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S1 Summary

This supplementary material includes additional method de-
tails, as well as tables and figures supporting the findings pre-
sented in the main paper.

– Section S2: Additional information about the calcula-
tion of performance diagnostics

– Section S3: Additional information about the perfor-
mance shape parameter (σD) calibration

– Section S4: Additional information about the calcula-
tion of independence diagnostics

– Section S5: Additional information about the indepen-
dence shape parameter (σS) calibration

– Section S6: Additional information about the hierarchi-
cal clustering

– Section S7: Additional tables and figures

– Table S1: Table of performance shape parameter
(σD) values as calculated by the weighting method.

– Table S2: Table of weights, TCR, and warming per
model.

– Table S3: Table of temperature and TCR statistics
for the unweighted and weighted distributions.

– Table S4 [external csv file]: List of all CMIP6
models and ensemble members used in this study
as well as their institutions and DOIs.

– Table S5 [external csv file]: List of all CMIP5
models used in the study.

– Table S6 [external csv file]: List of all CMIP6 files
used in the study including version date and track-
ing ID for tractability. Model issues are constantly
updated and reported on the ES-DOC Errata page
(https://errata.es-doc.org/static/pid.html). They can
be accessed by searching for the tracking ID. For
multiple version dates with the same tracking ID
(in cases where more than one file exists for a given
setting) the most recent version date is relevant.

– Figure S1: Schematic of the performance shape pa-
rameter calibration.

– Figure S2 & S3: Model-model distance matrices.

– Figure S4: Similar to figure 5 but using a different
metric.

– Figure S5: Extended figure 2 showing all CMIP5
models.

– Figure S6: Extended figure 3b showing all four
combinations of scenarios and time periods.

– Figure S7: Extended figure 8a showing distribu-
tions from a bootstrap approach.

S2 Additional information about the calculation of
performance diagnostics

For a variable Xt
l which depends on a rolling horizontal in-

dex l = l (lat, lon) and a time index t the time aggregations
are calculated as follows. Climatology:

XCLIM
l =

1

t2− t1

t2∑
t=t1

(
Xt

l

)
, (S1)

Anomaly:

XANOM
l =XCLIM

l −
∑
l

(
wlX

CLIM
l

)
, (S2)

with
∑

lwl = 1 being the area weights for each grid cell.
Trend:

XTREND
l = TRENDt2

t=t1

(
Xt

l

)
, (S3)

with the TREND operator extracting the linear trend be-
tween t1 and t2 using ordinary least squares. Standard devi-
ation:

XSTD
l = STDDEVt2

t=t1

(
Xt

l − t ∗XTREND
l

)
, (S4)

with the STDDEV operator calculating the temporal stan-
dard deviation (1/(N − 1)

∑N
l (xl− x̄)2)1/2 from (tempo-

rally) de-trended data. A diagnostic is then calculated as the
area weighted root-mean-squared error between a model and
the observations:

d=

√∑
l

wl

(
XAGG, Model

l −XAGG, Obs
l

)2
, (S5)

with AGG denoting one of the time aggregations (CLIM,
ANOM, TREND, or STD). So far we have used a notation
which skipped some dependencies of d (and X) for simplic-
ity. For the next steps we will generalise it to include the
dependence on the model index i and the initial-condition
member index k, hence d= dki . Like stated in equation (2) in
the main paper, a mean diagnostic per model i is then given
by:

d′i =

∑K
k d

k
i

Ki
(S6)

Finally, consider multiple diagnostics indicated by the in-
dex a, which denotes the combination of variableX and time
aggregation AGG (e.g., tasCLIM), hence d′i = d′ai . The gen-
eralised distance Di is then given as the weighted mean of

https://errata.es-doc.org/static/pid.html
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Multi-model ensemble

Remove all members of
model mj from the ensemble

Iterate over sigmas

Iterate over models

Calculate the distances di 6=j to
this model (for each diagnostic)

Average initial-condition member
distances (Eq. (2) in the main paper)

Calculate the generalized dis-
tance Di 6=j and the weights per

model for a given sigma (Eq. (1))

Test if the removed model mj lies
in the 80 % range of the weighted

distribution in the target period

Test if the above is true
for at least 80 % of models

Select the smallest sigma for
which the above is fulfilled

Figure S1. Schematic of the performance shape parameter calibration

the diagnostics, where each diagnostic is normalised by its
median over all models:

Di =
∑
a

wad
′a
i

MEDIANi (dai )
, (S7)

with
∑

awa = 1 being the weights for each diagnostic
(see, e.g., figure 1 in the main paper).

S3 Additional information about the performance
shape parameter (σD) calibration

The performance shape parameter σD is a constant that trans-
lates the observation-model distances into model weights
(via equation (1) in the main paper). While different ap-
proaches exist to estimate this parameter, we here use a tar-

get specific calibration. This means that we use model infor-
mation from the target period (which in our case is in the
future) during the estimation process in order to avoid over-
confident weighted projections for the selected target. Using
only historical information might lead to overconfident re-
sults as a more skillful representation of the base state does
not necessarily translate into a more skillful representation
of the future as it would a priori assume that chosen diagnos-
tics are relevant for the projections (Sanderson et al., 2015a).
This means, in turn, that models can receive different weights
for different targets (such as mid-century temperature change
under SSP1-2.6 change versus end-of-century temperature
change under SSP5-8.5) even though the same diagnostics
are used in the historical period. This reflects the different
levels of confidence based on the properties of the target we
are interested in. Crucially, however, the rank of the models
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(i.e., the order from best to worst model in the ensemble) is
the same in every case and only the “strength” of the weight-
ing differs.

A schematic of the performance shape parameter (σD) cal-
ibration is shown in figure S1. A range of different sigma val-
ues are tested iteratively (ranging from 20 % to 200 % of the
median of the generalised model-observation distance Di)
and the smallest value (i.e., strongest weighting) for which
80 % of perfect models fall within the 10-90 percentile range
of the weighted target distribution is selected (Knutti et al.,
2017). The σD values for all combinations of diagnostics and
targets investigated in the main paper are summarised in ta-
ble S1.

Finally, we here summarize considerations regarding the
use of some future model information in the calibration of
σD and the subsequent skill test using CMIP5 (figure 3 in
the main paper), which also draws on the future (which might
arise questions of circularity):

– Firstly, it is important to remind ourselves that the main
information in the weights is always based on the com-
parison between models and the observations in the his-
torical period. In particular, the ranking of the models
(from best to worst) is determined solely by historical
information.

– Secondly, the parameter estimation does not aim at
maximizing (mean) skill but rather ensures that the re-
sults are not overconfident. To illustrate this point, con-
sider an example case of very badly chosen diagnostics
without any relationship to the target: in such a case,
any separation into better or worse models in the target
period based on the diagnostics is overconfident as it is
based on pure chance. The parameter calibration, there-
fore, leads to a very large σD value and, hence, to an
approximation of equal weighting. A subsequent test of
the weighting skill in the target period can then reveal
the actual increase in skill (or the lack thereof) given a
set of diagnostics, which was not the optimization target
of the performance shape parameter calibration.

– Thirdly, the pseudo-observations used for the skill cal-
culation of the full weighting (figure 3 in the main pa-
per) are drawn from the CMIP5 ensemble and have not
been used in the parameter calibration. However, several
models in CMIP6 are related to their CMIP5 predeces-
sors and are, therefore, not fully independent. Nonethe-
less, we argue here that the degree of dependence is very
limited due to several reasons:

– Models evolve with time and there are about eight
years of additional model development as well
as additional observations to tune to between the
CMIP5 and CMIP6 model generations. In particu-
lar, several CMIP6 models have been found to lead

to considerably stronger warming than their prede-
cessors and even then all the previous-generation
CMIP5 models in general.

– In the future period CMIP5 and CMIP6 are driven
by different emission pathways (RCPs and SSPs,
respectively) which lead to somewhat different ra-
diative forcings (Forster et al., 2020).

– For each CMIP5 pseudo-observation we exclude
the directly related CMIP6 models from the calcu-
lation as listed in table S5 to further increase the
independence.

S4 Additional information about the calculation of
independence diagnostics

One crucial consideration when dealing with multi-model
ensembles, such as CMIP6 or its predecessors, is the issue
of model independence. Already for CMIP3 Jun et al. (2008)
point out, that, for example, models from the same institu-
tion have highly correlated biases. They estimate the effec-
tive number of independent climate models to be consider-
ably lower than the about 25 models included in total. In a
2010 editorial Knutti (2010) picks up this topic, asking if this
should mean the “end of model democracy”. Subsequently,
many different approaches have been developed and tested
to account for model dependence in multi-model ensembles.
Some of them use background knowledge about the models’
origin (e.g., Leduc et al., 2016) or components (e.g., Boé,
2018), but in most cases the models’ output is used to infer
their degree of inter-dependence. While all of these meth-
ods share a similar goal, their approaches on how to identify
and quantify the degree of dependence arising from shared
parametrisations, code, or full components is somewhat di-
vergent. This is perhaps not surprising given that the notion
of independence is often not cleanly defined for climate mod-
els (Annan and Hargreaves, 2017).

Existing methods have used regional (e.g., Steinschnei-
der et al., 2015; Knutti et al., 2017; Lorenz et al., 2018;
Brunner et al., 2019; Amos et al., 2020; Merrifield et al.,
2020) or global (e.g., Masson and Knutti, 2011; Bishop and
Abramowitz, 2013; Knutti et al., 2013; Sanderson et al.,
2015a; Merrifield et al., 2020) model information for the es-
timation of model dependence. While the regional approach
might be able to identify dependencies which are more spe-
cific for a given target region (e.g., two models having the
same sea-ice component might lead to more dependence in
projections at high latitudes than for the tropics), it also
seams reasonable to interpret model dependence as a prop-
erty of the multi-model ensemble in use, which does not
change based on the target region so that both avenues have
their justifications. Similarly, methods differ in the variables
they use to derive model dependence, ranging from only a
single variable (e.g., Masson and Knutti, 2011; Bishop and
Abramowitz, 2013) to a basket of different variables (e.g.,
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Figure S2. Model-model distance matrix sij normalized by its median for (a) surface air temperature and (b) sea level pressure climatologies
between 1980-2014. Note the different colorbar-ranges in the panels.

Sanderson et al., 2015b; Knutti et al., 2017; Amos et al.,
2020). Also, the way these model output fields are interpreted
to translate them into a measure of model dependence differs
between methods. Two approaches that are frequently ap-
plied are based either on the model correlation (e.g., Bishop
and Abramowitz, 2013; Steinschneider et al., 2015) or the eu-
clidean model distance (e.g., Sanderson et al., 2015a; Knutti
et al., 2017).

Here we use the 35-year climatology of global, horizon-
tally resolved fields of surface air temperature (tasCLIM) and
sea level pressure (pslCLIM) as basis for our independence
weighting. As described in the main paper, the generalized
distance is calculated as difference between each model pair,
which is equivalent to the difference of the model errors e:

eli− elj = (S8)

(XAGG, Model
li −XAGG, Obs

l )− (XAGG, Model
lj −XAGG, Obs

l ) =

XAGG, Model
li −XAGG, Model

lj ,

where the rolling index l runs over all longitudes and lat-
itudes and the indices i 6= j mark the different models. The
model-model distance matrix is then calculated equivalent to
(S5):

sij =

√∑
l

wl

(
XAGG, Model

li −XAGG, Model
lj

)2
(S9)

The two resulting distance matrices for tasCLIM and
pslCLIM used in this study are shown in figure S2. The re-
sulting generalised model-model distance matrix Sij (calcu-
lated as the mean over both normalized sij equivalent to (S6)
and (S7)) is shown in figure S3. Already from this visuali-
sation, models from the same institution can be identified to
be close (e.g., the three CNRM models), while other models
(e.g., both MIROC models) are found to be quite far away
from most other models in the ensemble. This method has
the advantage of not needing any observations, compared to,
for example, the approach of using the models’ spatial er-
ror correlation distances similar to Bishop and Abramowitz
(2013):

sCORR
ij = 1−CORRl (X

ANOM, Model
li −XANOM, Obs

l , (S10)

XANOM, Model
lj −XANOM, Obs

l )

This means that the independence weights could, in theory,
be based on variables for which no (or spare) observations
are available as, for example, the pre-industrial control runs
which often provide considerably more data than the histori-
cal runs. To test the robustness of our approach we apply the
family tree clustering (figure 5 in the main manuscript) also
based on the correlation distances described in (S11) (fig-
ure S4). The resulting patterns are quite similar between both
approaches, with most known model families again falling
into the same cluster also when using the error correlation
distance as metric. In the details there are also some differ-
ences such as the two MIROC models being considerably
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Figure S3. Generalised model-model distance matrix Sij , calculated by averaging the two matrices shown in figure S2.

closer related when basing their independence on the error
correlation distance. In general, however, we do not expect
any major differences in the weighting using either metric,
in particular since the weighting (in our case) is dominated
to a large degree by several models receiving quite low per-
formance weights. Indeed, calculating the weighted distribu-
tions (equivalent to figure 8 in the main manuscript) based
on error correlation distances, reveals only minor differences
(not shown). A more detailed analysis and comparison of the
differences between the different approaches to model inde-
pendence constitutes an interesting topic for further research
but is outside the scope of this study.

S5 Additional information about the independence
shape parameter (σS) calibration

The independence shape parameter σS is a constant that
translates the model-model distances into weights (via equa-
tion (1)). Similar to σD different approaches exist to deter-
mine an ideal value for σS (see, e.g., Lorenz et al., 2018;
Brunner et al., 2019; Merrifield et al., 2020). Pragmatically

speaking, the aim is to make sure that initial-condition en-
semble members of a model are recognised as copies (see
figure 6 and corresponding discussion in the main paper),
partly dependent models receive reduced weighting based on
their similarity to other models in the ensemble and indepen-
dent models are identified as such. To estimate σS we here
follow the approach detailed in section 3 of the appendix of
Brunner et al. (2019).

The resulting value we find is σS = 0.54. To put this in
context we briefly look into the composition of the multi-
model ensemble used: it consists of 33 different models with
up to 50 realisations and a total of 129 runs. The median
of the generalised distance between two initial-condition en-
semble members of the same model (which differ only due
to internal variability) is about 0.12. The median of the
generalised distance between two models (including models
from the same institutions) is about 1.09. Looking at only
two initial-condition ensemble members of the same model
(M = 1,2), which we here take to have the typical distance
(0.12), the pure independence weighting becomes (derived
from equation (1) in the main paper):
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Figure S4. Similar to figure 5 in the main paper but based on error correlation distances.

wind
i =

1

1 +
∑M

j 6=i e
−
(
Sij
σS

)2 =
1

1 + e−( 0.12
0.54 )

2 = (S11)

1

1 + 0.952
= 0.512,

which is close to 1
2 which we would expect for the ide-

alised case. The independence weight for two different mod-
els taken to have the typical distance (1.09), in turn, becomes

wind
i =

1

1 + e−( 1.09
0.54 )

2 =
1

1 + 0.017
= 0.983, (S12)

which would identify them as mostly independent. As
mentioned in the main paper it is important to remind our-
selves that the definition of independence used here does not
hold in a purely statistical sense. It rather aims at reducing
obvious inter-dependencies between models based on their
output while assuming that the majority of models (after av-
eraging initial-condition members) is mostly independent.

S6 Additional information about the hierarchical
clustering

Here a short description of the hierarchical clustering used
for creating the CMIP6 “family tree” in figure 5 of the main
manuscript is given. We use an implementation from the
Python SciPy package (https://docs.scipy.org/doc/scipy/
reference/generated/scipy.cluster.hierarchy.linkage.html),
which is based on work by Müllner (2011). Consider an
example distance matrix of four models A, B, C, and D
with distances: A-B: 1, A-C: 3, A-D: 6, B-C: 2, B-D: 5, and
C-D: 6. The first cluster is formed by the two models with
the smallest distance A and B. Since we use the “average”
method the distance of this cluster to the remaining models
is the average of this elements: AB-C: 2.5 (mean of A-C and
B-C) and AB-D: 5.5. The next cluster is formed by the now
two closest “clusters” AB-C. This process is repeated until
all models are connected.

For figure 5 in the main paper the generalised model-
model distance matrix (figure S3) is used as basis. In the
resulting tree models are sorted by decreasing number of

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
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branches from top to bottom. This sorting does not change
the results and is only done for visual reasons; the order of
models in the initial clusters is arbitrary. Internal variability
is estimated using the distance between initial-condition en-
semble members of the same model. For each model with
more than one member we calculate the mean distance be-
tween the members. The estimate of internal variability is
then calculated as median over all these mean distances.

S7 Additional tables and figures

See next pages.
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Table S1. Model performance shape parameter σD for different target periods (sub-tables), SSPs (rows), and trend importance (columns) as
well as the respective mean values. The mean value of 50% highlighted in bold font is used throughout the manuscript.

2041-2060 0% 33% 50% 66% 100% Mean
SSP126 0.64 0.60 0.58 0.63 0.93 0.68
SSP585 0.47 0.37 0.35 0.31 0.29 0.36
Mean 0.55 0.48 0.46 0.47 0.61 0.52

2081-2000 0% 33% 50% 66% 100% Mean
SSP126 0.55 0.44 0.39 0.42 0.32 0.42
SSP585 0.47 0.37 0.39 0.67 1.20 0.62
Mean 0.51 0.40 0.39 0.55 0.76 0.52

Mean 0% 33% 50% 66% 100% Mean
SSP126 0.60 0.52 0.48 0.52 0.62 0.55
SSP585 0.47 0.37 0.37 0.49 0.74 0.49
Mean 0.53 0.44 0.43 0.51 0.68 0.52
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Table S2. List of CMIP6 models used including their weight, Transient Climate Response (TCR), and warming relative to the 1995-2014
baseline. The colours are locked to the values. Weights are coloured relative to equal weighting (which is about 0.03): x0.5 to x1.5 (white),
up to x2 (lightest red), x2.5, x3, x3.5, and above (darkest red); equivalent but in blue for models with less than equal weight. TCR is coloured
equivalent to figure 4 in the main paper and the values are taken from Tokarska et al. (2020), updated for more models.

2041-2060 2081-2100
Model Weight TCR SSP1-2.6 SSP5-8.5 SSP1-2.6 SSP5-8.5
ACCESS-CM2 0.0499 2.11 °C 1.62 °C 2.08 °C 1.89 °C 4.85 °C
ACCESS-ESM1-5 0.0358 1.95 °C 1.15 °C 1.80 °C 1.34 °C 3.98 °C
AWI-CM-1-1-MR 0.0436 2.07 °C 0.92 °C 1.46 °C 0.92 °C 3.62 °C
BCC-CSM2-MR 0.0354 1.5 °C 0.98 °C 1.69 °C 0.89 °C 3.31 °C
CAMS-CSM1-0 0.0507 1.75 °C 0.60 °C 1.03 °C 0.68 °C 2.51 °C
CanESM5-CanOE 0.0019 2.64 °C 1.54 °C 2.55 °C 1.62 °C 5.82 °C
CanESM5 0.0013 2.66 °C 1.50 °C 2.51 °C 1.59 °C 5.79 °C
CESM2-WACCM 0.0106 1.98 °C 1.28 °C 1.93 °C 1.50 °C 4.78 °C
CESM2 0.0140 2.06 °C 1.21 °C 1.98 °C 1.43 °C 4.74 °C
CNRM-CM6-1-HR 0.0218 2.47 °C 1.46 °C 1.94 °C 1.71 °C 4.76 °C
CNRM-CM6-1 0.0170 2.13 °C 1.12 °C 1.74 °C 1.39 °C 4.87 °C
CNRM-ESM2-1 0.0192 1.92 °C 1.14 °C 1.76 °C 1.47 °C 4.46 °C
EC-Earth3-Veg 0.0092 2.61 °C 1.08 °C 1.80 °C 1.30 °C 4.40 °C
EC-Earth3 0.0079 2.49 °C 1.08 °C 1.70 °C 1.26 °C 4.43 °C
FGOALS-f3-L 0.0630 2.06 °C 0.88 °C 1.52 °C 0.88 °C 3.57 °C
FGOALS-g3 0.0069 1.57 °C 0.44 °C 1.26 °C 0.48 °C 2.76 °C
FIO-ESM-2-0 0.0643 2.24 °C 1.01 °C 1.69 °C 1.03 °C 4.32 °C
GFDL-ESM4 0.1287 1.61 °C 0.78 °C 1.29 °C 0.79 °C 3.11 °C
GISS-E2-1-G 0.0862 1.8 °C 1.16 °C 1.64 °C 1.22 °C 3.40 °C
HadGEM3-GC31-LL 0.0011 2.51 °C 1.52 °C 2.43 °C 2.00 °C 5.46 °C
INM-CM4-8 0.0142 1.32 °C 0.65 °C 1.34 °C 0.61 °C 2.90 °C
INM-CM5-0 0.0430 1.39 °C 0.75 °C 1.38 °C 0.68 °C 2.81 °C
IPSL-CM6A-LR 0.0224 2.31 °C 1.21 °C 1.96 °C 1.31 °C 4.97 °C
KACE-1-0-G 0.0347 2.19 °C 1.61 °C 2.26 °C 1.81 °C 4.62 °C
MCM-UA-1-0 0.0328 1.94 °C 0.86 °C 1.58 °C 0.93 °C 3.63 °C
MIROC6 0.0378 1.55 °C 0.81 °C 1.28 °C 0.81 °C 3.17 °C
MIROC-ES2L 0.0014 1.55 °C 1.02 °C 1.56 °C 0.97 °C 3.38 °C
MPI-ESM1-2-HR 0.0524 1.65 °C 0.66 °C 1.16 °C 0.67 °C 3.02 °C
MPI-ESM1-2-LR 0.0401 1.84 °C 0.64 °C 1.19 °C 0.60 °C 3.09 °C
MRI-ESM2-0 0.0189 1.65 °C 1.08 °C 1.77 °C 1.03 °C 3.68 °C
NESM3 0.0072 2.79 °C 1.07 °C 1.93 °C 1.03 °C 4.17 °C
NorESM2-MM 0.0223 1.34 °C 0.84 °C 1.40 °C 0.87 °C 3.32 °C
UKESM1-0-LL 0.0045 2.75 °C 1.77 °C 2.62 °C 2.08 °C 5.86 °C
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Table S3. Overview of statistics from figure 8.

SSP1-2.6 2041-2060 Mean Median 66 % range 90 % range
Unweighted 1.07 °C 1.08 °C 0.75 °C to 1.50 °C 0.61 °C to 1.61 °C
Weighted 0.98 °C 0.91 °C 0.71 °C to 1.19 °C 0.62 °C to 1.61 °C

Change −0.09 °C −0.17 °C −36.00% −0.99%

SSP5-8.5 2041-2060 Mean Median 66 % range 90 % range
Unweighted 1.73 °C 1.70 °C 1.29 °C to 2.08 °C 1.17 °C to 2.55 °C
Weighted 1.56 °C 1.56 °C 1.28 °C to 1.91 °C 1.09 °C to 2.16 °C

Change −0.17 °C −0.14 °C −18.99% −22.46%

SSP1-2.6 2081-2100 Mean Median 66 % range 90 % range
Unweighted 1.17 °C 1.03 °C 0.68 °C to 1.62 °C 0.60 °C to 1.98 °C
Weighted 1.04 °C 0.91 °C 0.68 °C to 1.40 °C 0.61 °C to 1.85 °C

Change −0.13 °C −0.12 °C −24.47% −9.42%

SSP5-8.5 2081-2100 Mean Median 66 % range 90 % range
Unweighted 4.05 °C 3.98 °C 3.09 °C to 4.87 °C 2.76 °C to 5.82 °C
Weighted 3.65 °C 3.46 °C 3.06 °C to 4.59 °C 2.72 °C to 4.86 °C

Change −0.40 °C −0.52 °C −13.48% −29.84%

TCR Mean Median 66 % range 90 % range
Unweighted 2.01 °C 1.98 °C 1.55 °C to 2.51 °C 1.35 °C to 2.74 °C
Weighted 1.87 °C 1.83 °C 1.58 °C to 2.17 °C 1.38 °C to 2.43 °C

Change −0.14 °C −0.15 °C −37.50% −24.46%
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periods.
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Figure S6. Same as figure 3b but for all four combinations of SSPs and time periods.
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Figure S7. Unweighted (gray) and weighted (colors) temperature change for both periods and scenarios. The wide boxes show the same
distributions as in figure 8a in the main paper based on all ensemble members. The larger narrow boxes show the median over all 100
bootstrap members. The tiny boxes show the uncertainty for each percentile.


