2021a, b). Both detecting the forced component in externally
forced experiments and quantifying the role of internal vari-
ability are being facilitated by the availability of these large
ensembles. Many variables and metrics of model output have
been analyzed, with large ensembles allowing precise esti-
mates of their current and future statistics. Large ensembles
are also being used to answer methodological questions, par-
ticularly about the precision these experiments can confer
to the estimate of those variables and metrics, and how that
varies with increasing ensemble sizes (e.g., Milinski et al.,
2020). Recent efforts by multiple modeling centers to co-
ordinate these experiments so that they can be comparable
(by being run under the same scenarios of future greenhouse
gas emissions) allow answering those questions robustly, ac-
counting for the size and behavior over time of internal vari-
ability, which is known to be a model-specific characteris-
tic (Deser et al., 2020).

In this methodological study, we adopt the point of view
of a modeling center interested in estimating current and fu-
ture behavior of several metrics of extremes, having to de-
cide on the size of a large ensemble. Such a decision, we
assume, needs to be reached on the basis of a limited num-
ber of initial condition members, which the center would run
as a standard experiment. We choose a size of five, which
is a fairly common choice for future projection experiments,
and use the statistics we derive on the basis of such small
ensemble to estimate the optimal size of a larger ensemble,
according to standards of performance that we specify. We
test our estimate of the optimal size by using a perfect model
setting, defining what a full large ensemble gives us as “the
truth”. We use two large ensembles available through the Cli-
mate Variability and Predictability (CLIVAR) single-model
initial-condition large ensemble (SMILE) initiative (Lehner
et al., 2020), the Community Earth System Model version
1 – Community Atmosphere Model 5.0 Large Ensemble
Community Project (CESM1-CAM5 LENS) (of 40 ensem-
ble members, Kay et al., 2015) and the Canadian Earth Sys-
tem Model version 2 (CanESM2) ensemble (of 50 members,
Kirchmeier-Young et al., 2017; Kushner et al., 2018), both
run over the historical period and under Representative Con-
centration Pathway 8.5 (RCP8.5) according to the CMIP5
protocol (Riahi et al., 2011; Taylor et al., 2012).

Our metrics of interest are indices describing the tail be-
havior of daily temperature and precipitation. We conduct
the analysis in parallel for extremes of temperature and pre-
cipitation because we expect our answers to be dependent
on the signal-to-noise ratio affecting these two atmospheric

quantities, which we know to be different in both space and
time (Hawkins and Sutton, 2009, 2011; Lehner et al., 2020).

We consider the goal of identifying the forced change over
the course of the 21st century in the extremes behavior. We
seek an answer in terms of the ensemble size for which we
expect the estimate of the forced component to approximate
the truth within a given tolerance or for which our estimate
does not change significantly with additional ensemble mem-
bers. We also consider the complementary problem of identi-
fying the ensemble size that fully characterizes the variability
around the forced component. After all, considering future
changes in extremes usually has salience for impact risk anal-
ysis, and any risk-oriented framework will be better served
by characterizing both the expected outcomes (i.e., the cen-
tral estimates) and the uncertainties surrounding them. Both
types of questions can be formulated on a wide range of ge-
ographic scales, as the information that climate model ex-
periments provide is used for evaluation of hazards at local
scales, for assessment of risk and adaptation options, all the
way to globally aggregated metrics, usually most relevant for
mitigation policies. The time horizon of interest may vary as
well. Therefore, we present results from grid-point scales all
the way to global average scales, and for mid-century and
late-century projections, specific years or decades along the
simulations, or whole century-long trajectories.

The consideration of two models, two atmospheric quanti-
ties and several extreme metrics, each analyzed at a range of
spatial and temporal scales, helps our conclusions to be ro-
bust and – we hope – applicable beyond the specifics of our
study.

2 Models, experiments and metrics

The CESM1-CAM5 LENS (CESM ensemble from now on)
has been the object of significant interest and many pub-
lished studies, as the more-than-1300 citations of Kay et al.
(2015) testify to, and, if in lesser measure, so has been the
CanESM2 ensemble (CanESM ensemble from now on). The
CESM model has a resolution of about 1◦ in the longitude–
latitude dimensions (Hurrell et al., 2013), while CanESM has
a coarser resolution of about 2◦ (Arora et al., 2011). Both
have been run by perturbing the atmospheric state at a cer-
tain date of the historical simulation (five different simula-
tions in the case of CanESM) by applying “errors” of the or-
der of magnitude of machine precision. These perturbations
have been found to generate alternative system trajectories
that spread out losing memory in the atmosphere of the re-
spective initial conditions within a few days of simulation
time (Marotzke, 2019). We note that sources of variability
from different ocean states, particularly at depth, are not sys-
tematically sampled by this type of ensembles, albeit they
are partially addressed by the design of the CanESM2 that
uses defacto different ocean states. For CESM, 38 or 40 en-
semble members (depending on the variable considered) are
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available, covering the period between 1920 and 2100, while
CanESM only starts from 1950 but has 48 or 50 ensemble
members. In the following, we will not distinguish precisely
between the full size or the full size minus two, as the re-
sults are not influenced by this small difference. Both mod-
els were run under historical and RCP8.5 external forcing,
the latter applied starting at 2006. In our analysis, we focus
first on results from the CESM ensemble and use CanESM
to confirm the robustness of our results. For consistency, we
use the period 1950–2100 for both ensembles.

We use daily output of minimum and maximum temper-
ature at the surface (TASMIN and TASMAX) and average
precipitation (PR) and compute a number of extreme metrics,
all of them part of the Expert Team on Climate Change De-
tection and Indices (ETCCDI) suite (Alexander, 2016). All
the metrics amount to annual statistics descriptive of daily
output. They are

– TXx – highest value over the year of daily maximum
temperature (interpretable as the warmest day of the
year);

– TXn – lowest value over the year of daily maximum
temperature (interpretable as the coldest day of the
year);

– TNx – highest value over the year of daily minimum
temperature (interpretable as the warmest night of the
year);

– TNn – lowest value over the year of daily minimum
temperature (interpretable as the coldest night of the
year);

– Rx1Day – precipitation amount falling on the wettest
day of the year;

– Rx5Day – average daily amount of precipitation during
the wettest 5 consecutive days (i.e., the wettest pentad)
of the year.

We choose these indices as they reflect diverse aspects of
daily extremes but also because of a technical matter: their
definitions all result in the identification of what statistical
theory of extreme values calls “block maxima” or “block
minima” (here, the block is composed of the 365 d of the
year). The same theory establishes that quantities so defined
lend themselves to be fitted by the generalized extreme value
(GEV) distribution (Coles, 2001). GEV fitting allows us to
apply the power of inferential statistics, through which we
can estimate return levels for any given period (e.g., the 20-,
50- or 100-year events), and their confidence intervals. We
will be looking at how these statistics – i.e., tail inference by
a statistical approach that was intended specifically for data-
poor problems – change with the number of data points at our
disposal, varying with ensemble size and asking if the statis-
tical approach buys us any statistical power with respect to

the simple “counting” of events across the ensemble realiza-
tions.

3 Methods

3.1 Identifying the forced component

Milinski et al. (2020) use the ensemble mean computed on
the basis of the full ensemble as a proxy for the true forced
signal and analyze how its approximation gains in precision
by using an increasingly larger ensemble size. By a bootstrap
approach, subsets of the full ensemble of a given size n are
sampled (without replacement) multiple times (in our analy-
sis, we will use 100 times), their mean (for the metric of inter-
est) is computed, and the multiple replications of this mean
are used to compute the root mean square error (RMSE) with
respect to the full ensemble mean. Note that this bootstrap
approach at estimating errors is expected to become less and
less accurate as n increases, as was also noted in Milinski
et al. (2020). For n approaching the size of the full ensemble,
the repeated sampling from a finite population introduces in-
creasingly stronger dependencies among the samples, which
share larger and larger numbers of members, therefore under-
estimating RMSE(n). More problematically, this approach
would not be possible if we did not have a full ensemble
to exploit, and if our model was thought of having differ-
ent characteristics in variability than the models for which
large ensembles are available. As a more realistic approach,
therefore, we assume that only five ensemble members are
available and we abandon the bootstrap, proposing to use a
different method to infer the expected error as a function of

– an estimate of the ensemble variability that we compute
on the basis of the five members available; and

– the variable size n of the ensemble that we are design-
ing.

We will compare our inferred errors according to our method
to the “true” errors that the availability of an actual large en-
semble allows us to compute.

It is a well-known result of descriptive statistics that the
standard error of the sample mean around the true mean de-
creases as a function of n, the sample size, as in σ/

√
n (see

Wehner, 2000, for an application to climate model ensem-
ble size computations well before the advent of large ensem-
bles). Here, σ is the true standard deviation of the population.
In our case, it is the standard deviation of the ensemble, and
we take as its true value what we compute as the full ensem-
ble standard deviation on the basis of 40 or 50 members for
CESM and CanESM respectively, while we estimate it on
the basis of only five members and show how our inferred
errors compare to the true errors. We will also show in the
first application of our method to global average trajectories
how the error estimated by the bootstrap compares to ours
and the true error, confirming that for n approaching the full
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ensemble size the bootstrap underestimates the RMSE. For
the remainder of our analysis, we will not use the bootstrap
approach further.

Since we are considering extreme metrics that can be mod-
eled by a GEV, we also derive a range of return levels at a set
of individual locations.

If a random variable z (say the temperature of the hottest
day of the year, TXx) is distributed according to a GEV dis-
tribution, its distribution function has the form

G(z)= exp

{
−

[
1− ξ

(
z−µ

σ

)]−1/ξ
}
, (1)

where three parameters µ, σ and ξ determine its domain and
its behavior. The domain is defined as {z : 1+ ξ (z−µ)/σ >
0}, and the three parameters satisfy the following conditions:
−∞< µ<∞, σ > 0 and −∞< ξ <∞. µ, σ and ξ rep-
resent the location, scale and shape parameter, respectively,
related to the mean, variability and tail behavior of the ran-
dom quantity z.

If p (say p = 0.01) is the tail probability to the right of
level zp under the GEV probability density function, zp is
said to be the return level associated to the 1/p-year return
period (100-year return period in this example) and is given
by

zp =

{
µ− σ

ξ
[1−{− log(1−p)}−ξ ], for ξ 6= 0

µ− σ log{− log(1−p)}, for ξ = 0.
(2)

Thus, zp in our example represents the temperature in the
hottest day of the year expected to occur only once every
100 years (in a stationary climate) or with 0.01 probability
every year (a definition more appropriate in the case of a tran-
sient climate).

We estimate the parameters of the GEVs, and therefore the
quantities that are function of them, like zp and their confi-
dence intervals by maximum likelihood, using the R package
extRemes1.

Because of the availability of multiple ensemble members
we can choose a narrow window along the simulations (we
choose 11 years) to satisfy the requirement of stationarity
that the standard GEV fit postulates. We perform separate
GEV fits centered around several dates along the simulation,
i.e., 2000, 2050 and 20952 (the last chosen to allow extracting
a symmetric window at the end of the simulations). The GEV
parameters are estimated separately for a range of ensemble
sizes n up to the full size available (for each n, we concate-
nate 11 years from the first n members of the ensemble, ob-
taining a sample of 11 · n values, and for each value of n the
same subset of members is used across all metrics, locations,
times and return periods). On the basis of those estimates, we

1Available from Gilleland and Katz (2016)
2Since some of the simulations end at 2099, this becomes 2094

in such cases.

compute return levels and their confidence intervals for sev-
eral return periods X, X = 2,5,10,20,50,100 (expressed in
years), and assess when the estimates of the central value
converge and what the trade-off is between sample size and
width of the confidence interval. Lastly, we can use a simple
counting approach, based on computing the empirical cumu-
lative distribution function (CDF) from the same sample, to
determine those same X-year events. That is, after comput-
ing the empirical CDF, we choose the value that leaves to its
right no more than p · n · 11 data points, where p is the tail
probability corresponding to the 1/p =X-year return period
as defined above. The comparison will verify if fitting a GEV
allows to achieve an accurate estimate using a smaller ensem-
ble size than the empirical approach (where “accurate” is de-
fined as close to the estimate obtained by the full ensemble).

We perform the analysis for a set of individual locations
(i.e., grid points), as for most extreme quantities there would
be little value in characterizing very rare events as means of
large geographical regions. Figure C9 shows the 15 locations
that we chose with the goal of testing a diverse set of climatic
conditions.

3.2 Characterizing internal variability

Recognizing the importance of characterizing variability be-
sides the signal of change, we ask how many ensemble mem-
bers are required to fully characterize the size of internal
variability and its possible changes over the course of the
simulation due to increasing anthropogenic forcing. Process-
based studies are suited to tackle the question of how and
why changes in internal variability manifest themselves in
transient scenarios (Huntingford et al., 2013), while here we
simply describe the behavior of a straightforward metric, the
within-ensemble standard deviation. We look at this quan-
tity at the grid-point scale and we investigate how many en-
semble members are needed to robustly characterize the full
ensemble behavior, which here again we assume to be repre-
sentative of the true variability of the system. This translates
into two separate questions. First, for a number of dates along
the simulation spanning the 20th and 21st centuries, we ask
how many ensemble members are needed to estimate an en-
semble variance that is not statistically significantly different
from that estimated on the basis of the full ensemble (note
that we have implicitly answered this by verifying that, at
least for the computation of the expected RMSE in Sect. 3.1,
plugging in an estimate of σ based on five members appears
to be accurate). Second, we first detect changes in variance
between all possible pairs of these dates on the basis of the
full ensemble, and we then ask how many ensemble mem-
bers are needed to detect the same changes. We use F tests
to determine significant differences in variance, and since we
apply them at each grid point we adopt a method for con-
trolling the false discovery rate described for environmental
applications in Ventura et al. (2004) and Wilks (2016) as a
way to correct for multiple testing fallacies.
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4 Results

In the following presentation of our main findings, we choose
two representative metrics, TNx (warmest night of the year)
and Rx5Day (average rainfall amount during the 5 wettest
days of the year) using the 40-member CESM ensemble. In
the Appendix, we include the same type of results for the
additional metrics considered and the 50-member CanESM
ensemble. We will discuss if and when the results presented
in this section differ from those shown in the Appendix.

4.1 Identifying the forced component

We start from time series of annual values of globally av-
eraged TNx and Rx5Day (Fig. 1, top panels). We compute
them for each ensemble member separately and average them
over n ensemble members as the ensemble size n increases,
applying the bootstrap approach and computing RMSE(n)
(see Sect. 3.1) at every year along the simulation.

As Fig. 1 indicates, for both quantities, the marginal ef-
fect of increasing the ensemble size by five members is not
constant but rather decreases as the ensemble size increases.
This is qualitatively visible in the evolution of the ranges in
the panels of the first two rows and is measured along the
y axis of the plots along the bottom row, where RMSE(n) for
increasing n is shown (each n corresponding to a different
color).

This behavior is to be expected, as we know the RMSE of
a mean behaves in inverse proportion to the square root of the
size of the sample from which the mean is computed, but the
actual behavior shown in the plots and Tables 1 and 2 along
columns labeled (B) could be misleading, as the variability
of the largest means (largest in sample size n) could be un-
derestimated by the bootstrap (see Sect. 3.1). Furthermore,
this assessment would not be possible if all we had was a
five-member ensemble for our model. We can therefore com-
pute the formula for the standard error of a mean, σ/

√
n (see

Sect. 3.1), using the full ensemble to estimate σ , which we
assume to be the true standard deviation of the ensemble. We
then repeat the estimation by substituting a value of σ derived
using only five ensemble members. Table 1 shows RMSEs
for the same increasing values of n, evaluated at four differ-
ent dates along the simulation, as we expect σ to change. The
columns labeled (F) apply the formula using the full ensem-
ble size to estimate σt , t = 1953, 2000, 2050 and 2097. The
values along these columns represent the truth against which
we compare our estimates based on the first five ensemble
members (columns labeled (F-5)) and the estimates by the
bootstrap (columns labeled (B)). Importantly, for the accu-
racy of our results, when we use only the first five members
we increase the sample size by using a window of 5 years
around each date t . We are aware that this could introduce
autocorrelation within the sample values, but the comparison
of these results to the truth shows that the estimated values
based on the smaller ensemble are an accurate approxima-

tion of it, always being consistent with the 95 % confidence
intervals (shown in parentheses). From the table entries, we
can assess that the bootstrap estimation is inaccurate once the
ensemble size exceeds about 15–20 out of 40 available (we
have colored the cells in gray when this happens to under-
line this behavior). For the larger sizes, the RMSE estimated
by the bootstrap falls in all cases to the left of the confidence
interval under the (F) column, confirming the tendency to un-
derestimate the RMSE. However, the estimate of RMSE as-
sociated with an ensemble size of 10 or 15 already quantifies
a high degree of accuracy for the approximation of the en-
semble mean of the full 40-member ensemble: those RMSEs
for TNx are on the order of 0.02–0.04 ◦C.

Table 2 reports the same analysis results for the precip-
itation metric, Rx5Day. The same general message can be
drawn, with too-narrow estimates by the bootstrap approach
for ensemble sizes starting at around 20 or 25 members. Even
in this case, however, the estimate for the RMSE is on the
order of 0.1–0.2 mm/d for Rx5Day once the ensemble size
exceeds 10.

The lessons learned here are as follows:

1. for both metrics, an accurate estimate of σt , i.e., the in-
stantaneous model internal variability at global scale, is
possible using five ensemble members (and a window
of 5 years around the year t of interest);

2. if the formula for computing the RMSE on the basis
of a given sample size is adopted, and that estimate for
σt is plugged in, it is possible, on the basis of an ex-
isting five-member ensemble, to accurately estimate the
required ensemble size to identify the forced component
within a given tolerance for error. Of course, the size of
this tolerance will change depending on the specific ap-
plication.

We note here that the calculation of the RMSE for increas-
ing ensemble sizes is straightforward once σt is estimated.
Even more straightforward is the calculation of the expected
“gain” in narrowing the RMSE. A simple ratio calculation
shows that for n spanning the range 5 to 45 (relevant sizes for
our specific examples), the reduction in RMSE follows the
sequence {100 ·1/

√
n}n=1,5,...,45. Thus, compared to a single

model run’s RMSE, we expect the RMSE of mean estimates
derived by ensemble sizes of n= 5, 10, 20, 35 or 45 to be
45 %, 32 %, 22 %, 17 % or 15 % of that, respectively.

We assess how the results of the formula compare to
the actual error by considering the difference between the
smaller size ensemble means and the truth (the full ensemble
mean), year by year and comparing that difference to twice
the expected RMSE derived by the formula, i.e., 2σ/

√
n,

akin to a 95 % probability interval for a normally distributed
quantity. Here is where our approximation, and the use of
possibly autocorrelated samples in the estimates of σ , could
possibly reveal shortcomings. Figure 2, for global averages
of the two same quantities, shows the ratios of actual error
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Table 1. Global mean of TNx as simulated by the CESM ensemble: values of the RMSE in approximating the full ensemble mean by the
individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σt/

√
n, where σt is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval
is shown). We also compare estimates derived by plugging into the formula a value of σt estimated by a subset of five ensemble members
and 5 years around the year t considered (columns labeled “(F-5)”). Results are shown for four individual years (t) along the simulation
(column-wise), since σt varies along its length. Each cell color reflects the value of the central estimate in the cell, and those cases when the
bootstrap estimate is inconsistent with the corresponding F-column estimate are colored in gray (and underlined).

Table 2. Same as Table 1, for Rx5Day. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap
estimate is inconsistent with the corresponding F-column estimate are colored in gray (and underlined).

Earth Syst. Dynam., 12, 1427–1501, 2021 https://doi.org/10.5194/esd-12-1427-2021
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Figure 1. Time series for TNx (warmest night of the year, left) and Rx5Day (average daily amount during the 5 consecutive wettest days
of the year, right) showing how the estimate of the forced component of their global mean trajectories over the period 1950–2100 changes
when averaging an ensemble of increasing size. The top row shows the entire time series. The middle row zooms into the relatively flatter
period of 1950–2000, so that the y-axis range allows a clearer assessment of the relative size of the uncertainty ranges for different sizes of
the ensembles. The ranges are determined by bootstrapping. The bottom row plots the bootstrapped RMSE for every year and each ensemble
size.

vs. the 95 % probability bound, indicating the 100 % level by
a horizontal line for reference. As can be assessed, the ac-
tual error is in most cases much smaller than the 95 % bound
(as it is not reaching the 100 % line in the great majority
of cases), and we see that only occasionally the actual error
spikes above the 95 % bound for individual years, consistent

with what would be expected of a normally distributed error.
This behavior is consistently true for ensemble sizes larger
than n= 5.

In the Appendix, we report the results of applying the same
analysis to the rest of the indices. We cannot show all re-
sults, but we tested country averages, zonal averages, land-
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Figure 2. In each plot, for each year, the height of the bar gives the error in the estimate of the forced component (defined as the mean of the
entire ensemble) as a percentage of the expected 95 % probability bound, estimated by the formula 2σt/

√
n with n the ensemble size. Gray

bars indicate whether σt is the truth (i.e., estimated using the whole ensemble); colored bars indicate whether σt is estimated using only five
ensemble members (but using 5 years around each year). Each plot corresponds to a different and increasing ensemble size: 1, 5, 10, 15, 20,
25, 30, 35. The top two rows of plots are for TNx; the bottom two rows are for Rx5Day. All results are for the CESM ensemble.

and ocean-area averages separately, confirming that the qual-
itative behavior we assess here is common to all these other
scales of aggregation.

Here, we go on to show how the same type of analysis can
be applied at the grid-point scale and still deliver an accurate
bound for the error in approximating the forced component.
For the grid-scale analysis, we define as the forced compo-

nent anomalies by mid- and end-of-century (compared to a
baseline) obtained as differences between 5-year averages:
2048–2052 and 2096–2100 vs. 2000–2005. We use only five
members (and as before, a 5-year window for each to in-
crease the sample size) to estimate the ensemble standard
deviation of the two anomalies (separately, as that standard
deviation may differ at mid-century and the end of the cen-

Earth Syst. Dynam., 12, 1427–1501, 2021 https://doi.org/10.5194/esd-12-1427-2021



C. Tebaldi et al.: Large ensembles for extreme metrics 1435

tury) at each grid point and compare the actual error when
approximating the “true” anomalies (i.e., those obtained on
the basis of the full ensemble) by increasingly larger ensem-
ble sizes to the 95 % confidence bound, calculated by the for-
mula 2σ ci /

√
n (here i indicates the grid cell, and c indicates

the period in the century considered for the anomalies). In
Figs. 3 and 4, we show fields of the ratio of actual error to
the 95 % bound, as the ensemble size increases. Red areas
are ones where the ratio exceeds 100 %, i.e., where the bound
was exceeded by the actual error, which we would expect to
happen only over 5 % of the surface. As can be gauged even
by eye, only small and sparse areas appear where the actual
error exceeds the expected error, especially if land regions
are considered (incidentally, these indices have been mostly
used over land areas, as input to impact analyses). The preva-
lence of red areas over the oceans could be due to an un-
derestimation of σ ci linked to the use of the 5-year windows
and the autocorrelation possibly introduced, consistent with
ocean quantities having more memory than land quantities,
but we do not explore that further here. Over the majority of
the Earth’s surface, particularly when errors are estimated for
ensemble sizes of 20 or more, the bound is a good measure
providing an accurate estimate of the error behavior accord-
ing to normal distribution theory. Tables B1 through B4 in the
Appendix confirm this by reporting percentages of surface
areas (distinguishing global, land-only or ocean-only aggre-
gation) where the actual error exceeds the bound, i.e., where
the values of the fields exceed 100 %. As can be assessed for
all metrics considered in our analysis, 20 ensemble members
consistently keep such fraction at or under 5 % for the CESM
model ensemble, while the coarser-resolution CanESM re-
quires 25 ensemble members for that to be true.

Overall, these results attest to the fact that we can use a
small ensemble of five members to estimate the population
standard deviation and plug it into the formula for the stan-
dard error of the sample mean as a function of sample size.
Imposing a ceiling for this error allows us then to determine
how large an ensemble should be, in order to approximate
the forced component to the desired level of accuracy. This
holds true across the range of spatial scales afforded by these
models, from global means all the way to grid-point values.

4.2 GEV results

As explained in Sect. 3, the extreme metrics we chose can
be fit by a generalized extreme value distribution, and return
levels for arbitrary return periods derived, with their confi-
dence interval. In this section, we ask two questions:

1. How many ensemble members are needed for the esti-
mates to stabilize and the size of the confidence interval
not to change in a substantial way?

2. Is there any gain in applying GEV fitting rather than
simply “counting” rare events across the ensemble?

Here, we show results for our two main metrics, choosing
two different locations for each. These results are indicative
of what happens across the rest of locations (see Fig. C9), for
the other metrics and the other model considered (see Ap-
pendix for a sampling of those).

Figures 5 and 6 and several more in the Appendix com-
pare for each of the six return levels (along the columns), and
across the three projection dates (along the rows), the behav-
ior of the GEV central estimates (red dots) and 95 % confi-
dence intervals (pink envelope, calculated according to the
maximum likelihood approach) based on an increasing en-
semble size (along the x axis) to the “truth” obtained by the
full ensemble, which is drawn as a reference across each plot
as horizontal lines. We also compute estimates of the central
quantities based on computing the empirical cumulative dis-
tribution function (see Sect. 3.1) from the same data points.
These empirical estimates are added to each plot as blue dots
for each of the ensemble sizes considered. Note that also for
these empirical estimates we use 11-year windows for each
ensemble member, so that the sample is exactly the same as
that used for fitting the corresponding GEV. Only the left-
most blue dot in the 100-year return level panels is based on
interpolating the values of the empirical CDF, which for that
sample size is based on only 55 data points. We first observe
that in the great majority of cases the central estimate settles
within the “true” confidence interval as soon as the ensemble
comprises 15 or 20 members. This is true for both model en-
sembles, i.e., both when the truth is identified through 40 and
through 50 ensemble members, as the corresponding plots in
the Appendix confirm. Therefore, if all that concerns us is
the central estimate, an ensemble of 20 members, from which
we sample 11-year windows to enrich the sample size, deliv-
ers an estimate of the “truth” within its confidence interval.
When an estimate of the uncertainty is concerned, however,
the truth remains by definition an unattainable target, as the
size of the confidence intervals is always bound to decrease
for larger sample sizes. The behavior of the confidence inter-
vals for the return level estimates in the plots, however, sug-
gests that there might be only marginal gains for ensemble
sizes beyond 30 for both models. The value of this general
result will benefit from an analysis of larger ensembles. In
addition, the value of increasing the sample size should al-
ways be judged on the basis of the actual size of the 95 %
confidence intervals in the units of the quantity of interest
and what that size means for managing risks associated with
these extremes. This is an aspect that, however, goes beyond
the scope of our work. As for the results of the empirical
counting approach, i.e., the blue point estimates, we can as-
sess that in the majority of cases but not across the board
when we look closely to all the plots in the Appendix, they do
not deviate significantly from the central estimates based on
fitting the GEV using the same sample size. However, while
the latter can provide a measure of uncertainty through con-
fidence intervals, the estimates based on counting events do
not come with uncertainty bounds. Another advantage of us-
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Figure 3. Error in the estimation of anomalies in TNx by mid-century (top two rows) and end of century (bottom two rows) from the CESM
ensemble. In each plot, for increasing ensemble sizes, the color of each grid point indicates the ratio (as a percentage) between actual error
and the 95 % confidence bound. Values of less than 100 % indicate that the actual error in estimating the anomaly at that location is contained
within the bound. The color scale highlights in dark red the values above 100 %, whose total fraction is reported in Table B1.

ing the GEV is the ability to extrapolate to even more rare
events than the ensemble size would allow to robustly esti-
mate, not underplaying the risk of statistical extrapolations
as a general rule.

Further statistical precision could be attained by relaxing
the quasi-stationarity assumption and extending the analysis
period to contain a longer window of years. Exchanging time
for ensemble members, however, when beyond a decade’s
worth, necessitates in most cases the inclusion of temporal
covariates: for example, indicators of the phase and magni-
tude of major modes of variability known to affect the be-
havior of the atmospheric variables in question over multi-
decadal scales. The inclusion of covariates of course adds
another source of fitting uncertainty.

4.3 Characterizing internal variability

After concerning ourselves with the characterization of the
forced component, we turn to the complementary problem
of characterizing internal variability. Rather than aiming at
eliminating the effects of internal variability as we have done
so far in the estimation of a forced signal, we take here the
opposite perspective, wanting to fully characterize its size
and behavior over space and time. After all, the real world
realization will not be akin to the mean of the ensemble but
to one of its members, and we want to be sure to estimate

the range of variations such members may display. Thus, we
ask how large the ensemble needs to be to fully character-
ize the variations that the full-size ensemble produces, which
once again we take as the truth (as mentioned, the answer to
this question can be seen as a systematic confirmation that
five members are sufficient for the estimation of σ , one re-
sult that we only indirectly affirmed so far). We also ask how
large an ensemble is needed to detect changes in the size of
internal variability with increasing external forcing. Our def-
inition of internal variability here is simply the size of the en-
semble variance. We tackle both of these questions directly
at the grid-point scale, as that answer can serve as an upper
bound for the characterization of variability at coarser spatial
scales. Figures 7 through 10 synthesize our findings for both
of these questions.

The two columns on the left-hand side of Fig. 7 show for
several years along the simulation of TNx how many ensem-
ble members are needed (denoted by the colors; see legends)
in order to estimate an ensemble variance at each grid point
that is not statistically distinguishable from the same variance
estimated by the full 40-member ensemble. We use a tradi-
tional F -test approach to test the null hypothesis of equal-
ity in variance. Note that we do this at various times along
the length of the simulation (1950, 1975, 2000, 2025, 2050,
2075, 2100) because we account for the possibility that in-
ternal variability might change over its course with increas-
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Figure 4. Error in the estimation of anomalies in Rx5Day by mid-century (top two rows) and end of century (bottom two rows) from the
CESM ensemble. In each plot, for increasing ensemble sizes, the color of each grid point indicates the ratio (as a percentage) between actual
error and the 95 % confidence bound. Values of less than 100 % indicate that the actual error in estimating the anomaly at that location is
contained within the bound. The color scale highlights in dark red the values above 100 %, whose total fraction is reported in Table B3.

ing external forcing, but for now we remain agnostic on this
issue. For all times considered, five members are sufficient
to estimate an ensemble variance indistinguishable, statisti-
cally, from that which would be estimated using the full en-
semble at most grid points over the Earth’s surface, as the
light blue color indicates. For some sparse locations, how-
ever, 10 members are needed to achieve the same type of
accuracy. The same type of figure for the precipitation met-
ric, Fig. 8, left two columns, confirms that for this noisier
quantity a larger extent of the Earth’s surface needs ensem-
ble sizes of 10 or more to accurately estimate the behavior
of the full ensemble variance. The two right-hand columns
in Fig. 7 show corresponding plots where now most of the
Earth’s surface only requires five members. This is the re-
sult of “borrowing strength” in the estimation of the ensem-
ble variance by using a 5-year window around the date as we
have done for the analysis of σt in the previous sections. This
solution addresses the problem of estimating the variance for
both temperature and precipitation metrics, as Fig. 8 con-
firms, reducing also for the latter the number of grid points
that require more statistical power to a noisy speckled pat-
tern. Similar figures in the Appendix attest to this remaining
true for the other model and the remaining metrics as well.
We note here that the patterns shown in some of these fig-
ures have indeed the characteristics of noise. To minimize
that possibility, we have applied a threshold for the signifi-

cance of the p values from the F test obtained through the
method that controls the false discovery rate (Ventura et al.,
2004). The method has been shown to control for the false
identification of significant differences “by chance” due to
repeating statistical tests hundreds or thousands of times, as
in our situation. The same method has been proven effec-
tive in particular for multiple testing over spatial fields, de-
spite the presence of spatial correlation (Ventura et al., 2004;
Wilks, 2016). We fix the false discovery rate to 5 %.

Detecting changes in the size of the variance over time by
comparing two dates over the simulation is a problem that we
expect to require more statistical power than the problem of
characterizing the size of the variance at a given point, as the
difference between stochastic quantities is affected by larger
uncertainty than the quantities individually considered, un-
less those are strongly correlated. Figure 9 shows the ensem-
ble size required to detect the same changes in the ensemble
variance of TNx that the full ensemble of 40 members de-
tects. Each plot is at the intersection of a column and a row
corresponding to two of the dates considered in the previ-
ous analysis, indicating that the solution applies to detecting
a change in variance between those two dates, as the title
of each plot specifies. Here again we use the F test and the
method for controlling the false discovery rate.

Blank areas are regions where the full ensemble has not
detected any changes in the ensemble variance at that loca-
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Figure 5. Return levels for TNx at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50- and 100-year return periods,
based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing ensemble sizes along the x axis
(from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the 95 % confidence interval.
The estimates based on the full ensemble (central and confidence interval bounds), which we consider the truth, are also drawn across the
plot for reference as horizontal lines. The blue dots in each plot show return levels for the same return periods estimated by counting, i.e.,
computing the empirical cumulative distribution function of TNx on the basis of the n× 11 years in the sample, where n is the ensemble
size. Note that in the 100-year return level plots the first such dot is obtained by interpolation of the last two values of the CDF, since the
sample size is less than 100 (see text). The first three rows show results for a location in India, while the following three rows show results
for a location in western South America (see Fig. C9).
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Figure 6. Return levels for Rx5Day at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50- and 100-year return periods,
based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing ensemble sizes along the x axis
(from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the 95 % confidence interval.
The estimates based on the full ensemble (central and confidence interval bounds), which we consider the truth, are also drawn across the
plot for reference as horizontal lines. The blue dots in each plot show return levels for the same return periods estimated by counting, i.e.,
computing the empirical cumulative distribution function of Rx5Day on the basis of the n× 11 years in the sample, where n is the ensemble
size. Note that in the 100-year return level plots the first such dot is obtained by interpolation of the last two values of the CDF, since the
sample size is less than 100 (see text). The first three rows show results for a location in northern North America, while the following three
rows show results for a location in west Africa (see Fig. C9).
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Figure 7. Estimating the ensemble variance for TNx: each plot corresponds to a year along the simulation length (1950, 1975, 2000, 2025,
2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate an ensemble variance at that location that is
statistically indistinguishable from that computed on the basis of the full 40-member ensemble, using an F test to test the null hypothesis of
equality in variance. The results of the first two columns use only the specific year for each of the ensemble members. The results of the third
and fourth columns enrich the samples by using 5 years around the specific date.

tion when comparing the two dates. Colored areas are regions
where such change has been detected by the full ensemble,
and the color indicates what (smaller) ensemble size is suf-
ficient to detect the same change. Here, as in the previous
analysis, a significant change is detected when the F test
for the ratio of the two variances that are being compared
across time has a p value smaller than the threshold deter-
mined by applying the false discovery rate method and fix-

ing the false discovery rate to 5 %. These results are obtained
by increasing the sample size using 5 years around the dates,
as in the right-hand columns of Figs. 7 and 8. In the case
of TNx, a metric based on daily minimum temperature, the
changes are confined to the Arctic region and in most cases
the ensemble size required is again five, with only one in-
stance where the changes between mid-century and end of
century require consistently a larger ensemble size over an
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Figure 8. Estimating the ensemble variance for Rx5Day: each plot corresponds to a year along the simulation length (1950, 1975, 2000,
2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate an ensemble variance at that location that
is statistically indistinguishable from that computed on the basis of the full 40-member ensemble, using an F test to test the null hypothesis
of equality in variance. The results of the first two columns use only the specific year for each of the ensemble members. The results of the
third and fourth columns enrich the samples by using 5 years around the specific date.

appreciable extent (as many as 15 members over the region).
When we conduct the same analysis on the precipitation met-
ric, shown in Fig. 10, we are presented with a spatially nois-
ier picture, with changes in variance scattered throughout the
Earth’s surface, especially over the oceans. In the case of this
precipitation metric, the ensemble size required is in many
regions as large as 15 or 20 members. These results are made
clearer by Figs. C30 and C31 in the Appendix, where the grid

boxes where significant changes are present are gathered into
histograms (weighted according to the Earth’s surface frac-
tion that the grid boxes represent) that show the ensemble
size required along the x axis. We highlight in those figures
the fact that for the temperature-based metric only three his-
tograms, corresponding to three specific time comparisons,
gather grid boxes covering more than 5 % of the Earth’s sur-
face, while the coverage is more extensive than 5 % for all
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Figure 9. Estimating changes in ensemble variance for TNx: each plot corresponds to a pair of years along the simulation (same set of
years as depicted in Figs. 7 and 8 above). Colored areas are regions where on the basis of the full 40-member ensemble a significant change
in variance was detected. The colors indicate the size of the smaller ensemble needed to detect the same change. Here, the sampling size
is increased by using 5 years around each date. We only show the Northern Hemisphere, as no region in the Southern Hemisphere shows
significant changes in variance for this quantity.

time comparisons for the precipitation metric. These results
are representative of the remaining metrics and the alterna-
tive model as Figs. C20 through C41 in the Appendix.

We do not show it explicitly here, as it is not the focus
of our analysis, but, for both model ensembles, when the
change is significant, the ensemble variance increases over
time for both precipitation metrics, indicating that the en-
semble spread increases with the strength of external forc-
ing over time under RCP8.5. This is expected as the vari-
ance of precipitation increases in step with its mean. For
the temperature-based metrics, the changes, when signifi-
cant, are mostly towards an increase in variance (ensemble
spread) with forcings for hot extremes (TNx and TXx, the
hottest night and day of the year), for which the significant
changes are mostly located in the Arctic region. The en-
semble spread decreases instead for cold extremes (TNn and
TXn, the coldest night and day of the year), for which the sig-
nificant changes are mostly located in the Southern Ocean.

4.4 Signal-to-noise considerations

Another aspect that is implicitly relevant to the establish-
ment of a required ensemble size, if the estimation is con-
cerned with emergence of the forced component, or, more
in general, with “detection and attribution”-type analysis is
the signal-to-noise ratio of the quantity of interest. Assum-
ing as we have done in our study that the quantity of interest
can be regarded as the mean µ of a noisy population, the
signal-to-noise ratio is defined as SN = µ/σ , where σ is the
standard deviation of the population. A critical threshold, say
K , for SN is usually set at K = 1 or 2, and it is immediate
to derive the sample size required for such threshold to be
hit, by computing the value of n that makes µ/(σ/

√
n)≥K ,

i.e., n≥K2/S2
N . Figure 11 shows two maps of the spatially

varying ensemble sizes required for the signal-to-noise ratio
to exceed 2, when computing anomalies at mid-century for
the two metrics from the CESM ensemble. In the Appendix,
we show maps for the remaining metrics and CanESM. The
anomalies are computed as 5-year mean differences, as in
Sect. 4.1 under RCP8.5. If the majority of the Earth’s sur-
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Figure 10. Estimating changes in ensemble variance for Rx5Day: each plot corresponds to a pair of years along the simulation (same set of
years as depicted in Figs. 7 and 8 above). Colored areas are regions where on the basis of the full 40-member ensemble a significant change
in variance was detected. The colors indicate the size of the smaller ensemble needed to detect the same change. Here, the sampling size is
increased by using 5 years around each date.

face requires only two to four ensemble members to be aver-
aged for the temperature metric to reach the SN value of 2,
the Southern Ocean and the Arctic, together with some lim-
ited regions over land, need more statistical power, up to 18
ensemble members. The pattern remains similar, but the re-
quirements enhanced for the hottest day of the year (TXx,
shown in Fig. C42). Cold extremes evidently are more sub-
stantially affected by noise over larger portions of the land re-
gions (TNn and TXn, again in Fig. C42). The behavior of the
precipitation metrics is qualitatively very different, with the
great majority of the globe not reaching that level of SN even
when averaging 40 members, as the white areas in Figs. 11,
bottom panel, and C42, last panel, signify. This discussion
is also model specific. Figure C43 shows the same type of
results when using CanESM, a model running at a coarser
resolution which we therefore expect to show an emergence

of the signal from the noise relatively more easily. This is
confirmed by the homogeneous light blue color for the tem-
perature metrics in Fig. C43, indicating that between two and
six ensemble member averages reach an SN of 2. It remains
the case also for CanESM, however, that the noise affects
substantially SN for the precipitation metrics.

5 Conclusions

In this study, we have addressed the need for deciding a priori
the size of a large ensemble, using an existing five-member
ensemble as guidance. Aware that the optimal size ultimately
depends on the purpose the ensemble is used for, and in or-
der to cover a wide range of possible uses, we chose met-
rics of temperature and precipitation extremes and we con-
sidered output from grid-point scale to global averages. We
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Figure 11. Ensemble size n required for the signal-to-noise ratio
of the grid-point scale anomalies to exceed 2 (anomalies defined as
the mean of 2048–2052 minus the historical baseline taken as 2000–
2005). Results are shown for CESM and hottest night (TXn, a) and
wettest pentad (Rx5Day, b) of the year.

tackled the problem of characterizing forced changes along
the length of a transient scenario simulation and that of char-
acterizing the system’s internal variability and its possible
changes. By using a high emission scenario like RCP8.5,
but considering behaviors all along the length of the sim-
ulations, we are also implicitly addressing a wide range of
signal-to-noise magnitudes. Using the availability of existing
large ensembles with two different models, CESM1-CAM5
and CanESM2, we could compare our estimates of the ex-
pected errors that a given ensemble size would generate with
actual errors, obtained using the full ensembles’ estimates as
our “truth”.

First, we find that for the many uses that we explored, it is
possible to put a ceiling on the expected error associated with
a given ensemble size by exploiting a small ensemble of five
members. We estimate the ensemble variance at a given sim-
ulation date (e.g., 2000, or 2050, or 2095), which is the basis
for all our error computations, on the basis of five members,
“borrowing strength” by using a window of 5 years around

that date. The results we assess are consistent with assuming
that the quantities of interest are normally distributed with
standard deviation σ/

√
n, where σ can be estimated on the

basis of the five members available: the error estimates and
therefore the optimal sizes computed on the basis of choos-
ing a given tolerance for such errors provide a safe upper
bound to the errors that would be committed for a given en-
semble size n. This is true for all metrics considered, both
models and the full range of scales of aggregation. When we
compare such estimates (verified by the availability of the
actual large ensembles), there appears to be a sweet spot in
the range of ensemble sizes that provides accurate estimates
for both forced changes and internal variability, consisting of
20 or 25 members. The larger of these sizes also appears ap-
proximately sufficient to conduct an estimation of rare events
with a probability of occurrence each year as low as 0.01, by
fitting a GEV and deriving return levels and their confidence
intervals. In most cases (locations around the globe, times
along the simulation and metrics considered), enlarging the
sample size beyond 25 members provides only marginal im-
provement in the confidence intervals, while the central esti-
mate does not change significantly from the one established
using 25 members and in most cases accurately approximat-
ing that obtained by the full ensemble.

In all cases considered, a much smaller ensemble size of
5 to 10 members, if enriched by sampling along the time di-
mension (that is, using a 5-year window around the date of
interest) is sufficient to characterize the ensemble variability,
while its changes along the course of the simulations under
increasing greenhouse gases, when found significant using
the full ensemble size, can be detected using 15 or 20 ensem-
ble members.

Some caveats are in order. Obviously, the question of
how many ensemble members are needed is fundamen-
tally ill-posed, as the answer ultimately and always depends
on the most exacting use to which the ensemble is put.
One can always find a higher-frequency, smaller-scale met-
ric and a tighter error bound to satisfy, requiring a larger
ensemble size than any previously identified. As tropical-
cyclone-permitting and eventually convection-permitting cli-
mate model simulations become available, these metrics will
be more commonly analyzed. Even for a specific use, the
answer depends on the characteristics of internal variability.
The fact that for both the models considered here five ensem-
ble members are sufficient to obtain an accurate estimate of
it is promising, but this does not guarantee that five are suffi-
cient for all models. In fact, this could also be invalidated by
a different experimental exploration of internal variability:
new work is adopting different types of initialization, involv-
ing ocean states, which could uncover a dimension of internal
variability that has so far being underappreciated (Hawkins
et al., 2016; Marotzke, 2019). This would likely change our
best estimates of internal variability and with it possibly the
ensemble sizes required to accurately estimate it.
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With this work, however we have shown a way to attack
the problem “bottom up”, starting from a smaller ensemble
and building estimates of what would be required for a given
problem. One can imagine a more sophisticated setup where
an ensemble can be recursively augmented (rather than as-
suming a fixed five-member ensemble as we have done here)
in order to approximate the full variability incrementally bet-
ter. We have also shown that for a large range of questions
the size needed is actually well below what we have come
to associate with “large ensembles”. There exist other im-
portant sources of uncertainties in climate modeling, one of
which is beyond reach of any single modeling center, having
to do with structural uncertainty (e.g., Knutti et al., 2010).
Adopting the perspective of an individual model, however,
parameter settings have an equally if not more important role
than initial conditions. Together with scenario uncertainty, all
these dimensions compete over computational resources for
their exploration. The same computational resources may be
further stretched by the need for downscaling the results of
Earth system model (ESM) ensembles through regional and
impact models (Leduc et al., 2019). Our results may provide
guidance in choosing how to allocate those resources among
these alternative sources of variation.

Appendix A: RMSE estimation for more indices and
based on the CanESM ensemble

Table A1. Global mean of TNn as simulated by the CESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A2. Global mean of TXx as simulated by the CESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A3. Global mean of TXn as simulated by the CESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A4. Global mean of Rx1Day as simulated by the CESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A5. Global mean of TNx as simulated by the CanESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A6. Global mean of Rx5Day as simulated by the CanESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A7. Global mean of TNn as simulated by the CanESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A8. Global mean of TXx as simulated by the CanESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A9. Global mean of TXn as simulated by the CanESM ensemble: values of the RMSE in approximating the full ensemble mean by
the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Table A10. Global mean of Rx1Day as simulated by the CanESM ensemble: values of the RMSE in approximating the full ensemble mean
by the individual runs (first row, n= 1) and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). The estimates
obtained by the bootstrap approach (columns labeled “(B)”) are compared to the estimates obtained by the formula σ/

√
n, where σ is

estimated as the ensemble standard deviation using all ensemble members (columns labeled “(F)”, where also the 95 % confidence interval is
shown). We also compare estimates derived by plugging into the formula a value of σ estimated by a subset of five ensemble members and 5
years around the year considered (columns labeled “(F-5)”). Results are shown for four individual years along the simulation (column-wise),
since σ varies along it. Each cell color reflects the value of the central estimate in the cell, and those cases when the bootstrap estimate is
inconsistent with the corresponding F-column estimate are colored in gray (and underlined).
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Appendix B: Summary of error ratio patterns as
shown in Figs. 3 and 4 for all metrics and models

Table B1. Percentage of the global, land or ocean surface where the actual errors exceed the errors estimated on the basis of the formula “a
priori” using five ensemble members to estimate σ . Results are shown for all temperature extreme metrics, derived from the CESM ensemble
whose full size is 40 members. Calculations apply cosine-of-latitude weighting. Results for TNx are summaries of the behavior shown in
Fig. 3, i.e., the fraction of surface represented by locations where the error ratio is larger than 100 %. Numbers under small n values are
affected by noise, as we randomly choose n members from the full ensemble, only once. As can be gauged, the decreasing behavior of the
fractions stabilizes for n≥ 15. Cell color reflects the value in the cell.
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Table B2. Percentage of the global, land or ocean surface where the actual errors exceed the errors estimated on the basis of the formula
“a priori” using five ensemble members to estimate σ . Results are shown for all temperature extreme metrics, derived from the CanESM
ensemble whose full size is 50 members. Calculations apply cosine-of-latitude weighting. Numbers under small n values are affected by
noise, as we randomly choose n members from the full ensemble, only once. As can be gauged, the decreasing behavior of the fractions
stabilizes for n≥ 15. Cell color reflects the value in the cell.
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Table B3. Percentage of the global, land or ocean surface where the actual errors exceed the errors estimated on the basis of the formula
“a priori” using five ensemble members to estimate σ . Results are shown for the two precipitation extreme metrics, derived from the CESM
ensemble whose full size is 40 members. Calculations apply cosine-of-latitude weighting. Results for Rx5Day are summaries of the behavior
shown in Fig. 4, i.e., the fraction of surface represented by locations where the error ratio is larger than 100 %. Numbers under small n values
are affected by noise, as we randomly choose n members from the full ensemble, only once. As can be gauged, the decreasing behavior of
the fractions stabilizes for n≥ 15. Cell color reflects the value in the cell.

Table B4. Percentage of the global, land or ocean surface where the actual errors exceed the errors estimated on the basis of the formula “a
priori” using five ensemble members to estimate σ . Results are shown for the two precipitation extreme metrics, derived from the CanESM
ensemble whose full size is 50 members. Calculations apply cosine-of-latitude weighting. Numbers under small n values are affected by
noise, as we randomly choose n members from the full ensemble, only once. As can be gauged, the decreasing behavior of the fractions
stabilizes for n≥ 15. Cell color reflects the value in the cell.
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Appendix C: Additional figures

C1 Forced component

Figure C1. Like Fig. 1 for the remaining metrics, derived from the CESM ensemble.
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Figure C2. Like Fig. 1 for metrics derived from the CanESM ensemble.
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Figure C3. Like Fig. C1 for metrics derived from the CanESM ensemble.
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Figure C4. As Fig. 2 for TNn and Rx1Day derived from the CESM ensemble.
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Figure C5. As Fig. 2 for TXn and TXx derived from the CESM ensemble.
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Figure C6. As Fig. 2 but using the CanESM ensemble.
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Figure C7. As Fig. C6 for TNn and Rx1Day and using the CanESM ensemble.
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Figure C8. As Fig. C6 for TXn and TXx and using the CanESM ensemble.

Figure C9. The 15 locations at which we fit GEV distributions to the various quantities.
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Figure C10. Return levels for TNn from the CESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-
and 100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing
ensemble sizes along the x axis (from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents
the 95 % confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of TNn on the basis of the same sample used for the estimation of the corresponding GEV parameters. The
first three rows show results for a location in Australia, while the following three rows show results for a location in central North America
(see Fig. C9).
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Figure C11. Return levels for TXx from the CESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50- and
100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing ensemble
sizes along the x axis (from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the 95 %
confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for reference
as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical cumulative
distribution function of TXx on the basis of the same sample used for the estimation of the corresponding GEV parameters. The first three
rows show results for a location in China, while the following three rows show results for a location in southern Africa (see Fig. C9).
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Figure C12. Return levels for TXn from the CESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50- and
100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing ensemble
sizes along the x axis (from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the 95 %
confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for reference
as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical cumulative
distribution function of TXn on the basis of the same sample used for the estimation of the corresponding GEV parameters. The first three
rows show results for a location on the Maritime Continent, while the following three rows show results for a location in northern South
America (see Fig. C9).
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Figure C13. Return levels for Rx1Day from the CESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-
and 100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing
ensemble sizes along the x axis (from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents
the 95 % confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of Rx1Day on the basis of the same sample used for the estimation of the corresponding GEV parameters.
The first three rows show results for a location on the Iberian Peninsula, while the following three rows show results for a location in southern
South America (see Fig. C9).
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Figure C14. Return levels for TNx from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-
and 100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing
ensemble sizes along the x axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents
the 95 % confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of TNx on the basis of the same sample used for the estimation of the corresponding GEV parameters. The
first three rows show results for a location in northern Asia, while the following three rows show results for a location in southern South
America (see Fig. C9).
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Figure C15. Return levels for TNn from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-
and 100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing
ensemble sizes along the x axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents
the 95 % confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of TNn on the basis of the same sample used for the estimation of the corresponding GEV parameters. The
first three rows show results for a location in central South America, while the following three rows show results for a location in western
South America (see Fig. C9).
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Figure C16. Return levels for TXx from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-
and 100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing
ensemble sizes along the x axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents
the 95 % confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of TXx on the basis of the same sample used for the estimation of the corresponding GEV parameters. The
first three rows show results for a location in central North America, while the following three rows show results for a location in southern
Africa (see Fig. C9).
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Figure C17. Return levels for TXn from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-
and 100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for increasing
ensemble sizes along the x axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents
the 95 % confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of TXn on the basis of the same sample used for the estimation of the corresponding GEV parameters.
The first three rows show results for a location in Central America, while the following three rows show results for a location in China (see
Fig. C9).
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Figure C18. Return levels for Rx1Day from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-,
20-, 50- and 100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for
increasing ensemble sizes along the x axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope
represents the 95 % confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot
for reference as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of Rx1Day on the basis of the same sample used for the estimation of the corresponding GEV parameters.
The first three rows show results for a location on the Iberian Peninsula, while the following three rows show results for a location in northern
North America (see Fig. C9).
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Figure C19. Return levels for Rx5Day from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-,
20-, 50- and 100-year return periods, based on estimating a GEV by using 11-year windows of data around each date. In each plot, for
increasing ensemble sizes along the x axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope
represents the 95 % confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot
for reference as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of Rx5Day on the basis of the same sample used for the estimation of the corresponding GEV parameters.
The first three rows show results for a location in Australia, while the following three rows show results for a location in China (see Fig. C9).
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C2 Variability

Figure C20. Estimating the ensemble variance for TNn in the CESM ensemble: each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at that
location that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble. The results of the first two
columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using 5 years
around the specific date.
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Figure C21. Estimating the ensemble variance for TXx in the CESM ensemble: each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at that
location that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble. The results of the first two
columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using 5
years around the specific date.
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Figure C22. Estimating the ensemble variance for TXn in the CESM ensemble: each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at that
location that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble. The results of the first two
columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using 5
years around the specific date.
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Figure C23. Estimating the ensemble variance for Rx1Day in the CESM ensemble: each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
that location that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using
5 years around the specific date.
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Figure C24. Estimating the ensemble variance for TNx in the CanESM ensemble: each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using
5 years around the specific date.
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Figure C25. Estimating the ensemble variance for TNn in the CanESM ensemble: each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using
5 years around the specific date.
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Figure C26. Estimating the ensemble variance for TXx in the CanESM ensemble: each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using
5 years around the specific date.
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Figure C27. Estimating the ensemble variance for TXn in the CanESM ensemble: each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using
5 years around the specific date.
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Figure C28. Estimating the ensemble variance for Rx1Day in the CanESM ensemble: each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using
5 years around the specific date.
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Figure C29. Estimating the ensemble variance for Rx5Day in the CanESM ensemble: each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using
5 years around the specific date.
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Figure C30. Histograms of required ensemble sizes at grid boxes where significant change in variability is detected: each plot corresponds
to a map in Fig. 9 and shows a histogram of the values at each grid box that is colored in that map. Histograms are weighted according to
the cosine of the latitude of the grid box, so that the values along the y axes can be interpreted as fractions of the Earth’s surface. In red are
histograms that represent a total fraction of the Earth’s surface larger than 5 %.
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Figure C31. Histograms of required ensemble sizes at grid boxes where significant change in variability is detected: each plot corresponds
to a map in Fig. 10 and shows a histogram of the values at each grid box that is colored in that map. Histograms are weighted according to
the cosine of the latitude of the grid box, so that the values along the y axes can be interpreted as fractions of the Earth’s surface. In red are
histograms that represent a total fraction of the Earth’s surface larger than 5 %.
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Figure C32. Estimating changes in ensemble variance for TNn in the CESM ensemble: each plot corresponds to a pair of years along the
simulation. Colored areas are regions where on the basis of the full 40-member ensemble a significant change in variance was detected. The
colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.
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Figure C33. Estimating changes in ensemble variance for TXx in the CESM ensemble: each plot corresponds to a pair of years along the
simulation. Colored areas are regions where on the basis of the full 40-member ensemble a significant change in variance was detected. The
colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.
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Figure C34. Estimating changes in ensemble variance for TXn in the CESM ensemble: each plot corresponds to a pair of years along the
simulation. Colored areas are regions where on the basis of the full 40-member ensemble a significant change in variance was detected. The
colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.

Earth Syst. Dynam., 12, 1427–1501, 2021 https://doi.org/10.5194/esd-12-1427-2021



C. Tebaldi et al.: Large ensembles for extreme metrics 1491

Figure C35. Estimating changes in ensemble variance for Rx1Day in the CESM ensemble: each plot corresponds to a pair of years along
the simulation. Colored areas are regions where on the basis of the full 40-member ensemble a significant change in variance was detected.
The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.
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Figure C36. Estimating changes in ensemble variance for TNx in the CanESM ensemble: each plot corresponds to a pair of years along the
simulation. Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected. The
colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.
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Figure C37. Estimating changes in ensemble variance for TNn in the CanESM ensemble: each plot corresponds to a pair of years along the
simulation. Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected. The
colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.
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Figure C38. Estimating changes in ensemble variance for TXx in the CanESM ensemble: each plot corresponds to a pair of years along the
simulation. Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected. The
colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.
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Figure C39. Estimating changes in ensemble variance for TXn in the CanESM ensemble: each plot corresponds to a pair of years along the
simulation. Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected. The
colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.
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Figure C40. Estimating changes in ensemble variance for Rx1Day in the CanESM ensemble: each plot corresponds to a pair of years along
the simulation. Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected.
The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5 years
around each date.
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Figure C41. Estimating changes in ensemble variance for Rx5Day in the CanESM ensemble: each plot corresponds to a pair of years along
the simulation. Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected.
The colors indicate the size of the smaller ensemble needed to detect the same change. Here, too, the sample size is increased by using 5
years around each date.
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Figure C42. Ensemble size n required for the signal-to-noise ratio of the grid-point scale anomalies to exceed 2 (anomalies defined as the
mean of 2048–2052 minus the historical baseline of 2000–2005). Results are shown for CESM and all remaining metrics not shown in the
main text: coldest night (TNn) and coldest day (TXn) of the year along the top row; Hottest day (TXx) and wettest day (Rx1Day) of the year
along the bottom row.
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Figure C43. Ensemble size n required for the signal-to-noise ratio of the grid-point scale anomalies to exceed 2 (anomalies defined as the
mean of 2048–2052 minus the historical baseline of 2000–2005). Results are shown for CanESM and all metrics: coldest night (TNn) and
coldest day (TXn) of the year on the top row; hottest day (TXx) and wettest day (Rx1Day) of the year on the middle row; hottest night (TNx)
and wettest 5 d (Rx5Day) of the year on the bottom row.
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