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Abstract. The US agriculture system supplies more than one-third of globally traded soybean, and with 90 %
of US soybean produced under rainfed agriculture, soybean trade is particularly sensitive to weather and cli-
mate variability. Average growing season climate conditions can explain about one-third of US soybean yield
variability. Additionally, crops can be sensitive to specific short-term weather extremes, occurring in isolation or
compounding at key moments throughout crop development. Here, we identify the dominant within-season cli-
mate drivers that can explain soybean yield variability in the US, and we explore the synergistic effects between
drivers that can lead to severe impacts. The study combines weather data from reanalysis and satellite-informed
root zone soil moisture fields with subnational crop yields using statistical methods that account for interaction
effects. On average, our models can explain about two-thirds of the year-to-year yield variability (70 % for all
years and 60 % for out-of-sample predictions). The largest negative influence on soybean yields is driven by high
temperature and low soil moisture during the summer crop reproductive period. Moreover, due to synergistic ef-
fects, heat is considerably more damaging to soybean crops during dry conditions and is less problematic during
wet conditions. Compounding and interacting hot and dry (hot–dry) summer conditions (defined by the 95th
and 5th percentiles of temperature and soil moisture respectively) reduce yields by 2 standard deviations. This
sensitivity is 4 and 3 times larger than the sensitivity to hot or dry conditions alone respectively. Other relevant
drivers of negative yield responses are lower temperatures early and late in the season, excessive precipitation
in the early season, and dry conditions in the late season. We note that the sensitivity to the identified drivers
varies across the spatial domain. Higher latitudes, and thus colder regions, are positively affected by high tem-
peratures during the summer period. On the other hand, warmer southeastern regions are positively affected by
low temperatures during the late season. Historic trends in identified drivers indicate that US soybean production
has generally benefited from recent shifts in weather except for increasing rainfall in the early season. Overall,
warming conditions have reduced the risk of frost in the early and late seasons and have potentially allowed
for earlier sowing dates. More importantly, summers have been getting cooler and wetter over the eastern US.
Nevertheless, despite these positive changes, we show that the frequency of compound hot–dry summer events
has remained unchanged over the 1946–2016 period. In the longer term, climate models project substantially
warmer summers for the continental US, although uncertainty remains as to whether this will be accompanied
by drier conditions. This highlights a critical element to explore in future studies focused on US agricultural
production risk under climate change.
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1 Introduction

Soybean is one of the most in demand crops worldwide,
with the largest increase in production area over the last 2
decades when compared with all other major staple crops
(Hartman et al., 2011). A considerably large portion of this
production is dedicated to animal feed, accommodating the
current global increase in demand for animal products (Cas-
sidy et al., 2013). A recent estimate based on FAOSTAT data
(Food and Agriculture Organization Statistics) in 2013 re-
ports that soybean ranks second in terms of globally pro-
duced kilocalories (∼ 20 % of the total kilocalories traded on
the global food market) and first among staple crops in terms
of globally aggregated trade monetary value (Torreggiani et
al., 2018). The US agriculture system alone supplies more
than one-third of globally traded soybean, of which 90 % is
produced under rainfed agriculture (Jin et al., 2017). The re-
cent surge in global soybean demand is expected to increase
further in the future due to the increasing global population
and the associated shifts in dietary preferences (Fehlenberg
et al., 2017). At the same time, climate change is expected
to increase annual mean and extreme temperature levels over
the US (Dirmeyer et al., 2013; Winter et al., 2015; Wuebbles
et al., 2014a). To support adaptation measures that reduce
the potential impacts of these future challenges, we need a
quantitative understanding of crop sensitivity to climate and
weather variables.

Climate variability can strongly impact crop yields. The
effects of growing season temperature and precipitation con-
ditions can explain about one-third of US soybean year-to-
year yield variability (Leng et al., 2016; Lobell et al., 2011;
Ray et al., 2015; Vogel et al., 2019). In particular, heat and
drought conditions are among the most limiting environmen-
tal factors affecting crops (Lesk et al., 2016). These condi-
tions are increasingly detrimental when they coincide with
vulnerable stages of the crop growth cycle (Troy et al., 2015).
Such conditions can occur separately or in combination, with
the latter case often leading to more severe impacts (Leonard
et al., 2014). For instance, it has been reported that US
economic agricultural losses between 1980 and 2012 were
4 times larger during hot and dry (hot–dry) conditions com-
pared with during drought events alone (Suzuki et al., 2014).
Moreover, the response to multiple climatic stressors is com-
plex and can be subject to interaction effects where climatic
drivers create more damage in combination than the sum of
each in isolation (Ben-Ari et al., 2018; Haqiqi et al., 2021;
Matiu et al., 2017; Rigden et al., 2020). Interestingly, multi-
ple climatic stressors can also result in positive interactions
with beneficial effects on crop yields (Carter et al., 2016;
Suzuki et al., 2014). Such features, positive or negative, are
likely to have important implications on future impacts and
adaptation strategies to climate change. Nevertheless, these
have received little attention in current assessments to date
(Matiu et al., 2017; Zscheischler et al., 2017).

A compound event framework has recently been proposed
to underline the need for impact-centric approaches that iden-
tify multiple climatic drivers contributing to socio-economic
risk (Leonard et al., 2014; Zscheischler et al., 2018, 2020).
The types of damaging combinations of drivers on local agri-
cultural production are various, with a specific terminology
recently proposed in Zscheischler et al. (2020): “temporally
compounding”, as in the case of the 2016 wheat produc-
tion in France where high temperatures during winter fol-
lowed by heavy precipitation during spring led to unprece-
dented yield losses (Ben-Ari et al., 2018); “preconditioned”,
where, for instance, the pre-sowing soil moisture water stor-
age content interacted with within-season precipitation to af-
fect the rainfed maize yield in the US (Carter et al., 2018a);
or “multivariate/co-occurring”, such as in the case of hot–dry
conditions in the growing season affecting crop yields (Feng
and Hao, 2020; Matiu et al., 2017). One way to identify such
drivers is through the use of statistical methods that empiri-
cally associate drivers with impacts (Vogel et al., 2021). Eas-
ily interpretable linear regressions in that context can be use-
ful tools, in particular when fitted with alternative methods
that allow for the consideration of a large number of poten-
tial predictors (i.e. subset selection, shrinkage or dimension
reduction approaches) (Ben-Ari et al., 2018; Carter et al.,
2018a; Laudien et al., 2020; Vogel et al., 2021).

Here, we analyse soybean yields and climate time series
for the US at the county scale from 1982 to 2016 using re-
gression models that are fitted with a reduced set of vari-
ables selected via a subset selection approach. The aim is to
identify (1) the combination of climatic conditions affecting
soybean yields at different stages of the growing season and
(2) potential interaction effects between drivers modulating
the final impact on yield. Furthermore, we study (3) trends in
the identified dominant climate drivers from 1946 to 2016 to
assess how historic trends likely affected soybean production
risk. Finally, we explore (4) how temperature and moisture
coupling differs within the growing season between hot–dry
summers and normal summers. We discuss how that poten-
tially affects the occurrence of compound hot–dry extremes
and the associated crop impacts.

2 Data and methods

2.1 Soybean yields, climate and hydrological data for
the US

Soybean yields are analysed at the county scale for the 1982–
2016 period, based on census data obtained from the US De-
partment of Agriculture (USDA) National Agriculture Statis-
tics Survey (NASS) Quick Stats database (http://www.nass.
usda.gov/Quick_Stats, last access: 1 March 2021). Counties
are selected using the following criteria: (i) no missing data
for the full 35 years analysed, (ii) common planting dates (i.e.
April–May) and (iii) a production area share of at least 90 %
rainfed agriculture. Consequently, a total of 389 counties are

Earth Syst. Dynam., 12, 1371–1391, 2021 https://doi.org/10.5194/esd-12-1371-2021

http://www.nass.usda.gov/Quick_Stats
http://www.nass.usda.gov/Quick_Stats


R. Hamed et al.: Impacts of compound hot–dry extremes on US soybean yields 1373

retained for the regression analysis (Fig. 1). Combined, these
account for at least 50 % of the total US rainfed soy produc-
tion, where production per county is calculated as the average
production over the 1982–2016 period. In the study region,
planting dates are aligned to provide comparable crop growth
stages between counties. This facilitates the interpretation of
climate sensitivities associated with timing within the grow-
ing season. Information on the soybean growing season and
rainfed vs. irrigated agricultural land cover is obtained from
the monthly irrigated and rainfed crop area database around
the year 2000 (MIRCA2000), a global gridded dataset at a
0.5◦ resolution (Portmann et al., 2010). The percent of rain-
fed area is calculated by dividing the rainfed area in each grid
cell by the total harvested area for each cell (Schauberger et
al., 2017a). A linear trend is removed from yield values at
the county scale to eliminate long-term effects largely due to
technological improvements over the study period (Fig. S1)
(Li et al., 2019; Zipper et al., 2016).

Global hydrological and weather datasets are used for
this analysis. This provides the possibility to conduct sim-
ilar assessments in other parts of the world whenever im-
pact data are available. Nevertheless, other studies can bene-
fit from leveraging local climate and hydrological data when
available for better representativeness. The root zone soil
moisture (SMroot) variable (m3/m3) is obtained from the
modelled GLEAM v3.3a dataset that incorporates an ob-
served satellite-based soil moisture data assimilation system
(Martens et al., 2017). The dataset is available at a 0.25◦

grid resolution and a daily time step that covers the period of
study (1982–2016). Weather data, namely maximum (Tmax)
and minimum (Tmin) temperature (◦C) in addition to precip-
itation (mm), are obtained from the bias-adjusted WFDE5
reanalysis covering the same period (1982–2016) at a daily
time step and a 0.5◦ grid resolution (Cucchi et al., 2020).
Daily precipitation is further processed into the number of
days with precipitation above 20 mm (Num_pr20) to explic-
itly account for the potential negative effects of excessive
precipitation on yield (Li et al., 2019; Zhu and Troy, 2018).
All variables are temporally aggregated to monthly and sea-
sonal windows over the early (April–May), mid (June–July–
August) and late growing season (September–October) pe-
riods. Additionally, variables are spatially aggregated to the
county scale based on county boundary maps of the 2016
US Census Bureau. A summary of the considered variables
for the modelling analysis is presented in Table 1. Dividing
the growing season by calendar months allowed for the iden-
tification of key phases throughout the season where soy-
bean crops are most sensitive to climate variability. These
can reflect both vulnerable physiological crop growth stages
and important climatic thresholds. We could have used a
more complex characterization of crop developmental stages
based on phenological heat units (Schauberger et al., 2017b)
or the consideration of sub-monthly aggregation periods for
climatic time series, but these did not necessarily improve
model performance in other assessments; therefore, we opted

to simply rely on monthly and seasonal estimates (Ben-Ari et
al., 2016; Ortiz-Bobea et al., 2019; Sharif et al., 2017). Full
growing season averages have been tested as potential pre-
dictors, but these did not improve modelling results and have,
therefore, been omitted from further analysis. Thus, we ex-
clusively focus on within-season crop climate sensitivities.

2.2 Simulating yield variability

We used regression models to estimate yield variability at
the county scale. Typically, three types of statistical mod-
els are used in such assessments (i.e. time series, panel and
cross-sectional models) (Lobell and Burke, 2010). Here, we
opted for time series models as these are (i) easy to inter-
pret, (ii) often perform well compared with the other ap-
proaches, and (iii) allow for spatially heterogeneous param-
eter estimation that may highlight important local and re-
gional features (Gornott and Wechsung, 2016). Out of all
possible models constructed with a single input variable at
the county scale, we selected the most influential moisture-
and temperature-related variables per county based on the
Bayesian information criterion (BIC) (Ben-Ari et al., 2018).
This was done separately for the early (April–May), mid
(June–July–August) and late growing season (September–
October) periods, considering both monthly and seasonal ag-
gregates for each; thus, we ended up with a subset of the six
best predictors for each county. Finally, we applied a step-
wise selection procedure to identify the best combination of
these input variables, with and without interactions, picking
the model with the lowest BIC value at county level (Ben-
Ari et al., 2018). The stepwise approach considers all se-
lected variables and all possible interactions (i.e. products
of all possible pairs of selected predictors). The procedure
is then to start from a model with no predictors, sequentially
adding and removing predictors until only a subset is left, re-
sulting in the most parsimonious model with the lowest pre-
diction error on training data (see the “step.lm” function of R,
version 3.6.1). The performance of the resulting model was
evaluated using the coefficient of determination (R2). Fur-
ther robustness tests with respect to both predictor selection
and model performance are detailed in the following subsec-
tion. A summary of the modelling framework is presented in
Fig. 2.

2.3 Validating performance and testing modelling
assumptions

To test the robustness of the model performance and the se-
lected predictors, we applied a two-level leave-one-out cross-
validation scheme (LOOCV) (Laudien et al., 2020). Level
one (LOOCV-1) consisted of training county-scale models
on reduced datasets. These are constructed by iteratively re-
moving the year to be forecasted and predicting the one out-
of-sample value using a set of predictors per county selected
with the complete dataset. Level two (LOOCV-2) is simi-
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Figure 1. Average total production in tonnes over the period of study (1982–2016). Counties with 35 years of data are highlighted with a
thin black perimeter. Grey regions represent filtered out counties where local agriculture is less than 90 % rainfed.

Table 1. Climate variables calculated at seasonal and monthly timescales throughout the growing season.

Variable abbreviation Variable explanation Type Unit

Tmin Average minimum temperature Temperature related ◦C
Tmax Average maximum temperature Temperature related ◦C
Num_pr20 Number of days with precipitation above 20 mm Moisture related Days (d)
SMroot Root zone soil moisture Moisture related m3/m3

lar but repeats the predictor selection step for every itera-
tion. This way, we completely eliminated information shared
between the training and validation sets. Furthermore, we
calculated how often selected predictors are chosen across
each iteration in the cross-validation procedure of LOOCV-2.
Both of the respective elements provide a more robust model
performance estimate and predictor selection step. The ad-
equacy of applying linear models at the county scale for
assessing the relationship between yield anomalies and se-
lected predictors was successfully assessed using five statis-
tical tests (Gornott and Wechsung, 2016; Schauberger et al.,
2017b): the Ramsey regression equation specification error
test (RESET) assessed whether taking the powers of the pre-
dictor variables would improve the model fit; the Breusch–
Pagan test examined heteroscedasticity issues with the data;
the Breusch–Godfrey test was used to the assess autocorrela-
tion; the Shapiro–Wilk test was used to examine normality of
residuals; and multicollinearity was checked using the vari-

ance inflation factor (VIF) calculated for each independent
variable while setting acceptable levels to strictly below 3.

2.4 Changes in key climatic conditions from 1946 to
2016

Historic trends in the dominant climatic drivers were as-
sessed for the 1946 to 2016 period using linear regressions
(0.05 significance level). Furthermore, we assessed changes
in concurrent hot–dry summer conditions, as these were
shown to be particularly relevant for soybean production. The
selected input datasets used in the crop-modelling analysis
do not cover years preceding 1981. To overcome this limi-
tation, we used precipitation, number of wet days, and tem-
perature minimum and maximum variables from the CRU
v4 global dataset (Harris et al., 2020) covering the 1901–
2019 period at a spatial resolution of 0.5◦. The number of
wet days in the early season was used as a proxy for the
number of days in the early season with precipitation above
20 mm. Mean summer precipitation over June–July–August–
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Figure 2. Overall modelling workflow applied for this study, linking US yields to weather and climate variables.

September was used as a proxy for August–September av-
eraged root zone soil moisture. To check the feasibility of
these assumptions, we calculated correlation maps between
GLEAM August–September averaged root zone soil mois-
ture and CRU averaged summer precipitation and between
the WFDE5 number of spring days with precipitation above
20 mm and the CRU number of wet spring days for the 1982–
2016 period. The mean Pearson correlation coefficient over
the whole spatial domain was 0.66 for summer precipitation
and root zone soil moisture and 0.83 for number of wet spring
days and number of wet days above 20 mm (Fig. S2). The
25th/10th or 75th/90th percentiles of summer precipitation
and August maximum temperature are used to jointly de-
fine the compound hot–dry events at the local scale. Accord-
ingly, we calculated the percent change per grid cell based
on the difference between the number of compound events
over two distinct periods (1946–1980 relative to 1982–2016)
normalized by the total number of events over the entire anal-
ysis period. The statistical significance of this percent change
was assessed using a non-parametric Wilcoxon rank sum test
(0.05 significance level). Moreover, we calculated a percent
(%) area time series of the total rainfed producing region un-

der compound hot–dry summer conditions by summing the
number of grid cells under such conditions for a given year
and dividing this value by the total number of grid cells con-
sidered, similar to the approach applied in Mazdiyasni and
AghaKouchak (2015). The trend in the aforementioned time
series was assessed with a non-parametric Mann–Kendall
trend test (0.05 significance level).

2.5 Exploring temperature and moisture coupling during
hot–dry summer events

To get insight into how key elements related to moisture and
temperature coupling differ during compound hot–dry sum-
mer years, we estimated the co-evolution of actual evapotran-
spiration, root zone soil moisture and maximum temperature
pairs composited into hot–dry events for the 1982–2016 pe-
riod. Hot–dry summer events in this case are defined as years
when more than 20 % of the total harvested area experiences
hot–dry conditions (using the 75th and 25th percentiles re-
spectively). Co-evolution of the considered variables was es-
timated by calculating the interannual correlation between
pairs of variables for a given month of the year, repeated over
the various calendar months (Seneviratne et al., 2010). This
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calculation incorporates data from all counties into the cor-
relation by first spatially averaging single variables over the
entire rainfed harvested area (Fig. 1) and then quantifying
the coupling. Moreover, we calculated the correlation at the
grid cell level between actual evapotranspiration and max-
imum temperature to show how this coupling can differ at
the local scale. Actual evapotranspiration (AET; in mm) is
retrieved from the GLEAM v3.3a dataset with the same tem-
poral and spatial resolution as the aforementioned root zone
soil moisture variable. AET within the GLEAM dataset is de-
rived from potential evapotranspiration model estimates mul-
tiplied by an evaporative stress factor based on observations
of the microwave vegetation optical depth (VOD) and root
zone soil moisture values.

3 Results

3.1 Overall model performance

Based on the selection procedure shown in Fig. 2, we identify
a set of non-redundant moisture and temperature variables at
different stages of the growing season that can best explain
yield variability at the county scale. These varied across the
spatial domain (Figs. A1, A2), with the dominant patterns
summarized as follows: excessive precipitation is highlighted
as the main driver of reduced soybean yields in the early sea-
son alongside low minimum and maximum temperature val-
ues; low soil moisture and high maximum temperature values
are highlighted as main drivers of reduced yields in the mid-
season, particularly for the months of August and September;
and, finally, low soil moisture and low minimum tempera-
ture values are highlighted as main drivers of reduced yields
late in the season (Fig. 3a). The trained regression models
at the county level with identified predictors are able to ex-
plain, on average, about two-thirds of the year-to-year yield
variability (70 % for all years and 60 % for LOOCV-1 pre-
dictions). Including the interaction terms in the fitted model
contributed to 10 % of the total 60 % explained variability on
LOOCV-1 predictions. Testing the model with the more con-
servative LOOCV-2, repeating the predictor selection step
at every iteration, lowers the model explained variability to
30 % (Fig. 3a). This reduced performance is expected in a
comparison with the results of studies that applied a simi-
lar robust leave-one-out cross-validation approach (Laudien
et al., 2020; Lehmann et al., 2020). Nevertheless, for ∼ 83 %
of the years, the LOOCV-2 model provides a correct year-
to-year direction of change as well as the sign of the yield
anomaly (i.e. positive or negative) (Fig. 3b). Furthermore,
the most frequently selected predictors and the associated
timing within the season across the training sets show high
consistency and good agreement with the predictors selected
on the full dataset (Figs. S3, S4, S5). This provides confi-
dence with respect to the choice of predictors. Overall, the
dominant crop yield drivers are August/September root zone
soil moisture and August maximum temperature, each se-

lected over more than 25 % of considered counties. The av-
eraged standardized beta coefficients for the aforementioned
variables report the highest absolute value of around 0.4 (i.e.
∼ 0.4 standard deviation change in soybean yields per stan-
dard deviation change in the predictor when excluding the
effect of interaction terms). Furthermore, interaction effects
between summer moisture and temperature variables are the
most frequently selected type of interaction (Fig. A3).

Spatially, the model is statistically significant (p value
< 0.05) for all considered counties (Fig. 3c) after adjusting
for multiple hypotheses testing using the false discovery rate
(FDR) method (Ventura et al., 2004). Yield variability is cap-
tured particularly well in southern counties (Fig. 3c), with
high performance represented by red shading (R2

∼ 0.8). On
the other hand, the model performs slightly more poorly in
northern counties, consistent with the results of Schauberger
et al. (2017b) where regional colder and wetter climatology
reduces soybean yield sensitivity to hot–dry conditions. In-
dividual diagnostic tests for models built at the county scale
show that autocorrelation and heteroscedasticity did not oc-
cur for the majority of individual models, whereas model
residuals are mostly normally distributed. RESET shows that
most models are properly specified, meaning that consider-
ing quadratic variables would not have improved the model
fit. Although quadratic associations between crop yields and
climatic variables are well established, these are often high-
lighted for seasonally averaged temperature and moisture
conditions (Ray et al., 2015). Dividing the growing season
into smaller periods in this study likely made these non-
linear associations less relevant. Finally, the VIF value is
strictly smaller than 3 for the majority of the models and vari-
ables considered, reflecting low multicollinearity concerns
(Fig. A4).

3.2 Spatial variability of model coefficients

The spatial variability of crop yield sensitivities to the se-
lected predictors is depicted in Fig. 4a–f. It shows county-
based standardized model coefficients and the associated
patterns across the spatial domain for both moisture- and
temperature-related variables and for the early, mid and late
season. Specifically selected predictors and their associated
timing within the season per county are shown in Figs. A1
and A2.

The early season mainly reports a negative relationship
between yield and moisture variables (Fig. 4a) across the
majority of the spatial domain, in line with Ortiz-Bobea et
al. (2019). The most frequently selected predictor is the num-
ber of days with precipitation above 20 mm, which is used
as a proxy for excessive rain (Figs. 3a, A1). The signal is
particularly strong and significant near Iowa and Minnesota,
where soils are generally poorly drained (i.e. high clay frac-
tion, low saturated hydraulic conductivity) (Li et al., 2019).
The temperature-related variable in the early season (Fig. 4b)
shows a positive relationship with yields, and this can reflect
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Figure 3. (a) Summary of the strength and frequency of selected predictors across the growing season. (b, c) Explained variance (R2) of
yield anomalies due to climate variability, (b) spatially averaged and (c) at the county scale. The stippling in panel (c) shows F tests, with
p < 0.05 indicating that the model chosen is significantly better than a null model (accounting for the false discovery rate due to multiple
hypotheses testing).

both minimum and maximum temperature (Fig. A1). During
the mid-season, temperature-related variables negatively af-
fect soybean yields across the spatial domain. The exceptions
are the northern states (north of Iowa and Illinois), where
the sensitivity is reversed and a higher temperature leads to
positive effects on yield (Fig. 4d). The selected variable for
the negative sensitivity (for southern states) refers mostly to
maximum temperature in August, whereas the positive sensi-
tivity (for northern states) refers mostly to minimum temper-
ature in June and July (Figs. A1, A2). Moisture-related vari-
ables have a strong positive influence on yields both in the
mid-season and late season (Fig. 4e). In particular, selected
predictors are predominantly soil moisture variables in Au-
gust and September. Temperature sensitivities in the late sea-
son show mostly positive effects on yield, except for counties
in south-eastern states which show strong negative sensitivi-
ties (Fig. 4f). The selected late-season temperature predictor
is predominantly minimum temperature for the positive asso-
ciations and September maximum temperature for the nega-
tive associations over southern states (Figs. A1, A2). Fur-
thermore, interaction terms between summer soil moisture
and temperature variables are included in ∼ 10 % of the con-
sidered counties across the spatial domain (Fig. A3). These
interaction effects imply that the impact of summer temper-
ature on crop yields significantly depends on the concurrent
soil moisture levels in those areas. The negative effects of
high temperatures are amplified during dry conditions and

alleviated during wet conditions (see Sect. 3.3). Moreover,
another interaction term is picked up, albeit less pronounced,
between maximum August temperature and end-of-season
minimum temperature mostly within Iowa (Fig. A3). This
might reflect increased impacts whenever anomalously hot
conditions in peak summer are followed by anomalously cold
conditions in September–October. The optimal temperature
for crop photosynthesis fluctuates due to the capacity of the
crop to seasonally adjust its physiological response to tem-
perature (Kumarathunge et al., 2019). It follows that consis-
tent high temperature within the growing season can make
crops more productive at higher temperatures. The abrupt
change in temperature conditions from hot to cold further
stresses crops and reduces the potential positive effects of
crop temperature acclimation (Butler and Huybers, 2013;
Carter et al., 2016).

3.3 Compound hot–dry events and their associated
impacts

Our results show that soybean production in southern
regions is particularly sensitive to the co-occurrence of
high August/September maximum temperature and low Au-
gust/September soil moisture (Fig. A3). The co-occurrence
of low soil moisture (5th percentile) and high temperature
conditions (95th percentile) triggers the largest crop failures
estimated at −2 standard deviations (calculated using the
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Figure 4. Region- and season-specific estimated sensitivity coefficients for soybean yield and selected predictors. The stippling indicates
statistical significance from a t test at the 95 % confidence level. Values of coefficients are interpreted as the change in soybean yield standard
deviation from a 1-standard-deviation change in the considered independent variable. Temperature-related variables can refer to either Tmin
or Tmax depending on the selected variable in a given county. Similarly, moisture-related variables can refer to either SMroot or Num_pr20.
Finally, for each seasonal bracket (i.e. early, mid or late), the selected time resolution for each variable can either be a seasonal aggregate or
the value for a specific month within that bracket. We refer the reader to Figs. A1 and A2 in the Appendix for a more detailed account of the
selected variables per county.

spatially averaged model coefficients for August tempera-
ture, soil moisture and the interaction term). Extreme August
hot–dry conditions (i.e. simultaneously exceeding the 95th
and 5th percentiles of temperature and soil moisture respec-
tively) lead to 4 times more crop yield impacts than extreme
hot conditions alone (i.e. 95th and 50th percentiles of tem-
perature and soil moisture respectively) and 3 times more
impacts than extreme dry conditions alone (i.e. 50th and 5th
percentiles of temperature and soil moisture respectively).
These results are qualitatively similar when we replace Au-
gust with September soil moisture. To further illustrate the
implication of including interaction terms, we focus on Illi-
nois in the following.

Illinois is the largest soybean producing region in the US
and includes a large ratio of counties where summer moisture
and temperature interactions are included in locally speci-
fied models (Fig. A3b). Figure 5a shows pooled yield ob-
servations for Illinois (points) as well as model predictions
(contour lines) for various values of August root zone soil
moisture (y axis) and August maximum temperature (x axis).
Qualitatively similar results are obtained when we replace
August with September root zone soil moisture. The coef-
ficients for the sensitivity of soybean yields to August hot–
dry conditions in Fig. 5 are obtained from averaging all re-
gression coefficients (i.e. for August temperature, soil mois-

ture and the interaction term) from all county-specific models
within Illinois (i.e. 51 individual models/counties).

Yield is shown to decrease for increasing hot–dry condi-
tions in both the observations and model predictions. In par-
ticular, the bottom-right corner of Fig. 5a (representing the
August temperature and soil moisture values above and be-
low the 50th percentile respectively) contains 75 % of all ob-
served low yields (defined as below 1 standard deviation).
When interaction terms were included, the LOOCV-1 model
performance improved by 17 % for Illinois. In particular, we
estimate that the compounding impact of hot–dry conditions
(i.e. 95th and 5th percentiles of temperature and soil moisture
respectively) in August leads to an additional crop loss of
0.6 standard deviations compared with a model that includes
all selected predictors but no interaction terms. On the other
hand, the effects of extreme hot–wet conditions (95th per-
centile for both temperature and soil moisture values) leads
to a 0.5 standard deviation positive increase in crop yield esti-
mates when including interaction terms. This non-linearity is
visualized in Fig. 5b, which shows the model-derived yield
sensitivities to temperature for different levels of root zone
soil moisture (i.e. 5th, 50th and 95th percentiles). The as-
sociation between yield and August maximum temperature
is strongly negative for extremely dry conditions (brown
dashed line) and slightly positive for extremely wet condi-
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Figure 5. (a) Contour lines for modelled yield anomalies under varying levels of standardized August maximum temperature and root zone
soil moisture in Illinois state. Points represent observed yield values. The colour scale to the right is in units of standardized yield anomaly.
(b) The sensitivity of the Illinois US yield anomaly to temperature change for three different root zone soil moisture percentiles (5th, 50th
and 95th).

tions (blue dashed line). This highlights the importance of
accounting for interaction effects when estimating compound
impacts on crops. The yield response to hot–wet conditions
is, nevertheless, subject to high uncertainty (see the shaded
uncertainty range in Fig. 5b), as these conditions do not occur
often and are represented by few observations (upper-right
corner of Fig. 5a). The rarity of these events is expected own-
ing to the negative correlation between moisture and temper-
ature over summer (Zscheischler and Seneviratne, 2017). It
follows that wet conditions generally limit exposure rather
than sensitivity to very high temperature. Nevertheless, tem-
perature sensitivities during wet conditions are significantly
different from those during dry conditions (Fig. 5b).

3.4 Changes in compound hot–dry events from 1946 to
2016

Linear trends in summer precipitation (June–July–August–
September, JJAS) over the period from 1946 to 2016 show
significant increases, particularly over the Midwest region
(Fig. 6b). Only south-eastern states show significant drying
trends. Maximum August temperature trends show signifi-
cant cooling over the Midwest region but warming for north-
eastern, north-western and southern states (Fig. 6a). More-
over, early- and late-season minimum temperature trends in-
dicate warmer conditions across the spatial domain, whereas
the early-season number of wet days trend indicates wetter

conditions in spring (see Fig. A5). Although summers gener-
ally got wetter and cooler in the eastern part of the Midwest
and the north-eastern US regions, the percent change in the
number of concurrent hot and dry summer months (i.e. 90th
and 10th percentiles of August maximum temperature and
summer precipitation respectively) between 1946–1980 and
1982–2016 shows an increase in frequency here (Fig. 6c).
This might have implications, as compound hot–dry events
appear to have increased in frequency in highly productive
regions, despite the apparent cooling and wetting patterns
identified by univariate trends.

Time series of the percent production area experiencing
concurrent hot and dry conditions reflects the spatial extent
of such conditions over the years (Fig. 6d). The black dashed
line represents a threshold set at 20 %, which is exceeded by
a number of years (i.e. 1947, 1948, 1953, 1954, 1955, 1956,
1959, 1976, 1980, 1983, 1984, 1988, 1991, 1995, 2003,
2006, 2007 and 2012) when using the 75th/25th percentile
hot–dry time series. More than 60 % of those years coin-
cide with La-Niña-like conditions, which have been shown
to impact US crop production (Anderson et al., 2019; Iizumi
and Sakai, 2020). Moreover, we note a high frequency of
large-scale hot–dry events during specific periods such as the
1950s and 1980s. These segmented periods of high-intensity
events suggest a potential important role of decadal climate
variability in the occurrence of hot–dry conditions. These
can be related to low-frequency sea surface temperature vari-
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Figure 6. (a) Linear regression slope of August maximum temperature. (b) Linear regression slope for summer (JJAS) precipitation. (c) Per-
cent (%) change in concurrent dry (summer JJAS precipitation < 10th percentile) and hot (August maximum temperature > 90th percentile)
conditions during 1982–2016 relative to 1946–1980. (d) Time series of percent production area under hot and dry conditions. Trends in Pan-
els (a), (b) and (d) are calculated for the period from 1946 to 2016. The stippling in panels (a), (b) and (c) indicates statistical significance
at the 95 % confidence level. The p values in panel (d) correspond to the Mann–Kendall monotonic trend test. The black dashed line in
panel (d) represents a 15 % threshold marking years with a large (> 15 %) hot–dry spatial extent.

ations, such as the Pacific decadal oscillation (PDO), that
have been shown to have an influence on local precipitation
and temperature levels over the eastern US (Vijverberg et
al., 2020). A large fraction of the production area experienc-
ing hot–dry conditions creates risks for country-level agri-
cultural production, as regions are no longer able to balance
out losses at the local scale. Here, again, despite the domi-
nant cooling and wetting trends over the US (Fig. 6a, d), no
significant upward or downward trend was found in the frac-
tion of the US experiencing hot–dry conditions over time for
both the 75th/25th and 90th/10th time series.

3.5 Temperature and moisture coupling during hot–dry
summer events

To better understand why compound hot–dry conditions have
not changed, despite significant trends towards wetter sum-
mers and cooler August maximum temperatures, we anal-

yse local land–atmosphere coupling. It has been hypothe-
sized that the actual evapotranspiration decreases under dry
conditions, cancelling the land-change-induced cooling ef-
fect and prompting a return to historic high temperature ex-
tremes (Mueller et al., 2016). Interannual correlations be-
tween root zone soil moisture (SMroot), maximum temper-
ature (Tmax) and actual evapotranspiration (AET) pairs for
a given month of the year, repeated over the various calen-
dar months, are used to estimate the coupling strength during
hot–dry summer years and normal summer years. The subset
of hot–dry events in this case is constructed from years when
more than 20 % of the total harvested area experiences hot–
dry conditions, defined using the 75th and 25th percentiles
of August maximum temperature and summer precipitation
(JJAS) respectively (i.e. years when the orange line is above
the dashed black line in Fig. 6d).
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Figure 7. Interannual correlation between various pairs of temperature and moisture variables for a given month of the year, repeated over
the various calendar months, conditioned on hot–dry events. Dots indicate statistical significance at the 95 % confidence. Shaded regions
represent important differences in the coupling that can play a critical role in the development of hot–dry events.

We observe that hot–dry summer years are characterized
by a stronger negative coupling between soil moisture and
temperature during spring (April–May) compared with a typ-
ical year (Fig. 7a). We interpret this negative coupling as in-
dicative of warmer and drier springs. These conditions cre-
ate a stronger negative coupling between evapotranspiration
and soil moisture, as evapotranspiration rates are enhanced
by warmer temperatures, which, in turn, rapidly depletes soil
moisture reserves (Fig. 7b). The point where the sign of the
coupling between evapotranspiration and soil moisture shifts
reflects a critical moment in the system at which soil mois-
ture becomes limiting. We observe that this regime shift is
much more pronounced during hot–dry years (i.e. stronger
negative coupling in April–May and stronger positive cou-
pling in July–August) (Fig. 7b). June is a transition month.
The moment of the regime shift (around June) coincides with
the cessation of the spring coupling between evapotranspi-
ration and temperature during hot–dry years (Fig. 7c). We
interpret this cessation of the coupling between evapotran-
spiration and maximum temperature as an indicator of the
total depletion of moisture in the soils; thus, extra energy
(via higher temperatures) cannot lead to more evaporation.
We are consequently in a moisture-limited land–atmosphere
coupling regime. During normal years, significant coupling
between evapotranspiration and maximum temperature still
exists in July–September, indicating that the soils are not
fully depleted. Spatially, the cessation of the land-surface-
induced cooling effect is present over most of the soybean
harvesting region from June to September for hot–dry years

(Fig. A6). To summarize, we show that hot–dry summer
events are associated with warmer and drier springs. These
conditions favour the fast and intense depletion of soil mois-
ture. Dry soils limit the evaporative cooling effect, as cap-
tured by the annulled co-variability between actual evapo-
transpiration and temperature, leading to amplified hot and
dry conditions in summer (Fig. 7c). This provides evidence
to support the initial hypothesis that highlights the important
role of land–atmosphere feedbacks in explaining the absence
of a trend in hot–dry summer events despite summer wetting
and cooling trends over the soybean production region in the
US.

4 Discussion

Predictors are determined statistically here; nevertheless, we
aimed for a restricted set of moisture and temperature vari-
ables for all US counties in order to facilitate the physical
interpretation of climatic drivers affecting soybean yield vari-
ability. This is in line with other studies that constructed
semi-empirical crop models relying on a statistical frame-
work driven by well-known physiological variables (Ben-Ari
et al., 2018; Gornott and Wechsung, 2016; Schauberger et al.,
2017b). The frugal approach that we used to select predictors
implies that potentially useful and physiologically relevant
variables such as radiation and vapour pressure deficit are
omitted. Although their effects can be implicitly accounted
for in the temperature and moisture variables used, light ex-
posure, for instance, certainly plays a key role in crop pro-
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ductivity (Farquhar et al., 2001; Rigden et al., 2020). Never-
theless, the choice is made because the least-squares model
fit is highly sensitive to the ratio of predictors to the number
of observations (James et al., 2013). Ideally, crop observa-
tions (35 here) should be much larger than the number of pre-
dictors to avoid the risk of overfitting. Furthermore, including
highly correlated predictor variables (e.g. radiation and tem-
perature) affects the model parameter estimation and com-
plicates the physical interpretation of drivers. Future studies
can disentangle these mechanisms for a more detailed data-
driven assessment of climate and crop yield sensitivities. It is
also possible to use more complex machine learning models,
such as random forests, although these often tend to obscure
result interpretation and do not always lead to improved pre-
dictions (Vogel et al., 2019, 2021). Note that non-climatic
seasonal influences on crop yields are ignored in this study.
These include planting densities, sowing dates, fertilizer ap-
plications and other socio-economic factors. This simplifica-
tion was made because it was not possible to obtain spatially
explicit time series to represent these elements in our anal-
ysis (Schauberger et al., 2017b). Moreover, some of these
factors were shown to not necessarily improve model per-
formance in a case study done on crop yields in Germany
(Gornott and Wechsung, 2016). Nevertheless, future studies
should include these variables in the analysis whenever spa-
tially explicit long time series are available, as climate has
been shown to influence seasonal management practices for
farmers in the US (Carter et al., 2018b).

We found that soybean yields were predominantly im-
pacted by heat and drought conditions occurring during
the vulnerable summer crop reproductive stage. In particu-
lar, August and September months were highlighted as key
months for soybean production, in line with results from pre-
vious studies (Mourtzinis et al., 2015; Ortiz-Bobea et al.,
2019; Zipper et al., 2016). Furthermore, we noted a signif-
icant interaction effect between the summer maximum tem-
perature and soil moisture variables that modulated the final
impact on yield. Drought and heat induce different growth
inhibition patterns that can act simultaneously to reduce crop
photosynthetic rates and eventual yield levels (Suzuki et al.,
2014). August mean maximum temperature was found to
be negatively associated with soybean yields for values ex-
ceeding 30 ◦C (i.e. average August maximum temperature
value for a large part of the considered counties). This is
in line with other studies that have reported a non-linear as-
sociation between soybean and temperature: the relationship
is mildly positive up until 30 ◦C and then declines sharply
due to heat stress (Schauberger et al., 2017a; Schlenker and
Roberts, 2009). Moreover, we found that this relationship
was dependent on concurrent soil moisture conditions where
wet soils dampen the negative effect of high temperatures
on yield via evaporative cooling. This result is also sup-
ported by previous studies that have reported the decoupling
effect of irrigation on the relationship between heat stress
and yield (Carter et al., 2016; Schauberger et al., 2017a;

Schlenker and Roberts, 2009; Siebert et al., 2017; Troy et
al., 2015). On the other hand, low moisture levels induce
stomatal closure which leads to reduced latent heat flux and
an increase in canopy temperature well above atmospheric
temperatures, thereby increasing the crop sensitivity to hot
conditions (Carter et al., 2016; Siebert et al., 2017). Such
dependency highlights the important need to account for
both variables simultaneously when assessing their impacts
on crop yield variability (Carter et al., 2018a; Leng et al.,
2016; Siebert et al., 2017; Suzuki et al., 2014). Our analy-
sis further reported early-season excessive precipitation and
minimum and maximum temperature conditions in addition
to late-season minimum temperature as important drivers of
soybean yield variability. Early-season excessive precipita-
tion sensitivity likely reflects damaging plant field establish-
ment conditions related to restricted root development, nutri-
ent leaching and disease susceptibility (Li et al., 2019; Ortiz-
Bobea et al., 2019). High minimum and maximum tempera-
ture in the early season being positively associated with yield
can imply both a reduced frost risk as well as a potentially
longer growing season where soybean yield potential is max-
imized (Bastidas et al., 2008; Mourtzinis et al., 2019). End-
of-season frost has also been reported to be an important risk
factor for soybean crops, particularly in the northern states,
and we interpret the predictor of minimum temperature dur-
ing September and October as reflective of such conditions.
These identified drivers of impact can serve as a basis for
effective early-warning systems that provide valuable infor-
mation to decision makers (Merz et al., 2020). Acting in ad-
vance can be critical to avoid crop loss and the associated
socio-economic consequences. For instance, a short period
of drought during the reproductive stage has been reported
to cause non-reversible damage to soybean yields (Daryanto
et al., 2017). Hot and dry conditions in the eastern US over
summer have been shown to be forecastable at long lead
times (∼ 50 d ahead), associated with sea surface tempera-
ture anomalies over the northern Pacific Ocean (McKinnon
et al., 2016; Vijverberg et al., 2020). Hence, future work can
further explore the link between drivers of compound haz-
ards impacting yields in order to facilitate the development
of actionable tools for stakeholders.

We showed that historic changes in climate have not in-
creased the overall climate risk for rainfed soybean produc-
tion in the US. This is in line with other studies that looked
at the effect of historic climate trends on soybean and maize
yields in the US (Butler et al., 2018; Ray et al., 2019). This
is particularly the case in the most northern states, where
the occurrence of compound hot–dry events has mostly de-
creased (Fig. 6d). These regions are characterized by a pre-
dominantly energy-limited summer regime, where the role of
soil moisture in related land–atmosphere feedbacks is lim-
ited (Seneviratne et al., 2010). These northern states also
showed reduced sensitivity to high temperatures over sum-
mer (Fig. 4d) which in line with Lesk et al. (2021), who
highlighted reduced soybean yield sensitivity to temperature
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in energy-limited regimes at the global scale. Interestingly,
soybean production regions have also shifted to the north-
west in the US, taking advantage of such changes in climate
(Sloat et al., 2020). The increasing trend in the number of wet
days during spring can lead to a detrimental change for rain-
fed soybean production. Nevertheless, Lesk et al. (2020) re-
cently highlighted that the association between heavy rainfall
and US crop yields can be different and more complex when
studied at a sub-daily resolution, emphasizing that further in-
vestigation of this topic is needed. The summertime cool-
ing is a well-documented phenomenon over US agricultural
regions and is attributable to agricultural intensification in
the region, although other driving processes such as decadal
variability and aerosol emissions also play a role (Alter et
al., 2018; Lesk and Anderson, 2021; Mueller et al., 2016;
Nikiel and Eltahir, 2019). With respect to the role of agricul-
ture, a higher density of crops supported by increasing fertil-
izer rates leads to higher evapotranspiration rates which, in
turn, induce large-scale evaporative cooling and contribute
to increasing precipitation (Basso et al., 2021; Mueller et
al., 2016). Nevertheless, we highlighted that compound hot–
dry events seem to have increased in frequency recently in
key production regions like Illinois, despite the absence of a
summer-mean drying or warming trend. Potentially, the ac-
tual evapotranspiration decreases during dry conditions, can-
celling the land-change-induced cooling effect and prompt-
ing a return to historic high temperature extremes (Mueller
et al., 2016). We illustrated this mechanism by analysing the
evolution of land–atmosphere coupling within the growing
season, captured by interannual correlations between root
zone soil moisture (SMroot), maximum temperature (Tmax)
and actual evapotranspiration (AET) pairs for a given month
of the year, repeated over the various calendar months. We
interpreted positive correlation values between actual evap-
otranspiration and maximum temperature as indicative of
a general land-surface-induced cooling effect. During hot–
dry years, this evaporative cooling ceased at the onset of
summer months. We showed that this was associated with
stronger negative coupling between evapotranspiration and
soil moisture and between soil moisture and temperature in
spring. Such conditions lead to fast soil moisture depletion
and favour a moisture-limited regime that amplifies extreme
hot–dry summer conditions and associated impacts on soy-
bean yields (Sippel et al., 2016). Although we showed that
warmer and drier springs lead to higher yields, potentially
connected hot–dry summer conditions lead to disproportion-
ately negative impacts on final crop yields. Future risk as-
sessments should account for such non-linear effects. Over
the US Midwest, climate models project warmer summers,
which are likely to enhance the coupling between moisture
and temperature via land–atmosphere feedbacks, leading to
a possible increase in the amplitude and frequency of com-
pound hot–dry conditions (Cheng et al., 2019; Zscheischler
and Seneviratne, 2017). Although annual precipitation lev-
els are expected to remain constant or even increase, climate

models generally project increased dry day length and de-
creased summer soil moisture levels (Dai, 2013; Dirmeyer et
al., 2013; Wuebbles et al., 2014a, b). Future research should
quantify whether such trends could lead to an increase in
hot–dry summer months in the future. Nevertheless, high
uncertainty remains with respect to atmospheric dynamical
changes including quasi-stationary Rossby waves which are
a key driver of hot–dry conditions in the eastern US as well as
in other mid-latitude regions (Di Capua et al., 2020; Coumou
et al., 2014; Kornhuber et al., 2019; Shepherd, 2014; Winter
et al., 2015). Until such contradictions are resolved, the fu-
ture impacts of climate change on US agricultural production
remain uncertain. The storyline approach has been proposed
as an important tool to illustrate such epistemic uncertainty
and can be explored in future studies with important conse-
quences for current and future policy and decision-making
(Shepherd, 2019).

Here, we focused on local types of compound events; how-
ever, the global food supply is highly dependent on produc-
tion in various countries. Spatially compounding events will
be important to study in future assessments in order to un-
derstand the large-scale risk associated with “breadbasket
failures”. Here, we qualitatively identified that a consider-
able number of the large-extent hot–dry conditions occurring
over the US coincide with La-Niña-like conditions. These
are also highly influential over the South American continent
where soybean production (including the US) accounts for
more than 80 % of total global supply (Anderson et al., 2017;
Iizumi and Sakai, 2020; Wellesley et al., 2017). Other exam-
ples of teleconnections are mid-latitude Rossby waves, par-
ticularly wave number 5, which has phase-locking behaviour
in the Northern Hemisphere mid-latitudes driving simulta-
neous summer positive temperature anomalies over the US
Midwest, eastern Europe and east Asia (Kornhuber et al.,
2019). This is particularly of concern to soybean production
when considering upcoming soybean hotspot production re-
gions such as Russia and the Ukraine (Deppermann et al.,
2018).

5 Conclusion

We presented a simple statistical framework that can iden-
tify climatic variables influencing soybean yield variability
in the US at specific moments within the growing season. We
found that compound hot–dry summer conditions lead to the
largest impacts on yield (i.e. beyond the estimated additive
effects of each respective stressor). Furthermore, we identi-
fied the early-season minimum and maximum temperature in
addition to precipitation, and the late-season minimum tem-
perature and soil moisture, to be important factors affecting
soybean yield in the US. Understanding of these seasonally
dependent crop sensitivities paves the way for more effective
early-warning tools that target timely drivers of yield vari-
ability throughout the growing season. The long-term cool-
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ing and wetting trend in summer, over large areas of our do-
main, has generally been beneficial for soybean. Neverthe-
less, we showed that the frequency of extreme hot–dry con-
ditions remained largely unchanged over the full region and
increased in key regions like Illinois where crops are espe-
cially sensitive to such extremes. Furthermore, we showed
that hot–dry events are characterized by stronger negative
spring coupling between evapotranspiration and soil mois-
ture and between soil moisture and temperature, leading to
fast soil moisture depletion in spring and a reversal in the
land surface cooling mechanism over summer, prompting
important soybean yield impacts. Given that climate models
project summer warming and general declines in soil mois-
ture (albeit with substantial uncertainty) for the Midwest,
crop sensitivities to compound hot–dry extremes are likely
to present important future risks for US soybean production.

Appendix A: Additional figures

Figure A1. Selected predictors per county based on the full dataset.
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Figure A2. Selected timing of predictors per county based on the full dataset.

Figure A3. (a) Standardized coefficients for interaction terms per county selected based on the full dataset. (b) Type of interactions selected
per county based on the full dataset.
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Figure A4. Diagnostic test results for the fitted models. Green indicates a “successful” test (i.e. no problem), whereas red indicates a rejection
of the respective H0 of no autocorrelation/heteroscedasticity/misspecification/multicollinearity/non-normality. Multicollinearity is checked
with the variance inflation factor and marked in red if any of the variables report a value > 3.
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Figure A5. Linear trends for the main identified drivers of soybean yield variability over the 1946–2016 period. The stippling indicates
statistical significance at the 95 % confidence level. Trends for moisture and temperature variables over summer are displayed in the main
text.

Figure A6. Interannual correlation between actual evapotranspiration and maximum temperature for a given month of the year conditioned
on hot–dry events and repeated for the period from June to September. Dots indicate statistical significance at the 95 % confidence level.
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